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We present results for the magnetic moment and magnetic polarizability of the neutron and the magnetic
moment of the proton. These results are calculated using the uniform background field method on 323 × 64

dynamical QCD lattices provided by the PACS-CS Collaboration as part of the ILDG. We use a uniform
background magnetic field quantized by the periodic spatial volume. We investigate ways to improve the
effective energy plots used to calculate magnetic polarizabilities, including the use of correlation matrix
techniques with various source smearings.
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I. INTRODUCTION

The magnetic moment and magnetic polarizability
are fundamental properties of a particle that describe its
response to an external magnetic field. Developing the
ability to calculate these properties via the first principles
approach of lattice QCD is important. There are two well-
known techniques for calculating magnetic moments on the
lattice. One is the three-point function method [1–3], which
is used to calculate baryon electromagnetic form factors that
can be converted into magnetic moments by performing an
extrapolation to zero momentum. The other is the back-
ground field method [4–14], which uses a phase factor on the
gauge links to induce an external field across the whole
lattice. This external field causes an energy shift from which
the magnetic moment and polarizability can be derived by
making use of the following energy-field relation [4,15]:

EðBÞ ¼ MN − μ⃗ · B⃗þ ejBj
2MN

− 4π

2
βB2 þOðB3Þ; (1)

defining μ⃗ as the magnetic moment and β as the magnetic
polarizability. We note the term ejBj=2MN is the ground-
state Landau energy. In principle, there is a tower of energy
levels with energy ð2nþ 1ÞejBj=2MN for n ¼ 0; 1; 2;….
When deriving the background field method on a

periodic lattice, there arises a quantization condition which
limits the available choices of magnetic field strength based
on the size of the lattice [5,6]. If the lattice is too small, the
field will be large and higher-order terms in the energy
relation of Eq. (1) will begin to dominate [8]. Previous
calculations have avoided this problem by using a Dirichlet
boundary condition in a spatial dimension and a linearized
form of the phase factor, which allows for an arbitrary

choice of field strength [12]. We note the linearized form of
the link breaks gauge invariance. Others have used the
exponential phase, but instead of correcting the value of the
field at the boundary, they put the quark origin at the center
of the lattice and hope that the boundary is far enough away
for the effects of the discontinuity to be small [7]. Using
either of these methods introduces finite volume errors
which can be hard to predict. A calculation using the
periodic boundary conditions and quantized exponential
phase factor to create a uniform magnetic field everywhere
was done for the delta and omega baryons in Ref. [13]. Our
calculation is the first to apply the complete methodology
to the nucleon. We present results for both the magnetic
moment and the magnetic polarizability of the neutron. For
the proton, we present only magnetic moment results,
because the Landau levels interfere with polarizability
calculations for charged particles.

II. BACKGROUND FIELD METHOD

We make use of the background field method to simulate
a constant magnetic field along one axis [6]. The technique
is formulated on the lattice by first considering the
continuum case, where the covariant derivative is modified
by the addition of a minimal electromagnetic coupling,

Dμ ¼ ∂μ þ igGμ þ iqAμ; (2)

where Aμ is the electromagnetic four-potential and q is the
charge on the fermion field. On the lattice, this is equivalent
to multiplying the usual gauge links by a simple phase
factor

UðBÞ
μ ðxÞ ¼ expðiaqAμðxÞÞ: (3)

To obtain a uniform magnetic field along the z axis, we

note that B⃗ ¼ ∇⃗ × A⃗, and hence*thomas.primer@adelaide.edu.au
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Bz ¼ ∂xAy − ∂yAx: (4)

Note that this equation does not specify the gauge potential
uniquely; there are multiple valid choices of Aμ that give
rise to the same field. We choose Ax ¼ −By to produce a
constant magnetic field of magnitude B in the z direction.
The resulting field can be checked by examining a single
plaquette in the ðμ; νÞ ¼ ðx; yÞ plane, which is related to the
magnetic field through the field strength tensor,

□μνðxÞ ¼ exp ðiqa2FμνðxÞÞ; (5)

which is exact for a constant background field because
all higher-order terms involve a second- or higher-order
derivative. For a general plaquette at coordinates x, y, the
result is

expð−iaqByÞ expðiaqBðyþ aÞÞ ¼ expðia2qBÞ; (6)

giving the desired field over most of the lattice. However,
on a finite lattice (0 ≤ x=a ≤ Nx − 1), (0 ≤ y=a ≤ Ny − 1),
there is a discontinuity at the boundary due to the periodic
boundary conditions. In order to fix this problem we make
use of the ∂xAy term from Eq. (4), giving Ay the following
values:

Ayðx; yÞ ¼
�
0; for y=a < Ny − 1

NyBx; for y=a ¼ Ny − 1
. (7)

This ensures that we now get the required value at the
y=a ¼ Ny − 1 boundary.
There is then the issue of the double boundary,

x=a ¼ Nx − 1 and y=a ¼ Ny − 1, where the plaquette
only has the required value under the condition
expð−ia2qBNxNyÞ ¼ 1. This gives rise to the quantization
condition, which limits the choices of magnetic field
strength based on the lattice size:

qBa2 ¼ 2πn
NxNy

; (8)

where n is an integer specifying the field strength in
multiples of the minimum field-strength quantum.
Having specified the Uð1Þ gauge, we note that in

addition to a uniform magnetic field, the selected links
produce two nontrivial holonomies:

HxðyÞ ¼
Y
x

Uxðx; yÞ ¼ e−iaNxqBy; (9)

HyðxÞ ¼
Y
y

Uyðx; yÞ ¼ eþiaNyqBx: (10)

The holonomies HxðyÞ and HyðxÞ are absent for qBa2 ¼
2π=Nx and qBa2 ¼ 2π=Ny, respectively. We note these

fields are of order Nx or Ny times the field strengths
considered herein and would render the calculation unten-
able. Analogous to the Polyakov loop, these quantities are
gauge invariant and spatially dependent. The possible
effects of these holonomies may need to be considered,
for example, when attempting to project hadronic correla-
tion functions. Indeed, the use of the lowest (continuum)
Landau wave function, including the effects of the holon-
omies due to the periodic lattice, was studied elsewhere and
shown to be effective in the context of scalar field theory
[16]. In the present work, our hadronic correlation func-
tions use the standard Fourier-based momentum projection,
and as such, we do not include the effects of the
holonomies.

III. SIMULATION DETAILS

These calculations use the 2þ 1 flavor dynamical-
fermion configurations provided by the PACS-CS group
[17] through the ILDG [18]. These are 323 × 64 lattices
using a clover fermion action and Iwasaki gauge action with
β ¼ 1.9 and physical lattice spacing a ¼ 0.0907ð13Þ fm.
We use four values of the light quark hopping parameter,
κud ¼ 0.13700, 0.13727, 0.13754, 0.13770, corresponding
to the pion masses mπ ¼ 702, 572, 413, 293 MeV. The
lattice spacing for each mass was set using the Sommer scale
with r0 ¼ 0.49 fm. The size of the ensemble was 320 for the
two lighter masses and 400 for the heavier ones. Values for
mπL range from 10.3 to 4.3.
In order to get correlation functions at four different

magnetic field strengths, we calculated propagators at
six nonzero field strengths: qBa2 ¼ þ0.0061, −0.0123,
þ0.0184, þ0.0245, −0.0368, −0.0492. These correspond
to n ¼ þ1, −2, þ3, þ4, −6, and −8 in Eq. (8). Using the
relationships qd ¼ −e=3 and qu ¼ 2e=3 to combine up and
down quark propagators with the appropriate field strengths
resulted in hadrons in fields of strength eB ¼ −0.087,
þ0.174, −0.261, −0.345 GeV2 at the physical lattice
spacing. Unless specified otherwise, we used the interpo-
lating field χ1 ¼ ðuTCγ5dÞu with 100 sweeps of Gaussian
smearing at the source. We put the origin of the electro-
magnetic gauge field at the same lattice site as the quark
origin to ensure that the smeared source maintains good
overlap with the ground states.
It should be noted that the configurations are dynamical

only in the QCD sense; there was no magnetic field
included when they were generated. The background field
can be put on the sea quarks by performing a separate HMC
calculation for each field strength, but this is obviously very
computationally expensive. It also destroys the correlations
between the different field strengths, which would lead to
much larger errors in the energy shifts used to calculate
moments and polarizabilities. While techniques for a
reweighting of configurations in order to correct for the
background field are under exploration [19], these have not
been employed in this work.
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Because the light u, d and s quark charges sum to zero,
the corrections to the magnetic moment from sea-quark
loops is proportional to SUð3Þ flavor symmetry breaking
[20,21]. Through the use of standard three-point function
calculations of the magnetic form factors, these contribu-
tions are well understood [22–24] and provide a small
correction to the neutron moment. However, their direct
calculation in the background field formalism remains an
interesting challenge.
The contributions of sea-quark loops to the magnetic

polarizability are more subtle, due to the consideration of
two photon couplings to the quark flow of meson dressings
[25,26]. For example, the leading nonanalytic behavior
receives sea-quark loop contributions from both sea-sea
and sea-valence couplings to the meson dressings [25]. The
square of the sea-sea quark charge ensures one-loop sea-sea
photon coupling contributions are all positive, whereas the
sea-valence contributions depend on the charge of the
meson. Charged mesons contribute positively, and neutral
mesons (having opposite charged quarks) contribute neg-
atively. These sea-quark loop contributions have been
examined in finite-range regularized chiral effective field
theory [26], which enables one to model the significance of
these changes to the nonanalytic terms of the expansion.
The net correction is positive but small relative to the
polarizabilities reported herein, and we refer the interested
reader to Ref. [26] for further details.
We also performed an initial calculation using quenched

gauge configurations. These were 323 × 40 lattices using a
FLIC fermion action and Symanzik improved gauge action
at β ¼ 4.52. There were 192 configurations at seven quark
masses, corresponding to mπ ¼ 0.8400, 0.7745, 0.6929,
0.6261, 0.5399, 0.4353, 0.2751 GeV. The lattice spacing
was a ¼ 0.128 fm, and like the dynamical calculation,
boundary conditions were periodic for the spatial dimen-
sions and fixed for the time boundary. Values formπL range
from 17.4 to 5.7. We used fields corresponding to n ¼ 1,
−2, 4, −8 in the quantization condition to save on
computation.

IV. MAGNETIC MOMENT

A. Formalism

When a charge or system of charges with angular
momentum is placed in an external magnetic field, it is
energetically favorable to have its axis either aligned or
antialigned with the direction of the field. The tendency of
the system to align with the field is proportional to the
magnetic moment of the system and the strength of
the field.
We calculate zero-momentum projected correlation func-

tions containing spin-up and spin-down components in the
(1, 1) and (2, 2) positions of the Dirac matrix, respectively.
Here we are using the Pauli representation for the gamma
matrices. For a magnetic field aligned to the axis of the

spin, we see the magnetic moment manifest as a shift in the
energy which has the same magnitude, but opposite sign,
for spin up and spin down.
We make use of the sign difference in the energy shift

between spin up and spin down in order to isolate the
magnetic moment term from the expansion of the energy.
Taking the difference of the spins,

δEðBÞ ¼ 1

2
ðE↑ðBÞ − E↓ðBÞÞ ¼ −μB: (11)

In addition to the bare mass and polarizability term, this
difference also cancels out the Landau energy term
ejBj=2MN . For the neutron, one expects this term to be
zero because it is proportional to the charge. However, for
the proton, even though taking the difference cancels out
the term, it can still affect the results. This is because we use
a standard projection to zero momentum in our correlation
functions, but when Landau levels are present, one obtains
a superposition of Landau states. As we are working within
a particular choice of gauge for the magnetic field, the
strengths of the superpositions are dependent on this choice
of gauge. There are proposed techniques for dealing with
the Landau levels [16], but we have found that the effect on
the magnetic moment results is small, and defer this issue to
a subsequent investigation.
In terms of correlation functions, there are multiple valid

ways of taking the spin difference—for example, fitting the
energy and then taking the difference, or combining
correlation functions and then fitting. By taking a combi-
nation of correlation functions before fitting for the energy,
the statistical error is greatly reduced and provides strong
constraints on the fit regime. This is because the errors are
highly correlated between the zero and nonzero field
correlation functions, meaning the fluctuations do not
change significantly due to the field. The combination
required for isolating the moment term can be written as

δEðB; tÞ ¼ 1

2

�
ln

�
G↑ðB; tÞ
G↑ð0; tÞ

G↓ð0; tÞ
G↓ðB; tÞ

��
fit

: (12)

The inclusion of the bare correlation functions without a
magnetic field in this expression is not strictly necessary,
but it is useful in correcting for the small statistical
difference between spin-up and spin-down zero-field ener-
gies and making the zero-field point zero by construction.
We also define spin up to mean aligned with the magnetic
field and spin down to mean antialigned to the field, so that
we can treat all the fields as positive in our discussion.

B. Results

Figure 1 shows the energy shift from the difference of
spin-up and spin-down nucleons for the heaviest quark
mass at all four nonzero magnetic field strengths. Both the
proton and the neutron show a good linear progression over
the field strengths as expected, with excellent plateaus.
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There is very little excited-state contribution to the energy
shifts in evidence. The neutron effective energy is generally
slightly smoother than that of the proton, with similar
results for the other quark masses. The larger errors in the
proton energies may be due to the effect of the Landau
levels in the momentum projection. At the two higher field
strengths, there tends to be a small drift in the value over
time, with the true plateau perhaps only occurring at around
time slice 23 or 24. This leads to a slight difference in the

value of the energy shift depending on the choice of fit
window; however, this has little effect on the magnetic
moment result for reasons described below.
Figures 2 and 3 show the spin-difference energy shifts

plotted against the magnetic field strength. These are fit to a
linear coefficient which gives the magnetic moment. In order
to fit the largest field strength, and to a lesser extent the
second largest, we had to include a cubic term in the fit. With
the cubic term included, all four data points are fit easily.
However, the first two points are the main drivers of the
linear coefficient, and therefore the magnetic moment value.
The cubic term is able to absorb some variation in the

energy shifts at the higher field strengths, which is why the
drift in the effective energy shown in Fig. 1 does not
significantly affect the resulting magnetic moment value.
This is seen in Table I, which gives values of the neutron
magnetic moment for a number of fit windows. The same
window is used at every field strength in order to maintain
consistency and prevent introducing systematic errors.
Only changes in the field strength act to change the
measured energy. The values agree well within errors for
all but the earliest fit window, suggesting that time slice 19
is slightly too early to fit due to excited state contamination.
Large χ2=d:o:f: values also exclude this fit window.
In considering other quark masses, we consistently select

fit window 20–22 to provide the same fit window for
every field strength and quark mass. Again, only changes in
the field strength and quark mass act to change the energy.

FIG. 1 (color online). Spin-difference energy shift ofEq. (12) for
the heaviest quarkmass at all four field strengths. Theprotonvalues
are given by the squares and the neutron values by the circles. The
shifts increase in magnitude with the strength of the field.

FIG. 2 (color online). Fits of the spin-difference energy shift to the field strength at each quark mass for the proton. The solid line is a
purely linear fit to just the first two points, and the dashed line is a linear-plus-cubic fit to all four points.
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A consistent set of larger fit windows was considered, and
good agreement between the magnetic moment values was
observed for most fit windows. However, many of these fits
produced unacceptably large χ2=d:o:f: values, and we take
the more conservative and consistent fit window to avoid
introducing a systematic error.
Given that the first two points are the main drivers of

the magnetic moment, we performed a purely linear fit to
the first two points. We find the the linear coefficients
determined from both two- and four-point fits agree well
within errors. Since the fit is naturally constrained to go
through zero, two nonzero field points are sufficient.
Moreover, our field strengths are small enough to ensure
the higher-order contributions are negligible at these two
points.
The magnetic moment is reported in units of nuclear

magnetons via

μ ¼ − δE
eB

�
e

2MN

�
2MN; (13)

where we have started with Eq. (11) and introduced the
elementary charge e since we actually fit the energy shift
against eB, then bring in twice the physical nucleon mass
MN in order to get the nuclear magneton (μN ¼ eℏ

2MN
), given

that we are using natural units (c ¼ ℏ ¼ 1).
Figures 4 and 5 show the proton and neutron magnetic

moment results, compared with a three-point function
calculation for reference [27]. Although the finite-volume
effects in a three-point function computation are not the
same as those in our background field calculation, the results
compare favorably. The lines are chiral fits to the dynamical
results using the simple model of Ref. [28] and guide the
anticipated trajectory to the physical point. The reason
the extrapolated values are smaller in magnitude than the
experimental values is understood to be due to finite volume
effects [29], as those have not been examined herein.

V. MAGNETIC POLARIZABILITY

A. Formalism

The magnetic polarizability is a measure of the defor-
mation of a nonpointlike particle when it is placed in a
magnetic field. This deformation causes a change in the
energy which we can measure using the background field
method. The effect of the magnetic polarizability is second

FIG. 3 (color online). Fits of the spin-difference energy shift to the field strength at each quark mass for the neutron. The solid line is a
purely linear fit to just the first two points, and the dashed line is a linear-plus-cubic fit to all four points.

TABLE I. Magnetic moment values for the neutron at each κ
value for a variety of fit windows.

Window 0.13700 0.13727 0.13754 0.13770

19–21 −1.187ð12Þ −1.300ð13Þ −1.420ð16Þ −1.486ð36Þ
20–22 −1.194ð11Þ −1.317ð15Þ −1.462ð22Þ −1.483ð30Þ
21–23 −1.198ð13Þ −1.338ð20Þ −1.454ð27Þ −1.500ð40Þ
22–24 −1.201ð15Þ −1.343ð25Þ −1.454ð32Þ −1.508ð49Þ
20–24 −1.199ð10Þ −1.321ð15Þ −1.462ð20Þ −1.485ð31Þ
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order in B. This means that at the “small” field strengths we
are using, the effect is much smaller than that due to the
magnetic moment, which can make it hard to measure.
To extract the polarizability from the energy, we take the

average of spin-up and spin-down energy shifts to remove
the magnetic moment term and explicitly subtract the zero-
field mass. The spin-averaged energy shift is

δEβðBÞ ¼
1

2
ððE↑ðBÞ − E↑ð0ÞÞ þ ðE↓ðBÞ − E↓ð0ÞÞÞ

¼ ejBj
2MN

− 4π

2
βB2:

This leaves us with the polarizability term, but also with
another term due to the Landau energy. This energy arises

from the quantization of orbits for charged particles in
magnetic fields and cannot be isolated from the relevant
polarizability term. As a result, it is difficult to calculate
magnetic polarizabilities of charged particles, because there
is not only the ground-state Landau energy but also a tower
of Landau levels with energy ð2nþ 1Þ ejBj

2MN
. The need for

small field strengths makes the Landau-level problem even
worse, because it means the Landau levels are closer
together, which makes it take longer in Euclidean time
for the levels above the ground state to be exponentially
suppressed [16].
The influence of the Landau levels on the proton is readily

apparent in Fig. 6, which shows the spin average of the
energy shift due to the field. Since the experimental value of
the magnetic polarizability is approximately the same for
the proton and neutron, we would expect this to look similar
to the neutron results in Fig. 7. Instead, we see much larger
errors and no consistent trend across the field strengths.
Due to the large and unpredictable systematic errors caused
by this effect, we are not presenting values for the magnetic
polarizability of the proton in this first exploratory inves-
tigation. For an elementary particle with zero charge, there is
no Landau effect. However, the neutron is an extended
object, and the u and d quarks are not distributed symmet-
rically. This admits the possibility of nontrivial Landau-level
effects. While one might anticipate these effects are small,
evidence below reveals an important contribution.
As with the magnetic moment, we construct ratios of

correlation functions, which we then fit for an effective
energy,

δEβðB; tÞ ¼
1

2

�
ln

�
G↑ðB; tÞ
G↑ð0; tÞ

G↓ðB; tÞ
G↓ð0; tÞ

��
fit

: (14)

In this case, the zero-field correlators are necessary to remove
the bare neutron mass. Combining the correlation functions

FIG. 4 (color online). Neutron magnetic moment as a function
of pion mass squared. The leftmost point gives the experimental
value [30]. The dashed line is a chiral extrapolation of the
dynamical points.

FIG. 5 (color online). Proton magnetic moment as a function of
pion mass squared. The leftmost point gives the experimental
value [30]. The dashed line is a chiral extrapolation of the
dynamical points.

FIG. 6 (color online). Proton spin-averaged energy shift for the
heaviest quark mass at all field strengths. The top line is the
smallest field strength, with the other three agreeing well within
errors for most of the relevant time frame.
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before fitting is especially important in the polarizability
case, because the energy shift is smaller than the errors on the
zero-field mass. This means that if the correlated errors were
not allowed to cancel before the fit, we would not see a clear
signal for the shift due to the polarizability.

B. Results

Figure 7 gives the spin-averaged effective energy shift
for the heaviest quark mass considered. Unlike the spin-
difference case, the plateau behavior is quite poor, with a
fairly constant downward slope that begins to plateau only
after significant noise is appearing. Only in the case of the
smallest field strength does something like a real plateau
appear before the signal is lost to noise. The situation is
very similar at other quark masses, with the errors getting
larger and the noise coming earlier at lighter quark masses,
as seen in Fig. 8 for the lightest quark mass considered.
The plots show that at each field strength, the energy shift

starts at approximately zero and grows with Euclidean time.
Typically the lack of a plateau in an effective energy plot is
due to the presence of excited state energies in addition to
the ground state. Figure 9, illustrating the bare effective
mass, does reveal a systematic drift in the energy, sug-
gesting some improvement in the interpolating field may be
possible.
In order to check for excited-state overlap and try to

improve the plateau behavior, we looked at different
sources. We experimented with a number of different
source smearings, trying 16 and 35 sweeps in addition
to our usual 100. We also tried a point source on the basis
that it should have no bias towards any shape and may
therefore reach the required form more quickly. Figure 10
shows the energy shift due to the field for all smearing
choices at the heaviest quark mass and the smallest field.
The three smeared sources have different behavior but
agree well within errors by time slice 24, just before the
signal is lost to noise. The point source has large excited-
state contributions and approaches agreement with the
other sources as the signal is lost.
We notice from these plots that the best plateau behavior

comes from 16 sweeps of smearing for spin up and 100
sweeps of smearing for spin down. To take advantage of
this, we constructed a spin average from the spin-up
correlation function with 16 sweeps and the spin-down
correlation function with 100 sweeps. We found the
improved plateau behavior shown in Fig. 11, leading us
to investigate further the possibility of combining different
source smearings.
The variational method as implemented in Ref. [31]

involves using an n × n correlation matrix GijðtÞ con-
structed from different source and sink smearing levels to
solve a pair of eigenvalue equations. The right and left
eigenvectors uαj and vαi can then be used to project out

FIG. 7 (color online). Neutron spin-averaged energy shift for
the heaviest quark mass at all four field strengths. The magnitude
of the shift increases with the field strength.

FIG. 8 (color online). Neutron spin-averaged energy shift for
the lightest quark mass at all four field strengths. The magnitude
of the shift increases with the field strength.

FIG. 9 (color online). Spin-averaged effective mass for the
neutron at κ ¼ 0.13727. The top line (squares) is for zero
magnetic field, and the bottom line (circles) is with the smallest
field strength considered.
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energy eigenstates α to effectively isolate the n − 1 lowest
energy states,

GαðtÞ ¼ vαi GijðtÞuαj : (15)
Combining correlation matrix techniques with the back-
ground field method introduces new considerations.
Normally, the eigenvector analysis is performed on
spin-averaged correlation functions because spin up
and spin down are equal up to statistics. For a background
field calculation, we need to consider spin up and spin
down separately, with each field strength getting its own
eigenvector equation to solve. This is necessary, as each
field and spin combination has a separate Hilbert space of
energy eigenstates. In other words, the eigenvectors uαi
and vβj are field and spin dependent, and a recurrence
relation leading to a generalized eigenvalue equation
cannot be written for combinations of spins and fields.
After solving the eigenvalue equations, we construct the
same ratio as in Eq. (14), but using the projected
correlation functions from Eq. (15).
We first performed a variational analysis using a 2 × 2

correlation matrix made from 16 and 100 sweeps of
smearing. The resultant spin-average energy shift using
the ground-state projected correlation functions was approx-
imately equal to the original 16- and 100-sweep correlation

functions. The plateau behavior was not noticeably better
than using either of the smearings alone. We also tried other
various combinations of sources with different smearings
including 16, 35 and 100 sweeps, as well as different
interpolating fields in 3 × 3 and 4 × 4 correlation matrices.
None of these combinations was found to result in a
statistically significant improvement in the plateau behavior.
The conclusion that must be drawn from this is that the

neutron is not free from Landau-level effects. As high-
lighted earlier, the neutron is an extended object having an
asymmetry in the distribution of the u and d quark flavors.
This asymmetry gives rise to a nontrivial charge radius for
the neutron. Thus one must expect that the individual quark
sectors will respond to the background field and have an
associated Landau-level response.
Even if the neutron had a perfect symmetry between u and

d quark distributions, the different electric charges of the
quarks would enable the external field interactions to break
this symmetry. Thus, even a perfectly symmetric distribution
of u and d quarks in QCD would admit a Landau-level
response at the quark level due to QED effects.
One can imagine a case where QCD is so strong, the

symmetry breaking induced by the field is negligible.
However, this is not the case. The u-d symmetry is broken
by QCD itself. This gives rise to a nontrivial neutron charge
radius and exposes regions of nontrivial charge density that
can respond to the background field. The relatively small
effective charge gives rise to a very closely spaced set of
Landau levels which decays smoothly in the manner we
observe.
Fortunately, our consideration of several different fer-

mion source smearings has provided some indication of the
onset of ground-state dominance. Referring to Fig. 10,
agreement in the energy shift for all smeared sources
considered is observed at t ¼ 24. Different fermion source

FIG. 10 (color online). Energy shift at the smallest field strength.
For spin up, we have from top to bottom 100, 35, 16 sweeps of
smearing and point source; for spin down, the order is reversed.

FIG. 11 (color online). Spin-averaged effective energy shift for
the heaviest quark mass at the smallest background field. The
dashed lines are for 16 and 100 sweeps of smearing, and the solid
line is from the combination of spin up with 16 sweeps and spin
down with 100 sweeps.
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smearings give rise to different superpositions of excited
states. Because all the different superpositions of states agree
at this point, we are confident the excited states have been
suppressed relative to the ground state. In proceeding, we
take a very cautious and conservative approach by determin-
ing the energy shifts from the last time slice available prior to
the onset of significant noise. While the uncertainties are
perhaps somewhat larger than desired, we prefer to report a
correct answer with a large uncertainty as opposed to a
speculative result with an underestimated error bar.
Figure 12 shows fits of these spin-averaged energy shifts

as a function of the field strength. In addition to the
quadratic polarizability term, we required a quartic term in
order to fit the higher field strengths. This higher-order term
is small at the heaviest mass but starts to become significant
at the lighter masses.
Figure 13 shows our neutron magnetic polarizability

results with a comparison between our quenched and
dynamical calculations. The quenched and dynamical
results agree well within errors. The dashed line shows a
fit of the dynamical results to

β ¼ aþ b
mπ

þ c lnðmπÞ þ dm2
π;

where the values of coefficients b and c were set from
values calculated in χPT [32], and a and d are fit freely.
Although this formula does not account for the vanishing
sea-quark charges and the finite volume of the lattice

simulations, it does provide a reasonable forum for the
first comparison of lattice QCD results and experiment. The
extrapolated value of 1.8� 0.2 × 10−4 fm3 is well within
the error bar of the experimental value.
A more rigorous chiral extrapolation of our results in

partially quenched QCD accounting for the finite volume of
the lattice and the neutral electric charges of the sea quarks

FIG. 12 (color online). The spin-averaged energy shifts as a function of the background field strength for the neutron. The solid line is
a pure quadratic fit to the first two points, while the dashed line is a fit of all the points to a quadratic plus quartic.

FIG. 13 (color online). Neutron magnetic polarizability as a
function of pion mass. The red point illustrates the experimental
value [30]. The line represents a fit of χPT to the dynamical
fermion lattice results.
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has been carried out by Hall et al. in Ref. [26]. There, the
volume dependence of the polarizability is examined to
provide a guide to future lattice QCD investigations. With
an improved calculation at near physical pion mass on a
large lattice volume exceeding 5 fm on a side [26], we
anticipate a lattice result that verifies the significant chiral
curvature generated by the partially quenched finite-
volume pion cloud.
Moreover, the contributions of the dynamical sea-quark

degrees of freedom are modeled in Ref. [26] to provide a
comprehensive comparison with experiment. The final value
for the magnetic polarizability of the neutron in infinite-
volume full QCD is 1.93� 0.11� 0.11 × 10−4 fm3 with
systematic and statistical uncertainties indicated.

VI. CONCLUSION

We have performed the first calculations of the magnetic
moment and magnetic polarizability of the neutron in a
uniform background field. Results for the magnetic
moment are very clear and agree well with previous
calculations. The approach can be used in a precision
manner to directly determine the magnetic moment without
the need for extrapolating form factors in Q2.
Magnetic polarizability calculations have proved more

difficult due to late-appearing plateaus. Consideration of a
variety of fermion source smearings and the agreement

observed at the largest Euclidean times available herein
provide an indication of ground-state saturation, enabling a
determination of the magnetic polarizability of the neutron.
We have calculated dynamical fermion results that agree
with our previous quenched results and have a promising
approach to the experimental value. A summary of the
numerical results is given in Table II.
An important discovery is a nontrivial role for Landau

levels in neutron correlation functions. While the neutron’s
zero (total) charge was thought to render such contributions
negligible, the asymmetric distribution of charge within the
neutron admits nontrivial contributions from each of the
quark sectors.
Studies in chiral effective field theory and in lattice QCD

are needed to further explore finite-volume effects and the
subtle role of dynamical fermion sea-quark loops. It is also
important to develop new fermion sources/sinks that can
respond to the effects of the Landau energy at the individual
quark-sector level, enabling better isolation of the ground-
state energy shift.
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