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We construct the next-to-leading-order chiral Lagrangian for scalar and pseudoscalar densities defined
using the gradient flow, for flow times much smaller than the square of the pion wavelength. We calculate
the chiral condensate and the pion decay constant to this order from operators at positive flow time, and
confirm results obtained earlier in the chiral limit. We also calculate the quark-mass dependence of the
scales t0 and w0 defined from the scalar gluon density and find that nonanalytic terms in the quark mass
only enter at next-to-next-to-leading order.
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I. INTRODUCTION

Recently, the application of gradient-flow techniques to
nonperturbative field theory has been extended to include the
quark fields of QCD [1,2]. This makes it possible to use the
smoothingpropertiesof thegradient flowfor thecomputation
of simple hadronic quantities, such as the chiral condensate
and the pion decay constant in the chiral limit from the scalar
condensate at positive flow time, which avoids mixing with
power-divergent lower-dimension operators.
In practice, even if one is only interested in the chiral limit,

it is useful to have access to the functional form for the
dependence on the quark mass of the ratios which are
computed in order to obtain such quantities. Since the
quark-mass dependence for low-energy hadronic quantities
is encoded in chiral perturbation theory (ChPT), thismakes it
necessary to extend ChPT to include effective operators
corresponding to QCD operators at positive flow time. Our
aimin thisarticle is toprovideasystematic framework for this
extension to next-to-leading order (NLO) in the quark mass.
The operators we will consider are the scalar and

pseudoscalar quark bilinears, as well as the purely gluonic
operator Ga

μνGa
μν. The latter is of specific interest, because

its dependence on the flow time can be used to define a
scale t0 [3] or a scale w0 [4] from the expectation value of
this quantity. Because of the statistical accuracy with which
these scales can be computed, they are good candidates for
scale setting in QCD [5]. However, this makes it important
to also determine their dependence on the quark masses
accurately. Here we provide the functional form of
the quark-mass dependence of the scales t0 and w0 to
next-to-next-to-leading order (NNLO), both in the 2- and
2þ 1-flavor theories.
The outline of this article is as follows. In the next

section, we review the necessary elements of the gradient
flow as applied to QCD, and introduce scalar and pseu-
doscalar quark bilinears at positive flow time. In Sec. III we
construct the chiral Lagrangian, including source terms for

these bilinears, to NLO, and calculate the chiral condensate
and the pion decay constant as proposed in Ref. [1]. In
Sec. IV we analyze the quark-mass dependence of
hGa

μνGa
μνi at positive flow time, and from that the quark-

mass dependence of t0 and w0, to NNLO. The final section
contains our conclusions.

II. THE GRADIENT FLOW IN QCD

We begin by recalling relevant definitions and results
from Refs. [1–3]. We introduce the observables of interest,
and then discuss their chiral properties, as well as their
inclusion in the generating functional.

A. Gradient flow and observables

The Yang-Mills gradient flow evolves the gauge fields
as a function of an additional parameter t, referred to as
flow time. The t-dependent gauge fields Bμðt; xÞ satisfy
the first-order differential equation1

∂tBμ ¼ DνGμν; (2.1)

Gμν ¼ ∂μBν − ∂νBμ þ ½Bμ; Bν�; Dμ ¼ ∂μ þ ½Bμ; ·�;
(2.2)

with initial conditions relating them to the standard gauge
fields, Bμð0; xÞ ¼ AμðxÞ. The flow-time-dependent quark
and antiquark fields χðt; xÞ and χ̄ðt; xÞ are defined by

∂tχ ¼ Δχ; ∂tχ̄ ¼ χ̄Δ⃖; (2.3)

with Δ ¼ DμDμ the covariant Laplacian. As for the gauge
field the initial conditions

1Here we take Bμðt; xÞ anti-Hermitian, following the conven-
tion of Ref. [1].
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χð0; xÞ ¼ ψðxÞ; χ̄ð0; xÞ ¼ ψ̄ðxÞ (2.4)

relate the flow-time-dependent fields to the standard quark
and antiquark fields ψ and ψ̄ at zero flow time.
Flow-time-dependent composite fields are defined in the

same way as with the standard fields. For example, we
define the scalar and pseudoscalar densities

Srst ðxÞ ¼ χ̄rðt; xÞχsðt; xÞ; Prs
t ðxÞ ¼ χ̄rðt; xÞγ5χsðt; xÞ:

(2.5)

Here the labels r and s are flavor indices. The scalar density
is also used to define the flow-time-dependent quark
condensates

Σrr
t ¼ −hSrrt ðxÞi: (2.6)

The field theory with the flow-time-dependent fields can
be formulated as a five-dimensional local field theory, the
fifth dimension being the flow time [1]. In particular, the
renormalization properties can be discussed in a trans-
parent way in this higher-dimensional setup. One can
show the absence of short-distance singularities in corre-
lation functions involving the densities at positive flow
time other than the usual ones occurring in the renorm-
alization of the QCD Lagrangian. Moreover, the quark
condensates do not require additive renormalization,
and the structure of the Wick contractions in the five-
dimensional theory together with the partially conserved
axial-vector current relation lead to the Ward-Takahashi
identity (WTI)

ðmr þmsÞ
Z

d4xhPrsðxÞPsr
t ðyÞi ¼ −Σrr

t − Σss
t ; (2.7)

where mr;s denote renormalized quark masses.2 Using this
identity, Ref. [1] showed that the chiral condensate Σ and
the pion decay constant f in the chiral limit can be
obtained from

Σ ¼ lim
m→0

Σrr
t Gπ

Gπ;t
; (2.8)

f ¼ lim
m→0

Σrr
t

Gπ;t
: (2.9)

Here Gπ is the standard vacuum-to-pion matrix element of
the pseudoscalar density,

h0jPaðxÞjπbðpÞi ¼ δabiGπeipx; (2.10)

and Gπ;t is the analogous expression with PaðxÞ
replaced by Pa

t ðxÞ. [For the flavor index structure, see
Eq. (2.11) below.]

B. Chiral properties

The quark-flow equations in Eq. (2.3) are trivial in flavor
and Dirac space. Hence chiral symmetry is preserved by the
evolution in flow time, and the fields at positive t transform
the same way under chiral transformations as the ones at
t ¼ 0. The same holds for the composite fields. In order to
discuss the consequences of this we find it more convenient
to define the singlet and nonsinglet densities

Sat ðxÞ ¼ χ̄ðt; xÞTaχðt; xÞ; Pa
t ðxÞ ¼ χ̄ðt; xÞγ5Taχðt; xÞ;

(2.11)

with Ta, a ¼ 1…; N2
f − 1, being the generators of the

SUðNfÞ flavor group, normalized according to trðTaTbÞ ¼
δab=2. With this normalization Ta ¼ σa=2 in the case of
Nf ¼ 2. We also allow for a ¼ 0 and define T0 to be the
identity matrix.
With these definitions we consider an infinitesimal chiral

rotation for the χ and χ̄ fields, valid at all values of t
including t ¼ 0,

δχðt; xÞ ¼ ωaTaγ5χðt; xÞ; δχ̄ðt; xÞ ¼ ωaχ̄ðt; xÞγ5Ta:

(2.12)

For the nonsinglet densities we find

δSbt ¼ ωa

�
1

Nf
δabP0

t þ dabcPc
t

�
;

δPb
t ¼ ωa

�
1

Nf
δabS0t þ dabcSct

�
;

(2.13)

with fTa; Tbg ¼ δab=Nf þ dabcTc, while the singlet den-
sities transform according to

δS0t ¼ ωa2Pa
t ; δP0

t ¼ ωa2Sat : (2.14)

These transformation properties can be used to derive the
chiral Ward identity (2.7) directly in four dimensions. To do
sowe consider the expectation value ofOt, a product of local
composite fields at nonzero flow time. As usual it is given as
the functional integral over the gauge and fermion fields,

hOti ¼
1

Z

Z
fields

Ote−S: (2.15)

Performing a global chiral transformation with constant ωa
on the integration variables, this leads to the WTI3

2Throughout we consider renormalized parameters and fields
only, so we drop the subscript R used in Ref. [1].

3Local transformations lead to an additional term in δS
containing the divergence of the axial-vector current. However,
this is not very useful here since the variation δOt is not simple.
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hδSOti ¼ hδOti: (2.16)

For Ot ¼ Pb
t ðyÞ (b ≠ 0), and degenerate quark mass m,

Eq. (2.13) then leads to

2m
Z

d4xhPaðxÞPb
t ðyÞi ¼

1

Nf
δabhS0t ðyÞi; (2.17)

which is a reformulation of the WTI (2.7). The additional
factor 1=Nf appears here because of the difference between
the densities (2.5) and (2.11).
The derivation of Eq. (2.17) follows directly from the

transformation (2.12); no other properties of the gradient
flow were used. As already mentioned, this WTI was
derived in Ref. [1] in a five-dimensional setup. In that
derivation more information can be extracted. For example,
the absence of any nonintegrable singularities at x ¼ y on
the left-hand side can be demonstrated for t > 0. This
follows from the smoothing property of the flow equations.

C. External fields and the generating functional

It is straightforward to define a generating functional for
correlation functions involving the densities at nonzero
flow time, at some particular value of t. External sources
are introduced for all densities of interest, and correlation
functions are obtained by functional derivatives with
respect to these sources. For correlators like the one on
the left-hand side of Eq. (2.17) we need to introduce source
fields for the densities at nonvanishing as well as vanishing
flow time [1]. Hence, the Lagrangian consists of three parts,

L ¼ LQCD;m¼0 þ Lsource þ L0
source: (2.18)

The first part is the massless QCD Lagrangian, while the
two source terms read

Lsource ¼ ψ̄ðsþ iγ5pÞψ ; L0
source ¼ χ̄ðst þ iγ5ptÞχ:

(2.19)

Here s is a matrix-valued and space-time-dependent exter-
nal field, sðxÞ ¼ s0ðxÞ þ saðxÞTa, and analogous defini-
tions apply to the fields p, st, and pt. Functional derivatives
of the action

R
d4xL reproduce the previously defined

densities. Correlation functions are obtained as functional
derivatives of the generating functional

ZQCD½s; p; st; pt� ¼
Z

D½Aμ; ψ̄ ;ψ �e−
R

d4xL½s;p;st;pt�:

(2.20)

We obtain the correlation functions of interest by setting all
sources equal to zero after taking derivatives, except for s,
which is set equal to the quark-mass matrix.
In the next section we construct the generating functional

in the chiral effective theory which reproduces the

correlation functions obtained with ZQCD at long distance.
For this construction the symmetry properties of the
generating functional are needed. In the absence of the
primed source fields ZQCD has the known symmetry
properties used in Refs. [6,7] to construct standard
ChPT. If we add sources for the conserved vector and
axial-vector currents the generating functional is invariant
under local chiral transformations as long as st and pt
vanish. In the presence of these fields, however, the local
invariance is reduced to a global invariance. As long as we
do not consider the currents this distinction is not relevant,
and we just state the transformation behavior of the external
fields under global chiral symmetry transformations L ∈
SUðNfÞL and R ∈ SUðNfÞR:

sþ ip → Lðsþ ipÞR†; (2.21a)

st þ ipt → Lðst þ iptÞR†: (2.21b)

Clearly, sþ ip and st þ ipt transform the same way under
chiral rotations. The same is true under parity and charge
conjugation, a simple consequence of the fact that the flow
equations respect these symmetries as well.

III. CHIRAL PERTURBATION THEORY

The densities at nonzero t are not localized at individual
space-time points. Instead, they are smeared over a finite
region in space-time, called the footprint, and this footprint
is roughly equal to a sphere with radius

ffiffiffiffi
8t

p
[1]. As long as

the footprint is much smaller than the inverse pion mass
Mπ , i.e.

8tM2
π ≪ 1; (3.1)

the smeared densities are effectively point-like for the pions
and can be described by point-like densities in the effective
theory. This allows us to construct the generating functional
Zeff as a function of the external sources s, p, st, and pt,
coupled to local effective fields.

A. The effective Lagrangian

We begin with the construction of the chiral effective
Lagrangian. The part involving the point-like fields leads to
the well-known ChPT expressions of Ref. [7]. To set our
conventions, we repeat briefly the relevant formulas.
To leading order (LO) we have LLO ¼ L2, where L2

contains the terms involving two partial derivatives or one
power of the sources,

L2 ¼
f2

4
trð∂μU∂μU†Þ − f2

4
trðχ†U þ U†χÞ; (3.2)

with U the standard nonlinear field,
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UðxÞ ¼ exp

�
2iπaðxÞTa

f

�
; (3.3)

with πa the Goldstone boson (GB) fields, and f the pion
decay constant in the chiral limit.4 The source fields s and p
are contained in the quantity χ, defined as usual by5

χ ¼ 2Bðsþ ipÞ; (3.4)

introducing a second low-energy constant (LEC) B.
The sources st and pt have the same transformation

properties as the sources s and p. Therefore, a third term for
the LO effective action can be constructed,

L0
2 ¼ − f2

4
trðχ0†U þU†χ0Þ; (3.5)

where we introduced, in analogy to Eq. (3.4), the primed
source term

χ0 ¼ 2B0ðst þ iptÞ: (3.6)

It involves a new LEC B0, which in general differs from B
because the coupling of the GBs to the densities at nonzero
flow time is in general different from the coupling to the
densities at t ¼ 0. In other words, B0 is a function of t,
which only at t ¼ 0 is equal to B.
At NLO we write

LNLO ¼ L4 þ L0
4 þ L00

4: (3.7)

Here L4 denotes the familiar NLO Lagrangian,

L4 ¼ L4trð∂μU∂μU†Þtrðχ†U þ U†χÞ
þ L5trðð∂μU∂μU†Þðχ†U þU†χÞÞ
− L6trðχ†U þ U†χÞtrðχ†U þU†χÞ
− L7trðχ†U −U†χÞtrðχ†U −U†χÞ
− L8trððχ†U þU†χÞðχ†U þ U†χÞÞ
−H2trðχ†χÞ þ…: (3.8)

We have dropped the terms proportional to L1; :::::; L3, L9,
L10, andH1 because they do not contribute to the quantities
we will calculate in the next section.
Replacing χ by χ0 twice in the terms quadratic in χ in

Eq. (3.8), we get L00
4 . The LECs associated with these terms

are all new and we label them also by two additional
primes, L00

6 , L
00
7, L

00
8 , andH

00
2 .
6 Replacing only one χ by χ0 we

obtain L0
4. For conventional reasons we choose to define

the terms bilinear in χ and χ0 with a factor 2,

L0
4 ¼ L0

4trð∂μU∂μU†Þtrðχ0†U þU†χ0Þ
þ L0

5trðð∂μU∂μU†Þðχ0†U þ U†χ0ÞÞ
− 2L0

6trðχ0†U þ U†χ0Þtrðχ†U þ U†χÞ
− 2L0

7trðχ0†U −U†χ0Þtrðχ†U −U†χÞ
− 2L0

8trððχ0†U þ U†χ0Þðχ†U þU†χÞÞ
−H0

2ðtrðχ0†χÞ þ trðχ†χ0ÞÞ: (3.9)

The reason for this factor 2 is trivial. Taking functional
derivatives with respect to the sources the terms quadratic
in the sources pick up an extra factor 2, which from L0

4 is
only reproduced if we include this factor as in Eq. (3.9).
There are many more terms one can write down, but they

are not independent of the ones included in Eq. (3.9). For
example, the term trððχ0†U þ U†χÞðχ†U þ U†χ0ÞÞ is a
linear combination of the L0

8, H
0
2 and H00

2 terms, so there
is no reason to add this term. Similarly, double-trace terms
like trðχ0†U þ U†χÞtrðχ†U þU†χ0Þ can be expressed as a
linear combination of the double-trace terms already
present in L0

4 and L00
4 .

The generating functional in the effective theory is now
defined by

Zeff ½s; p; st; pt� ¼
Z

D½π�e−Seff ½s;p;st;pt�;

Seff ¼
Z

d4xðL2 þ L0
2 þ L4 þ L0

4 þ L00
4 þ…Þ;

(3.10)

and correlation functions are obtained in the same way as in
the underlying theory.
We end this section with a number of observations. First,

the effective action contains terms with both primed and
unprimed source fields. Taking derivatives with respect to
the unprimed sources χ and χ† and setting χ0 and χ0† equal
to zero (in either order), one obtains only correlation
functions of the standard t ¼ 0 densities. This, of course,
is as expected. In contrast, the expressions for the
t-dependent densities contain a remnant of the unprimed
source fields, because the scalar density is set equal to the
physical mass matrix.
A second comment relates to the WTI (2.17). By

construction, this WTI is respected in the effective
theory, because we introduced a single spurion field
χ0 ¼ 2B0ðst þ iptÞ. Both external fields, st and pt have
the same transformation properties, and in principle one
could introduce a separate spurion field for each of them.
However, in the transition to ChPT the symmetry properties
of the densities (2.13) and (2.14) will not be satisfied unless
the terms with these separate spurion fields have the same

4Our convention is such that fπ ¼ 92:21 MeV.
5This χ is not to be confused with the fermion field of Eq. (2.4).

From here on, χ will always refer to the source field used in the
construction of the chiral Lagrangian.

6For simplicity, we will refer to H2 as a LEC as well, even
though it is a “high-energy” constant.

OLIVER BÄR AND MAARTEN GOLTERMAN PHYSICAL REVIEW D 89, 034505 (2014)

034505-4



LECs. This is automatically achieved with the single
spurion field χ0 ¼ 2B0ðst þ iptÞ.
Third, a comment on the difference between the primed

and unprimed LECs. For t ¼ 0 they are of course equal, for
example, B0ðt ¼ 0Þ ¼ B. For very small t, one expects that
one may expand (up to logarithmic corrections)

B0 ¼ Bþ ðtΛ2
QCDÞB1 þ ðtΛ2

QCDÞ2B2 þ…: (3.11)

For instance, in the context of lattice QCD, one could
choose t ∼ a2, and Eq. (3.11) would give the leading
dependence of B on the lattice spacing a. In this case,
the gradient flow provides a smearing of the operators in
Eq. (2.5) by an amount of order the lattice spacing.
However, the idea of introducing the gradient flow is to
smooth operators by choosing the footprint to be some
physical scale, holding t fixed in the continuum limit
a → 0. If tΛ2

QCD is not small, the expansion (3.11) breaks
down, and there is no simple relation between B0 and B.
Finally, one might also consider the introduction of

vector and axial-vector currents at positive t, and introduce
sources vtμ and atμ for these operators, respectively.
However, for t > 0, these currents are not conserved,
and thus of limited interest. In particular, many more
LECs would appear in the theory, because Zeff
would not be invariant under local gauge transformations
on vtμ and atμ. With r0μ ¼ vtμ þ atμ and l0

μ ¼ vtμ − atμ,
already at LO new LECs would appear with the combi-
nations itrðr0μU†∂μU − l0

μ∂μUU†Þ, trðr0μr0μ þ l0
μl0

μÞ and
trðr0μU†l0

μUÞ which are unrelated to the LEC f2 multiply-
ing trð∂μU∂μU†Þ.

B. The condensate and decay constant in the chiral limit

A key result of Ref. [1] is Eq. (2.8) relating the chiral
condensate in the chiral limit to the t-dependent condensate
and a ratio of two vacuum-to-pion matrix elements of
pseudoscalar densities. With the set up of the previous
section the calculation of these quantities in ChPT is
straightforward and Eq. (2.8) can be checked explicitly.
Working to NLO we will also obtain the leading mass
dependence of the ratio on the right-hand side of Eq. (2.8),
thus making transparent how the chiral limit is approached.
Here we restrict ourselves to two light flavors with a

degenerate quark mass m, in accordance with Ref. [1] in
deriving Eq. (2.8) and Eq. (2.9).
The chiral condensate Σt;NLO ¼ −hS0t i=Nf to NLO is

given by

Σt;NLO¼f2B0
�
1− 3M2

π

32π2f2
log

�
M2

π

μ2

�
þ4M2

π

f2
ð4L0

68þH0
2Þ
�
:

(3.12)

The coefficient L0
68 denotes the combination 2L0

6 þ L0
8 and

M2
π ¼ 2Bm is the LO pion mass. Omitting the primes from

the various coefficients in Eq. (3.12) yields the NLO result
for the standard condensate ΣNLO at t ¼ 0.
The one-loop results for Gπ and Gπ;t read

Gπ ¼ fB

�
1 − M2

π

32π2f2
log

�
M2

π

μ2

�
þ 4M2

π

f2
ð4L68 − L45Þ

�
;

(3.13a)

Gπ;t ¼ fB0
�
1 − M2

π

32π2f2
log

�
M2

π

μ2

�
þ 4M2

π

f2
ð4L0

68 − L45Þ
�
:

(3.13b)

In analogy to L0
68 we defined the combinations

L68 ¼ 2L6 þ L8, and L45 ¼ 2L4 þ L5. Note that the same
term proportional to the unprimed LEC combination L45

appears in these results. This correction stems from the
wave-function renormalization and is the same for both Gπ

and Gπ;t. Therefore, this correction as well as the chiral
logarithm cancel in the ratio Gπ=Gπ;t and we obtain

Σt
Gπ

Gπ;t
¼ f2B

�
1− 3M2

π

32π2f2
ln

�
M2

π

μ2

�
þ 4M2

π

f2
ð4L68þH0

2Þ
�
:

(3.14)

As expected, the right-hand side reproduces the chiral
condensate in the chiral limit, Σ ¼ f2B. Note that the right-
hand side is t dependent as suggested by the left-hand side,
but this t dependence stems solely from the coefficient H0

2.
For instance, in the free-quark theory, it is easy to see that
B2H0

2 ∼ 1=t (if the quark mass m is much smaller than
t−1=2), while B2H2 ∼ Λ2, with Λ the UV cutoff.
Let us rewrite Eq. (3.14) in two different ways. First, by

introducing a single dimensionful constant Λt we can write

Σt
Gπ

Gπ;t
¼ ΣLO

�
1 − 3M2

π

32π2f2
ln

�
M2

π

Λ2
t

��
; (3.15)

a result that can already be found in Ref. [2]. Λt inherits its t
dependence from H0

2 but depends on the combination L68

of unprimed LECs as well. Alternatively we may write

Σt
Gπ

Gπ;t
¼ ΣNLO

�
1 − 4M2

π

f2
ðH2 −H0

2Þ
�
: (3.16)

Here we see that the left-hand side reproduces the con-
densate to NLO times a correction factor that only involves
the difference of the two contributing “high-energy”
constants.
The second equation, Eq. (2.9), relates the ratio Σt=Gπ;t

to the decay constant in the chiral limit. For this ratio we
obtain to NLO

CHIRAL PERTURBATION THEORY FOR GRADIENT FLOW … PHYSICAL REVIEW D 89, 034505 (2014)

034505-5



Σt

Gπ;t
¼ f

�
1 − M2

π

16π2f2
log

�
M2

π

μ2

�
þ 4M2

π

f2
ðL45 þH0

2Þ
�
;

(3.17)

and the expected chiral limit is reproduced. As for the chiral
condensate the only t dependence of the ratio comes from
H0

2. Using the known one-loop result fπ;NLO [6] we can
rewrite Eq. (3.17) as

Σt

Gπ;t
¼ fπ;NLO

�
1 − 4M2

π

f2
H0

2

�
: (3.18)

In summary, our results confirm Eqs. (2.8) and (2.9). A
perhaps unexpected observation is that only one new
coefficient H0

2 enters the ratio Σt=Gπ;t in Eqs. (2.8) and
(2.9), even though many more are present in the chiral
Lagrangian, c.f. Eq. (3.9).

IV. CHIRAL EXPANSION FOR
THE SCALES t0 AND w0

An important application of the gradient flow is the
definition of scales used for scale setting in lattice QCD.
Two closely related scales have recently been put forward,
t0 [3] andw0 [4]. The starting point in both cases is hEti, the
expectation value of the scalar gauge-field density at
nonzero flow time,

EtðxÞ ¼
1

4
Ga

μνðt; xÞGa
μνðt; xÞ: (4.1)

In terms of hEti the scales t0 and w0 are then defined
implicitly by the equations

t2hEtijt¼t0 ¼ 0.3; t
d
dt

ft2hEtigjt¼w0
¼ 0.3: (4.2)

These two scales share a few advantages that make them
prime candidates for scale setting: They are numerically
cheap to compute and can be computed very accurately,
with a statistical error at the per-mille level. In addition,
they show a weak dependence on the quark masses, and
therefore quark-mass uncertainties have a small effect on
these scales.
In the following we want to show another advantage of

these scales: unlike some other scales, such as the Sommer
parameter r0 [8], the flow-dependent scales allow us to
calculate their dependence on the quark masses in ChPT.
This is becauseEt is a local (at the scale of the pion), gauge-
invariant observable that can be mapped onto the effective
theory just like the densities discussed in the previous
section.
First of all, a source term

R
x ρðxÞEtðxÞ can be added to

the QCD action in the familiar fashion. The expectation
value hEti is then obtained by a single functional derivative
with respect to the source ρðxÞ. Since Et is a gluonic

observable, it is invariant under chiral transformations, in
addition to being a scalar under rotations and parity. This
implies that the source ρ is a scalar too. Therefore, in order
to represent Et in ChPT we simply have to write down the
most general scalar in terms of the chiral field U and the
sources χ and χ0. Of course, the constraint that the footprint
of Et is much smaller than the Compton wavelength of the
pion needs to be satisfied here as well.
This task has essentially been done in the previous section

when we constructed the chiral Lagrangian. However, since
an overall additive constant is irrelevant for the effective
action we dropped this constant in Sec. III A Restoring it, we
are led to the following chiral expansion for Et:

Et ¼ c1f4 þ c2f2trð∂μU∂μU†Þ þ c3f2trðχ†U þ U†χÞ
þ c4trðχχ†Þ þ c5½trðχ†U þ U†χÞ�2
þ c6trðχ†Uχ†U þ U†χU†χÞ þ c7½trðχ†U −U†χÞ�2:

(4.3)

Since Et is of mass dimension four we make this dimension
explicit by inserting appropriate powers of the decay
constant in the chiral limit. Hence, the LECs ci in
Eq. (4.3) are all dimensionless.7 All terms in Eq. (4.3)
except for the one proportional to c1 have an analogue in the
chiral Lagrangian: the c2 and c3 terms correspond to the two
terms in L2, while the remaining three correspond to the last
four terms in L4, c.f. Eq. (3.8).

8 Note that we have not
transcribed the terms proportional to L1; :::::; L5, since these
will not contribute to the order we are working here. Also,
we have already set χ0 ¼ 0, since no derivative with respect
to χ0 is needed.
It is straightforward to expand Et in powers of the pion

fields to quadratic order. To be specific let us consider first
the case of Nf ¼ 2 with a degenerate quark mass m. In
terms of the tree-level pion mass M2

0 ¼ 2Bm we find

Et ¼ c1f4
�
1þ 4~c3

M2
0

f2
þ 2~c2

1

f4
∂μπ

a∂μπ
a

− 2~c3
M2

0

f4
πaπa þ 2~c456

M4
0

f4

�
: (4.4)

The coefficients ~ci differ from the ci by a factor of c1, i.e.,
~ci ¼ ci=c1, and the last coefficient ~c456 ¼ ~c4 þ 8~c5 þ 2~c6.
Already here we can make a few comments concerning the
chiral expansion. The LO contribution is given by
the constant piece c1f4. The term proportional to 4~c3 is
the NLO part which is suppressed by one power M2

0=f
2.

The contributions involving two powers of the pion fields
will result in terms proportional to the pion propagator at

7Strictly speaking, the constants c1 and c4 are high-energy
constants. However, for brevity we will refer to all ci as LECs in
this section.

8Except for a slight redefinition of the L8 and H2 terms.
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zero distance, and hence these terms produce chiral
logarithms. The last term will function as the counterterm
for the divergences originating from the pion-propagator
contributions. Therefore, the nonanalytic mass dependence
starts at NNLO.
Having made these remarks the NNLO result for hEti

reads

hEti¼c1f4
�
1þ4~c3

M2
0

f2
−6~c23

M4
0

16π2f4
log

�
M2

0

μ2

�

þ2~cr456
M4

0

f4

�
: (4.5)

Here the coefficient ~c23 ¼ ~c2 þ ~c3. The renormalized
coefficient ~cr456 depends on the renormalization scale μ
and cancels the μ dependence of the chiral logarithm, as
usual. Just as H0

2 falls like an inverse power of t, c1 ∼ 1=t2,
at least in perturbation theory [3].
The result for hEti can now be used in the definition of

t0, resulting in

t0¼ t0;ch

�
1−2~c3

M2
0

f2
þ3~c23

M4
0

16π2f4
log

�
M2

0

μ2

�
− ~cr456

M4
0

f4

�
;

(4.6)

where we identified the scale in the chiral limit as

t0;ch ¼
1

f2

ffiffiffiffiffiffiffiffiffiffi
3

10c1

s
: (4.7)

A result with the same form follows for w0 as well. The
reason is that in the expression (4.5) only the constants ci
depend on t, so we get the same result as in Eq. (4.6) except
with constants ~c0i ¼ td=dtðt2 ~ciðtÞÞ.
The result (4.6) is expressed in terms of the tree-level

pion massM2
0. In order to replaceM

2
0 withM

2
π we need the

NLO result for the pion mass in the NLO correction in t0,

while the LO result is sufficient for the NNLO correction.
Doing the replacement 2~c3M2

0=f
2 → 2~c3M2

π=f2 additional
NNLO corrections are spawned. The form of these extra
terms is the same as for the already existing NNLO terms
and they can be combined. The only difference with
Eq. (4.6) is that the NNLO LECs change. Therefore, in
terms of the physical pion mass the final result can be
written as

t0¼ t0;ch

�
1þk1

M2
π

ð4πfÞ2þk2
M4

π

ð4πfÞ4 log
�
M2

π

μ2

�

þk3
M4

π

ð4πfÞ4
�
; (4.8)

with k1;2;3 unknown constants independent of the quark
mass. In writing this expression, we have inserted factors
1=16π2 such that the dimensionless expansion parameter
appears asM2

π=16π2f2, as usual. With k3 ¼ k2 log ðμ2=Λ2
t0Þ

this can also be written as

t0 ¼ t0;ch

�
1þ k1

M2
π

ð4πfÞ2 þ k2
M4

π

ð4πfÞ4 log
�
M2

π

Λ2
t0

��
: (4.9)

As already mentioned, the result for w0 is of the same form
as Eq. (4.8) but each term has a different coefficient.
Let us repeat the crucial feature of our result: the

nonanalytic chiral logarithms enter first at NNLO, and
thus they are expected to be strongly suppressed. This
expectation is supported by data from the Alpha
Collaboration [9]. Figure 4 of this reference shows the
pion mass dependence of t0, and this dependence is linear
to a very good approximation. A rough estimate from the
data gives k1 ≈ −1.
It is straightforward to repeat the calculation for the

Nf ¼ 2þ 1 case. In this case, the requirement analogous to
Eq. (3.1) is that 8M2

ηt ≪ 1. We find

t0 ¼ t0;ch

�
1þ k1

2M2
K þM2

π

ð4πfÞ2 þ 1

ð4πfÞ2
�
ð3k2 − k1ÞM2

πμπ þ 4k2M2
KμK þ k1

3
ðM2

π − 4M2
KÞμη þ k2M2

ημη

�

þk4
ð2M2

K þM2
πÞ2

ð4πfÞ4 þ k5
ðM2

K −M2
πÞ2

ð4πfÞ4
�
; (4.10)

with the short-hand notation

μP ¼ M2
P

ð4πfÞ2 log
�
M2

P

μ2

�
; P ¼ π; K; η: (4.11)

As expected, the NNLO mass dependence is more com-
plicated in the 2þ 1-flavor case. The leading mass
dependence at NLO is analytic and has a very simple
form; it is proportional to the combination 2M2

K þM2
π . This

result is easy to understand. It stems from the term

proportional to c3 in Eq. (4.3) with U ¼ U† ¼ 1. At this

order, trðχ†U þ U†χÞ is thus proportional to the sum of the

quark masses, which at LO is proportional to 2M2
K þM2

π .
Note that there is some arbitrariness in parametrizing the

analytic mass dependence at NNLO. The combination we
have used has the advantage that the k5 contribution
vanishes in the SU(3) flavor-symmetric point m ¼ ms.
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Corrections due to a finite space-time volume [10]
can be easily included in our results. The finite-volume
(FV) corrections essentially amount to a simple replace-
ment of the chiral logarithms, μP → μP þ δFV (see for
instance Refs. [11,12]). Since the chiral logarithms
enter at NNLO the FV corrections start at this order
too and are expected to be very small. At least for the
scale w0 it has been observed that the FV corrections
are tiny [4].

V. CONCLUSION

In this article, we extended chiral perturbation
theory to include quark bilinears as well as the gluon
condensate smoothed using the gradient flow. In order
for this to be possible, the square root of the flow time
t has to be much smaller than the Compton wavelength, so
that these operators are local relative to the effective
theory [1].
We calculated the chiral condensate and the pion decay

constant from the ratios given in Eqs. (2.8) and (2.9). As
anticipated in Ref. [2], we find that a new low-energy
constant appears in the ratio ΣtGπ=Gπ;t, c.f. Eq. (3.16). The
difference between this ratio and the chiral condensate Σ at
t ¼ 0 is the difference between the “high-energy” constants
H2 and H0

2. We observe that H0
2 ≠ 0, even though it is a

finite quantity.

We also calculated the quark-mass dependence of
the gluon condensate at positive flow time, finding that
this dependence is linear at NLO, with logarithmic terms
only entering at NNLO. This adds to the usefulness of the
scales t0 and w0, because it implies that at low enough
quark mass a linear extrapolation to the physical point
should be quite accurate. With the estimate k1 ≈ −1 [9],
the NLO term in t0 given in Eq. (4.9) is about 3% for a
200 MeV pion. If we take Λt0 ¼ Mρ, the NNLO
quantity ðMπ=ð4πfÞÞ4 logM2

π=Λ2
t0 in Eq. (4.9) varies by

less than 1% between 300 MeVand the physical pion mass,
and less than 0.2% between 200 MeV and the physical
pion mass.
We did not extend the effective theory to include

correlation functions defined with vector or axial-vector
currents at positive flow time. While this extension is
straightforward, it is less interesting, as these currents are
not conserved. As discussed in Sec. III A, this extension
would lead to the introduction of quite a few more low-
energy constants in the effective theory.
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