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Many models of electroweak symmetry breaking predict new particles with masses at or just beyond
LHC energies. Even if these particles are too massive to be produced on-shell at the LHC, it may be
possible to see evidence of their existence through the use of integral dispersion relations (IDRs). Making
use of Cauchy’s integral formula and the analyticity of the scattering amplitude, IDRs are sensitive in
principle to changes in the cross section at arbitrarily large energies. We investigate some models of new
physics. We find that a sudden, order-one increase in the cross section above new particle mass thresholds
can be inferred well below the threshold energy. On the other hand, for two more physical models of
particle production, we show that the reach in energy and the signal strength of the IDR technique is greatly
reduced. The peak sensitivity for the IDR technique is shown to occur when the new particle masses are
near the machine energy, an energy where direct production of new particles is kinematically disallowed,
phase-space suppressed, or, if applicable, suppressed by the soft parton distribution functions. Thus, IDRs
do extend the reach of the LHC, but only to a window around Mχ ∼

ffiffiffiffiffiffiffiffiffiffi
sLHC

p
.
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I. INTRODUCTION

Despite some predictions of a quick jump to new physics
at the LHC [1], it seems distinctly possible that the next
energy scale for new physics is out of the reach of direct
observation (or does not manifest itself as missing energy)
at the LHC. It is, however, still possible to constrain certain
new physics models at energies beyond those accessible at
the LHC, by using integral dispersion relations (IDRs) [2].
We briefly overview IDRs in Sec. II. In Sec. III we

discuss the present state and future expectations of LHC
experiments in relation to the IDR technique. We first solve
these IDRs analytically in Sec. IV to understand their
general behavior in certain limits. We state the present
status of total cross section parametrizations in Sec. V,
based on StandardModel (SM) assumptions. In Sec. VI, we
model how new physics beyond the SM and beyond the
direct reach of accelerators may increase the cross section.
We consider one simple and two more physical model
enhancements of the cross section. In Sec. VII, we discuss
the reach of the IDR technique, as illustrated with the
various new physics models. Section VII ends with our
conclusions and a brief outlook to the future. Some details
are presented in two appendices.

II. INTEGRAL DISPERSION RELATION THEORY

A brief introduction to elastic scattering and IDRs follows.
For a more thorough introduction on elastic scattering see
reference [3] and for IDRs see reference [2]. The math-
ematics behind IDRs is Cauchy’s integral formula

fðz0Þ ¼ 1

2πi

I
∂A

fðzÞ
z − z0

dz; (1)

for an analytic function f. Here, the integration contour is
around the boundary ∂A, fðzÞ is analytic in the region A, and
z0 ∈ A. Next, we have the optical theorem

σtot ¼
4π

p
ℑfðθ ¼ 0Þ; (2)

which relates the total cross section σtot to the imaginary part
ℑf of the forward elastic scattering amplitude; p and θ are
the center of mass (CoM) momentum and scattering angle
respectively. Note that θ ¼ 0 for elastic scattering is the same
as t ¼ 0, where t is the usual Mandelstam variable for the
square of the transfer energy. The ratio of the real to the
imaginary parts of the forward scattering amplitude is
conventionally given the symbol

ρðEÞ ¼ ℜfðE; t ¼ 0Þ
ℑfðE; t ¼ 0Þ ; (3)

where E is the laboratory energy for a fixed target experi-
ment, related to the CoM energy squared (s) by
s ¼ 2mpEþ 2m2

p. Next, we select a particular closed curve
shown in Fig. 1 in the complex plane with R → ∞. We then
integrate F , a complex valued function that is the analytic
extension of the scattering amplitudes given by

fpp;pp̄ðs; t ¼ 0Þ ¼ lim
ϵ→0

F ð�ðsþ iϵÞ; t ¼ 0Þ (4)

around this contour. In order to deal with convergence as the
linear portions go to infinity for the actual behavior of the
pp, pp̄ cross sections, one must also perform a subtraction
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leading to an additional fðE ¼ 0Þ constant. This gives the
following equations for the forward scattering amplitudes
fpp; fpp̄ (t ¼ 0 now suppressed from our notation):

ℜfppðEÞ ¼ ℜfppð0Þ

þ E
4π2

P
Z

∞

m
dE0 p

0

E0

�
σppðE0Þ
E0 − E

− σpp̄ðE0Þ
E0 þ E

�
(5a)

ℜfpp̄ðEÞ ¼ ℜfpp̄ð0Þ

þ E
4π2

P
Z

∞

m
dE0 p

0

E0

�
σpp̄ðE0Þ
E0 − E

− σppðE0Þ
E0 þ E

�
;

(5b)

where σ is the total cross section, ðP R Þ is the principal value
integral, and p0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 −m2

p

q
. By the Pomeranchuk theo-

rem [4] (and supported by QCD-parton considerations and
experimental evidence) Δσ ¼ σpp − σpp̄ → 0 as E → ∞,
thus guaranteeing convergence of the integrals in Eqs. (5a),
(5b); were these integrals still divergent, doubly subtracted
IDRs would be necessary.
Finally, these formulas together with the optical theorem

again give the useful IDRs

ρppðEÞσppðEÞ ¼
4π

p
ℜfppð0Þ

þ E
pπ

P
Z

∞

m
dE0 p

0

E0

�
σppðE0Þ
E0 − E

− σpp̄ðE0Þ
E0 þ E

�
;

(6a)

ρpp̄ðEÞσpp̄ðEÞ ¼
4π

p
ℜfpp̄ð0Þ

þ E
pπ

P
Z

∞

m
dE0 p

0

E0

�
σpp̄ðE0Þ
E0 − E

− σppðE0Þ
E0 þ E

�
:

(6b)

A built-in assumption from Eq. (1) is that the scattering
amplitude is analytic. Based on the fact that current fits
to the inelastic and total cross sections suggest that the
proton asymptotically approaches a black disk, the evi-
dence strongly suggests that the pp scattering amplitude is
analytic [5].
In addition, the forward scattering amplitudes fppð0Þ ¼

fpp̄ð0Þ are consistent with being purely imaginary at the
nonphysical energy E ¼ 0 so the subtraction constant is
ignorable [6].
In what follows, we exploit Eq. (6) to extend the reach of

the LHC to energies beyond the LHC-equivalent fixed-
target energy E≡ ðs − 2m2

pÞ=2mp. Formally, the IDRs
relate contributions from new physics occurring all the
way up in energy to infinity, to observables at present
energies. In practice, the integral of the IDR falls off in
energy away from the observation energy, so the reach
beyond present energies will be limited.
The general strategy that we will use to explore new

physics is to first use the IDR to calculate ρ at a particular
energy (an LHC energy) without the inclusion of new
physics. Then we calculate ρ at the same energy with the
inclusion of the new physics cross section. Since ρ can be
calculated without IDRs in a model-independent fashion, as
briefly described in Appendix A, enhancements of the cross
section can be either identified or ruled out by comparing
theoretical and experimental values of ρðEÞ.

III. EXPERIMENTAL STATUS

The total elastic and diffractive cross section measure-
ment (TOTEM) [7] experiment at the LHC is designed to
measure forward cross sections by probing very low jtj
regions. TOTEM places a series of Roman pot detectors
very close to the beam and very far from the interaction
point. With improved LHC optics, TOTEM should be able
to provide an improved measurement of ρ independent of
IDRs [8]. A comparison of TOTEM’s ρ, so determined,
with the IDR prediction of ρ, then provides the potential
evidence for new physics.
Similarly, the absolute luminosity for the ATLAS

(ALFA) [9] experiment, the LHC forward (LHCf)[10]
experiment, along with a host of others will also make
comparable measurements in an attempt to improve the
precision of the luminosity calculation, which is necessary
to infer σtot, and then to infer ρwithout the use of IDRs [11]
(see Appendix A below). Thus, there are several experi-
ments that aim to measure the total cross section. These
offer hope for smaller error bars on IDR-independent
determinations of the crucial parameter ρðEÞ.
A recent

ffiffiffi
s

p ¼ 7 TeV TOTEM paper presented a state of
the art value for the IDR-independent ρ, of ρ ¼ 0.145 with
error bars of ∼60% [12]. TOTEM cited a 95% significance
level (roughly speaking, a 2σ bound) that ρ < 0.32.
Comparing this to the SM prediction of ρð ffiffiffi

s
p ¼ 7 TeVÞ ¼

0.1345 gives an upper limit of the fractional increase

FIG. 1 (color online). The contour in the complex E plane for
the integral of F is shown. Note that the physical pp amplitude
approaches the right-hand cut from above and the pp̄ amplitude
approaches the left-hand cut from below.
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ðρ − ρSMÞ=ρSM ¼ 1.38 at the 95% significance level. For
brevity, in what follows we denote ðρ − ρSMÞ=ρSM asΔρ=ρ.
In addition, an early report from TOTEM gives their error
estimate as ∼0.04 from their

ffiffiffi
s

p ¼ 8 TeV analysis [13]
corresponding to a fractional error of 30%.
As an illustrative example of what a future determination

of ρ might mean for the IDR technique, we investigate a
definite value for ρ; we choose as the definite value the
experimentally-inferred mean value ρð ffiffiffi

s
p ¼ 7 TeVÞ ¼

0.145. For this example, the fractional increase in ρ is
Δρ=ρ ¼ 7.8%. This value for ρ is chosen for illustration
only, as it offers insight into the merit of IDRs should
experiments greatly reduce their errors in the inference of ρ.
Compared to the presently published TOTEM error of

63%, the “new physics increase” has negligible signifi-
cance, ∼0.1σ. With the ongoing analysis at TOTEM, the
new significance is expected to be ∼0.25σ [13]. Clearly,
further improvement in the inference of ρ is needed for the
program constructed in this paper. Another reduction in
error by about a factor of four (eight) would give a 1ð2Þσ
significance to our illustrative example. One must hope that
either the measured error is reduced significantly in the next
LHC run, the new physics contribution to the cross section
is larger than our chosen example, or both.
To get a feel for the reach and nature of this integral

dispersion relation approach, we examine the integral under
simplifying approximations in the next section. Then in the
following sections, we examine the SM contribution to the
IDRs and ρ, and the contributions from three constructed
models of new physics.

IV. A SIMPLIFIED DISPERSION INTEGRAL
TO SET EXPECTATIONS

In this section we make two assumptions to reduce the
dispersion integrals in Eqs. (6a) and (6b) to a form that can
be integrated analytically. While neither assumption is
strictly valid, they are useful to reveal the gross features
of the dispersion integral. The first assumption is to set mp
to zero. Besides replacing the lower limit of integration
with zero, this assumption also sets p0=E0 equal to one. The
second assumption is to set σpp and σpp̄ equal to each other,
and to a constant which we call σ0. With these two
assumptions, both dispersion integrals can be written as

ð2σ0ÞP
Z

dx
x2 − 1

¼ ð2σ0Þ log
�j1 − xj
1þ x

�
; (7)

with x≡ E0=E and is valid everywhere except at x ¼ 1,
where the integral is singular. Blind evaluation of the
definite integral over the range ½0;∞� then gives zero. That
this is correct can also be seen in the following way: By
definition, the definite integral from Eq. (7) is

lim
ϵ→0

�Z
1−ϵ

0

dx
x2 − 1

þ
Z

∞

1þϵ

dx
x2 − 1

�
: (8)

Replacing x by u≡ 1
x in either integral, maps the integration

region into that of the other integral, and reveals that the
two integrals are equal but with opposite sign. Thus, the
total integral vanishes. In particular, the singularity in the
integrand vanishes in the principal value.
In Fig. 2, we plot the integrand ðx2 − 1Þ−1 of our

simplified dispersion integral. As the lower limit of
integration xmin is moved up from zero, the cancellation
above and below the singularity is no longer complete.
However, the vanishing of the total integral when integrated
from zero to infinity allows us replace the integration across
the singularity with a simple, manifestly nonsingular
integral as follows:

IðxminÞ≡
Z

∞

xmin

dx
x2 − 1

¼
Z

xmin

0

dx
1 − x2

: (9)

For xmin ¼ 1, the cancellation is maximally incomplete and
the integral is infinite.We plotIðxminÞ in Fig. 3. As expected,
the integral is everywhere positive, and diverges at xmin ¼ 1.
The divergence seems unphysical in that it corresponds to
either ℑf ¼ 0 ⇒ σtot ¼ 0 by the optical theorem which
shouldn’t be the case or thatℜf → ∞ ⇒ σtot → ∞which is
also unphysical. Since these particles have mass (which is
ignored here), they have a finite lifetime and a finite width
which would keep this integral finite at xmin ¼ 1.
We may ask how the singularity is approached, from

below and from above. Writing xmin ¼ 1 − Δ and 1þ Δ,
we have the two integrals

R∞
1−Δ dx

x2−1 and
R∞
1þΔ

dx
x2−1. The first

integral crosses the singularity and according to Eq. (9) is
equal to the clearly finite integral

R
1−Δ
0

dx
1−x2. With the

replacement x → 1=x, the second integral becomesR 1
1þΔ
0

dx
1−x2. Thus, the two integrations differ only in the

upper limit of integration. At first order in Δ they are
identical, as they must be to give a finite principal value
integral. At higher order in Δ, the second integral exceeds

FIG. 2 (color online). The integrand of the IDRs with the
σ ¼ constant and mp → 0 limits taken.
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the first integral. So we expect IðxminÞ to show symmetry
about the singular value xmin ¼ 1 for small deviations, but a
larger value above xmin ¼ 1 than below for larger devia-
tions. This expectation is visible in Fig. 3.
Why do we investigate xmin values other than zero?

When new physics enters at a threshold energy Ethr, the
contribution of the new physics to the dispersion integral
begins at xmin ¼ Ethr

E , where E is the energy of the accel-
erator. Thus, Fig. 3 gives the shape of the new physics
contribution as a function of the new physics threshold. In
what follows, our much more realistic parametrizations of
new physics will present curves that qualitative have the
form given by the simplistic model discussed in this section.
We may summarize this section by saying that the SM

cross section is expected to give a modest contribution to the
dispersion integral (zero in our simplistic model of constant
and equal pp and pp̄ cross sections with vanishing proton
mass). On the other hand, new physics enters at a nonzero
threshold which implies an incomplete cancellation in the
dispersion integral, and thus a possibly significant contri-
bution to the dispersion integral. Therefore, the ratio of new
physics to total physics as revealed in the IDR potentially
offers an observable window to new physics even with
threshold energy above the direct reach of the LHC.

V. ρðEÞ IN THE STANDARD MODEL

Before venturing into speculative constructions of new
physics contributions, we present the SM contribution.
In the real world, the exact cancellation of the integral

presented in the previous section does not happen because
our assumptions are (slightly) violated. In the real world,
the proton mass mp is not zero, and the pp and pp̄ cross
sections are neither equal nor constant in energy. Fits to
data suggest that the cross sections decrease with E until

E ∼ 60 GeV (
ffiffiffi
s

p ¼ 10:6 GeV) and E ∼ 250 GeV
(

ffiffiffi
s

p ¼ 21:8 GeV) for pp, pp̄, respectively, before increas-
ing. Furthermore, Froissart theory tells us that a log2 s
growth eventually dominates the energy dependence, a fact
that has been confirmed with fits to present experimen-
tal data.
The SM total pp, pp̄ cross section σSM is typically

parametrized as

σSMðEÞ ¼ c0 þ c1 log

�
E
m

�
þ c2log2

�
E
m

�

þ c3

�
E
m

�−1
2 � c4

�
E
m

�
α−1

; (10)

wheremp, the proton mass, is used as the energy scale. ci; α
are fit parameters with α < 1. The E−1

2 term is a result of
invoking Regge behavior. The upper sign refers to pp
scattering and the lower to pp̄ scattering. This form is
motivated by being the most general and fastest rising form
allowed by the Froissart bound. The values of the ci and α
from [6] are shown in Table I. The total pp cross section for
the SM is included in Fig. 4 (solid line, labeled as the
h0 case).
Note that different fits to the pp, pp̄ cross section do not

substantively change the results of this paper. The current
limits on the pp total cross section are predominately
derived from data at and below the LHC. Fits to functions
that behave differently than log2ðsÞ such as logðsÞ and sϵ

have been essentially ruled out [5,15]. Auger does quote a
value for the pp total cross section at 57 TeV [16], but the
precision is low (a fractional error of 0.20) and depends on
specifics built into the Glauber model. It does not severely
limit the high energy behavior of the cross section.
Concerning the first approximation of the previous

section, namely mp ¼ 0, we find that returning the physi-
cal, nonzero mp to the integral (including p0=E0 ≠ 1) gives
nonzero but negligible integral values of 2.649 × 10−8 and
5.966 × 10−9 at LHC energies

ffiffiffi
s

p ¼ 7 and 14 TeV. On the
other hand, keeping mp zero but returning σpp and σpp̄ to
their realistic energy dependences yields nonzero integral
values of 0.1345 and 0.1309 at

ffiffiffi
s

p ¼ 7 and 14 TeV. And
finally, using nonzero mp and realistic pp and pp̄ cross
sections returns the values 0.1345 and 0.1309 at

ffiffiffi
s

p ¼ 7
and 14 TeV. The final two integration sets (realistic σ’s and

FIG. 3 (color online). The integral of the IDRs with the
σ ¼ constant and mp → 0 limits taken. We see the expected
singularity at xmin ¼ 1. For the new physics contribution,
xmin ¼ Ethr=E.

TABLE I. Fit parameters [6] with various analyticity
constraints.

c0 (mb) 36.95
c1 (mb) −1.350
c2 (mb) 0.2782
c3 (mb) 37.17
c4 (mb) −24:42
α 0.453
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zero or nonzero mp) agree to about seven to eight decimal
places, respectively (on the order ofm2

p=s). The conclusion
is that the mp → 0 approximation is generally a valid one,
whereas the constant and equal SM cross section approxi-
mation in the previous section is not. However, the integral
contributions of the SM to the IDRs [the solid lines in
Fig. 5] are not large, and we are encouraged to pursue

further the contributions that might arise due to physics
beyond the SM.
For the subtraction constant, we will take fð0Þ ¼ 0,

since the value from the fits above is fð0Þ ¼ −0.073�
0.67 mbGeV. We note that even at the value 1σ away from
zero, the term 4πfð0Þ=ðpσppÞ at LHC energies contributes
less than one part in 105 to ρ.

VI. NEW PHYSICS CONTRIBUTIONS

We turn now to the construction of three models for new
physics beyond the Standard Model (BSM). We consider a
class of modified cross sections of the general form

σðsÞ ¼ σSMðsÞ½1þ hiðsÞ�; (11)

where the hi ¼ ðσBSM=σSMÞi are cross section ratios; they
vanish below the threshold sthr for new physics. We apply
the same enhancement to both σpp and σpp̄ since, by the
Pomeranchuk theorem discussed above, each cross section
should respond to new physics in the same way at energies
well above the proton mass.
The first model we present is a simple step function at

sthr. This model results in an especially close analogy to the
idealized IDRs we discussed in Sec. IV. In particular, due to
its nonzero new cross section at E ¼ Ethr, this model yields
a singularity in the IDR integrand at E ¼ Ethr and therefore
a singular value for ρðE ¼ EthrÞ.
More realistically, we expect phase space to present a

cross section for new physics that has no jump disconti-
nuity at threshold. For example, two-body phase space is
β=8π, where β is either particle velocity in the CoM frame;
at threshold, β is identically zero. Furthermore, including
parton distribution functions to the model also yields a zero

FIG. 4 (color online). The pp total cross sections σSM þ σBSM
are plotted, for the choice

ffiffiffiffiffiffiffi
sthr

p ¼ Mχ ¼ 103 GeV Doubling of
the cross section at threshold is assumed for the h1 model, i.e.,
D ¼ 1. The SM cross section uses the parameters [6] shown in
Table I, and leads to an error in the SM value of ρ of less than 1%
[14]. The slow initial rise in h2 is a result of the parton distribution
functions. While the high energy behavior of h3 is small
compared to other models, it rises quickly at threshold, in
contrast to h2.

FIG. 5 (color online). At observational energies around LHC energies, the SM ρ (solid line) remains roughly constant. Using the step
function enhancement h1 with D ¼ 1 and

ffiffiffiffiffiffiffi
sthr

p ¼ 20 TeV, we find a dramatic increase in ρ well below the new particle threshold. The
right panel is an expanded piece of the left panel with a width of ∼500 GeV on each side of the threshold energy, better showing the
asymmetry of ρ about its singular peak value.
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cross section at threshold. The new physics matrix elements
may also vanish right at threshold. So we are led to the next
two models of BSM physics. The second model we present
involves hard-scattering parton production of new particles,
while the third model is constructed from diffractive
phenomenology. The second and third models provide
cross sections that vanish at threshold, leading to finite
values for ρðE ¼ EthrÞ.
Since only the first model, the step function, yields

a nonzero change in the cross section at threshold, the
ρ-value resulting from model h1 should be considered an
upper bound to the contribution of new physics BSM. The
bounding of cross sections by the h1 step function model is
evident in Fig. 4, where we show the SM cross section
(given by zero enhancement and labeled by h0 ¼ 0) and its
enhancements (hi; i ¼ 1; 2; 3) by the three new physics
models that are presented in detail below.
No new conserved quantum number is assumed in our

models (valid, e.g., for broken R-parity SUSY models).
Thus, energy is the only impediment to production of heavy
new single particles, and the heavy single mass value Mχ

determines Ethr. Without a new quantum number, the new
particle would decay to SM particles, and due to its large
mass, decay very quickly. Consequently, other than in-
variant mass combinatorics, there is no good signature of
the new particle’s production. One may have to rely on
IDRs and/or an anomalous Δσ for new particle identifica-
tion. Thus, we plot Δρ=ρ and Δσ=σ versus Mχ

(Mχ ¼ ffiffiffiffiffiffiffi
sthr

p − 2mp ≈
ffiffiffiffiffiffiffi
sthr

p
), to see if the IDR technique

can identify new physics via an anomalous ρmeasurement,
before the new physics would be directly noticeable in the
cross section increase.

A. A simple BSM enhancement—a step function

A simple example function for BSM physics is

h1ðsÞ ¼ DΘðs − sthrÞ; (12)

a stepwise jump in cross section at the threshold CoM
energy

ffiffiffiffiffiffiffi
sthr

p
. The parameter D is a measure of the size of

the new cross section relative to the SM. For example, in
the event that new physics exactly doubles the cross section
at s ¼ sthr, then we takeD ¼ 1. Modifying σSM in the form
of Eq. (12) guarantees that the new total cross section σ
continues to grow as fast as σSM ∝ log2s (but not faster),
and that the new physics contribution remains large over a
sizable energy range beyond the threshold energy.
As mentioned above, an unphysical aspect of the step

function enhancement is a nonvanishing cross section at
threshold, which leads to the uncanceled singularity in the
IDR integrand at E ¼ Ethr and a singular value for
ρðE ¼ EthrÞ. However, the model has redeemable value
in that the width of the singularity is small. Thus, the model
offers a meaningful upper bound to new particle production
away from the singularity.

B. A partonic model of new particle production

The most popular model of new physics at the electro-
weak symmetry breaking scale is R-parity-preserving
supersymmetry (SUSY), with masses tuned to the EW-
scale to stabilize the ratio mh=MPlanck (the “hierarchy
problem”). Unfortunately, R-parity conservation requires
s, t, and u to have EW-scale values, which severely
suppresses the SUSY cross section to about 10−10 times
the SM cross section. However, as LHC limits on R-parity-
conserving SUSY are becoming more constraining,
R-parity-violating (RPV) models are getting a closer look
[17–21]. If R parity is violated, we can replace one final
state particle from a SM process with an effectively
identical heavier counterpart for each possible final state.
Then the only difference between the modified cross
section and the SM cross section comes in the form of
the reduced final state phase space and the threshold parton
energy. Importantly, the fast growing log2 s contribution to
the SM σtot, which arises from soft and collinear gluon
divergences, may be maintained. Also, other exotic models
with extra dimensions [22] and a nonconserved KK number
might grow a large cross section as a power law instead of
the Froissart log2 s limit.
Let σiðsÞ ¼ σiðpp → � � �Þ be the SM cross section and

σBSMi ðsÞ ¼ σiðpp → χ þ � � �Þ be the new physics contri-
bution, where i ¼ fel; inel; totg, and dots denote additional
SM particles in the final states. Hats will denote parton
cross sections instead of pp cross sections. We note that
since σBSMel ¼ 0, then σBSMinel must equal σBSMtot . Then the
physical total pp cross section is σtot þDσBSMinel ¼ σtotð1þ
Dh2ðsÞÞ where h2 ¼ σBSMinel =σtot in the form of Eq. (11).
We start with an expression of the conservation of

momentum for the new physics contribution,

σBSMtot ðsÞ ¼
X
i;j

Z
ðŝ>M2

χÞ
dx1dx2fiðx1Þfjðx2Þσ̂BSMtot ðŝÞ; (13)

where ŝ ≈ x1x2s is the parton CoM energy and the fi are
the various parton distribution functions (pdfs). Let the SM
final state masses be zero. The summations are over parton
types and the integrals are over the accessible x1; x2
space: ŝ > M2

χ .
If we assume that for each SM particle in the final state,

there is an analogous new particle χ produced with the same
coupling, then there is little t- or u-channel propagator
suppression (see Appendix B), and so the matrix elements
will be similar. The new, heavier final state masses suppress
only the available phase space. So we can set parameter
D ¼ 1, and write

σ̂BSMtot ðŝÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðŝ;M2

χ ; 0Þ
q ¼ σ̂inelðŝÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðŝ; 0; 0Þp (14)

where the triangle function (symmetric in its arguments) is
defined as
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λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2bc − 2ca: (15)

The inelastic cross section shows up in the SM-equivalent
case since the related new particle cross sections must be
inelastic.
It is easy to see that the relevant ratio can be simplified to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðŝ;M2

χ ; 0Þ
λðŝ; 0; 0Þ

s
¼ 1 −M2

χ

ŝ
: (16)

Then, combining Eqs. (13,14,16), and integrating out the
internal σtotðŝÞ which leaves behind a factor of ŝ=s ¼ x1x2,
we obtain

σBSMinel ðsÞ¼σinelðsÞ
X
i;j

Z
dx1dx2fiðx1Þfjðx2Þx1x2

�
1−M2

χ

ŝ

�
:

(17)

Consistency of this model derivation gains support by
noting that as eitherMχ → 0 or s → ∞, we recover the SM
cross section (recalling that

P
i

R
dxfiðxÞx ¼ 1 expresses

conservation of momentum when the momentum of the
parent nucleon is partitioned among partons).
Let us introduce the ratio z≡ σinel=σtot. As suggested by

the black disk limit, z → 1
2
as s → ∞. However, data for the

LHC
ffiffiffi
s

p ¼ 7 TeV run, and CR data in the vicinity of
ffiffiffi
s

p ¼
57 TeV suggest that z is well (and conservatively) approxi-
mated as a constant z ≈ 0.7 [5]. Our interest is the
upcoming

ffiffiffi
s

p ¼ 14 TeV LHC run, for which z ≈ 0.7 is
the appropriate value. Finally, we arrive at our model for
new physics:

h2ðs;MχÞ ¼ z
X
i;j

Z
x1x2>M2

χ=s
dx1dx2fiðx1;MχÞ

× fjðx2;MχÞx1x2
�
1 −M2

χ

ŝ

�
: (18)

Of course, the parton distribution functions fi also depend
on the transfer energy Q, which we take to be Mχ . For our
numerical work with pdfs, we use the CT10 parton
distribution functions [23].
Note that this model has a vanishing cross section right at

threshold, (at ŝ ¼ M2
χ), due to the ð1 −M2

χ=ŝÞ factor, and
due to the vanishing parton distributions at threshold. Thus,
ρ is finite for all E values, including the peak at E ¼ Ethr.
Furthermore, the rise from threshold is the very slow, a
notable feature of the h2 model. This slow rise in h2 is
evident in Fig. 4. We find that the slow rise is due to the
suppressed pdfs near threshold; the phase-space reduction
factor contributes a negligible suppression to the rise. We
conclude that any deep inelastic model with partons as
initial state particles will experience a similar slow rise
from threshold. Finally, we note from Eq. (18) that h2 has a

finite asymptotic value. In particular, lims→∞h2 ¼ z.
For our purposes we have fixed z at 0.7, yet extrapolating
z as s → ∞ likely gives z ¼ 1

2
. This discrepancy in the

constant value of z does not affect our results as IDRs are
only sensitive in the vicinity of the machine energy. In
addition, we note that for comparison with Auger results
at 57 TeV, for Mχ ¼ 1; 5; 10 TeV we have h2ð57 TeVÞ ¼
0.32; 0.053; 0.0099, respectively.

C. A diffractive model of new particle production

An alternative to the partonic approach just presented is
to consider general descriptions of pp inelastic cross
sections without reference to partonic substructure.
Inelastic cross sections can be described by the parameter
ξ≡M2

X=s. MX is defined by first making a pseudorapidity
(η) cut at the mean η of the two tracks with the greatest
difference in η.MX is then taken as the larger invariant mass
of the two halves. Ref. [24] provides a model form for the
inelastic cross section. It is

dσ
dξ

∝
1þ ξ

ξ1þϵ ; (19)

where ϵ ¼ αð0Þ − 1 and αð0Þ is the Pomeron trajectory
intercept at t ¼ 0. Values for ϵ are typically in the [0.06,0.1]
range. We take the mean of this range, ϵ ¼ 0.08, in this
paper. Next, we note that 1 ≥ ξ > m2

p=s≡ ξp, since ξmin ¼
ξp describes elastic scattering. To find the total cross
section, we integrate Eq. (19) across ξ ∈ ½ξp; 1� and get

σ ∝
ð1 − 2ϵÞ þ ðϵ − 1Þξ−ϵp þ ϵξ1−ϵp

ϵðϵ − 1Þ : (20)

As an interesting aside, we note that to order ϵ1 in
Eq. (20), the leading energy behavior grows like
log2ðs=m2

pÞ, thereby providing the expected asymptotic
Froissart growth [25]. However, higher order terms in ϵ
lead to higher logarithmic orders, indicating that Eq. (20) is
preasymptotic.
We now consider a rapidity cluster containing a new

particle of massMχ . With the substitution ξp → ξχ ≡M2
χ=s

in Eq. (20), divided by the SM case, we arrive at the useful
ratio

RðMχ ; sÞ≡ σBSMdiff

σSMdiff
¼ 1 − 2ϵþ ðϵ − 1Þξ−ϵχ þ ϵξ1−ϵχ

1 − 2ϵþ ðϵ − 1Þξ−ϵp þ ϵξ1−ϵp
: (21)

Next we note the relation in Eq. (19) describes single
dissociative processes, which constitute only 15% of the
inelastic cross section. We make the model assumption that
the remaining 85% of the inelastic cross section, including
double dissociative and nondiffractive processes, are also
governed by the form in Eq. (19). Finally, we include the
factor z ¼ σinel=σtot ≈ 0.7 described in the previous sub-
section, and make explicit the on-shell requirementM2

χ ≤ s
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with a Heaviside function, to arrive at our final model
expression

h3ðsÞ ¼ z
1 − 2ϵþ ðϵ − 1Þξ−ϵχ þ ϵξ1−ϵχ

1 − 2ϵþ ðϵ − 1Þξ−ϵp þ ϵξ1−ϵp
Θð1 − ξχÞ: (22)

As with model h2, model h3 has the desirable feature that
the BSM cross section vanishes at threshold (here, ξχ ¼ 1).
Thus, ρ is finite all energies, including the peak at E ¼ Ethr.
In Fig. 4 we see that the h3 model rises more quickly at

threshold than the h2 model, but attains a smaller asymp-
totic value,

lim
s→∞

h3ðsÞ ¼ z

�
mp

Mχ

�
2ϵ

≈ 0.23

�
1 TeV
Mχ

�
2ϵ

; (23)

i.e., about a 25% increase beyond the SM cross section.
This faster rise but lower asymptotic value for h3 compared
to h2 is evident in Fig. 4. Note that with the appropriate
z → 1

2
correction discussed in the previous subsection, the

coefficient drops from 0.23 → 0.16. In addition, we note
that for comparison with Auger results at 57 TeV, forMχ ¼
1; 5; 10 TeV we have h3ð57TeVÞ ¼ 0.14; 0.080; 0.058,
respectively.

VII. RESULTS

For each of the three models discussed in the previous
section, we calculate the effect they have on ρ. The
parameter considered is the fractional increase in ρ, given
as Δρ=ρ≡ ðρ − ρSMÞ=ρSM. This is then related to the
TOTEM results at

ffiffiffi
s

p ¼ 7 TeV. We consider the mean
value from their experiment as an example signal: ρ ¼
0.145 (�0.091, 1σ confidence level) is compared to the SM
prediction of ρ ¼ 0.1345, a value which implies a fractional
increase of Δρ=ρ ¼ 0.0781. The error in the theoretical
calculation of ρ from existing measurements is < 1% [14].
This error is negligibly small compared to the effects
presented here; we are justified in neglecting this error.
We also look at the TOTEM upper limit, given as ρ < 0.32
at the 2σ confidence level, leading to a maximum fractional
increase of Δρ=ρ < 1.38 (2σ).
In what follows we conservatively neglect the increase in

the elastic cross section due to new physics. This increase is
model dependent. With the simplest assumptions, unitarity
yields

σel
σinel

¼ η

2 − η
; (24)

where 0 < η ≤ 1 is a measure of the absorption [26]. In
general η may vary with the partial wave value J. We also
note that η ¼ 1 corresponds to the black disk limit, but the
LHC is preasymptotic.

A. Results from the step function model

The step function enhancement of ρ is shown in Fig. 5.
As expected, a shape very similar to that of Fig. 3 results.
For comparison, the SM behavior of ρ is also shown. Here
we have taken D ¼ 1 and

ffiffiffiffiffiffiffi
sthr

p ¼ 20 TeV. We see for a
doubling of the cross section at

ffiffiffiffiffiffiffi
sthr

p ¼ 20 TeV, a small
increase in ρ is evident already at an energy an order of
magnitude below

ffiffiffiffiffiffiffi
sthr

p ¼ 20 TeV, and that ρ increases by
nearly a factor of four at

ffiffiffiffiffiffiffi
sobs

p ¼ 14 TeV.
Next, we look at what range of

ffiffiffiffiffiffiffi
sthr

p
and D values will

give an large increase in ρ. The left and right panels of
Fig. 6 show contours of Δρ=ρ in the ranges D ∈ ½0; 1� and
D ∈ ½0; 10�. The D ∈ ½0; 1� range of the left panel may be
relevant to broken R-parity-violating SUSY-like models, in
which some or all of the SM particles might be doubled.
The larger D range is plotted in the right panel, to show the
increased reach of IDRs for still larger cross sections, as
might be the case with extra-dimensional models. For the
simple case of a step function with a significant increase in
cross section, we see that IDRs offer a very powerful
window to physics BSM.
Also displayed in Fig. 6 are the regions of the generous

h1 step function model that are ruled out at 95% signifi-
cance by these TOTEM results. The IDR technique is
sensitive to a large range of ð ffiffiffiffiffiffiffi

sthr
p

; DÞ parameter space of
the h1 step function model, even with the currently large
TOTEM errors on the IDR-independent ρ. In particular, the
IDR technique is sensitive to new energy thresholds well
beyond the direct energy reach of the LHC. A minimal
inference to be drawn from the 95% confidence level
exclusion in the figure is that the cross section cannot
increase particularly quickly near the LHC energyffiffiffi
s

p ¼ 7 TeV.
Each higher energy probed by the LHC will rule out an

additional region of h1 parameter space. Going forward,
improvements are planned for the TOTEM optics, which
will reduce the errors on ρ and thereby increase the
sensitivity of the IDR toolkit to BSM physics.
Shown also in Fig. 6 is the contour corresponding to our

ρ ¼ 0.145 example signal. Our example value of ρ is taken
from the TOTEM experiment’s inferred mean value. If such
a signal were statistically and systematically significant, we
would expect new physics to show up as an increase in the
pp cross section of height D and threshold

ffiffiffiffiffiffiffi
sthr

p
some-

where on this contour. (We don’t consider a signal of new
physics at energies much below the machine energy, as
direct detection of new event topologies or increased cross
section would likely provide a better signal than a change in
ρ as inferred through IDRs.)
We now turn to our more realistic models, h2 and h3,

describing the onset of new physics. The h1 model contains
two parameters, D and Ethr, and so for this model we
showed the prediction for Δρ=ρ as a contour plot. With the
h2 and h3 models, there is no analog of D, and the only
parameter is Ethr. Thus, we may show Δρ=ρ and Δσ=σ for
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these models as simple ordinates versus the massMχ of the
new particle, and we do so. With these models, our
enthusiasm for the IDR approach will be somewhat
tempered.

B. Results from the partonic model

Results for the partonic h2 model are displayed in Fig. 7,
for the next-run LHC energy of

ffiffiffi
s

p ¼ 14 TeV. For a small
range of Mχ values, it is seen that Δρ=ρ is significantly
larger than Δσ=σ. However, at present, the errors on the
IDR-independent ρ measurement (Δρ=ρ≲ 1.38 at 2σ) are
much larger than the accuracy (∼5%) with which energy-
dependent changes in the total cross section can be inferred,
so care is warranted here. From Fig. 7 we can estimate a
region of energy in the 2–5 TeV range for which Δρ=ρ≳
0.1 and Δσ=σ ≲ 0.05. Our inference is that for new particle
masses in the ∼2–5 TeV energy range, IDR-independent
measurements of ρ to an accuracy of one part in ten could
reveal new physics of the type described by h2 in Sec. VI B
at

ffiffiffiffiffiffiffi
sobs

p ¼ 7 TeV.
One may wonder why the peak in ρ occurs so far below

the machine energy of 14 TeV. The reason is the slow rise
of the BSM cross section due to suppression from the pdfs:
a peak at energy Ethr ∼

ffiffiffi
s

p
weighted by the mean value of

the parton momenta product, hx1x2i, gives a peak at
roughly an order of magnitude below the machine energy.
A second inference is that models with new physics arising
from initial state partons will enhance the value of ρmainly
below the machine energy. Of course, such models will also
enhance the cross section below the machine energy, as
seen in Fig. 7.

There is still a small increase in ρ at the machine energy
of

ffiffiffiffiffiffiffi
sthr

p
> 7 TeV due to particle masses beyond 7 TeV.

Beyond the machine energy, it is impossible for direct
production to occur, so an inference of nonzero Δρ=ρ > 0
due to particle masses beyond

ffiffiffiffiffiffiffi
sthr

p
> 7 TeV would

present a unique, and striking, discovery. Unfortunately,
in the h2 model, such an inference does not seem possible,
as Δρ=ρ is ≲0.01 for new particle masses just beyond

FIG. 6 (color online). At
ffiffiffiffiffiffiffiffi
sobs

p ¼ 7 TeV, the contours are parametrized by Δρ=ρ. The form of the enhancement that includes new
physics is h1–the step function. The left panel considers D in the range [0,1], which is the relevant parameter space for SUSY-type
models. The right panel considers D values up to 10, relevant for extra-dimensional theories that have arbitrarily large increases in the
cross section. The shaded regions have already been ruled out by TOTEM’s

ffiffiffi
s

p ¼ 7 TeV preliminary results. The dotted green contours
correspond to the ρ ¼ 0.145 example signal.

FIG. 7 (color online). The fractional increases in ρ and σ using
h2ðsÞ at

ffiffiffiffiffiffiffiffi
sobs

p ¼ 7 TeV, versus Mχ . With the present signifi-
cance of ρ data, the exclusion region is well above the top of the
graph. The dotted green line presents the value of Δρ=ρ
corresponding to the ρ ¼ 0.145 example signature; from inter-
secting lines, a new Mχ ¼ 5.1 TeV threshold is predicted.
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7 TeV. A more optimistic inference is that, if the cross
section were to rise much more quickly than that of the h2
model, as happens with a Kaluza-Klein tower of new
particles, it may be possible to infer such new physics even
if the threshold energies/new masses exceed the LHC
energy.
We see that our example signal, plotted in Fig. 7,

implicates a new mass-scale Mχ ¼ 5.1 TeV. (The example
Δρ=ρ also crosses the continuous curve at an energy below
the machine energy; we assume that any new physics at this
lower energy would be detected through more direct
means.)

C. Results from the diffractive model

Finally, the h3 model is plotted in Fig. 8 at
ffiffiffiffiffiffiffi
sobs

p ¼7TeV.
We see a modest contribution to ρ from the h3 modification,
as compared to that of the h2 model. The larger contribution
is due to the faster rise of the h3 model from threshold
(sthr ¼ M2

χ). The nonpartonic nature of model h3 is at the
heart of the larger, higher-energy peak. On the other hand,
the effect of the smaller increase as s → ∞ as described by
Eq. (23) can be seen in Fig. 8 by the fast fall off in Δρ=ρ
beyond

ffiffiffi
s

p ¼ Mχ .
We note that while no regions ofMχ parameter space can

yet be excluded, our example signal implicates a newMχ ¼
9.1 TeV mass-scale. (We again ignore the lower energy
crossing, where any new physics can be probed in a more
direct manner.) This ∼9 TeV mass-scale has not been

directly probed at the LHC, and likely will be only weakly
probed even at the 14 TeV run.

D. Model conclusions

In the h1 and h3 models, the peak sensitivity of Δρ=ρ
occurs when the new mass or new physics threshold is right
at the machine energy. The sensitivity then falls off rapidly
with increasing mass or threshold. However, the phase
space for new particle production with mass at the machine
energy is zero. Thus, a cross section measurement will
not show an increase for such a mass value. However, the
ρ-parameter will show a peak increase. Thus, the IDR
technique primarily extends the reach of the LHC, to
particle masses at the very end point of the machine
energy. The LHC discovery potential is also extended
beyond the machine energy, but with less sensitivity. In
the h2 model, the parton fractional momenta move the peak
sensitivity to lower energies (by about an order of magni-
tude), thereby lessening the utility of the IDR technique for
extending the LHC discovery potential to the machine
energy and beyond.
It appears that this IDR technique may be sensitive to

some reasonable models with large changes to the pp cross
section, which have thresholds exceeding the reach of more
direct detection.
The outlook for the near future is dependent on new

measurements of ρ from experiments like TOTEM. Theffiffiffi
s

p ¼ 8 TeV data from TOTEM is in the process of being
analyzed [27], and we eagerly await the next LHC run atffiffiffi
s

p ¼ 14 TeV, which should begin in 2015.
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APPENDIX A: IDR INDEPENDENT
CALCULATION OF ρ

To extract a value for ρ in an IDR-independent fashion,
one invokes the optical theorem and extrapolates dσ=dt to
t ¼ 0, as shown below. The cross section is related to the
scattering amplitude by a simple exponential at low jtj. The
differential cross section is

dσ
dt

¼ π

k2
jfj2:

At t ¼ 0 one has

dσ
dt

����
t¼0

¼ π

k2
jℜfðt ¼ 0Þ þ iℑfðt ¼ 0Þj2

¼ π

k2
jðρþ iÞℑfðt ¼ 0Þj2:

FIG. 8 (color online). The fractional increase in ρ and σ for the
h3 model, at

ffiffiffi
s

p ¼ 7 TeV. The increase in ρ compared to its SM
value shows a peak of 0.23 atMχ ¼ ffiffiffiffiffiffiffiffi

sobs
p

. We also see that ρ has
increased compared to its SM value slightly across a range of
energies beyond the observation energy. With the present
significance of ρ data, the exclusion region is well above the
top of the graph. The dotted green line presents the value of Δρ=ρ
corresponding to the ρ ¼ 0.145 example signature; from inter-
secting lines, a new Mχ ¼ 9.1 TeV threshold is predicted.

PETER B. DENTON AND THOMAS J. WEILER PHYSICAL REVIEW D 89, 035013 (2014)

035013-10



Making use of the optical theorem, σtot ¼ ð4π=kÞℑfðt ¼ 0Þ,
one arrives at

16π
dσ
dt

����
t¼0

¼ ðρ2 þ 1Þσ2tot;

where the desired ρ is the ratio of the real and imaginary
parts of fðt ¼ 0Þ. From [2], the pp differential cross section
in the low t limit is well approximated by

dσ
dt

∝ eBt;

where B is the “slope parameter,” assumed and measured to
be very nearly constant. Thus, a measurement or estimate of
σtot and an extrapolation of dσ=dt to t ¼ 0 via the measured
slope parameter are sufficient to determine ρ independently
from the IDRs. While σtot is often evaluated in the
“luminosity-independent” sense which includes an estima-
tion of ρ, it can also be evaluated (although, less precisely)
using a luminosity calculated through particle counting or
beam sweeping techniques.
We also note that since the determination of ρ actually

gives a value for ρ2 there is an additional sign ambiguity.
There are two approaches to dealing with this. The first is to
compare results from modified cross sections in IDRs to
either the positive or negative values, treating each equally.
The second is to note that the IDR results for ρ from all of
the fits done to the pp, pp̄ cross sections (regardless of
whether or not they follow the Froissart bound) yield a
positive value for ρ. In practice we use TOTEM’s quoted
upper limit on ρ statistically calculated from ρ2 which
accounts for the possibility that ρ could be negative and
only places an upper limit on ρ.

APPENDIX B: MINIMUM TRANSFER ENERGY
IN LIGHT TO LIGHT PLUS ONE HEAVY

PROCESSES

We need jtj small in h2 to avoid amplitude suppression
by propagators. Here we calculate the kinematic range of t

in the 2 → 2 process p1 þ p2 → k1 þ k2, with p2
1 ¼ p2

2 ¼
k22 ¼ 0 all labeling SM particles and k21 ¼ M2

χ labeling a
new heavy particle. We will see that t ¼ 0 is allowed,
leading to an unsuppressed amplitude for massless particle
exchange.
Let θ be the angle between p1 and k1 in the CoM frame.

Then the transfer energy squared is

t ¼ ðp1 − k1Þ2

¼ M2
χ − 2ðp0

1k
0
1 − jp⃗1jjk⃗1j cos θÞ;

where k01 ¼ k⃗21 þM2
χ . So, tmax =min are given by

tmax =min ¼ M2
χ − 2p0

1k
0
1 � 2jp⃗1jjk⃗1j

at θ ¼ 0; π; respectively. Then we have

p0
1 ¼

ffiffiffî
s

p

2
; k01 ¼

ŝþM2
χ

2
ffiffiffî
s

p ; and

jp⃗1j ¼ p0
1; jk⃗1j ¼

ŝ −M2
χ

2
ffiffiffî
s

p ; and so

p0
1k

0
1 ¼

ŝþM2
χ

4
; jp⃗1jjk⃗1j ¼

ŝ −M2
χ

4
:

Then, the maximum/minimum values of t are

t ¼ M2
χ − ŝþM2

χ

2
� ŝ −M2

χ

2
¼

�
0

M2
χ − ŝ

�
;

where t ¼ 0 occurs for the forward scattering θ ¼ 0 case,
and the maximum jtj transfer occurs for the backward
scattering θ ¼ π case. The tmin ¼ 0 result confirms that
pp → χ þ light particles will favor small jtj.
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