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Ratios of the true Yang-Mills vacuum wave functional, evaluated on any two field configurations out of a
finite set of configurations, can be obtained from lattice Monte Carlo simulations. The method was applied
some years ago to test various proposals for the vacuum wave functional in 2þ 1 dimensions. In this article
we use the same method to test our own proposal for the Yang-Mills ground state in 3þ 1 dimensions,
using two different types of test configurations: Abelian plane waves and non-Abelian constant field
configurations. Our proposed vacuum state has the property of “dimensional reduction” at large scales,
meaning that the (squared) vacuum state, evaluated on long-wavelength, large scale fluctuations, has the
form of the Boltzmann weight for Yang-Mills theory in D ¼ 3 Euclidean dimensions. Our numerical
results support this conjectured behavior. We also investigate the form of the ground state evaluated on
shorter wavelength configurations.
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I. INTRODUCTION

Many years ago it was suggested [1] that long-wave-
length vacuum fluctuations in D ¼ 3þ 1 Yang-Mills
theory might be controlled, in temporal gauge, by a vacuum
wave functional of the form

Ψ0½A� ¼ N exp

�
− 1

2
μ

Z
d3xTrF2

ijðxÞ
�
; (1)

where μ is a constant with dimensions of inverse mass,N is
a normalization constant, and Fij¼∂iAj−∂jAi− i½Ai;Aj�.
This idea is known as “dimensional reduction,” since the
vacuum expectation value of an operator Q on a time slice
hΨ0jQjΨ0i is clearly the same as the expectation value of the
operator in Yang-Mills theory in D ¼ 3 Euclidean dimen-
sions.1 The idea was tested numerically on rather small
lattices [2], with results which appeared to support the
suggestion.
However, a vacuum wave functional of the form (1) is

obviously not correct for small scale, high-frequency fluctua-
tions, wherewemay expect asymptotic freedom to come into
play. For a freeAbelian theory, theground state iswell known,
and is quite different from the dimensional reduction form:

Ψ0½A� ¼N exp

�
− 1

4e2

Z
d3xd3yFijðxÞ

�
1ffiffiffiffiffiffiffiffiffi−∇2

p
�

xy
FijðyÞ

�
:

(2)

It is natural to guess that the true Yang-Mills vacuum
wave functional in temporal gauge might have a structure

which in some way interpolates between these two forms. In
Ref. [4] we proposed that in 2þ 1 dimensions

Ψ0½A� ¼ N exp

�
− 1

4g2

Z
d2xd2yFa

ijðxÞ

×

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−D2 − λ0 þm2

p �
ab

xy

Fb
ijðyÞ

�
(3)

might be a reasonable approximation to the truevacuumwave
functional, where a, b are color indices, D2 is the covariant
Laplacian in the adjoint representation, λ0 is the lowest
eigenvalue of −D2 in a given configuration, and m is a
parameter with dimensions of mass. The physical state
condition in temporal gauge requires gauge invariance of
all physical wave functionals (at least with respect to
infinitesimal gauge transformations), a property which is
evident in (3). The same proposal, but without the λ0
subtraction, was made by Samuel [5]. The motivation for
the λ0 subtraction is that−D2 has a positive definite spectrum,
finite with a lattice regularization, with the lowest eigenvalue
tending to infinity for typical configurations in the continuum
limit. Thus, a nonzero kernel in the continuum limit requires a
subtraction of this kind, otherwise Ψ0 would tend to the
infinite strong-coupling vacuum in the continuum limit.
This proposal for the ground state was tested numerically

a few years ago, by a method which will be explained in the
next section, and the results were encouraging [6].2 In this

1A similar proposal was made by Halpern [3] in D ¼ 2þ 1
dimensions.

2Another proposal in 2þ 1 dimensions is due to Karabali,
Kim, and Nair [7]. Their form of the vacuum state is not gauge
invariant, at least as originally proposed. See Ref. [6] for a further
discussion.
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article we will use the same techniques to study the naive
extension of the state (3) to 3þ 1 dimensions, and further
test the hypothesis of dimensional reduction.

II. THE RELATIVE WEIGHTS METHOD

We work in a lattice regularization. The squared vacuum
state can be expressed in the path integral form

Ψ2
0½U0� ¼ 1

Z

Z
DU

Y
x

Y3
i¼1

δ½Uiðx; 0Þ −U0
iðxÞ�e−S: (4)

Although the direct numerical evaluation of the path
integral in (4) is difficult, the numerical calculation of a
ratio of Ψ2

0½U00�=Ψ2
0½U0� (the “relative weight”) is actually

straightforward, assuming that configurations U00 and U0
are nearby in configuration space, so that the relative
weight (or its inverse) is not too small. Consider a set of
M such configurations

U ¼ fUðjÞ
i ðxÞ; j ¼ 1; 2;…Mg: (5)

Each member of the set can be used to specify the spacelike
links on the time slice t ¼ 0. Let us now make the rescaling

~Ψ2
0½UðnÞ� ¼ Ψ2

0½UðnÞ�P
M
m¼1Ψ

2
0½UðmÞ�

¼
R
DU

Q
x

Q
3
i¼1 δ½Uiðx;0Þ−UðnÞ

i ðxÞ�e−SP
M
m¼1

R
DU

Q
x

Q
3
i¼1 δ½Uiðx;0Þ−UðmÞ

i ðxÞ�e−S
:

(6)

This is a statistical system, with the configurations on the
t ¼ 0 time slice restricted to the finite set U, and ~Ψ2

0½UðnÞ�
has the interpretation of a probability that the nth configu-
ration will appear in the time slice. The system can be
simulated numerically, using the usual heatbath for space-
like links at t ≠ 0, and for timelike links, while the
spacelike links at t ¼ 0 are updated simultaneously, select-
ing one of the set of M configurations (5) at random and
accepting or rejecting according to the Metropolis algo-
rithm.3 To get a reasonable acceptance rate, it is necessary
that the configurations in the set (5) are nearby in lattice
configuration space. If we let Nn denote the number of
times the nth configuration is accepted, with Ntot ¼P

M
m¼1Nm the total number of updates, then

~Ψ2
0½UðnÞ� ¼ lim

Ntot→∞

Nn

Ntot
: (7)

Since ~Ψ0 is simply a rescaling of Ψ0, the corresponding
relative weights are also

Ψ2
0½UðmÞ�

Ψ2
0½UðnÞ� ¼ lim

Ntot→∞

Nm

Nn
: (8)

The relative weights method outlined above was origi-
nally proposed in Ref. [2]. Using this method, we can test
any proposal for the vacuum state, of the form

Ψ2
0½U� ¼ N e−R½U� (9)

by plotting

− log

�
Nn

Ntot

�
vs R½UðnÞ�: (10)

If the proposal is correct, the data should fall on a straight
line with unit slope.

III. RESULTS

We specialize to the SU(2) gauge group. Taking the
lattice-regularized field strength to be

Fa
ijðxÞ ¼ −iTr½UiðxÞUjðxþ îÞU†

i ðxþ ĵÞU†
jðxÞσa�; (11)

our proposal for the Yang-Mills vacuumwave functional on
the lattice, in 3þ 1 dimensions, is

Ψ0½U� ¼ N exp

�
− c
8

X
x

X
y

X
i<j

Fa
ijðxÞ

×

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−D2 − λ0 þm2

p �
ab

xy

Fb
ijðyÞ

�
; (12)

where D2 is the lattice-regularized covariant Laplacian

D2
xy ¼

X
μ

½UμðxÞδy;xþμ̂ þU†
μðx − μ̂Þδy;x−μ̂ − 21δxy� (13)

in the adjoint representation. In 2þ 1 dimensions we have
identified c ¼ β ¼ 4=g2, which scales as the inverse lattice
spacing at weak couplings. In 3þ 1 dimensions, however,
we just take c to be a parameter which depends on the
lattice spacing in a manner to be determined.

A. Non-Abelian constant configurations

To apply the relative weights method, we begin by
choosing a set of non-Abelian constant configurations, for
which the UiðxÞ are constant in space, but ½Ui; Uj� ≠ 0 for
i ≠ j. The set is

3While we have carried out our simulations in lattice temporal
gauge, which sets all timelike links to the identity matrix except
on one time slice at t ≠ 0, this gauge fixing is optional. Although
Ψ0½U� is the ground state of the temporal gauge Hamiltonian, it is
not hard to show that Ψ2

0½U� in (4) is the same whether or not a
temporal gauge choice is imposed on the right-hand side of the
equation (note that the transformation to lattice temporal gauge
does not require a gauge transformation at t ¼ 0).
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Unac ¼
�
UðnÞ

k ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðaðnÞÞ2

q
1þ iaðnÞσk;

aðnÞ ¼
�
nκ
6L3

�
1=4

; n ¼ 1; 2;…M

�
: (14)

For small amplitude configurations (i.e. κ sufficiently
small), and taking Ψ2

0 ¼ N exp½−R½U��, Eq. (12) gives us

R½U� ¼ c
4m

X
x

X
i<j

ðFa
ijÞ2: (15)

From (11)

UiðxÞUjðxþ îÞU†
i ðxþ ĵÞU†

jðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−1

4
ðFa

ijÞ2
r

1þ iFa
ij
σa

2
;

(16)

and therefore

1

2
Tr½UiðxÞUjðxþ îÞU†

i ðxþ ĵÞU†
jðxÞ�

¼ 1 − 1

8
ðFa

ijÞ2 þO½ðFa
ijÞ4�: (17)

Disregarding the OðF4Þ term, we have

R½U� ¼ 2c
m

X
plaq

�
1 − 1

2
Tr½UiðxÞUjðxþ îÞ

×U†
i ðxþ ĵÞU†

jðxÞ�
�
; (18)

which implies the dimensional reduction form

Ψ2
0½U� ¼ N exp

�
−μX

plaq

�
1 − 1

2
Tr½UiðxÞUjðxþ îÞ

×U†
i ðxþ ĵÞU†

jðxÞ�
��

(19)

with μ ¼ 2c=m. We can determine μ at any given β by
plotting

− log

�
Nn

Ntot

�
vs

L3
X
i<j

�
1 − 1

2
Tr½UðnÞ

i UðnÞ
j UðnÞ†

i UðnÞ†
j �

�
(20)

and identifying μ with the slope of the best straight-line fit
through the data points, as shown in Fig. 1. For the non-
Abelian constant configurations shown above

Sn ≡ L3
X
i<j

�
1 − 1

2
Tr½UðnÞ

i UðnÞ
j UðnÞ†

i UðnÞ†
j �

�
¼ κn: (21)

Figure 2 is a plot of μ vs β, with μ determined by the
relative weights method just described. Since μ ¼ μphys=a,
where a is the lattice spacing, we expect that at weak
couplings

μðβÞ ¼ μ0f−1ðβÞ; (22)

where

fðβÞ ¼
�
6

11
π2β

�
51=121

exp

�
− 3

11
π2β

�
; (23)

and this appears to be entirely consistent with our weak
coupling data, with μ0 ≈ 0.0269. This is just an improve-
ment, with larger lattices and better statistics, of the
dimensional reduction test reported long ago in Ref. [2].
However, in terms of our improved wave fuctional (12), we
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FIG. 1 (color online). A plot of logðNn=NtotÞ vs the sum over
plaquette terms Sn, for non-Abelian constant configurations. The
slope of the straight-line fit through the data points determines the
coefficient μ in R½U� ¼ μS.
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FIG. 2 (color online). Variation of μ with β. The dotted line is
the strong-coupling prediction, while the straight-line fit, given
by Eqs. (22) and (23), is the asymptotic freedom prediction.
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must now make the identification μ ¼ 2c=m, and see if this
identification is consistent with the constants c and m
obtained from other sets of configurations, going beyond
the dimensional reduction limit.

B. Abelian plane wave configurations

We now consider Abelian plane wave configurations of
the form

Uapw ¼
�
UðmÞ

1 ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðaðmÞ

n ðxÞÞ2
q

1þ iaðmÞ
n ðxÞσ3;

UðmÞ
2 ðxÞ ¼ UðmÞ

3 ðxÞ ¼ 1

�
;

aðmÞ
n ðxÞ ¼ L−3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αþ γm
p

cosð2πx · n=LÞ; (24)

with n ¼ ðn1; n2; n3Þ the mode numbers, and m ¼
1; 2;…; 10. In this case Ψ2

0 ¼ N exp½−R½U�� with

R½U� ¼ c
4

X
x

X
y

X
i<j

Fa
ijðxÞGab

xyFb
ijðyÞ;

Gab
xy ¼

X
q

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λq − λ0 þm2

q φa
qðxÞφ�b

q ðyÞ; (25)

where

ð−D2Þabxyϕb
qðyÞ ¼ λqϕ

a
qðxÞ (26)

is the eigenvalue equation for the lattice Laplacian operator,
with λ0 the smallest eigenvalue. For the case of Abelian
configurations oriented in, say, the color-3 direction, which
is true for the Abelian plane wave configurations (24), there
is a set of solutions

φa
kðxÞ ¼

ffiffiffiffiffiffi
1

L3

r
δa3eik·x; λk ¼ k2L; k ¼ 2π

L
n; (27)

where

kL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
X3
i¼1

sin2
�
1

2
ki

�s
(28)

is the lattice momentum. This set is not all of the eigenstates,
but only one third of them. However, these eigenstates are all
pointing in the 3-direction of color space, and it is not hard to
see that orthogonality implies that every other eigenstate
must point in the 1-2 color plane. Since in our case the
Fa
ijðxÞ ¼ −iTr½UijðxÞσa� are proportional to δa3, only the

eigenstates with nonzero components in the color-3 direction
contribute to R½U�, which is the set of eigenstates shown. For
these eigenstates Gab

xy ¼ δa3δb3Gðx − yÞ, where

Gðx − yÞ ¼ 1

L3

X
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2L þm2

p eik·ðx−yÞ: (29)

It turns out that a good fit to the data will actually require a
slight generalization, and therefore a modification of the
ansatz (12). We will take

Gab
xy ¼

X
q

1þ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λq − λ0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λq − λ0 þm2

q φa
qðxÞφ�b

q ðyÞ; (30)

which, for the Abelian plane wave configurations, reduces
to Gab

xy ¼ δa3δb3Gðx − yÞ, where

Gðx − yÞ ¼ 1

L3

X
k

1þ dkLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2L þm2

p eik·ðx−yÞ: (31)

With this generalization, we have for the set (24)

R½UðnÞ� ¼ 1

2
ðαþ γnÞk2L

cð1þ dkLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2L þm2

p : (32)

We now plot

− log
Nm

Ntot
vs

1

2
ðαþ γmÞ (33)

and again fit a straight line through the data. Denote the
slope by ωðkLÞ. Then we want to see whether, at each β, the
data for ωðkLÞ can be fit by

ωðkLÞ ¼ k2L
cð1þ dkLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2L þm2
p : (34)

If so, then the data for − logðNm=NtotÞ vs R½UðmÞ� has unit
slope, as required. We then study the β dependence of c,
d, m.
Figure 3 shows sample plots of − logðNm=NtotÞ vs

1
2
ðαþ γmÞ; the corresponding ωðkLÞ is given by the slope

of the straight-line fit. We choose the range of 1
2
ðαþ γmÞ so

that the variation in Nm=Ntot is not too large, i.e. an order of
magnitude or so, and in general the range of 1

2
ðαþ γmÞ

needed to fulfill this condition will depend on the mode
numbers. One might worry that the linear fit to the
− logðNm=NtotÞ vs 1

2
ðαþ γmÞ data might only work in a

narrow window, and that we are really only looking at the
tangent to a curve, whose slope might be different for
different choices of α; γ. This does not appear to be a
problem. We have verified that these data sets are in fact
linear for variation in Nm=Ntot over many orders of
magnitude. This is seen in Fig. 4, where we have juxta-
posed the data for eight data sets at β ¼ 2.4. Each data set is
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for configurations with n ¼ ð0; 1; 0Þ, but each corresponds
to taking a different range of 1

2
ðαþ γmÞ. In the plot,

the variation in Nm=Ntot runs over 7 orders of magnitude.
The data is chosen such that the 1

2
ðαþ γmÞ value of the last

configuration of one set coincides with the corresponding
value of the first configuration of the next set. The data sets
are aligned, by adding a constant to the − logðNm=NtotÞ
data in each set, so that in the plot the last configuration of
one data set coincides with the first configuration of the
next data set.4 A single straight line, determined from the
first data set, runs through all eight data sets.
Figure 5 displays our results for ωðkLÞ vs kL, at β ¼ 2.2,

2.3, 2.4, 2.5, vs a fit to the form (34), as well as a fit to the
form ck2L=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2L þm2

p
, suggested by our original ansatz

(12). Also shown is the form ω ∝ k2L corresponding to the
dimensional reduction limit. The form (34) is clearly
superior at the higher kL values.
In the long-wavelength kL → 0 limit, it is not hard to

see that R½U� in (25), with either the original or gener-
alized version of Gðx − yÞ, goes over to (15), and likewise
the dimensional reduction form (18). It is then of interest
to compare μnac, derived from the non-Abelian constant
data, with the corresponding quantity μapw ¼ 2c=m, where
c and m are extracted from the Abelian plane wave data.
At sufficiently weak couplings, asymptotic freedom
implies that fðβÞ2c=m and fðβÞμ should be constant with

β, and our wave functional implies that these quantities
should equal one another. In Fig. 6 we plot fðβÞ2c=m,
obtained from the Abelian plane wave data, and fðβÞμ,
obtained from the non-Abelian constant data, vs lattice
coupling β. The result is reasonably consistent with our
expectations.
The generalization of the momentum kernel to finite d

can be accommodated by a revision of the gauge-invariant
wave functional ansatz (12) to the form Ψ2

0 ¼
N exp½−R½U�� with

-5
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-lo
g(

N
m

/N
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t)

xm=0.5(α+γm), 8 data sets

Abelian plane waves, β=2.4, 244 lattice, n=(0,1,0)

FIG. 4 (color online). The slope determined from − logðNm=
NtotÞ does not strongly depend on the choice of parameters α and
γ for Abelian plane waves. Eight sets of configurations (in various
colors) are shown here, each at the same value of β ¼ 2.4 and
wave vector corresponding to n ¼ ð0; 1; 0Þ, but with different
choices of α; γ. Note the range of the y axis. An overall constant is
added to the values of − logðNm=N totÞ in each set, such that the
value for the last configuration in one set coincides with that of
the first configuration in the next set. The straight-line fit shown
in the figure comes from the first data set (red open squares). The
variation of slopes obtained from each separate data set is very
small, on the order of 2%.
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Abelian plane waves, β=2.4, 244 lattice, n=(0,1,0)
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-0.495+0.194 xm
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-lo
g(

N
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Abelian plane waves, β=2.5, 304 lattice, n=(0,1,5)

data
0.975+2.07 xm

(b)

FIG. 3 (color online). The slope of the straight-line fit to − logðNm=NtotÞ vs 1
2
ðαþ γmÞ determines ωðkLÞ at a given k and β. Here we

display the examples of the data for (a) β ¼ 2.4, and (b) β ¼ 2.5, with momenta k ¼ 2πn=L corresponding to mode numbers
n ¼ ð0; 1; 0Þ and (0, 1, 5) respectively.

4The additive constants for the different data sets are in fact
required to ensure continuity of the wave functional. Note that
only the ratios Nm=Nn correspond to ratios of the vacuum wave
functional, as seen in (8), and this ratio is insensitive to a constant
added to all the − logðNm=NtotÞ in any data set. This is because
the relative weights method does not determine the overall
normalization of the Yang-Mills vacuum wave functional. So
there is always the freedom, with respect to a given data set, to
add an arbitrary overall constant to − logðNm=N totÞ, and this
freedom must be employed, in the case of many data sets, in order
to satisfy the continuity of the wave functional.
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FIG. 5 (color online). ωðkÞ vs lattice momentum, here denoted k, for lattice couplings (a) β ¼ 2.2, (b) β ¼ 2.3, (c) β ¼ 2.4, and
(d) β ¼ 2.5. Data values are red squares. Fits are shown for kernels corresponding to the original ansatz [Eq. (34) with d ¼ 0, unbroken
red curve], the generalized ansatz [Eq. (34) with d ≠ 0, dotted blue curve], and the dimensional reduction limit (dashed green curve).
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Abelian constant data (blue squares), and μ ¼ 2c=m derived from
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Both data sets are multiplied by the asymptotic freedom ex-
pression fðβÞ of Eq. (23). If our wave functional is correct, these
two rescaled data sets should coincide, and become β indepen-
dent at sufficiently weak couplings.
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R½U� ¼ c
4

X
x

X
y

X
i<j

Fa
ijðxÞGab

xyFb
ijðyÞ

¼ c
8

X
x

X
y

Fa
ijðxÞ

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−D2 − λ0 þm2
p

þ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−D2 − λ0

−D2 − λ0 þm2

s 1
CA

ab

xy

Fb
ijðyÞ: (35)

However, for Abelian configurations the momentum
dependence of the generalized kernel is in complete
disagreement with that of the free theory at high momen-
tum. This means that the data seems to contradict the
original motivation, which was to find a simple form
interpolating between the free field and dimensional
reduction expressions. On the other hand, inserting some
powers of the lattice spacing

R½U� ¼ c
8

X
x

a3
X
y

a3
�
1

a2
Fa
ijðxÞ

��
1

a2
Gab

xy

��
1

a2
Fb
ijðyÞ

�
;

(36)

we end up with the formal expression in the continuum
limit

R½U� ¼ c
8

Z
d3x

Z
d3yF a

ijðxÞGab
xyF b

ijðyÞ; (37)

where F ij ¼ Fij=a2, Gxy ¼ Gxy=a2 have the correct
engineering dimensions in the continuum of 1=length2.
Then we have

Gab
xy ¼

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−D2
phys − λphys;0 þm2

phys

q

þ dphys

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−D2
phys − λphys;0

−D2
phys − λphys;0 þm2

phys

s 1
CA

ab

xy

; (38)

where, with a lattice regularization, D2
phys ¼ D2=a2;

λphys ¼ λ=a2; dphys ¼ da. If dphys is finite and nonzero in
the continuum limit, then we would expect

lim
β→∞

dfðβÞ ¼ finite and nonzero: (39)

However, when we plot dðβÞfðβÞ we find the result shown
in Fig. 7. This data suggests that dphys ¼ 0 in the continuum
limit, and it may be that the original form of the wave
functional (12) is recovered in that limit. Figure 7 also
shows best fits to power-law and exponential falloff
behavior, although with only these four data points we
are unable to determine the correct analytic form of the
falloff.
It remains to check the variation with β of the parameters

c, m, whose ratio c=m has already been seen, in Fig. 6, to
scale in the correct way. In Fig. 8 we plot c vs β andm=fðβÞ
respectively. The scaling is not as convincing for c and m
separately, although the variation over the range of β ¼
2.2 − 2.5 is not so large, roughly on the order of 40% and
50% for c and m respectively, while the square root of the
string tension in this range varies by about a factor of 2.5.

IV. CONCLUSIONS

With a modification [see (35)] which may disappear in
the continuum limit, the conjectured vacuum wave func-
tional (12) on the lattice appears to be in harmony with
vacuum amplitude data, obtained from the relative weights
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approach, for both non-Abelian constant and Abelian
plane wave configurations. For both non-Abelian constant
configurations and long-wavelength Abelian plane wave
configurations the vacuum wave functional reduces to the
dimensional reduction form (19), and the coefficient μ,
which amounts to the effective coupling of the action in one
less dimension, is the same whether obtained from non-
Abelian constant configurations, or Abelian plane wave
configurations.
One limitation of this work is that the configurations

tested, non-Abelian constant and Abelian plane wave, are
highly atypical. It would be preferable to apply the relative
weights method to a set of small variations around a

thermalized configuration. We hope to carry out this
generalization in a later study.
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