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We present a derivation of an exact high temperature expansion for a one-loop thermodynamic potential
Ωð ~μÞ with complex chemical potential ~μ. The result is given in terms of a single sum, the coefficients of
which are analytical functions of ~μ consisting of polynomials and polygamma functions, decoupled from
the physical expansion parameter βm. The analytic structure of the coefficients permits us to explicitly
calculate the thermodynamic potential for the imaginary chemical potential and analytically continue the
domain to the complex ~μ plane. Furthermore, our representation of Ωð ~μÞ is particularly well suited for
the Landau-Ginzburg type of phase transition analysis. This fact, along with the possibility of interpreting
the imaginary chemical potential as an effective generalized-statistics phase, allows us to investigate the
singular origin of the m3 term appearing only in the bosonic thermodynamic potential.
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I. INTRODUCTION

Quantum field theory at finite temperature is known to be
very successful at dealing with problems such as phase
transitions, spontaneous symmetry breaking and restora-
tion, and similar collective phenomena in the context of
high energy physics [1,2]. In such applications, a quantity
of key interest is the thermodynamic potential which to
one-loop order is proportional to

ΩB=F ¼
2

β

Z
d3p
ð2πÞ3 ln ð1∓e−βEÞ; (1)

where β > 0 is the inverse temperature and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is the relativistic energy of the field of mass m > 0. Here,
the upper (lower) sign corresponds to Bose (Fermi)
statistics. It should be noted that the vacuum contribution
toΩB=F is neglected since it is temperature independent and
as such is irrelevant for our considerations. The thermo-
dynamic potential can be calculated approximately in the
limit of low ðβm ≫ 1Þ or high temperature ðβm ≪ 1Þ. In
our notation, the original result for ΩB=F in the high
temperature limit, given by Dolan and Jackiw [3], reads

ΩB ≈ − π2

45β4
þ 1

12β2
m2 − 1

6πβ
m3

þ 1

32π2

�
3

2
− 2γ þ 2 ln 4π − ln β2m2

�
m4 (2)

for bosons and

ΩF ≈
7π2

360β4
− 1

24β2
m2

þ 1

32π2

�
3

2
− 2γ þ 2 ln π − ln β2m2

�
m4 (3)

for fermions. Here, γ is the Euler-Mascheroni constant.
One of the most striking differences in the above results
is the appearance of m3 term in ΩB, the expression
otherwise being very similar to ΩF. It is evident that the
origin of the term in question is “singular” since the
original integral is dependent only on m2 (through E),
and all other terms in the high temperature expansion are
indeed functions of m2. This is reminiscent of the Bose-
Einstein condensation (cf. [4,5]) which is also, in a
certain sense, a singular phenomenon, occurring only
in bosonic systems. Ultimately, the m3 ≡ ðm2Þ3=2 term is
a manifestation of a branch cut in ΩB in the variable m2

running from m2 ¼ 0 to m2 ¼ −∞. Such a branch cut
does not appear in ΩF. Given the similarities and the
differences in the expressions for ΩB and ΩF, it is natural
to ask, is there a way of calculating both potentials
at once?
The above discussion motivates us to consider the

thermodynamic potential given in Eq. (1) as a special case
of a generalized thermodynamic potential

ΩðφÞ ¼ 1

β

Z
d3p
ð2πÞ3 ln ð1 − eiφe−βEÞ þ c.c.; (4)

where φ ∈ ½0; 2πi is an effective generalized-statistics
parameter which interpolates between bosons (φ ¼ 0)
and fermions (φ ¼ π). The c.c. stands for complex con-
jugation and corresponds to the antiparticle contribution to
ΩðφÞ. Since we are dealing with thermodynamic potential*bruno.klajn@irb.hr
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in (3þ 1) dimensions, the term generalized statistics
should not be confused with the anyon statistics which
is only relevant in (2þ 1) dimensions. The parameter φ is
directly related to the imaginary chemical potential μi
[μi ¼ φ=β for bosons and μi ¼ ðφþ πÞ=β for fermions],
which is especially relevant for finite temperature quantum
chromodynamics (QCD). The imaginary chemical poten-
tial can be used to obtain the information about the QCD
phase diagram and is particularly well suited for the lattice
calculations [6–10]. Furthermore, the Polyakov loop is
the order parameter in deconfinement phase transitions,
where it plays the role of the imaginary chemical potential
[11–15] in the mean field approximation. The imaginary
chemical potential is also used to calculate the so-called
dressed Polyakov loop [16–18] which is used, in particular,
to study the connection between the chiral and deconfine-
ment phase transitions [19–24].
Integrals of the type (1) and (4) have been investigated

by several authors (cf. [25–29], and references therein) in
the past. The first step in all the calculations is performing
the angular integration, followed by a change of integration
variable and then a partial integration. This transforms
Eq. (4) into

ΩðφÞ ¼ − m4

6π2

Z
∞

1

ðt2 − 1Þ3=2
e−iφeβmt − 1

dtþ c.c: (5)

From the form of Eq. (5), it is clear that if one allows φ to
be a complex number φ ¼ φr þ iφi with φr ∈ ½0; 2πi and
φi ∈ R, the function ΩðφÞ has two branch cuts in the
restriction of the complex plane C0 ¼ ½0; 2πi × iR located
on the imaginary axis and running from �iβm to �i∞.
Therefore, for nonzero values of βm, the potential ΩðφÞ is
analytic in the neighborhood of φ ¼ 0 and an analytic
continuation from real φ to complex φ can be performed.
Next, taking into account that jeiφe−βmtj < 1, the denom-

inator is expanded in (a uniformly convergent) Taylor series
and a termwise integration is performed which, upon using
the integral representation of the modified Bessel function
of the second kind

KnðxÞ ¼
ffiffiffi
π

p
Γðnþ 1

2
Þ
�
x
2

�
n
Z

∞

1

dte−txðt2 − 1Þn−1=2; (6)

turns Eq. (4) into a sum over Bessel functions

ΩðφÞ ¼ − m2

2π2β2
X∞
n¼1

einφ

n2
K2ðnβmÞ þ c.c: (7)

There are three different approaches, known to the
author, which make it possible to transform the sum of
Bessel functions into a more tractable result. It should be
noted, however, that the original approximate results for
ΩB=F, given by Eqs. (2) and (3), were obtained directly
from Eq. (1), without the use of Bessel functions. In the first

approach, an exact series representation of the integral
ΩðφÞ is limited to boson and fermion statistics and given in
Ref. [25] using Mellin transform. The result obtained is of
the form

ΩB=F ¼
X
k

ðaB=FÞkðβmÞk (8)

and correctly reproduces the original approximate results
[3]. The second approach consists in substituting the
series representation of the Bessel function into Eq. (7)
and performing the termwise sum over n making the use of
the zeta regularization techniques. This method was first
employed, in the special case of bosons and fermions, in
Refs. [26,27]. The final result is given in terms of an
expansion in the parameter βm, in agreement with
Ref. [25]. The method was later generalized in Ref. [28]
for the case of arbitrary parameter φ by expanding the
exponential term einφ of Eq. (7) in Taylor series. This led to
a double series expansion in the parameters βm and φ:

ΩðφÞ ¼
X
k;m

akmðβmÞkφm: (9)

The author of Ref. [28], in fact, has also considered the
nonzero real chemical potential μ and obtained the triple
series expansion in parameters βm, φ and μ. Finally, the
third method of resumming Eq. (7) is given in Ref. [29]. It
utilizes various Bessel function identities to convert the
sum over Bessel functions to a sum over elementary
functions (integer powers and square roots) containing
both the βm and φ parameters combined in a nontrivial
way as

ΩðφÞ ¼
X
k

fkðβm;φÞ: (10)

Although Eqs. (9) and (10) generalize the result (8) for
arbitrary φ, it is of special interest to express generalized
result in a power expansion of the form

ΩðφÞ ¼
X
k

akðφÞðβmÞk; (11)

with the coefficients akðφÞ being simple analytic functions
of the phase φ. Namely, the main benefits of such a form
are: it is a single sum expression, which is an advantage in
comparison to form (9) and the parameter φ is “decoupled”
from the physical variable βm which is physically more
operational and transparent than the form (10). The form in
Eq. (11) is particularly suitable for Landau-Ginzburg–type
analysis of phase transitions for arbitrary φ. Moreover, in
electroweak baryogenesis, the appearance of them3 term in
Eq. (2) is necessary for the electroweak phase transition to
be of the first order (see e.g. Ref. [30] and references
therein). Therefore, it is reasonable to expect that Eq. (11)
will produce a deeper insight on the origin and properties of
the m3 term in the expression for ΩB.
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In this paper, we derive the exact series representation of
the thermodynamic potential ΩðφÞ of the type given in
Eq. (11). The final expression is given in Eq. (35), where
the coefficients akðφÞ are given in terms of polynomials and
polygamma functions. With expression (35) in hand, we are
in a position to show that the singular m3 term is absent in
ΩðφÞ for all φ ≠ 0 but appears naturally in the limit φ → 0.
Also, due to a simple analytic structure of akðφÞ, we
generalize our results to the case of complex chemical
potential ~μ ¼ μþ iφ=β in Eq. (51), thereby obtaining for
the first time the complete dependence of the thermody-
namic potential Ωð ~μÞ on the complex chemical potential ~μ
which is the main result of this paper.
The rest of the paper is organized as follows: in Sec. I, we

obtain the exact high temperature expansion of the thermo-
dynamic potential ΩðφÞ for φ ≠ 0 using a generalization of
the zeta-regularization method of Refs. [26,27]. In Sec. II,
we explicitly show that limφ→0ΩðφÞ ¼ ΩB and that the
singular term in ΩB containing m3 is generated by a
resummation of a divergent series generated by the coef-
ficients akðφÞ in the limit φ → 0. Finally, in Sec. III, we use
the analyticity of ΩðφÞ to extend the domain of the
thermodynamic potential to the complex φ plane ΩðφÞ →
Ωð ~μÞ, with ~μ ¼ μþ iφ=β, as a result of which it becomes a
function of the real μ, as well as the imaginary chemical
potential μi. At the end, we discuss the relation between our
result and the results obtained earlier and give an outlook to
possible future work. Some calculation details are given in
an Appendix.

II. CALCULATING THE THERMODYNAMIC
POTENTIAL ΩðφÞ FOR φ ≠ 0

A. Expanding the modified Bessel function

To calculate the thermodynamic potential given in
Eq. (7), we use the series representation of the modified
Bessel function valid for x > 0 [31],

K2ðxÞ ¼
2

x2
− 1

2

þ 1

2

X∞
k¼0

ψðkþ 1Þ þ ψðkþ 3Þ − 2 ln x
2

Γðkþ 1ÞΓðkþ 3Þ
�
x2

4

�
kþ1

;

(12)

where the digamma function ψðzÞ ¼ d
dz ln ΓðzÞ is the

logarithmic derivative of the gamma function. Plugging
this expression in Eq. (7), we obtain

ΩðφÞ ¼ − m2

2π2β2

�
2

β2m2

X∞
n¼1

einφ

n4
− 1

2

X∞
n¼1

einφ

n2

þ 1

2

X∞
n¼1

einφ
X∞
k¼0

½AðkÞ − 2BðkÞ ln n�n2k
�
þ c.c.;

(13)

where we have defined two auxiliary functions,

AðkÞ ¼ ψðkþ 1Þ þ ψðkþ 3Þ − ln β2m2

4

Γðkþ 1ÞΓðkþ 3Þ
�
β2m2

4

�
kþ1

(14)

and

BðkÞ ¼ 1

Γðkþ 1ÞΓðkþ 3Þ
�
β2m2

4

�
kþ1

: (15)

Because of the nature of the gamma and digamma
functions, these functions are entire in the complex k plane.
The two single sums inside the curly bracket in Eq. (13)

are convergent and can be immediately identified as
polylogarithms [31,32]

X∞
n¼1

einφ

n4
¼ Li4ðeiφÞ;

X∞
n¼1

einφ

n2
¼ Li2ðeiφÞ: (16)

To perform the sum over n in the double sum terms in
Eq. (13), one would first have to interchange the order of
summation to find that the sum over n diverges. Therefore,
the naive summation swap does not work. To correctly sum
over n, we follow (and generalize) the method of
Refs. [27,28,33].

B. Interchanging the order of summations

Because of the fact that the functions AðkÞ and BðkÞ are
regular in the complex k plane, the residue theorem can be
used to write the sum over k in Eq. (13) as a contour integral

X∞
k¼0

½AðkÞ − 2BðkÞ ln n�n2k

¼ 1

2i

I
C
dk½AðkÞ − 2BðkÞ ln n�n2k cot πk; (17)

where the curve C encompasses the positive real axis Re k
(a Hankel curve). The poles of the cotangent function inside
the curve reproduce the original sum over k. Again, due to
the regularity of the integrand, the curve C can be deformed
into a perimeter of a half-disk consisting of a straight line p,
defined by Re k ¼ −ϵ, ϵ ∈ h0; 1i, and a semicircle σ in the
right half-plane (see Fig. 1). The integral over σ vanishes
[28], and only the integral over p contributes.
To interchange the sum over n with the integral over k,

the sum must converge. This is the case for Reð2kÞ < −1,
i.e., for ϵ ∈ h1

2
; 1i. Therefore, if the line p is at a distance of

at least 1
2
from the origin of the complex k plane, the sum

over n can be safely introduced into the integral over k, with
the result

X∞
n¼1

einφ

n−2k
¼ Li−2kðeiφÞ; (18)

and
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X∞
n¼1

einφ

n−2k
ln n ¼ − ∂

∂s
X∞
n¼1

einφ

ns

����
s¼−2k

≡−Li0−2kðeiφÞ: (19)

On the line p, all sums over n produce nonpositive
integer order polylogarithms and their derivatives with
respect to the order. Now, we simply extend the validity
of this summation by analytical continuation over the
whole complex plane k. This is, in effect, a generalization
of the zeta function regularization [34], since the poly-
logarithm is a generalization of the Riemann zeta function,
in such a way that

Lisð1Þ ¼ ζðsÞ: (20)

Furthermore, the polylogarithm of a variable defined on the
unit complex circle, as in this case, is sometimes called the
periodic zeta function [35]

Fðφ=2π; sÞ ¼ LisðeiφÞ: (21)

This function is regular as a function of s for fixed φ ≠ 0
and has a simple pole at s ¼ 1 for φ ¼ 0, when it simplifies
to the ordinary zeta function. This means that in the purely
boson case, the introduction of the sum over n under
the integral over k produces an additional simple pole at
k ¼ − 1

2
(see Fig. 1).

After the summation over n is performed, the integral
over the semicircle σ again vanishes (including the “worst-
case scenario” φ ¼ 0 [33,34]), so it can be safely added to
the integral over p to form a closed contour. Let us, for the
time being, assume φ ≠ 0, so that we can again deform the
contour to the original Hankel contour C and finally obtain

ΩðφÞjφ≠0 ¼ − m2

2π2β2

�
2

β2m2
Li4ðeiφÞ − 1

2
Li2ðeiφÞ

þ 1

2

X∞
k¼0

½AðkÞLi−2kðeiφÞ þ 2BðkÞLi0−2kðeiφÞ�
�

þ c.c: (22)

Equation (22) shows that for φ ≠ 0 we could have
simply interchanged the order of k and n sums and
regularize the sum over n using the polylogarithms.
However, this procedure would not work for φ ¼ 0 (this
was first shown in Ref. [27]), as we will see later in greater
detail. We next concentrate on simplifying the expressions
containing polylogarithms and their derivatives.

C. Simplifying the polylogarithms

Since the polylogarithms (together with their derivatives)
in Eq. (22) appear in complex conjugate pairs, they can be
simplified using the relation between the polylogarithms
and the Hurwitz zeta function ζðs; xÞ [31,32]:

i−sLisðeiφÞ þ isLisðe−iφÞ ¼
ð2πÞs
ΓðsÞ ζð1 − s;φ=2πÞ; (23)

which holds for s ∈ C, Reφ ∈ ½0; 2πi, Imφ ≥ 0. In the case
Imφ < 0, for the relation to be valid, it is necessary that
Reφ ∈ h0; 2π�. For s ¼ n ∈ N0, the Hurwitz zeta function
is related to the Bernoulli polynomials [31] via

ζð−n; xÞ ¼ −Bnþ1ðxÞ
nþ 1

: (24)

Equations (23) and (24) can be directly used for s ¼ 2, 4
while for s ¼ 0 we find

Li0ðeiφÞ þ Li0ðe−iφÞ ¼ lim
s→0

ð2πÞs
ΓðsÞ ζð1 − s;φ=2πÞ ¼ −1:

(25)

For s ¼ −2k, k ∈ N, the sum of polylogarithms vanishes
due to the poles of the gamma function. This completes the
simplification of the polylogarithms.
As for the derivatives of polylogarithms, we differentiate

Eq. (23) with respect to s and find

Li0−2kðeiφÞ þ Li0−2kðe−iφÞ

¼ iπ
2
ðLi−2kðeiφÞ − Li−2kðe−iφÞÞ

þ ð−1Þk ∂
∂s

�ð2πÞs
ΓðsÞ ζð1 − s;φ=2πÞ

�
s¼−2k

; (26)

where k ∈ N0. The first term on the right-hand side can
be calculated using the recurrence relation for the
polylogarithms

FIG. 1. The contours of integration in the complex k plane.
Dots represent the poles of the cotangent function, while x
represents the summation-induced pole of the polylogarithm
functions for φ ¼ 0.
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Li−nðzÞ ¼
�
z
∂
∂z

�
n
Li0ðzÞ≡

�
z
∂
∂z

�
n z
1 − z

; (27)

which in our case leads to

Li−2kðeiφÞ ¼ − 1

2
δk0 þ ð−1Þk i

2

� ∂
∂φ

�
2k

cot
φ

2
: (28)

The unpleasant 2kth derivative of the cotangent can be dealt
with by using the relation

π

� ∂
∂z

�
n
cot πz ¼ ð−1Þnψ ðnÞð1 − zÞ − ψ ðnÞðzÞ; (29)

which can be derived by the repeated differentiation of the
reflection formula for the gamma function. Here ψ ðnÞðzÞ is
the polygamma function, the (nþ 1)th logarithmic deriva-
tive of the gamma function and we have ψ ð0ÞðzÞ≡ ψðzÞ. As
a result, the difference of polylogarithms can be written as

Li−2kðeiφÞ − Li−2kðe−iφÞ

¼ i
π

ð−1Þk
ð2πÞ2k ½ψ

ð2kÞð1 − φ=2πÞ − ψ ð2kÞðφ=2πÞ�: (30)

For the second term on the right-hand side of Eq. (26),
the cases k ¼ 0 and k > 0 should be treated separably. For
k ¼ 0, we expand the function around s ¼ 0 to obtain

∂
∂s

�ð2πÞs
ΓðsÞ ζð1 − s;φ=2πÞ

�
s¼0

¼ − ∂
∂s

�
ð1þ s ln 2πÞðsþ γs2Þ

�
1

s
þ ψðφ=2πÞ

��
s¼0

¼ −ðln 2π þ γ þ ψðφ=2πÞÞ: (31)

On the other hand, for k > 0, we can perform the differ-
entiation and note that due to the gamma function in the
denominator, most of the terms vanish, so that

∂
∂s

�ð2πÞs
ΓðsÞ ζð1 − s;φ=2πÞ

�
s¼−2k

¼ − 1

ð2πÞ2k ζð2kþ 1;φ=2πÞψðsÞ
ΓðsÞ

����
s¼−2k

¼ ð2kÞ!
ð2πÞ2k ζð2kþ 1;φ=2πÞ: (32)

Therefore, the second term in the right-hand side in Eq. (26)
has also been resolved.
As a final touch of simplification, we utilize the relation

between the polygamma function and Hurwitz zeta func-
tion for integer k > 0, which is

ζð2kþ 1;φ=2πÞ ¼ − 1

ð2kÞ!ψ
ð2kÞðφ=2πÞ; (33)

to finally obtain

Li0−2kðeiφÞ þ Li0−2kðe−iφÞ
¼ −δk0ðγ þ ln 2πÞ

− 1

2

ð−1Þk
ð2πÞ2k ½ψ

ð2kÞðφ=2πÞ þ ψ ð2kÞð1 − φ=2πÞ�: (34)

D. The general result for ΩðφÞjφ≠0
Putting together Eqs. (13), (16), (19), (23), (24), (25) and

(34), we arrive at a simple series representation for the
thermodynamic potential Ω in the generic φ ≠ 0 case:

ΩðφÞjφ≠0 ¼
2π2

3β4
B4ðφ=2πÞ þ

1

2β2
B2ðφ=2πÞm2

þ 1

32π2

�
3

2
þ 2 ln 4π − ln β2m2

�
m4

þ m4

16π2
X∞
k¼0

ð−1Þk
k!ðkþ 2Þ!

× ½ψ ð2kÞðφ=2πÞ þ ψ ð2kÞð1 − φ=2πÞ�
�
βm
4π

�
2k
;

(35)

where we have used

Að0Þ ¼ β2m2

8

�
3

2
− 2γ − ln

β2m2

4

�
: (36)

This result has several interesting features which areworth
pointing out. First of all, it is an exact high temperature series
representation of the thermodynamic potential given by (4).
Second, the parameter φ appears only in the coefficients of
the series and is, therefore, decoupled from the physical
parameter βm. Third, due to the symmetry of the Bernoulli
polynomials, Bnð1=2þ xÞ ¼ Bnð1=2 − xÞ, we have the
(expected) symmetry property for ΩðφÞ, namely

ΩðφÞ ¼ Ωð2π − φÞ: (37)

The most relevant special case of Eq. (35) is the fermion
thermodynamic potential, for which φ=2π ¼ 1=2. For this
value of φ, the Bernoulli polynomials take on the values
B4ð1=2Þ ¼ 7

240
and B2ð1=2Þ ¼ − 1

12
, while the polygamma

function can be written in terms of the Riemann zeta
function

ψ2kð1=2Þ ¼ −δk0ðγ þ 2 ln 2Þ
− δ̄k0ð2kÞ!ð22kþ1 − 1Þζð2kþ 1Þ; (38)
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where we have introduced the notation δ̄ij ¼ 1 − δij.
This amounts to the following result:

ΩF ¼
7π2

360β4
− 1

24β2
m2 þ 1

32π2

×

�
3

2
− 2γ þ 2 ln π − ln β2m2

�
m4

−
m4

8π2
X∞
k¼1

ð−1Þk
k!

ð2kÞ!
ðkþ 2Þ!

× ð22kþ1 − 1Þζð2kþ 1Þ
�
βm
4π

�
2k
; (39)

in agreement with the previously obtained results
[3,25,27–29]. It should be noted that the above series
has a finite radius of convergence; namely, it converges
for βm < π.
While the result of Eq. (35) covers almost all of the

domain of the parameter φ, it leaves out the crucial point
φ ¼ 0, which, however, is of key importance in physics,
corresponding to the case of the boson gas. In the next
section, we examine this particular value of φ in great detail.

III. CALCULATING THE THERMODYNAMIC
POTENTIAL ΩðφÞ FOR φ ¼ 0

A. A direct calculation

To calculate the thermodynamic potential ΩðφÞ for
φ ¼ 0, we start with Eq. (22). As stated earlier, in the
boson case, all the polylogarithms reduce to the Riemann
zeta function and the contour C picks up a pole at k ¼ − 1

2
.

Denoting by Δ the contribution of that pole, we have

ΩB ≡ΩðφÞjφ¼0

¼ − m2

2π2β2

�
2

β2m2
ζð4Þ − 1

2
ζð2Þ þ 1

2
Δ

þ 1

2

X∞
k¼0

½AðkÞζð−2kÞ þ 2BðkÞζ0ð−2kÞ�
�
þ c.c.;

(40)

where

Δ¼ 2πiRes

�
1

2i
ðAðkÞζð−2kÞþ2BðkÞζ0ð−2kÞÞcot πk

�
k¼−1

2

¼ π2

2
Bð−1=2Þ¼ π

3
βm: (41)

Using the known values of the zeta function

ζð4Þ ¼ π4

90
; ζð2Þ ¼ π2

6
; ζð−2kÞ ¼ − 1

2
δk0; (42)

and expressing its derivatives as

ζ0ð−2kÞ ¼ −δk0 1
2
ln 2π þ δ̄k0

ð−1Þk
2

ð2kÞ!
ð2πÞ2k ζð2kþ 1Þ;

(43)

Eq. (40) takes the form

ΩB ¼ − π2

45β4
þ 1

12β2
m2 − 1

6πβ
m3 þ 1

32π2

×

�
3

2
− 2γ þ 2 ln 4π − ln β2m2

�
m4

−
m4

8π2
X∞
k¼1

ð−1Þk
k!

ð2kÞ!
ðkþ 2Þ! ζð2kþ 1Þ

�
βm
4π

�
2k
: (44)

This result, as well, confirms the earlier calculations in
Refs. [3,25,27–29]. Similarly to the fermion potential ΩF
of Eq. (39), the series representation of ΩB converges only
for βm < 2π.
Equation (44) raises an interesting question. Given the

above calculations, it appears that the boson statistics,
φ ¼ 0, is very distinct in comparison with the generic phase
φ ≠ 0 of which the fermion statistics is a special instance.
As pointed out before (and now becoming even more
apparent), the m3 term in the series expansion for ΩðφÞ is
present only in the boson case, φ ¼ 0. Is it the case that
almost all generalized statistics are fermionlike, and bosons
are some kind of an exception? The following calculation
will show that the answer is no.

B. Deriving ΩB from ΩðφÞjφ≠0
If the bosons were an exceptional statistics, we would

expect the thermodynamic potential ΩðφÞ not to be
continuous at φ ¼ 0. Indeed, given that them3 term appears
only for φ ¼ 0, we have every reason to believe this to be
the case. However, the original integral in Eq. (4) does not
appear problematic around φ ¼ 0. The only way to resolve
this dilemma is by examining the limit φ → 0 of Eq. (35).
In this limit, the Bernoulli polynomials are finite and

yield B4ð0Þ ¼ − 1
30

and B4ð0Þ ¼ 1
6
, while the polygamma

functions are unbounded:

ψ ð2kÞðφ=2πÞ þ ψ ð2kÞð1 − φ=2πÞ ≈ −ð2kÞ!
�
2π

φ

�
2kþ1

− 2ðδk0γ þ δ̄k0ð2kÞ!ζð2kþ 1ÞÞ þOðφÞ;
φ → 0: (45)

Plugging these limits in Eq. (35), we find

lim
φ→0

ΩðφÞ ¼ − π2

45β4
þ 1

12β2
þ 1

32π2

×

�
3

2
− 2γ þ 2 ln 4π − ln β2m2

�
m4

−
m4

8π2
X∞
k¼1

ð−1Þk
k!

ð2kÞ!
ðkþ 2Þ! ζð2kþ 1Þ

�
βm
4π

�
2k

− lim
φ→0

m4

8πφ

X∞
k¼0

ð−1Þk
k!

ð2kÞ!
ðkþ 2Þ!

�
βm
2φ

�
2k
: (46)
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The sum under the limit is evaluated in the Appendix and is
given by

X∞
k¼0

ð−1Þk
k!

ð2kÞ!
ðkþ 2Þ!

�
βm
2ϕ

�
2k

≈
4ϕ

3βm
; ϕ → 0: (47)

Consequently, we arrive to an important conclusion that
the thermodynamic potential is indeed continuous at
φ ¼ 0, i.e.,

lim
φ→0

ΩðφÞ ¼ ΩB; (48)

which is consistent with the fact that the original expression
for ΩðφÞ in Eq. (4) is analytic at φ ¼ 0.

IV. GENERALIZATION OF THE RESULT FOR
COMPLEX CHEMICAL POTENTIAL ~μ

Given the result of Eq. (35), we can now easily general-
ize our calculation for μ ≠ 0. The required integral takes
the form

Ωðφ; μÞ ¼ 1

β

Z
d3p
ð2πÞ3 ln ð1 − eiφe−βðE−μÞÞþ

fφ → −φ; μ → −μg: (49)

Here, it should be noted that the (real) chemical potential of
antiparticles differs in sign with respect to that of particles.
In other words, we have

Ωðφ; μÞ ¼ ΩðφÞjφ→φ−iβμ; (50)

sinceΩðφÞ is an analytic function in φ. Therefore, we arrive
at our final result

Ωðφ; μÞ≡Ωð~μÞ

¼ 2π2

3β4
B4

�−iβ ~μ
2π

�
þ 1

2β2
B2

�−iβ ~μ
2π

�
m2

þ 1

32π2

�
3

2
þ 2 ln 4π − ln β2m2

�
m4

þ m4

16π2
X∞
k¼0

ð−1Þk
k!ðkþ 2Þ!

�
ψ ð2kÞ

�−iβ ~μ
2π

�

þψ ð2kÞ
�
1þ iβ ~μ

2π

���
βm
4π

�
2k
; (51)

where ~μ ¼ μþ iφ=β is the complex chemical potential.
Equation (51) represents the main result of this work.
The radius of convergence of the series in Eq. (51) is finite
and dependent on the value of the parameter β ~μ. As a check,
we consider the case of massless (m ¼ 0) fermions (φ ¼ π)
with nonzero chemical potential μ and find that the result
agrees with the case considered in Ref. [36]:

Ωðπ; μÞjm¼0 ¼
2π2

3β4
B4

�
π − iβμ
2π

�

¼ 7π2

360β4
þ μ2

12β2
þ μ4

24π2
: (52)

V. DISCUSSION AND OUTLOOK

In this paper, we have obtained an exact high temper-
ature expansion for a one-loop thermodynamic potential
Ωð ~μÞ with complex chemical potential ~μ. The final
expression for Ωð~μÞ is given in Eq. (51) and is the main
result of this work. It is for the first time that the
generalized thermodynamic potential is given as a single
compact sum, the coefficients of which are analytical
functions of ~μ, consisting of polynomials and polygamma
functions, decoupled from the physical expansion param-
eter βm. This is what makes our solution convenient for
the analysis of phase transitions for arbitrary ~μ. We have
used this fact to investigate the origin of them3 term in the
boson case. For this, it was crucial to have an exact
expansion of the type given in Eq. (11) in all orders of βm.
Furthermore, the analytic nature of the coefficients
akðφÞ allowed us to perform analytical continuation from
purely imaginary to complex chemical potential almost
effortlessly.
Earlier approaches have led to more complicated and

less transparent results. The author of Ref. [28] gave an
expression for Ωð ~μÞ in terms of triple expansion over βm,
φ and μ. Our result can, therefore, be considered as a
resummation of the two expansions, namely over φ and μ
into a compact function. Furthermore, in case of zero μ, a
result [29] gave a single sum representation of ΩðφÞ in
which the physical variable βm was entangled with the
parameter φ in a nontrivial way. Moreover, the terms in the
expansion were not analytic functions and the analytic
continuation to nonzero μ could not be obtained so easily
as in our case. Therefore, we are of the opinion that our
result represents a significant improvement over earlier
results and fills the gap in the literature concerning the
compact analytic expression for generalized thermody-
namic potential.
It would certainly be interesting to extend our calculation

to an arbitrary number of spatial dimensions d. In the most
interesting case d ¼ 2, the parameter φ might be related to
the anyon statistics phase and need not be interpreted as an
imaginary chemical potential, as we have implicitly done in
the paper. This leaves the possibility that the analysis
performed in this paper could be relevant to the theory of
phase transitions in (2þ 1) dimensions, especially in light
of the famous Mermin-Wagner theorem [37–39] which
states that there are no phase transitions for boson and
fermion systems in d ≤ 2. We leave, however, this con-
sideration for some future work.
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APPENDIX EVALUATING THE SECOND
SUM IN EQ. (46)

The second sum on the right-hand side in Eq. (46) can be evaluated as follows. Putting x ¼ ðβm
2φÞ2, we have a sequence of

equalities

SðxÞ ¼
X∞
k¼0

1

k!
ð2kÞ!

ðkþ 2Þ! ð−xÞ
k ¼

X∞
k¼0

ð2k − 1Þ!!
ðkþ 2Þ! ð−2xÞk

¼ 1

4x2
X∞
k¼0

ð2k − 5Þ!!
k!

ð−2xÞk − ð−5Þ!!
4x2

þ ð−3Þ!!
2x

¼ 1

32x2
1

Γð3
2
Þ
X∞
k¼0

Γðk − 3
2
Þ

k!
ð−4xÞk − 1

12x2
− 1

2x

¼ π

32x2
1

Γð3
2
ÞΓð5

2
Þ
X∞
k¼0

Γð5
2
Þ

Γðkþ 1ÞΓð5
2
− kÞ

ð−4xÞk
sin ðπk − 3

2
πÞ −

1

12x2
− 1

2x

¼ π

32x2
1

Γð3
2
ÞΓð5

2
Þ
X∞
k¼0

�
3=2

k

�
ð4xÞk − 1

12x2
− 1

2x

¼ 1

12x2
ð1þ 4xÞ3=2 − 1

12x2
− 1

2x
: (A1)

Here we have used the definition of the double factorial, its
relation to the gamma function and the reflection formula
for the gamma function. For the case φ ≪ 1, i.e., for x ≫ 1,
we find

SðxÞ ≈ 2

3
ffiffiffi
x

p ; (A2)

which then leads to Eq. (47).

It should be noted that the radius of convergence of the
above sum is R ¼ 1

4
, making the sum formally divergent for

x ≫ 1. This is a consequence of taking the termwise limit
of Eq. (35), which is not allowed since the series is not
uniformly convergent. However, the naive summation
employed here is also justified by the arguments given
in Sec. IIB.
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