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Deviations from Lorentz andCPT invariance in the neutrino sector and their observable effects in double
beta decay are studied. For two-neutrino double beta decay, a spectral distortion and its properties are
characterized for different isotopes. Majorana couplings for Lorentz violation are studied and shown to
trigger neutrinoless double beta decay even for negligible Majorana mass. Existing data are used to obtain
first limits of 5 × 10−9 for 18 individual coefficients, and attainable sensitivities in current and future
experiments are presented.
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I. INTRODUCTION

The development of Fermi’s theory of beta decay [1] was
rapidly followed by important ideas involving weak inter-
actions. In 1935, Goeppert-Mayer proposed the possibility
that two neutrons in a nucleus could simultaneously
decay into two protons, two electrons, and two antineu-
trinos [2], estimating that this rare decay would have a half-
life greater than 1017 years. This two-neutrino double beta
decay is a second-order weak process of the form ðA; ZÞ →
ðA; Z þ 2Þ þ 2e− þ 2ν̄e that has been observed in many
nuclei [3,4]. Other authors also proposed the possibility of
another mode of double beta decay, in which the neutrino
would be absent in the final state. This neutrinoless double
beta decay ðA; ZÞ → ðA; Z þ 2Þ þ 2e− could be possible if
neutrinos are their own antiparticles [5]. Today, there is a
dedicated experimental program searching for neutrinoless
double beta decay. A careful study of two-neutrino double
beta decay is also performed by these experiments because
it constitutes a background for the neutrinoless mode. The
high precision of many experiments has motivated the
formulation of different modes of double beta decay so
that experiments can also look for new physics through
unconventional decay modes [4].
In the present work, we propose to use experiments

studying double beta decay as probes of Lorentz invariance.
The spontaneous breakdown of this spacetime symmetry is
an interesting feature that can be accommodated by many
candidate theories of quantum gravity, such as string theory
[6]. Even though direct studies of physics at quantum-
gravity energies remain inaccessible for current experi-
ments, we can use low-energy experiments as tools to
explore suppressed signals of new physics at the Planck
scale. The effects of violations of Lorentz symmetry in beta
decay have been characterized in Ref. [7], which briefly
describes the experimental signals of Lorentz violation in
double-beta-decay experiments. In this work, we assume
that Lorentz-violating effects only affect neutrinos. The
corresponding effects arising from Lorentz violation in the
gauge and Higgs sectors are active topics of research [8],

which shows the growing interest on testing fundamental
symmetries using weak decays [9]. Couplings with weak
gravitational fields are discussed in Ref. [10], and CPT
violation without breaking Lorentz invariance is presented
in Ref. [11].
The general framework that incorporates operators that

break Lorentz invariance in the Standard Model (SM) is the
SM Extension (SME) [12]. This effective field theory
parametrizes generic deviations from Lorentz invariance
in the form of coordinate-invariant terms contracting
operators of conventional fields with controlling coeffi-
cients for Lorentz violation. This construction guarantees
invariance of the theory under observer transformations,
whereas particle Lorentz symmetry is broken. It should be
noted that a subset of operators in the SME also break CPT
symmetry [13]. The development of the SME has led to a
worldwide experimental program searching for violations
of Lorentz invariance, whose results are summarized
in Ref. [14].
The study of the neutrino sector of the SME [15] has

characterized the high sensitivity of neutrino-oscillation
experiments. The development of methodologies to per-
form systematic searches for Lorentz violation in these
experiments [16,17] has motivated several experimental
searches using neutrinos and antineutrinos [18–23].
Additionally, the SME has been used to construct alter-
native models for neutrino oscillations that can accommo-
date the established data and also some of the anomalous
results reported by different experiments [24]. Some of
these models based on the SME offer elegant and interest-
ing solutions to neutrino anomalies. More recently, the
observation of very-high-energy neutrinos [25] has served
to determine stringent constraints on CPT-even SME
coefficients [26].
Even though the interferometric nature of neutrino

oscillations makes them sensitive tools to search for new
physics, the study of weak decays offers access to some
operators that are unobservable using neutrino mixing.
Operators of arbitrary dimension in the theory can be
studied using the methods introduced in Ref. [27].
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Nonetheless, of particular interest are those whose observ-
able effects escape detection through sensitive measure-
ments such as neutrino oscillations and time of flight.
These so-called countershaded effects [7,28] arise due to
oscillation-free operators of mass dimension three, whose
effects are controlled by the four independent components
of the coefficient denoted ðað3Þof Þα [27].

II. TWO-NEUTRINO DOUBLE BETA DECAY

The unconventional spinor solutions of the modified
Dirac equation and the form of the neutrino phase space
produce observable effects recently studied in the context
of tritium decay, neutron decay, and double beta decay [7].
In this section, we describe a detailed presentation of the
relevant experimental signature in the two-neutrino mode
of double beta decay.
Denoting the 4-momentum of the two electrons and the

two antineutrinos by pα
j ¼ ðEj; pjÞ and qαj ¼ ðωj; qjÞ,

respectively (j ¼ 1, 2), the relevant matrix element for
the two-neutrino mode of double beta decay is given by

iM ¼ iG2
FV

2
ud½ūðp1Þγμð1 − γ5Þvðq1Þ�

× ½ūðp2Þγνð1 − γ5Þvðq2Þ�Jμν − ðp1↔p2Þ: (1)

The hadronic tensor Jμν corresponds to the product of
two nuclear currents written in the impulse approximation
[4]. Following the same procedure as in the conventional
two-neutrino double beta decay, including the implemen-
tation of the long-wave and closure approximation for the
hadronic tensor [4], we obtainX
spin

jMj2 ¼ 64G4
FjVudj4g4Aðp1 · p2Þð ~q1 · ~q2ÞjM2νj2; (2)

where the nuclear matrix element involves vector and
axial couplings for Fermi and Gamow-Teller transitions
in the form g2AM

2ν ¼ g2VM
2ν
F − g2AM

2ν
GT [4]. The two anti-

neutrinos appear with an effective 4-momentum ~qα ¼
ðω; qþ að3Þof − a

∘ ð3Þ
of q̂Þ, where a

∘ ð3Þ
of corresponds to the

isotropic component of ðað3Þof Þα. The decay rate is given by

dΓ ¼ 1

4

Z
d3p1

ð2πÞ32E1

d3p2

ð2πÞ32E2

d3q1
ð2πÞ32ω1

d3q2
ð2πÞ32ω2

× FðZ; E1ÞFðZ; E2Þ
X

jMj2
× 2πδðE1 þ E2 þ ω1 þ ω2 − ΔMÞ; (3)

where we have included the Fermi function to account for
the Coulomb interaction of the two emitted electrons and
the daughter nucleus of atomic number Z and the symmetry
factor for the two pairs of outgoing leptons. Since the two
antineutrinos are not measured in these types of experi-
ments, the integration over all orientations leaves only the

isotropic coefficient a
∘ ð3Þ
of , and the phase space takes the

form d3q ¼ 4πðω2 þ 2ωa
∘ ð3Þ
of Þdω. After a suitable change of

integration variables and defining the sum of kinetic
energies K ¼ T1 þ T2 for the two electrons, we obtain
the electron sum spectrum

dΓ
dK

¼ CðK4 þ 10K3 þ 40K2 þ 60K þ 30ÞK

× ½ðK0 − KÞ5 þ 10a
∘ ð3Þ
of ðK0 − KÞ4�; (4)

where K0 is the maximum kinetic energy available in the
decay. We have written the energy in units of the electron
mass and used the Primakoff-Rosen limit for nonrelativ-
istic electrons [29–33]. The overall constant factor is
given by C ¼ G4

Fg
4
AjVudj4jM2νj2F2

PRðZÞm11
e =7200π7, with

FPRðZÞ ¼ 2παZ=ð1 − e−2παZÞ. We find that the isotropic

coefficient a
∘ ð3Þ
of produces a distortion of the conventional

electron sum spectrum. A similar effect is found for
studies of the spectrum of neutron decay [7]. Since the
Lorentz-violating modification of the spectrum appears with
a well-defined energy dependence, a search for deviations
from the conventional spectrumwould allow for studying the

effectsof the isotropic coefficienta
∘ ð3Þ
of . Inparticular, theenergy

dependence of the modification allows for determining the
energy Km at which the effect of this coefficient is maximal
andhencegives thebest chance toobserve its effect.This is the
energy at which the residual spectrum reaches its maximum.
Table I shows the value of this energy for some double-beta-
decayemitterscommonly studied. It shouldbenoticed that the

coefficient a
∘ ð3Þ
of also controls a source of CP violation in the

neutrino sector that remains experimentally unexplored.
Experimental studies require the search for deviations

from the conventional spectrum, and the energy listed in
Table I for a given element should serve as a guide
indicating the region of the spectrum of highest sensitivity.
We have also found that the anisotropic components
of ðað3Þof Þα are unobservable in this kind of experiment;
therefore, studies of neutron and tritium decay appear as
important complementary techniques [7].

TABLE I. Sum of the kinetic energy of the two electrons at
which the Lorentz-violating modification introduced by the
coefficient a

∘ ð3Þ
of is maximal.

Isotope Km (MeV)
48Ca 1.98
76Ge 0.81
82Se 1.30
96Zr 1.48
100Mo 1.32
116Cd 1.20
130Te 1.05
136Xe 1.02
150Nd 1.49
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III. NEUTRINOLESS DOUBLE BETA DECAY

The presence of Lorentz violation in the neutrino
sector modifies both the neutrino dispersion relation and
propagator. This means that Lorentz-violating effects arise
in two independent manners involving different types of
coefficients. As discussed before, the modified neutrino
dispersion relation alters the phase space, which for the
neutrinoless mode introduces a modification to the so-
called neutrino potential [4]. It can be shown that current
limits on the lifetime of the neutrinoless mode of different
isotopes are less sensitive to the relevant SME coefficients
than tritium decay experiments [7]. Additionally, the effects
of Lorentz violation in the neutrino potential are weighted
with the conventional nuclear matrix elements, which
having magnitudes Oð1Þ are unable to make these types
of Lorentz-violating effects more noticeable. For these
reasons, we neglect the Lorentz-violating modifications
of the nuclear matrix elements introduced by the coefficient
a
∘ ð3Þ
of and study in detail the effects of Lorentz-violating

Majorana couplings that arise in the neutrino propagator.
Using the SME Lagrangian [27] and neglecting Dirac

couplings, the relevant propagator can be written at leading
order as

SðqÞ ¼ 1

q2

�
q − eð4Þλ

Ma0ā0
qλ − ifð4Þλ

Ma0ā0
qλγ5

− 1

2
gð4Þλρσ
Ma0ā0

σλρqσ − 1

2
Hð3Þλρ

Ma0ā0
σλρ

�
; (5)

where the coefficients eð4Þλ
Ma0ā0

, fð4Þλ
Ma0ā0

, gð4Þλρσ
Ma0ā0

, and Hð3Þλρ
Ma0ā0

are
Majorana couplings in the neutrino sector of the SME. The
indices a0ā0 indicate that the coefficients are written in the
basis of neutrino eigenstates, with a0 ¼ 1, 2, 3. The bar over
the second index reveals the Majorana nature of these
coefficients by connecting neutrino and antineutrino states.
The numbers in parentheses denote the mass dimension of
the associated operator. We have neglected the contribution
from a possible Majorana mass in the propagator because
we are interested in a pure Lorentz-violating mechanism for
neutrinoless double beta decay. Inspection shows that the

coefficient gð4Þλρσ
Ma0ā0

is the only one in the propagator (5) that
couples to an operator that preserves charge conjugation.

This suggests that gð4Þλρσ
Ma0ā0

is the only relevant coefficient in
this decay mode because neutrinoless double beta decay
requires the neutrino and the antineutrino to be the same
particle.
Direct calculation shows that due to the Dirac-matrix

structure, the transition matrix generated by the scalar

eð4Þλ
Ma0ā0

and pseudoscalar fð4Þλ
Ma0ā0

couplings as well as the

tensor coupling Hð3Þλρ
Ma0ā0

is symmetric under the interchange
of the two emitted electrons. For this reason, the total
transition matrix vanishes due to its antisymmetry under

the interchange of identical fermions. In contrast, the

coefficient gð4Þλρσ
Ma0ā0

produces a transition matrix that is
antisymmetric under the interchange of the two electrons.
This result verifies that Lorentz-violating neutrinoless
double beta decay only depends on the coefficient

gð4Þλρσ
Ma0ā0

, which also controls CPT violation. The result
above can be shown to be valid for operators of arbitrary
dimension; nevertheless, in this work we only describe the
effects of operators of the lowest dimension, in this case
d ¼ 4 [27].
Integration over the neutrino energy shows that the

effects of gð4Þλρ0
Ma0ā0

are unobservable; hence, only gð4Þλρk
Ma0ā0

is
relevant. The Dirac matrix σλρ introduces a coupling

between the components of the coefficient gð4Þλρk
Ma0ā0

and
the phase space of the two emitted electrons, which leads
to unique electron angular correlations. Other unconven-

tional terms appear due to the coupling between gð4Þλρk
Ma0ā0

and
the components of the nuclear currents. It can be shown that
the Dirac-matrix structure can be written as the sum of
symmetric, antisymmetric, and mixed products of the Dirac
matrices. The symmetric piece leads to the conventional
Fermi and Gamow-Teller nuclear matrix elements, while
the antisymmetric part produces no effects because the
product of the nuclear currents is symmetric [4]. The mixed
term leads to unconventional forms for the nuclear matrix
elements. For a detailed study, a careful analysis of the

nuclear matrix elements coupled to the gð4Þλρk
Ma0ā0

coefficient is
needed, which goes beyond the scope of this work. In what
follows we will focus on the effects arising from the

coupling between gð4Þλρk
Ma0ā0

and the phase space of the two
outgoing electrons, in which case the nuclear matrix
elements remain unchanged.
The implementation of the results discussed above leads

to the transition amplitude

iM ¼ iG2
FV

2
udhgλρkM ir̂kūðp1Þγμσλργνð1þ γ5ÞuCðp2Þ

×
Hðr;ΔÞJμν

4πR2
; (6)

where Hðr;ΔÞ is the conventional neutrino potential from
the integration over the neutrino momentum [4], the nuclear
radius is given by R ¼ 6.1 × A1=3 GeV−1, and r̂ is the
direction of emission of the virtual neutrino. The coeffi-
cients for Lorentz violation appear weighted by the electron
elements of the Pontecorvo-Maki-Nakagawa-Sakata matrix
in the form of an effective coefficient

hgλρkββ i ¼
X
a0
U2

a0eg
ð4Þλρk
Ma0ā0

; (7)

similar to the conventional effective Majorana-mass param-
eter hmββi [4]. From direct calculation we obtain
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X
spin

jMj2 ¼ G4
FjVudj4g4A
8π2R4

jM0νj2jgλρββj2½ðp1 · p2Þηλληρρ

− 2pλ
1p

λ
2η

ρρ − 2pρ
1p

ρ
2η

λλ�; (8)

where M0ν is the conventional nuclear matrix element for
neutrinoless double beta decay [4]. In this expression we
havewritten the vector r̂ in the Sun-centered frame [34] and
averaged over all possible orientations, which produces the
effective coefficient

jgλρββj2 ¼
1

3
ðjhgλρXββ ij2 þ jhgλρYββ ij2 þ jhgλρZββ ij2Þ: (9)

It must be noted that in the transition amplitude (8) there
is no sum over repeated indices. Instead, this expression is
valid individually for the six possible pairs of indices λρ.
The decay rate is given by

dΓ ¼ 1

2

Z
d3p1

ð2πÞ32E1

d3p2

ð2πÞ32E2

FðZ; E1ÞFðZ; E2Þ

×
X

jMj22πδðE1 þ E2 þ ΔMÞ; (10)

where Lorentz-violating effects only appear at the level of
the transition amplitude because the physics of the two
outgoing electrons is conventional.

A. Angular correlations

For experiments with tracking systems that allow the
determination of the direction of the two emitted electrons,
it is useful to identify the way the angular correlation of the
electrons gets modified. In the Sun-centered frame [34] the
momentum of each electron satisfies

p
E
¼ β

0
B@

cos ω⊕T⊕ − sin ω⊕T⊕ 0

sin ω⊕T⊕ cos ω⊕T⊕ 0

0 0 1

1
CA
0
B@

NX

NY

NZ

1
CA; (11)

where β is the speed of the electron and ω⊕ ≃
2π=ð23 h 56 minÞ is the sidereal frequency that accounts
for the rotation of the Earth. The directional factorsNX,NY ,
and NZ indicate the direction of each electron in the
Sun-centered frame during the 2000 vernal equinox, which
defines T⊕ ¼ 0 [34]. Using polar coordinates in the
laboratory frame with the z axis directed towards the
zenith, the x axis pointing south, and the y axis pointing
east, the directional factors are functions of ðθ;ϕÞ and the
colatitude of the laboratory χ [17]. Since we will integrate
over the azimuthal angles ϕj, we only keep the elements
with azimuthal symmetry, in which case the momentum
components of each electron (j ¼ 1, 2) become

pX
j ¼ cos ω⊕T⊕ sin χ cos θj;

pY
j ¼ sin ω⊕T⊕ sin χ cos θj;

pZ
j ¼ cos χ cos θj: (12)

Using these expressions, we can write the angular
distribution as

ρλρðp1; p2Þ ¼ 1 − kλρβ1β2 cos θ1 cos θ2; (13)

with the factor kλρ given for each component in the form

kTX ¼ kYZ ¼ 2sin2χcos2ω⊕T⊕ − 1;

kTY ¼ kXZ ¼ 2sin2χsin2ω⊕T⊕ − 1;

kTZ ¼ kXY ¼ cos 2χ: (14)

We have found that all the factors kλρ depend on the
location of the experiment, and four of them change with
sidereal time. For comparison, in neutrinoless double beta
decay triggered by a Majorana mass, this factor is k ¼ 1
[4,35]. In order to construct a useful observable, we define
the quantity

Kλρ ¼ kλρkθðZÞ; (15)

which includes the factors kλρ obtained above and also the
parameter kθðZÞ that accounts for the integration over the
electron energies and depends on the isotope used through
the atomic number Z and the Q value. These parameters
must be determined by numerical integration of the decay
rate (10) over the allowed electron energies. Table II shows
the value of this parameter for some double beta decays.
The definition of factor (15) can be used to write

dΓ
dx1dx2

¼ Γ
4
ð1 − Kλρx1x2Þ; (16)

with Γ the total decay width and xj ¼ cos θj. In the
absence of Lorentz violation, the local coordinates can
be taken with any orientation. In our case, we do not have
this freedom because the coordinates of the laboratory

TABLE II. Relevant parameters for some double beta decays.

Process kθ
48Ca → 48Ti 0.93
76Ge → 76Se 0.81
82Se → 82Kr 0.88
96Zr → 96Mo 0.90
100Mo → 100Ru 0.88
116Cd → 116Sn 0.87
136Xe → 136Ba 0.84
130Te → 130Xe 0.85
150Nd → 150Sm 0.89
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frame are defined according to the rotations used to write
the two electron momenta in the Sun-centered frame (12);
therefore, the integration over the two electron orientations
must be performed carefully. Let us define the number
of events N− (Nþ) emitted with a relative angle smaller
(greater) than 90∘ in the form

N− ¼
Z

xmax

xmin

dx1

Z
x1

− ffiffiffiffiffiffiffiffi
1−x2

1

p dx2

�
dΓ

dx1dx2

�
;

Nþ ¼
Z

xmax

xmin

dx1

Z − ffiffiffiffiffiffiffiffi
1−x2

1

p

−x1
dx2

�
dΓ

dx1dx2

�
: (17)

The forward-backward asymmetry of the decay distri-
bution can be constructed by properly choosing the range
½xmin; xmax�. Given the form of the angular distribution, if
the integration range is too symmetric then the terms of
interest cancel. For this reason, we take the range ½− 1ffiffi

2
p ; 1�,

which gives the asymmetry

A ¼ Nþ − N−
Nþ þ N− ¼ Kλρ

4
− 3π

2
− 1: (18)

This asymmetry corresponds to the counting of all the
events between θ ¼ 0° measured from the vertical at the
laboratory frame a nd θ ¼ 135°. Notice that the above
asymmetry depends on the location of the experiment and
can also oscillate with sidereal time, in which case the
amplitude of the oscillation is independent of the size of
the coefficient for Lorentz violation. The asymmetry in
the conventional Majorana-mass driven decay is constant
and only depends on the element used in the form
A0ðZÞ ¼ kθðZÞ=2. We find that the asymmetry defined
above allows a clear separation of the effects due to jgλρββj
from the conventional neutrinoless double beta decay
triggered by a Majorana-mass parameter.

B. Half-life measurements

The complete integration of the decay rate (10) allows us
to identify the signature of the effective coefficients jgλρββj in
the half-life of neutrinoless double beta decay. The decay
constant can be written in conventional form as the product
of a phase-space factor G0νðZ;QÞ that depends on the
double beta emitter, the nuclear matrix element, and a
particle physics quantity in the form

ðT0ν
1=2Þ−1 ¼ Γ ¼ G0νðZ;QÞjM0νj2 jg

λρ
ββj2
4R2

: (19)

Comparing this expression with the conventional form
of the decay constant [4], we find that effective coefficients
for CPT-odd Lorentz violation jgλρββj play the role of the
Majorana mass parameter jhmββij in the form [7]

jhmββij →
jgλρββj
2R

: (20)

Since neutrinoless double beta decay remains unob-
served to date, limits on the half-life of this decay mode in
different isotopes can be used to set upper bounds on the
effective coefficients jgλρββj. Table III presents the estimated
limits on these coefficients based on published results by
different experiments as well as the projected sensitivity of
several experiments under construction or in the process of
upgrade.
The limits presented in Table III are conservative in the

sense that the lowest value of the corresponding nuclear
matrix element has been used. Limits 2–3 times better can be
obtained when using the largest value of the nuclear matrix
elements. Since the definition of jgλρββj involves the sum of
three positive quantities, we can take each of the components
jhgλρKββ ij in definition (9) to be nonzero at the time. From the
values in Table III, we can write 90% C.L. upper limits in 18
effective coefficients in the form

jhgλρKββ ij < 5 × 10−9; (21)

with λρ ¼ TX, TY, TZ, XY, XZ, YZ, andK ¼ X, Y, Z. The
definition of the effective coefficients hgλρKββ i shows that

TABLE III. Conservative upper limits on the effective
coefficients jgλρββj from the corresponding upper bound on the
effectiveMajorana mass at the 90% C.L. in different experiments.
Lower rows show attainable limits based on the expected
sensitivities in future experiments.

Process
Estimated
upper limit Experiment Reference

48Ca → 48Ti 1 × 10−8 IGEX [36]
48Ca → 48Ti 4 × 10−7 ELEGANT VI [37]
48Ca → 48Ti 3 × 10−7 NEMO-3 [38]
76Ge → 76Se 4 × 10−9 GERDA [39]
82Se → 82Kr 3 × 10−8 NEMO-3 [40]
96Zr → 96Mo 2 × 10−7 NEMO-3 [41]
100Mo→100Ru 1 × 10−8 NEMO-3 [40]
116Cd → 116Sn 2 × 10−8 Solotvina [42]
130Te → 130Xe 9 × 10−9 CUORICINO [43]
136Xe → 136Ba 5 × 10−9 EXO-200 [44]
136Xe → 136Ba 3 × 10−9 KamLAND-Zen [45]
150Nd→150Sm 8 × 10−8 NEMO-3 [46]
48Ca → 48Ti 4 × 10−9 CANDLES [47]
76Ge → 76Se 4 × 10−10 GERDA Phase II [39]
76Ge → 76Se 4 × 10−10 MAJORANA [48]
82Se → 82Kr 6 × 10−9 SuperNEMO [40]
130Te → 130Xe 5 × 10−9 CUORE-0 [49]
130Te → 130Xe 1 × 10−9 CUORE [50]
130Te → 130Xe 8 × 10−10 SNO+ [51]
136Xe → 136Ba 4 × 10−10 nEXO [52]
136Xe → 136Ba 1 × 10−9 NEXT [53]
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they are linear combinations of the eigenvalues of the

original coefficients gð4ÞλρσM in the action. It should be
noticed that different linear combinations of these original
coefficients can trigger neutrino-antineutrino oscillations
[15,17], whose effects have recently been studied using
accelerator neutrinos [54] and reactor antineutrinos [55].
The interferometric nature of oscillations between neu-
trinos and antineutrinos [17] makes them sensitive probes
of the Majorana couplings in the SME, which appear as
combinations of the original coefficients in the form
~gνσ
ab̄

¼ gTνσ
ab̄

þ i
2
εTν γρg

γρσ
ab̄

(a ¼ e; μ; τ, b̄ ¼ ē; μ̄; τ̄) [15].
The experimental signature in neutrinoless double beta
decay allows for constraining independent combinations
of these coefficients [56], which provides complementary
tests of Lorentz invariance.
Even though neutrinoless double beta decay can access

different combinations of coefficients from those of oscil-
lations, under mild assumptions these combinations can be
related. Below we present the relationships between the
effective coefficient jgλρββj observable in neutrinoless double
beta decay and some components of the coefficients
measured in oscillations, which are obtained by keeping
a single coefficient while setting the others to zero [57].
This procedure is widely used in the literature, and it could
hide some effects due to fortuitous cancellations between
different coefficients; nonetheless, this method provides
meaningful information for comparison with other experi-
ments. The relations between coefficients are

j~gJKeē j < 3.9jhgTJββ ij; jRe~gJKeμ̄ j < 3.2jhgTJββ ij;
j~gJKμμ̄ j < 10:8jhgTJββ ij; jRe~gJKeτ̄ j < 5.3jhgTJββ ij;
j~gJKττ̄ j < 28:7jhgTJββ ij; jRe~gJKμτ̄ j < 8.9jhgTJββ ij; (22)

with J; K ¼ X; Y; Z. The constraint (21) leads to the
following limits for 54 coefficients in flavor space:

j~gJKeē j < 1 × 10−8; jRe~gJKeμ̄ j < 1 × 10−8;
j~gJKμμ̄ j < 3 × 10−8; jRe~gJKeτ̄ j < 2 × 10−8;
j~gJKττ̄ j < 9 × 10−8; jRe~gJKμτ̄ j < 3 × 10−8: (23)

IV. CONCLUSION

In this work, we have presented the effects of deviations
from exact Lorentz invariance in experiments studying
double beta decay in the context of the Standard-Model
Extension. Observable signatures include a modification of
the electron sum spectrum in the two-neutrino mode of the
decay, which can be studied by searching for departures
from the conventional spectrum. The countershaded coef-
ficient responsible for this effect controls Lorentz and CPT
violation in the neutrino sector and also controls a new
source ofCP violation.We also find that neutrinoless double
beta decay could occur even if theMajorana neutrinomass is
negligible; nevertheless, interference between the mass
mechanism and the Lorentz-violating effect could also
appear [7,58]. The corresponding angular correlations for
the two emitted electrons have been determined for the
relevant SME coefficients. Although there are other mech-
anisms that can trigger neutrinoless double beta decay
without the conventional Majorana mass [4,59], the one
presented here does not require new particles or forces.
In addition to limits on the Majorana mass parameter, the

identification(20)will allowexperiments toderiveupper limits
on coefficients for Lorentz violation from the lower bounds on
the lifetime of neutrinoless double beta decay. Noti ce that if
neutrinoless double beta decay is observed in the future, the
unique Lorentz-violating signature that would allow us to
separate the effects from a Majorana-mass mechanism is the
dependence of the particle physics parameter in the half-life
(19) on the nuclear radius R of the isotope used.
The absence of compelling positive signals of neutrino-

less double beta decay in numerous experiments is used to
determine the first limits on some components of the
relevant SME coefficient up to the 10−9 level. The expected
sensitivity of upcoming experiments could improve these
limits by at least 1 order of magnitude.
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