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We explore the phenomenology of virtual spin-1 contributions to the h → γγ and h → Zγ decay rates in
gauge extensions of the standard model. We consider generic Lorentz and gauge-invariant vector self-
interactions, which can have nontrivial structure after diagonalizing the quadratic part of the action. Such
features are phenomenologically relevant in models where the electroweak gauge bosons mix with
additional spin-1 fields, such as occurs in little Higgs models, extra dimensional models, strongly coupled
variants of electroweak symmetry breaking, and other gauge extensions of the standard model. In models
where nonrenormalizable operators mix field strengths of gauge groups, the one-loop Higgs decay
amplitudes can be logarithmically divergent, and we provide power counting for the size of the relevant
counterterm. We provide an example calculation in a four-site moose model that contains degrees of
freedom that model the effects of vector and axial-vector resonances arising from TeV scale strong
dynamics.
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I. INTRODUCTION

The discovery of a Higgs-like resonance at about
125 GeV [1,2], which is so far consistent with expectations
from the standard model (SM) [3–7], has altered the
landscape of allowed models of electroweak symmetry
breaking (EWSB). The absence of signals in other searches
(i.e. for supersymmetry or new resonances) suggests the
existence of a gap between the mass of this scalar and other
new physics which may be responsible for maintaining the
light mass of this scalar field. A current priority in
experimental particle physics is an exhaustive study of
this new resonance in terms of a more complete charac-
terization of its production and decays.
Strong dynamics and/or extra dimensions may still play

an important role in protecting the scale of electroweak
mass generation from unacceptably large quantum cor-
rections. The lightness of the Higgs could be attributable
to it being a pseudo-Goldstone boson resulting from the
spontaneous breakdown of a global symmetry [8,9], or
perhaps conformal invariance of an underlying strongly
coupled theory [10–14]. It could also be due to geometric
warping [15,16]. In these cases, the interactions of the
light scalar field may be “Higgs-like,” although discrep-
ancies relative to the SM predictions generically arise in
such theories [17–23]. In such cases vector resonances
often play an important role in the unitarization of
scattering amplitudes of massive SM degrees of freedom
[24–36] and have important phenomenological conse-
quences [37–40].

Extra dimensional solutions to the hierarchy problem
predict the existence of a tower of new states beyond those
of the SM called Kaluza-Klein (KK) modes. In such
constructions, the gauge bosons of the SM are expected,
in most models, to have corresponding KK-mode partners
that appear at energy scales above the inverse size of the
extra dimension, along with towers of other spin-1 exotics
that are often a key component of such models [41,42].
An additional ingredient that may play a vital role in

making such theories compatible with other low-energy
observables is that of collective symmetry breaking, the
mechanism underlying the success of little Higgs theories
in solving the hierarchy problem [43–46]. In these models
additional global symmetries, and the particles that com-
plete the SM spectrum into full multiplets of these groups,
protect the Higgs mass from one- or higher-loop order
corrections. Additional spin-1 states—same spin partners
of SM gauge bosons—play a vital role in the cancellation
of quadratic divergences in the low-energy effective theory.
In general models of strongly interacting EWSB, includ-

ing partial UV completions of many little Higgs theories,
there are also accompanying composite degrees of freedom,
beyond those whose masses are protected by spontaneously
broken symmetries. The spectrum of these resonances can
be described as a consequence of the pattern of symmetry
breaking that occurs below the scale of confinement in a
strong sector. At a minimum, the strong sector must
incorporate a custodial SUð2Þ symmetry in order to protect
against unacceptably large contributions to the T parameter
[47,48]. In analogy with QCD, in which the lowest lying
vector resonances fit into a representation of the surviving
SUð3ÞV in the SUð3ÞL × SUð3ÞR → SUð3ÞV chiral sym-
metry breaking coset, strongly interacting EWSB is
expected to at least contain a multiplet of vector resonances
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fitting into SUð2ÞC multiplets resulting from an SUð2ÞL ×
SUð2ÞR → SUð2ÞC symmetry breaking pattern. The tech-
niques of effective Lagrangians and hidden local symmetry
[49–57] are particularly convenient methods of parame-
trizing low-energy effective theories that include such
vector and/or axial-vector resonances.
It is well known that Higgs production and decay rates

can be a bellwether for new physics, especially in the light-
Higgs window, where numerous channels are available for
study. The majority of Higgs events arise from gluon
fusion, a one-loop process strongly sensitive to exotic
particles with QCD charge which obtain some significant
portion of their mass from the Higgs mechanism. In a
similar fashion, Higgs decays to the diphoton final state are
highly sensitive to new particles with nontrivial electro-
weak quantum numbers. In this vein, the hitherto unob-
served Higgs decay channel H → Zγ, which also occurs
only at one-loop order in the SM, is another crucially
important probe of physics beyond the standard model.
Due to the fact that the rate for the clean final state lþl−γ is
rather small, the LHC limits are still weak [58], and the
channel has been the focus of only limited theoretical study
[59–67]. However, the LHC will soon be exploring the
electroweak scale more thoroughly at a center-of-mass
energy scale at or near 13 TeV. Of order 100 fb−1 of data
are necessary to begin probing the rate expected in the SM,
with this luminosity goal achievable in the next couple of
years of LHC data-taking.
Spin-1 states play a vital role in contributing to the h →

ZγðγγÞ channels [68,69]. The dominant contribution to
both amplitudes in the SM is from virtual W bosons
running in loops, with virtual top quarks giving the next
largest piece of the amplitudes. In extensions of the SM, the
Higgs-WW coupling is often modified, generating correc-
tions to these amplitudes. Exotic spin-1 states also appear in
numerous constructions (such as those described above)
and should give contributions at one loop as well. In this
work, we study generic virtual spin-1 contributions to
Higgs decays, using the most general set of vector self-
interaction terms consistent with Uð1ÞEM gauge invariance.
We have calculated skeleton amplitudes that we have made
available as Mathematica readable files for use by those
wishing to calculate such amplitudes in their model of
choice [70]. We exhibit the utility of these amplitudes in the
context of an explicit moose construction with resonances
that model vectors and axial vectors in strongly coupled
extensions of the SM that preserve a custodial SUð2Þ
symmetry. The model, which is a modification of the
construction detailed in [71] with the addition of a Higgs-
like resonance, exhibits the full range of possibilities for
the couplings associated with vector self-interactions.
Additionally, the model incorporates a dimension-6 oper-
ator with a coefficient whose value affects the S parameter
(which is typically large in models where strong dynamics
plays a role in electroweak symmetry breaking [72–77]).

The organization of this paper is as follows. In Sec. II, we
describe a framework for constructing gauge-invariant low-
energy effective theories that allow for modified Higgs
couplings to both SM and exotic spin-1 states and that also
allow for a complete range of vector cubic and quartic self-
interactions consistent with Uð1ÞEM. In Sec. III, we
describe the relevant Feynman rules in a generic framework
and outline our parametrization for the one-loop ampli-
tudes. In Sec. IV, we construct an explicit model in which
we derive the Feynman rules relevant for a calculation of
the h → γγðZγÞ amplitudes. In Sec. V, we explore the decay
rates over the parameter space of the model, paying
particular attention to correlations between the tree-level
contribution to the S parameter, the h → γγ rate, and the
h → Zγ rate, as these are of particular interest in these types
of effective theories [78,79]. We conclude in Sec. VI.
Mathematica files containing skeleton amplitudes (and
couplings for our explicit calculation) that can be used
in generic gauge extensions of the SM can be downloaded
online [70].

II. GENERAL VECTOR INTERACTIONS

Diagonalization of the quadratic part of actions that arise
in gauge extensions of the standard model often result in
mixing of the SM vector fields with exotic ones. This
mixing results in shifted gauge boson self-interactions such
that theW, Z, and Higgs boson couplings differ from those
of the SM. In addition, the light fields will also generically
have direct couplings to heavy exotica. The Higgs boson
couplings to the gauge fields will also depend on how the
observed scalar Higgs is embedded into the complete
mechanism of gauge symmetry breaking, including both
electroweak breaking and the breaking of the extended
gauge sector. In this section, we describe the classes of
actions we consider, and we then characterize the most
general self-interactions of the vector fields with each other
and with the Higgs, under the constraint that all interactions
be gauge invariant.

A. The quadratic action

We consider a generic gauge groupG with a kinetic term
constructed from the usual gauge-invariant field strengths:

Lkin ¼ − 1

4
TrVμνVμν: (2.1)

The trace in this equation is over all generators of the UV
gauge group, and at a minimum, this complete gauge group
must contain the electroweak group SUð2ÞL × Uð1ÞY ,
either trivially as a product structure or embedded into a
higher rank group.
To describe the breaking of this gauge group down to

Uð1ÞEM, we construct a low-energy effective theory in
which complete gauge invariance is realized nonlinearly in
an effective field theory. The gauge symmetry breaking of
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the extended gauge sector can be parametrized by a set of Σ
fields whose vacuum expectation values determine the
spectrum. The mass terms for the spin-1 fields arise from
a sum over the kinetic terms for these Σ fields:

Lmass ¼
X
l

f2l
4

TrjDμ
l Σlj2: (2.2)

Mass mixing between the gauge eigenstates arises from
these kinetic terms when the sigma fields are expressed in
terms of their vacuum expectation values (vevs) Σl → Σ0

l .
These vevs are taken such that the desired breaking pattern
G → Uð1ÞEM is obtained.
In the spirit of low-energy effective theory, we should

consider terms involving additional insertions of the Σ
fields that may contribute to the low-energy effective
action. Such operators are nonrenormalizable and should
be thought of as the product of having integrated out some
UV dynamics, which may be either strongly or weakly
coupled. The most phenomenologically interesting class of
operators from the standpoint of electroweak precision or
contributions to Higgs decay phenomenology is the addi-
tion of wave function mixing operators:

LWF ¼ ϵijTrVi
μνΣijVjμνΣ†

ij: (2.3)

Such operators are closely analogous to the operator that
corresponds to integrating out UV dynamics which con-
tributes to the oblique S parameter:

OS ¼
1

Λ2
HτaHTWa

μνBμν: (2.4)

In fact such operators, with properly chosen coefficients,
can contribute to a reduction in the severity of electroweak
precision constraints in models of vector and axial-vector
resonances such as those that appear in extra dimensional
models of electroweak symmetry breaking, in strongly
coupled UV completions of little Higgs models, and
generically in various L-R symmetric variants of gauge
extensions of the SM. We further discuss the correlations
between electroweak precision observables and the Higgs
decay rates in Sec. V.

B. Vector boson self-interactions

The most general set of three-point interactions involv-
ing two charged vectors with a neutral one (here displaying
only the γ or the Z), which are consistent with conservation
of electric charge, are given by

L3 ¼ −iX
X;Y

gX;Yγ Xþ
μ Y−

ν Aμν þ gX;YZ Xþ
μ Y−

μZμν

þGX;Y
Z ðXþ

μνY−μ − X−
μνYþμÞZν

þ eðXþμνX−
ν − X−μνXþ

ν ÞAμ (2.5)

where X and Y are vector fields. These may be either SM
W� bosons or exotic vector resonances. The first three of
these terms clearly transform trivially under electromag-
netic gauge transformations, while the fourth manifests
gauge invariance only after considering transformations of
the quartic interactions. L3 thus contains interactions of the
SM gauge fields with each other with possibly modified
coupling values and interactions of exotic charged states
with the photon and Z. While the last coupling is fixed by
gauge invariance, the others are free parameters up to
interrelations arising from the need to preserve full gauge
invariance of the complete UV gauge structure giving rise
to these interactions.
Similarly, the four-point interactions take the form1

L4¼−X
X;Y

AμZνXþ
ρ Y−

σ ð2aXYγZ gμνgρσ−bXYγZ g
μρgνσ

−cXYγZ g
μσgρνÞ

−X
X

e2AμAνXþ
ρ X−

σ ð2gμνgρσ−gμρgνσ−gμσgρνÞ: (2.6)

For the mixed γZ coupling, the coefficients are determined
by the requirement of overall gauge invariance of the full
theory. Electromagnetic gauge invariance forces the γγ
quartic couplings to be equal to the square of the electro-
magnetic coupling constant.

C. Higgs interactions

For the purposes of this paper, we maintain a semi-
model-independent attitude regarding the origin of the
observed Higgs-like scalar field. We take an effective field
theory approach, assuming the Higgs is a CP-even singlet
under electromagnetism, and we allow its couplings to the
various vector fields to be free parameters. Inspired by the
Higgs low-energy effective theorems, in which the SM
Higgs interactions are derived (in the approximation that
pH → 0) by substituting occurrences of the weak scale
vacuum expectation value with v → vð1þ h=vÞ, we scale
all nonlinear sigma model vevs by fi → fið1þ aih=fiÞ,
where the a’s are free parameters of the low-energy
effective theory. Applying this formalism to the Σl kinetic
terms in Eq. (2.2), we have

Lh-V ¼
X
l

�
2al

h
fl

�
f2l
4

TrjDμ
l Σlj2: (2.7)

Specific models will generate different values for these
coefficients, although there are constraints from requiring
perturbative unitarity of the effective theory [39].
Particularly, they need not be Oð1Þ and indeed can be
much smaller in some models.

1Up to interactions with more than two derivatives such as
1
Λ4 F4 nonrenormalizable operators, where F is the field strength
corresponding to the spin-1 fields in the effective theory.
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III. DIAGRAMS

We have computed the most general possible diagram-
matic structure for loop processes involving the contribu-
tions of virtual spin-1 fields to effective operators coupling
the scalar Higgs to field strengths for vector bosons. The
loops of consequence in amplitudes for h → γγðZγÞ
involve charged vector bosons running in loops through
both “triangle” and “fishing” diagrams, shown in Fig. 1.
As discussed in Sec. II, the vertex structure for the

interactions is nonstandard in generic models, and we
characterize the Feynman rules relevant for the computa-
tion in Fig. 2.
With the assistance of the FeynCalc package for

Mathematica [80], we have calculated the diagrams corre-
sponding to the range of possible vertex structures shown in
Fig. 2 by turning on one form of coupling at a time.
For the triangle diagrams, this corresponds to computing
3 × 3 matrices of amplitudes ½AðM2

i ;M
2
j ;M

2
kÞ�αβ and

½A×ðM2
i ;M

2
j ;M

2
kÞ�αβ, for each of the possible charge flow

directions, taking each vertex to have one of g0, gþ, or g−
set to 1, with all others turned off. For the fishing diagrams,
we compute a vector of diagrams, ½A∝ðM2

i ;M
2
jÞ�α, with

each of the λð1;2;3Þ couplings set to 1 and the others to zero.
These individual amplitudes are divergent, and we report

the finite and divergent parts of these diagrams (computed
in unitary gauge) in an online repository of Mathematica
files [70]. The full amplitude in a specific model is then
obtained by contracting these arrays of subdiagrams with
arrays of couplings that are specific to a given model. The
summation over virtual spin-1 fields and their associated
couplings to the Higgs and external neutral gauge fields is
given by

Mμν
V1
0
V2
0

¼
X
ijkαβ

½κh�ki½AμνðM2
i ;M

2
j ;M

2
kÞ�αβ½gV1

0
�αji½gV2

0
�βkj

M×μν
V1
0
V2
0

¼
X
ijkαβ

½κh�ik½A×μνðM2
i ;M

2
j ;M

2
kÞ�αβ½gV1

0
�αij½gV2

0
�βjk

M∝μν
V1
0
V2
0

¼
X
ijα

½κh�ji½A∝μνðM2
i ;M

2
jÞ�α½λV1

0
V2
0
�αij; (3.1)

where V1
0 and V2

0 are the external neutral gauge fields,
either γ or Z. These contributions must then be summed
together to obtain the full amplitude due to spin-1
contributions.
In the next sections we explore contributions to the

Higgs partial widths in a specific extension of the SM that
exhibits the full generality of the couplings and diagrams
that have been discussed thus far.

IV. SPECIFIC MODEL: VECTOR AND
AXIAL-VECTOR RESONANCES

If the 126 GeV resonance is produced as a composite of
TeV scale strong dynamics, it is likely that there are a host
of other composite states with masses not far above the
electroweak scale. These states should occupy representa-
tions of the symmetries of the UV theory. The approximate
SUð2ÞL × SUð2ÞR global symmetry of the low-energy
theory, which enforces the absence of tree-level corrections
to the oblique T parameter, dictates that the symmetries
of the UV should reflect at least this global symmetry, with
a spontaneous breaking pattern SUð2ÞL × SUð2ÞR →
SUð2ÞV , mimicking the custodial symmetry breaking
pattern of the SM. In analogy to QCD, there may be
vector and axial-vector states, transforming nonlinearly as
the broken and unbroken generators for these symmetries.
The SUð2Þ structure implies that these states should fall
into triplets with a charged and neutral vector in each: ρ�;0

V

FIG. 1. One-loop diagrams contributing to the scalar decay rate to neutral vector bosons (i.e. the photon or Z) in gauge extensions of
the SM. There is an implied summation over all charged spin-1 fields in the model. The arrows on the charged vector field propagators
indicate direction of charge flow. We refer to the subamplitudes corresponding to these diagram types as A, A×, and A∝, respectively.

FIG. 2. Feynman rules for vertices with general interaction
structure. Rules for vertices with two charged particles are shown,
as these are the ones relevant for the calculation. All momenta are
assumed to be entering the vertices, and arrows indicate
charge flow.
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and ρ�;0
A . If these states are light in comparison with the

scale associated with nonperturbativity of the effective
theory, then they can enter in loop processes and give
calculable contributions to the effective interactions of the
scalar resonance.
Axial-vector resonances are especially interesting from

the perspective of electroweak precision due to the fact that
their contribution to the S parameter can partially cancel
contributions from the vector resonances [77]. In this
section, we study the couplings of charged vectors and
axial vectors relevant for the Higgs decay rates to γγ and γZ
in the context of a model which thoroughly explores the
range of possibilities for exotic gauge boson self-
interactions.

A. Effective Lagrangian for vectors and axial vectors

A completely generic implementation of axial-vector
resonances is difficult from the perspective of the low-
energy effective theory in which only transformations
under the unbroken global SUð2ÞC are invariants of the
phenomenological Lagrangian [49,50]. Axial vectors can
be implemented in different ways while remaining con-
sistent with the unbroken SUð2ÞC [81,82]. To have a
concrete model to study, which should have some features
of actual strongly coupled theories while also allowing
concrete results from computation, we study the theory
described by the moose diagram shown in Fig. 3. We note
that this is precisely the moose studied in [71], although we
are considering the effects of adding a singlet h to these
models which is coupled in a delocalized way to gauge
fields.
The model incorporates an SUð2Þ1 × SUð2Þ2 gauge

extension of the SM, with degrees of freedom referred
to as vector and axial-vector triplets of resonances. We
impose a L-R symmetry to preserve custodial SUð2Þ. This
L-R symmetry forces the link vev’s between SUð2ÞL −
SUð2Þ1 and SUð2Þ2 −Uð1ÞY to be equal—both are given
by f1. Additionally imposing the parity symmetry requires
that the couplings associated with SUð2Þ1 and SUð2Þ2 be
equal—in our case g1 ¼ g2 ≡ gρ. This PLR is broken
explicitly by the SM hypercharge interactions, as Uð1ÞY
corresponds to gauging only the t3 generator of SUð2ÞR.
This is the usual case in the SM, where it is the hypercharge
interactions (as well as the fermion Yukawa couplings) that
violate custodial symmetry. In writing the action for this
theory, we take the usual canonically normalized gauge
kinetic terms for the four gauge groups:

Lgauge-kin ¼ − 1

4
½Wa

μν
2 þ Xa

ð1Þμν
2 þ Xa

ð2Þμν
2 þ B2

μν�: (4.1)

Strongly coupled models of electroweak symmetry
breaking are commonly afflicted by severe electroweak
precision constraints, even with a custodial symmetry
imposed. Finding models in which the oblique S parameter
is small is the biggest challenge [72–74]. Generically, tree-
level contributions to the S parameter arise from mixing of
the vector and axial-vector states with the SM gauge fields.
In [71], it was shown that it is possible to reduce the S
parameter with a higher dimensional operator that kineti-
cally mixes SUð2Þ1 and SUð2Þ2, analogous to a similar
technique in holographic technicolor models [83]. As
discussed above, this kinetic mixing gives rise to nontrivial
structure for the interaction vertices for the gauge fields
once the quadratic Hamiltonian is diagonalized. The gauge-
invariant kinetic mixing term we consider is given by

LWF ¼ − 1

2
ϵTr½Xð1ÞμνΣ12X

μν
ð2ÞΣ

†
12�; (4.2)

where Σ12 is the nonlinear sigma model link field corre-
sponding to the central line connecting the SUð2Þ1 and
SUð2Þ2 gauge groups in the moose. The spin-1 cubic and
quartic interactions arise from both the standard and wave-
function mixing kinetic terms. Note that the parameter ϵ
must be constrained−1 < ϵ < 1 to avoid ghosts in the field
theory, and that there are limits which strongly imply that S
must remain positive [84].
The gauge kinetic terms for the Σ fields determine the

structure of the mass matrix for the gauge fields. We
consider the following Lagrangian for these gauge kinetic
terms:

LΣ-kin ¼
f21
8

Tr½jDμΣL1j2� þ
f22
8

Tr½jDμΣ12j2�

þ f21
8

Tr½jDμΣ2Y j2�; (4.3)

where the gauge covariant derivatives correspond to bifun-
damentals under the gauge groups neighboring the link; for
the link field Σij, we have Dμ ¼ ∂μ − igiÂ

i
μ þ igjÂ

j
μ.

For the scalar Higgs interactions, we again impose the
L-R symmetry:

Lhiggs ¼ h

�
ah

f1
4

Tr½jDμΣL1j2� þ bh
f2
4

Tr½jDμΣ12j2�

þ ah
f1
4

Tr½jDμΣ2Y j2�
�
; (4.4)

forcing the Higgs couplings to the L − 1 and 2 − Y kinetic
terms to be identical.

FIG. 3. The moose diagram that we study, incorporating vector
and axial-vector resonances.
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B. Couplings in the four-site model

The couplings of the Hamiltonian eigenstates, which
follow after diagonalization of the quadratic part of the
action, can be straightforwardly derived. Due to the wave-
function mixing, however, the normalization condition for
the states is modified. The normalization condition for the
eigenvectors in the presence of the wave-function mixing
term is instead (as emphasized in [71]) vTnZvn ¼ 1, where
we have

Z0 ¼

0
BB@

1 0 0 0

0 1 ϵ 0

0 ϵ 1 0

0 0 0 1

1
CCA (4.5)

for the neutral gauge bosons and

Z� ¼
0
@ 1 0 0

0 1 ϵ
0 ϵ 1

1
A (4.6)

for the charged ones. The eigenvectors thus satisfy the
following relation:

M2v⃗n ¼ m2
nZv⃗n (4.7)

where M2 is the mass matrix of the quadratic Lagrangian
that follows from the Σ-field kinetic terms in Eq. (4.3). To
avoid ghost instabilities, we must constrain ϵ to the interval
−1 < ϵ < 1. The components of the eigenvectors, v⃗n, are
ordered based on the moose structure in Fig. 3, from left to
right. The couplings of the physical states are then obtained
by expressing the original Lagrangian in terms of the
eigenvector solutions to Eq. (4.7).

C. Higgs interactions

As an example of the interactions of the mass and kinetic
eigenstates, we give the Feynman rules for interactions of
the scalar Higgs with the charged gauge fields in Table I.
We have performed an expansion in g=gρ and g0=gρ,
presuming that the two exotic gauge groups have large
(but still perturbative) coupling constants. We have used the

definitions cf ≡ f1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ 2f22

p
,sf ≡

ffiffiffi
2

p
f2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ 2f22

p
,

and v≡ f1f2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ 2f22

p
. When ah=f1 ≠ bh=f2, the

Higgs has interactions which change the “flavor” of the
gauge field at the vertex. For models in which gauge boson
self-interactions also allow a change in the flavor of the
charged gauge boson, a larger class of diagrams than in the
SM is allowed.
It is possible that other higher dimensional operators of the

formhV2
μν exist due to strong coupling effects, giving adirect

contribution to Higgs decay amplitudes, and also contribut-
ing to new loop structures. We discuss this first possibility
later, in Sec. IV F.The latter possibility leads to contributions
which are suppressed both by loop factors and the cutoff
scale. We neglect such contributions in this work.

D. γ and Z-boson interactions with charged spin-1 fields

The quartic interactions of the photon are constrained by
gauge invariance to be simply the electric charge squared,
with no “flavor” changing of the gauge fields at the vertex.
In the four-site model under consideration, the quartic
Feynman rules are all of the form

λð1Þij ¼ λð2Þij ¼ λð3Þij ¼
�
e2 i ¼ j
0 i ≠ j

(4.8)

where the electric charge is given in terms of the funda-
mental model parameters as

e2 ¼ e20

�
1 − 2e20ð1þ ϵÞ

g2ρ
þOðe40=g4ρÞ

�
; (4.9)

with e20 ≡ g2g02=ðg2 þ g02Þ.
For the cubic interactions, the presence of the wave

function mixing term induces off-diagonal couplings of the
photon to charged spin-1 fields. The interactions, to order
1=g2ρ, are given in Table II.

TABLE I. Feynman rules corresponding to interactions of the
singlet field h with charged gauge bosons in the four-site model
shown in Fig. 3. We have only kept the lowest order terms in the
g
gρ

expansion; in fact all interactions are nonvanishing at order

g2=g2ρ. The charge reversed Feynman rules are identical.

hWþW−
i 2M

2
W

v ðah
s3fffiffi
2

p þ bhc3fÞ
hρþVρ

−
V i

ffiffi
2

p
M2

ρ

v ahsf
hρþAρ

−
A i

ffiffi
2

p
M2

A
v sfcfðahcf þ

ffiffiffi
2

p
bhsfÞ

hWþρ−A i 2MWMA
v sfcfðah sfffiffi

2
p − bhcfÞ

TABLE II. These are the nonvanishing (at order g=g2ρ) cubic
interactions of the photon with the charged gauge bosons
associated with the moose diagram in Fig. 3. The expression
for e in terms of the fundamental parameters (to order g2=g2ρ) is
given in Eq. (4.9).

γWþW−
g0 eð1þ ϵc4fð ggρÞ2Þ
gþ e
g− e

γWþρ−A g0 eϵc2f

ffiffiffiffiffiffi
2

1−ϵ
q

ð ggρÞ

γρþVρ
−
V

g0 e
gþ e
g− e

γρþVρ
−
A g0 eϵc2fð1þ ϵÞ

ffiffiffiffiffiffi
1þϵ
1−ϵ

q
1

2ðϵc2fþ1
2
ð1þϵÞs2fÞ

ð ggρÞ2

γρþAρ
−
A

g0 eð1þϵ
1−ϵ − ϵc4fð ggρÞ2Þ

gþ e
g− e
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The corresponding interactions of the Z boson with
charged spin-1 fields are algebraically much more com-
plicated. We have made the full set of couplings, valid to
order g2=g2ρ, available as Mathematica code [70].

E. Loop-level contributions to h → Zγ and h → γγ

The following results are analytic expressions that are
valid to lowest order in the g=gρ expansion and correspond
to the low-energy theorem limit where mh, mZ ≪ 2mV� .

The amplitudes are proportional to the usual transverse
tensor structure

e2ðgα1α2pγ1 · pγ2 − pα1
γ1
pα2
γ2
ÞMγγ

eg cos θwðgα1α2pZ · pγ − pα1
Z pα2

γ ÞMZγ: (4.10)

For the four-site model, performing the summations of
Eq. (3.1), we find

Mγγ ¼
ϵ2f1 log

Λ2

M2
A

4π2f32ð1 − ϵÞ2 ðahf2 − bhf1Þ þ
7

8π2f1f2
ð2ahf2 þ bhf1Þ

þ ϵ

8π2f2ð1 − ϵÞ2
�
ah

ffiffiffi
2

p cf
sf

ðc2fϵþ 3s2fð2 − ϵÞÞ þ bh

�
12s2fð1 − ϵÞ − 10c2fϵ − 6

c4f
s2f

ϵ

��
; (4.11)

MZγ ¼
ϵ log Λ2

M2
A

2
ffiffiffi
2

p
π2ð1 − ϵÞ2

cf
s3f

ðahf2 − bhf1Þ
f21 þ 2f22

�
ϵð1 − tan2θwÞ − 1

2
s2fð1 − ϵÞð1þ tan2θwÞ

�

þ 7

16π2f1f2
½ð2ahf2 þ bhf1Þð1 − tan2θwÞ þ ðahf2s2f þ bhf1c2fÞð1þ tan2θwÞ�

þ ϵ

16π2ð1 − ϵÞ2
f1
f22

�
ah

�
ð3s2fð2 − ϵÞ þ ϵc2fÞð1 − tan2θwÞ − 3

2
s2fð1 − ϵÞð1þ tan2θwÞ

�

þbh

��
6

ffiffiffi
2

p s3f
cf

ð1 − ϵÞ − 2
ffiffiffi
2

p
cfsfϵ − 3

ffiffiffi
2

p cf
sf

ϵ

�
ð1 − tan2θwÞ þ

3ffiffiffi
2

p sfcfð1 − ϵÞð1þ tan2θwÞ
��

: (4.12)

In the ϵ → 0 limit, when the nonrenormalizable operator
incorporating wave-function mixing is turned off, the
results are finite and given by

Mγγ ¼
7

8π2f1f2
ð2ahf2 þ bhf1Þ; (4.13)

MZγ ¼
7

16π2f1f2
½ð2ahf2 þ bhf1Þð1 − tan2θwÞ

þ ðahf2s2f þ bhf1c2fÞð1þ tan2θwÞ�: (4.14)

For our numerical analysis, we use these formulas to
compare against the standard model expectations for these
amplitudes.

F. h → Zγ and h → γγ from higher
dimensional operators

There are tree-level contributions to the hZγ and
hγγ couplings inherited from strong-coupling effects [63]
that couple the scalar h directly to the field strengths

of the two middle SUð2Þ groups in the moose. These terms
serve as counterterms for divergences that appear
in loop amplitudes such as those given in the previous
subsection. We have not considered tree-level couplings to
the “fundamental” W and Z bosons in the effective field
theory (the gauge groups on either end of the moose) but
since there is mixing after symmetry breaking takes place,
there is an effective tree-level hZγ coupling. The tree-level
L-R symmetric Lagrangian before spontaneous breaking is
assumed to take the form

c
4Λ

h½ðρμν1 aÞ2 þ ðρμν2 aÞ2� þ cϵ
2Λ

hTr½ρ1μνΣ12ρ
μν
2 Σ†

12� (4.15)

where c is an unknown coefficient parametrizing the effects
of UV strongly coupled dynamics. Like the wave function
(WF) mixing term, cϵ is an additional coefficient para-
metrizing the “mixing” between the two heavy vectors.
After the theory is expressed in the mass basis, the resulting
Lagrangian term is
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ðcþ cϵÞ
2Λ

eg cos θw
g2ρ

ð1 − tan2θwÞhZμνAμν

þ ðcþ cϵÞ
2Λ

e2

g2ρ
hAμνAμν: (4.16)

Note that the additional contributions to the amplitudes
both scale in the same way, and with the same sign as
functions of the coefficients c and cϵ. Generically, strong
coupling effects are expected to produce values of the c
parameters that are of order g2ρ, such that these terms serve
as counterterms to absorb the divergences in the amplitudes
for the Higgs decay rates.

V. RESULTS

Current LHC constraints on the Higgs couplings favor a
SM-like coupling of the Higgs to Z bosons. The hWþW−
coupling is given in Table I, and the hZZ coupling is of a
similar form. To leading order in the g=gρ expansion, for
massive vectors V, we have

ghVV
gSMhVV

¼ ah
s3fffiffiffi
2

p þ bhc3f þOðg2=g2ρÞ: (5.1)

In plotting our results, we constrain ghVV=gSMhVV ¼ 1,
enforcing a relationship between ah and bh. We choose
to eliminate bh with this relation, and vary ah. We have also
restricted the W-boson mass to the SM value, fixing one
combination of f1 and f2. To leading order in g=gρ, we set

v2 ¼ f21f
2
2

f21 þ 2f22
; (5.2)

with v≡ 246 GeV.
One of the motivations for considering an effective field

theory which contains an axial vector is to study the
interplay between electroweak precision and the Higgs
decay rates. In strongly coupled models of electroweak
symmetry breaking or in their holographic counterparts,
ameliorating the tree-level contributions to S is a particular
challenge [84–86]. In adjusting the parameter ϵ, the
relationship between the axial-vector and vector resonances
changes:

M2
ρ

M2
A
¼ c2f

1 − ϵ

1þ ϵ
þOðg2=g2ρÞ; (5.3)

and the tree-level contributions to the S parameter vary
accordingly [71]:

ΔS ≈
2sin2θw

α

g2

g2ρ
ð1þ ϵÞ

�
1 − c4f

1 − ϵ

1þ ϵ

�

≈
4sin2θw
αs2f

M2
W

M2
ρ

�
1 − c2f

M2
ρ

M2
A

�
: (5.4)

In Fig. 4, we show the value of ϵ that is required for the tree-
level value of S to be zero. We note that negative Oð1Þ
values must be taken to completely set S to zero for a large
range of cf. In the cf → 1 limit only small values of epsilon
are necessary. However, that limit corresponds precisely to

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.8

0.6

0.4

0.2

0.0

c f
2

FIG. 4 (color online). Values of ϵ for which the S parameter
vanishes as a function of the angle c2f ≡ f21=ðf21 þ 2f22Þ. The high
and low ranges of cf correspond to large hierarchies between the
vevs f1 and f2. The large cf limit, in which f1 → ∞, is the
decoupling limit for the vector and axial vector.
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FIG. 5 (color online). The values ofMρ (dashed line) andMA (solid line) as a function of ϵ for c2f ¼ 0.2, 0.5, and 0.8, respectively. The
value of gρ has been fixed at gρ ¼ 4 in this figure; however the masses scale linearly with gρ, so long as it is large compared with
electroweak gauge couplings. The black vertical lines correspond to the values of ϵ for which the tree-level contribution to S vanishes.
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the decoupling limit f1 → ∞, in which both the vector and
axial-vector masses become large.
For Oð1Þ negative values of ϵ, the normal hierarchy

between the vector and axial-vector resonances is inverted,
and the S parameter can be reduced to zero. Note, however,
that such large values of ϵ exceed expectations from
application of naive dimensional analysis [87], and there
are arguments against such an inverted spectrum following
from studies of holographic technicolor models [84]. For
the purposes of this work, however, we are motivated more
by phenomenological exploration. For example, one

question of merit is whether there exists a correlation
between values of S and loop corrections to the h → γγðZγÞ
rates that may persist generically in more realistic models
of electroweak symmetry breaking. In this spirit, we
display results for ranges of ϵ following only the require-
ments that the theory remain perturbative and that the
spectrum be tachyon-/ghost-free.
In Fig. 5, we display the vector and axial-vector masses

(for the choice gρ ¼ 4) as a function of ϵ for various choices
of cf. The black vertical lines display the value of ϵ for
which the tree-level S parameter vanishes. Note that the
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FIG. 6 (color online). This figure displays the ratio of the Higgs partial widths to the Zγ and γγ final states in relation to the expectation
in the SM. The figures represent the scenario where direct contributions from higher dimensional operators are neglected. Loop
diagrams from the vector and axial-vector states are taken into account. The three plots are for c2f ¼ 0.2, 0.5, and 0.8. The light grey
shaded region corresponds to the value of ϵ for which the S parameter obeys current experimental constraints [88]. The dark grey and
green bands correspond, respectively, to the 1σ bands for the ATLAS [89] and CMS [90] experimental results for h → γγ.
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inverted spectrum is required for the tree-level contribution
to S to vanish. The leading order (in the g=gρ expansion)
expressions for the vector and axial-vector masses are
given by

M2
ρ ¼

g2ρf21
4ð1þ ϵÞ

M2
A ¼ g2ρðf21 þ 2f22Þ

4ð1 − ϵÞ : (5.5)

We have added the amplitudes calculated in Sec. IV E to
the SM top quark contributions for both h → γγ and
h → Zγ, and calculated the partial decay widths to these
final states in the four-site model. Comparing with the SM
rates,2 we display the ratio Γðh → XXÞ=ΓSMðh → XXÞ as
functions of ϵ and ah for three representative values of the
angle cf. While significant enhancements or suppressions
are possible in the theory, we find that when the h → γγ rate
is SM-like (as suggested by current LHC data), the
contributions to h → Zγ are either close to SM-like as
well or experience a large suppression (where the branch-
ing ratio is approximately 1=10th that of the SM). In Fig. 6,
we display the decay rates in the branching fractions for
these final states relative to SM expectations. In this plot we

have taken the contributions from the higher dimensional
operators discussed in Sec. IV F to be vanishing (i.e.
c ¼ cϵ ¼ 0). Adding these operators with nontrivial coef-
ficients changes the contour bands, as shown in Fig. 7. In
both Figs. 6 and 7, we have kept the ratio of the cutoff scale
and the axial-vector masses fixed at Λ=MA ¼ 2. Since MA
varies with ϵ and cf, the cutoff changes in these plots as
well. While the shape of the contours does not change
significantly with the addition of these operators, it is
important to note that the relative size of the h → γγ rates vs
the h → Zγ rates differs significantly. For example, with the
higher dimensional operator coefficients set to zero, there is
mostly only a suppression of the h → Zγ rates when the γγ
rate is SM-like. In contrast, when the higher dimensional
operators are added with coefficients consistent with naive
dimensional analysis, the Zγ rate can either be significantly
suppressed relative to SM predictions (see left panel in
Fig. 7) or potentially enhanced (see right panel in Fig. 7)
depending on the sign of their coefficients.

VI. CONCLUSIONS

We have considered the effects of electroweak/TeV
scale spin-1 resonances on the phenomenology of a
Higgs-like scalar resonance. In particular, we have calcu-
lated the effects of such fields on the diboson decays: h →
γγ and h → Zγ. A very general framework for calculations
of spin-1 contributions has been constructed, with appli-
cation to arbitrary gauge extensions of the SM made
possible via Mathematica files that have been made
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FIG. 7 (color online). This figure displays the ratio of the Higgs partial widths to the Zγ and γγ final states in relation to the expectation
in the standard model when dimension 5 operators coupling the Higgs field directly to exotic field strengths are added, interfering with
the loop-level contributions of states in the low-energy effective theory. In the two plots, we have taken cþ cϵ ¼ g2ρ (left panel) and
cþ cϵ ¼ −g2ρ (right panel). For these plots, we have taken c2f ¼ 0.5. We have fixed the cutoff scale Λ at twice the mass of the axial-
vector resonance, which varies as a function of ϵ and cf as shown in Fig. 5.

2We utilize the Higgs low-energy theorem limits for both the
SMW contribution and the new physics contribution to make this
comparison.
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available online [70]. In these files, the quantum effects of
vector resonances and SMgauge fields have been presented
as functions of generic couplings that may arise in extra
dimensional models, little Higgs models, strongly coupled
theories, or various other SM extensions with exotic spin-1
resonances that couple to the electroweak sector.
The results of this calculation have been applied to a

benchmark phenomenological model for dynamical
electroweak symmetry breaking that contains a composite
scalar resonance in the spectrum. In particular, the effects of
a class of models with vector and axial-vector triplets on
scalar phenomenology have been computed and found to
generate potentially large contributions to the γγ and
γZ branching fractions of the 125 GeV resonance.
Contributions to the Higgs decay rates are especially
interesting in these scenarios, as the divergence structure
of the decay amplitudes is dependent on the value of the
parameter that determines the size of tree-level contribu-
tions to the S parameter.
Future runs of the LHC, including both energy and

luminosity upgrades, are likely to strongly constrain the

viability of many gauge extensions of the SM via probes of
the Higgs, particularly once we measure its decay rate to the
Zγ final state. The correlations of this channel with
electroweak precision constraints and the h → γγ rate are
particularly interesting in light of the current state of the
allowed landscape of well-motivated gauge extensions of
the SM. Here we have provided a set of tools which we
hope will be a valuable resource as we test such theories
against LHC data.
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