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We investigate the excited states of the nucleon using Nf ¼ 2 twisted mass gauge configurations with
pion masses in the range of about 270 to 450 MeVand one ensemble of Nf ¼ 2 Clover fermions at almost
physical pion mass. We use two different sets of variational bases and study the resulting generalized
eigenvalue problem. We present results for the two lowest positive and negative parity states.
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I. INTRODUCTION

Understandingtheexcitationspectrumofhadronsincluding
that of the proton is still a challenge. In particular, the
P11ð1440 MeVÞ positive parity resonance known as
the Roper, still remains a puzzle having a mass lower than
the negative parity state S11ð1535 MeVÞ. This ordering is
contrary to the prediction of constituent quark models where
thenegativeparitystate is lower inmass thanP11.LatticeQCD
simulationshaverecentlyreproducedthemassofthelow-lying
baryon states using gauge configurations with pions having
mass close to the physical value [1,2]. In these studies volume
and cutoff effects have been taken into account by performing
the calculation at different volumes and lattice spacings.
Contrary to the low-lying baryon states the study of excited
stateshasnot yet reached the same level ofmaturity. Inorder to
extract excited state energies, a robust analysis of simulation
data keeping systematic errors under control is needed.
The study of excited states is mostly based on the

variational principle, which was first applied to extract
glueball masses [3]. One considers a number of interpolat-
ing fields as a variational basis and a generalized eigenvalue
problem (GEVP) is defined, which yields the low-lying
energy levels. The GEVP has been applied recently to study
hadron spectroscopy by a number of lattice groups [4–8].
A crucial question of such an approach is the convergence
of the energy levels to the true value. This was first
addressed in a paper by Lüscher and Wolff [9] and recently
by the ALPHACollaboration [10]. In this work, we explore
the variational approach as put forward by the ALPHA
Collaboration to study the excited states of the nucleon in
the positive and negative parity channels. We examine two
types of nucleon interpolating fields as well as different
levels of Gaussian smearings. The approach proposed by
the ALPHA Collaboration is compared with the standard
GEVP, where the reference time t0 is kept fixed at a small
value. The main outcome of this comparison is that, within
the current statistical accuracy typically used for baryon
calculations, namely Oð102Þ configurations, we do not see

any improvements to the standard analysis. Having estab-
lished at one ensemble of twisted mass fermions that
the standard generalized eigenvalue approach performs
equally well, we adopt it for the other ensembles. In the
positive parity channel we include in the variational basis
interpolating fields with a large and small number of
iterations in the Gaussian smearing. This is crucial to
reproduce a state with lower energy closer to the Roper
state. As argued in Refs. [7,11,12] a linear combination of
interpolating fields corresponding to a small and large root
mean square radius (rms) produces a wavefunction with a
node having potentially a larger overlap with the Roper state.
We indeed observe a lowering in the energy of the first
excited state when including an interpolating field with a
large rms radius.
We analyze a total of five ensembles of Nf ¼ 2 twisted

mass fermions with pion mass in the range of about 270 to
450 MeV and lattice spacing a ¼ 0.089 fm determined
from the nucleon mass [2]. Cutoff effects on the mass of
the nucleon and hyperons were examined in Refs. [2,13]
respectively using, in addition to the one used here, two
smaller lattice spacings. The conclusion was that cutoff
effects were within the statistical errors and one could take
the continuum limit assuming negligible Oða2Þ effects.
Therefore, in this work, we limit ourselves to studying only
one lattice spacing. In addition, we analyze an ensemble
of Nf ¼ 2 Clover fermions with pion massmπ ∼ 160 MeV
and lattice spacing a≃ 0.073 fm.
The paper is organized as follows: In Sec. II we give the

details of the simulations; in Sec. III we compare results
using different variational bases and analysis approaches
using an ensemble of twisted mass fermions with
mπ ∼ 300 MeV; in Sec. IV we give our results and in
Sec. V we summarize our findings and give our conclusions.

II. SIMULATION DETAILS

The input parameters of the calculation using Nf ¼ 2
twisted mass fermions, namely β, L=a and aμ are

PHYSICAL REVIEW D 89, 034502 (2014)

1550-7998=2014=89(3)=034502(10) 034502-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.034502
http://dx.doi.org/10.1103/PhysRevD.89.034502
http://dx.doi.org/10.1103/PhysRevD.89.034502
http://dx.doi.org/10.1103/PhysRevD.89.034502


summarized in Table I. These are the same configurations
already used in the analysis of the low-lying baryon
spectrum [13], where more details regarding the twisted
mass formulation can be found. The corresponding lattice
spacing a and the pion mass values spanning a mass range
from 270 to 450 MeVare taken from Ref. [2]. We note that
for baryon masses we use the lattice spacing determined
from the nucleon mass, which is consistent with the one
extracted from fπ [14].
Apart from the twisted mass fermion ensembles given

in Table I we also analyze an ensemble of Nf ¼ 2
Clover fermion configurations produced by the QCDSF
Collaboration. We use the 483 × 64 ensemble with near-
physical pion mass of mπ ≃ 160 MeV, at β ¼ 5.29 for
which the lattice spacing has been determined to be a ¼
0.0728ð5Þð19Þ fm [15]. This yields a value for Lmπ ≃ 2.8.
We smear the links that enter the Dirac operator with three
iterations of APE smearing [16] to reduce gauge noise and

set the clover term to its tree-level value i.e. cSW ¼ 1.
Smearing the links in this way changes κcrit. We therefore
tune the value of the hopping parameter κ as described
in [17] to match the pion mass in the unitary theory.
A comparison of the pion and nucleon effective masses,
ameffðtÞ≡ CðtÞ=Cðtþ 1Þ, in the unitary theory and after
tuning is shown in Fig. 1. As can be seen, the mass of the
nucleon in the nonunitary theory agrees with the one
obtained in the unitary theory. Note that one has to allow
ten time slices or about 0.7 fm to ensure that excited states
have been sufficiently suppressed. This is a rather large
time interval given that the mass gap between the ground
and the excited state estimated from a double exponential
fit, yields a suppression factor ofOðe−4Þ, which means that
there is a substantial overlap of the standard nucleon
interpolating field with higher excited states.

III. THE VARIATIONAL METHOD

The standard extraction of the ground state energy from
the large-time limit of Euclidean two-point correlation
functions relies on the fact that they are expressed as a
sum of the energy eigenstates of QCD that exponentially
decay as a function of the time with a rate proportional to
the energy. The variational method provides an approach
for extracting, besides the lowest energy state, the low-
lying excited states from Euclidean correlation functions.
A variational basis is constructed by using different inter-
polating fields χ with the quantum numbers of the par-
ticular state of interest, which in this work is the nucleon.
Applying the variational principle one can determine the
superposition of states that correspond to the low-lying
nucleon states. One variational basis is obtained by
considering two different spin combinations of nucleon
interpolating fields, namely

χ1 ¼ ðuTCγ5dÞu and χ2 ¼ ðuTCdÞγ5u: (1)

The nucleon interpolator χ1 is well known to have a good
overlap with the ground state of the nucleon, while the χ2
interpolator vanishes in the nonrelativistic limit and thus
has a small overlap with the nucleon ground state, which is

TABLE I. Input parameters (β, L, μ) of our lattice calculation and corresponding lattice spacing (a), pion mass
(mπ) and number of gauge field configurations used. The values of the pion mass in physical units were obtained
using the lattice spacing determined from fπ , namely a ¼ 0.0855ð6Þ fm.

β ¼ 3.9, a ¼ 0.089ð1Þð5Þ fm from the nucleon mass r0=a ¼ 5.22ð2Þ
243 × 48, aμ 0.0040 0.0064 0.0085
L ¼ 2.05 fm No. of confs 400 400 348

mπ� (GeV) 0.3131(16) 0.3903(9) 0.4470(12)
Lmπ� 3.25 4.05 4.63

323 × 64, aμ 0.003 0.004
L ¼ 2.74 fm No. of confs 400 250

mπ� (GeV) 0.2696(9) 0.3082(6)
Lmπ� 3.74 4.28

FIG. 1 (color online). The pion (red circles) and nucleon (blue
squares) effective masses in the nonunitary setup as described in
the text, compared to their values in the unitary theory (solid
black line) computed by QCDSF [15]. The value of κ in the
nonunitary setup was tuned to reproduce the pion mass in the
unitary theory.
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a motivation to include it in a variational basis to study the
excited states. In addition, the variational basis is enlarged
by considering different Gaussian smearings using similar
parameters to those used in Ref. [10], as well as an
interpolating field with larger smearing, which may be
needed for isolating the Roper. The correlation matrix
considered here, thus, has the general form

C�
aibj

ðtÞ ¼
X

x

Tr

�
1

4
ð1� γ0ÞhχðiÞa ðx; tÞχ̄ðjÞb ð0; 0Þi

�

¼
X∞

n¼0

e−EntTr
�
1

4
ð1� γ0Þh0jχðiÞa jnihnjχðjÞb j0i

�
;

i; j ¼ 1;…; N a; b ¼ 1; 2; (2)

where the trace is taken over Dirac indices and CþðtÞ
(C−ðtÞ) yields the positive (negative) parity correlator [18].
The states jni are eigenstates of the Hamiltonian with
En < Enþ1 and we have assumed that the temporal extent
of the lattice is large enough to neglect contributions due to
the finite size of the temporal direction. The indices i and j
on the correlation matrix C�ðtÞ correspond to different
levels of Gaussian smearing and a and b to χ1 and χ2.

A. Variational basis with different gaussian
smearing levels of χ 1

In this subsection, we perform an analysis using as a
variational basis χ1 with a number of different smearing
levels. The variational basis is constructed usingN different
Gaussian smearing levels of this interpolating field. The
GEVP is defined by the generalized eigenequation

CðtÞvnðt; t0Þ ¼ λnðt; t0ÞCðt0Þvnðt; t0Þ;
n ¼ 1;…; N; t > t0; (3)

where En ¼ limt→∞ − ∂t log λnðt; t0Þ. The corrections to
En decrease exponentially like e−ΔEnt where ΔEn ¼
minm≠njEm − Enj [9] for fixed t0. In Refs. [9,10] it was
shown that if one varies t0 such that t0 ≥ t=2 then the
correction is Oðe−ΔEN;ntÞ with ΔEm;n ¼ Em − En ensuring
a greater rate of convergence. In this section, we examine
the benefit of this relation for extracting the low-lying
states in the nucleon sector. A related work exploring the
dependence of the GEVP on the reference time is also
examined in Ref. [19] where recurrence relations are
obtained. The variational method has also been extensively
used to study the excited nucleon spectrum by the Berlin-
Graz-Regensburg (BGR) Collaboration [20].
We apply Gaussian smearing to each quark field qðx; tÞ

[21,22] entering χ1. The smeared quark field is given
by qsmearðx; tÞ ¼ P

yFðx; y;UðtÞÞqðy; tÞ using the gauge
invariant smearing function

Fðx; y;UðtÞÞ ¼ ð1þ αHÞnsðx; y;UðtÞÞ (4)

constructed from the hopping matrix understood as a
matrix in coordinate and color space

Hðx; y;UðtÞÞ ¼
X3

i¼1

ðUiðx; tÞδx;y−aı̂

þ U†
i ðx − aı̂; tÞδx;yþaı̂Þ: (5)

Following Ref. [10] we consider values of the smear-
ing parameters α ¼ 0.1 and ns ¼ 0, 22, 45, 67 and 135.
These smearing parameters produce a source with a root-
mean-square radius in lattice units of 0, 1.96, 2.72, 3.25
and 4.48, respectively. These different smearing levels are
labeled by the superscript i ¼ 1;…; 5 on χðiÞ. We will
refer to this basis as basis A. The resulting correlation
matrices are symmetrized. We use 150 twisted mass
configurations with β ¼ 3.9, aμ ¼ 0.004 or mπ ∼
308 MeV on a 323 × 64 lattice. In addition, we also
construct a 3 × 3 GEVP with a variational basis that
includes a heavily smeared interpolating field. For the
latter basis referred to as basis B, the values of the
smearing parameters are α ¼ 4.0 and ns ¼ 10, 50, 180
producing a source with rms radius in lattice units of 2.36,
4.87 and 8.60. We analyze 200 configurations of the same
ensemble for this variational basis. These smearing levels
will be labeled by the superscript i ¼ 6, 7 and 8 on χðiÞ.
Although the rms for i ¼ 6 and i ¼ 7 is similar to i ¼ 1
and i ¼ 5 this new set contains the heavily smeared
basis, i ¼ 8.
Let us first examine the role of t0 and the advantage of

using these different smearing levels. We consider several
different correlation matrices of the positive parity corre-
lator Cþ

1i1j
ðtÞ constructed from χðiÞ1 for different smearing

levels i ¼ 1;…; 5 in order to examine both the role of
varying ns and/or the dimensionality of the GEVP. In
Fig. 2 we show the effective mass for the ground and first
excited states resulting from a GEVP analysis of all
possible 3 × 3 correlation matrices fixing t0=a ¼ 1. We
are looking for the combination of interpolating fields
that gives the fastest convergence to the two-lowest levels
E0 and E1 i.e. to the earliest onset of a plateau behavior.
From this analysis it is evident that using the higher
smearing levels improves convergence allowing us to fit
to a constant starting from time slice t=a ¼ 5 for the
ground state and from time slice t=a ¼ 4 for the first
excited state. The condition number of this 3 × 3 GEVP

ranges from 104 [when χð1Þ1 , χð2Þ1 and χð3Þ1 are used] up to

106 [when χð1Þ1 , χð3Þ1 and χð5Þ1 are used].
Next we examine the role of increasing the level of

smearing and compare the results obtained from the above
analysis with a 3 × 3 GEVP using basis B. In Fig. 3 we
show the effective mass for the ground and first excited
states resulting from a 3 × 3 GEVP for both basis A and
basis B. Using basis B we observe faster convergence to
ground state and a lowering in the value of the excited state
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mass. The condition number for basis B is in the order of
106. Furthermore, increasing the level of smearing beyond
ns ¼ 180 does not result in any further lowering of the
energy of the excited state but only leads to larger statistical
errors. In fact the condition number of the correlation
matrix gets worse increasing rapidly to Oð109Þ when we
use ns ¼ 300. The comparison of these results indicates

that for the study of the positive parity states basis B is more
suitable than basis A.
Apart from making a choice of the appropriate basis by

trying different combinations of Gaussian smearing we also
try a truncation scheme where the 5 × 5 correlation matrix
is projected to an m ×m matrix, Cm×mðtÞ, with m < N by
using the m < 5 eigenvectors belonging to the m largest
eigenvalues of Cðt0Þ as follows:

CN×Nðt0Þb ¼ Λb; Cm×m
kj ðtÞ ¼ b†ki1C

N×N
i1i2

ðtÞbi2j;
k; j ¼ 1;…; m; i1; i2 ¼ 1;…; N; (6)

where Λjk ¼ δjke−Ejt0 is an N × N matrix with the eigen-
values ofCN×Nðt0Þ as its diagonal elements and b anN × N
matrix with the corresponding eigenvectors. We addition-
ally tried this truncation scheme with various values of
t0=a, namely t0=a ¼ 1;…; 4 and the results obtained are
found to be statistically equivalent. The resulting effective
masses extracted from the truncated 3 × 3 matrix using
basis A are included in Fig. 2 and do not show any
improved convergence.
The effect of reducing the dimension of the GEVP to

2 × 2 can be seen in Fig. 4. The quality of the plateaus for
the first two states is not affected as compared to those

extracted using the 3 × 3 correlation matrix with χð6Þ1 , χð7Þ1

and χð8Þ1 .
In Fig. 5 we compare the results obtained using the

GEVP analysis to those extracted using a single interpolat-

ing field χðiÞ1 , i.e. the trivial 1 × 1 GEVP. For the ground

state, using just the χð8Þ1 interpolating field yields the same

FIG. 2 (color online). The effective mass for the ground (E0)
and first excited (E1) states resulting from a 3 × 3 GEVP using
basis A. A 3 × 3 correlation matrix was constructed out of
different interpolating fields χðiÞ1 by applying a different number
of Gaussian smearing iterations on χ1. The numbers in the legend
give the combination of the three values of ns used to construct
the basis. The effective energy levels resulting from a truncated
3 × 3 GEVP constructed using Eq. (6) are also shown. This
analysis was carried out using 150 configurations of twisted mass
fermions at β ¼ 3.9, aμ ¼ 0.004 (mπ ∼ 308 MeV) on a 323 × 64
lattice.
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FIG. 3 (color online). The effective mass for the ground (E0)
and first excited (E1) states resulting from a 3 × 3 GEVP using

basis A [interpolating fields χð3Þ1 , χð4Þ1 and χð5Þ1 ] using 150 gauge
configurations (black filled circles) and basis B using 200 gauge
configurations (blue filled squares) of twisted mass fermions at
β ¼ 3.9, aμ ¼ 0.004 (mπ ∼ 308 MeV) on a 323 × 64 lattice.
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FIG. 4 (color online). The effective mass for the ground and
first excited states from the best choice of 2 × 2 and 3 × 3GEVPs
corresponding to the highest level of Gaussian smearing i.e. from

fχð7Þ1 ; χð8Þ1 g for the 2 × 2 GEVP and fχð6Þ1 ; χð7Þ1 ; χð8Þ1 g for the
3 × 3 GEVP. The test was carried out using 200 configurations
of the twisted mass ensemble with β ¼ 3.9, aμ ¼ 0.004
(mπ ∼ 308 MeV) on a 323 × 64 lattice.
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quality plateau as that obtained from the 3 × 3 correlation
matrix analysis within basis B.
For the two lowest states in the positive channel we also

study the resulting eigenvectors in order to understand/
verify the mixture of the various χðiÞ1 contributing in the
optimized interpolating field for each state. Identifying the
optimum combination of χðiÞ1 extracted from the GEVP
analysis is useful if one wants to calculate the matrix
elements of any operator using the optimal interpolating
field that best suppresses the contribution of excited states.
In Fig. 6 we show the three components V1, V2 and V3 of

the eigenvector for the ground and excited states in the
positive parity channel determined from the 3 × 3 corre-

lation matrix for basis A [interpolating fields χð3Þ1 , χð4Þ1 and

χð5Þ1 ] and for basis B [interpolating fields χð6Þ1 , χð7Þ1 and χð8Þ1 ].
The interpolating field with the maximum overlap with the

ground state is given by χeff ¼ ~v1χ
ð5Þ
1 þ ~v2χ

ð4Þ
1 þ ~v3χ

ð3Þ
1 , or

equivalently by χeff ¼ ~v1χ
ð8Þ
1 þ ~v2χ

ð7Þ
1 þ ~v3χ

ð6Þ
1 , where ~v is

the large-time limit of V i.e. ~vðt0Þ ¼ limt→∞Vðt; t0Þ. It is
evident that in the case of basis B one of the eigenvector
components enters in with the opposite sign from the other
two thus providing the possibility for a nodal structure, not
possible with basis A. Opposite signs for the eigenvectors
are also obtained if we analyze a 2 × 2 correlation matrix,

as long as interpolator χð8Þ1 is used together with either χð6Þ1

or χð7Þ1 .
Let us next vary t0 as suggested in Ref. [10], shown to

lead to an improvement in the determination of the ground
state by successfully suppressing excited state contamina-
tion for certain mesonic systems. In Fig. 7 we show results
obtained at fixed t0=a ¼ 1 as well as results obtained by
varying t0 using basis A. Within the statistical accuracy of
our analysis, we see consistent results for the three values
of t0=a ¼ 1, 3, and 5 considered. Furthermore, we allow t0
to vary for every value of t and in particular we apply the
condition t0 ≥ t=2 as suggested in Ref. [10]. We show
results for the ground and first excited states in the positive
parity channel for the case t0 ¼ t=2, where we observe no
change in the plateau range within the present statistics.
For these nucleon states and within the present accuracy,
this analysis does not show an improvement, a result that is
also valid for the variational basis B. Our conclusion is that
for the low-lying nucleon spectrum, where the energy gap
is not particularly small, the variation of t0 that has been
shown in Ref. [10] to reduce the systematic error is not
observed here at least within the limitation of our statistics.
Keeping t0 ≥ t=2 comes at the cost of increased statistical
uncertainty. In our case, this increase is large and we
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,t 0
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FIG. 5 (color online). The effective mass for the ground state
for t0=a ¼ 1. Results shown are extracted from the GEVP with
basis B and from the correlators C16 16

and C18 18
.

0.95

1

v 1 n=0 (χ1
(3,4,5))

n=1 (χ1
(3,4,5))

-0.1
0

0.1
0.2
0.3
0.4

v 2

n=0 (χ1
(6,7,8))

n=1 (χ1
(6,7,8))

2 4 6 8
t/a

-0.0004

0

0.0004

v 3

FIG. 6 (color online). The components of the eigenvector for
the ground and first excited states at t0=a ¼ 1. The results are
extracted from GEVP analyses of the 3 × 3 correlation matrices
C1i1j

, i, j ¼ 3, 4, 5 and C1i1j
, i, j ¼ 6, 7, 8 (basis B).

FIG. 7 (color online). (a) The effective mass for the ground state
for various choices of t0. Results are shown for the 3 × 3 GEVP
with the most smeared interpolating fields within basis A. (b) The
effective mass for the ground and first excited states with a fixed
value for t0 (squares) and with the condition t0 ¼ t=2 (circles) for
the ground (filled symbols) and first excited state (open symbols).
Values have been slightly shifted in time in order to aid the
comparison.
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find that the highest overall precision is obtained by
keeping t0=a ¼ 1.
From the above analysis it is clear that the merit of the

variational approach lies in the extraction of excited states,
whereas the ground state is equally well obtained using just
a single smeared interpolating function, in our case either
χð7Þ1 or χð8Þ1 . In Fig. 8 we analyze the 5 × 5 GEVP of basis A
to extract the nucleon spectrum. Despite the low statistics
used in this first examination we are able to obtain effective
mass plateaus meffðnÞ for the ground state (n ¼ 0) and
the three excited states (n ¼ 1, n ¼ 2 and n ¼ 3), as has
already been done in other works [11,23]. Figure 8
corroborates the previous observation that including a
heavily smeared interpolating field in the basis produces
an excited state with a lower energy. Although increasing
the level of smearing is essential for the positive parity
excited states, this is not the case when the negative parity
channel is considered. This issue will be discussed further
in the following section.

B. Combining both χ 1 and χ 2
In the preceding subsection we used a variational basis

constructed from different smearing levels of the χ1 inter-
polating field. In this section, we extend the investigation
by combining both χðiÞ1 and χðiÞ2 each with two different
smearing levels resulting in a 4 × 4 correlation matrix.
For the positive parity channel we consider two different

smearing levels including the heavily smeared one that
was found to give a lower excited state energy, namely we
consider ns ¼ 50 and ns ¼ 180 with α ¼ 4.0 or corre-
spondingly interpolating fields χð7Þa and χð8Þa with a ¼ 1, 2.
In Fig. 9 we compare the results for the effective masses of
the ground and first excited states in the positive parity

channel extracted using this 4 × 4 basis with those
extracted from basis B of the previous section (see Fig. 8).
The effective mass plateaus are statistically equivalent for
both basis sets.
It is evident from the preceding analysis that the first

excited state can be obtained from the 2 × 2 GEVP using
C1i1j

with i, j ¼ 7, 8, or equivalently from the 4 × 4 GEVP
using Caibj with a, b ¼ 1, 2 and i, j ¼ 7, 8, a result that we
will use in order to further examine the first excited state for
other ensembles. We note that in both cases we use two
different smearing levels.
Let us now examine the negative parity states. We first

note that the negative parity interpolating operator in
Eq. (2) has a nonzero overlap with the two-particle
S-wave state that consists of a nucleon and a pion. At
the physical point, this state has lower energy than the
negative parity nucleon. To know a priori at which pion
mass, the mass of the negative parity nucleon and the mass
of the πN state cross requires knowledge of the pion mass
dependence of the negative parity nucleon.
To explore the best variational basis for the negative

parity channel we carry out a similar analysis as with the
positive parity channel. We use two different bases each
leading to a 4 × 4 correlation matrix using both χðiÞ1 and χðiÞ2 .
In the one set we use i ¼ 1, 5 while in the other i ¼ 7, 8 i.e.
the latter includes the heavily smeared interpolating fields.
As is illustrated in Fig. 10, including the heavily smeared
interpolator yields consistent results but with increased
statistical error. In Fig. 11, we show the ground and first
excited states obtained from a 4 × 4 and 2 × 2 GEVP. As in
the case of Fig. 10, the 4 × 4 correlation matrix is

constructed using basis χðiÞa with a ¼ 1, 2 and i ¼ 1, 5,

while the 2 × 2 using χð5Þ1 , χð5Þ2 [note that the basis χð7Þ1 , χð7Þ2

FIG. 8 (color online). The spectrum when using χðiÞ1 at β ¼ 3.9,
aμ ¼ 0.004 (mπ ∼ 308 MeV) on a 323 × 64 lattice. For the 5 × 5
GEVP we use 150 configurations and basis A. For the 3 × 3
GEVP we use 250 configurations with basis B. The solid lines
and bands show the fitted effective mass and jackknife error for
the first excited state obtained from the two different GEVPs.
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FIG. 9 (color online). The effective mass for the ground and
first excited states for the positive parity channel for β ¼ 3.9,
aμ ¼ 0.004 on a 323 × 64 lattice. The 3 × 3 system is constructed
using basis B. The 2 × 2 system corresponds to C1i1j

with i,
j ¼ 7, 8 and the 4 × 4 corresponds to Caibj with a, b ¼ 1, 2 and i,
j ¼ 7, 8; 250 configurations are used.
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yields equivalent results]. As can be seen, the two bases
yield results for the ground and first excited states that are
statistically equivalent.
Having verified that the 2 × 2 correlation matrix yields

the same energies for the ground and first excited states of
the negative parity as the 4 × 4 correlation matrix does,
from here on, we will use the 2 × 2 basis to resolve the
ground and first excited negative parity states for all other
pion masses. Knowing which one of these is the multi-
particle state would require investigation of the dependence
of the two energy levels on the lattice volume, which is
beyond the resources available to us for this work.

Therefore, we compare the two energy states with the
sum of the nucleon and pion mass, and from this infer
which is the negative parity nucleon state. Further examples
of the effective masses extracted from the 2 × 2 correlation
matrix are given in Figs. 12 and 13 discussed in the
following section.

IV. THE LOW-LYING NUCLEON SPECTRUM

In the previous section, we have shown that if we are
interested in the first excited positive parity states of the

0 2 4 6 8 10 12 14
t/a

0.2
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0.6

0.8

1

1.2

1.4
E

nef
f (t

)
n=0
n=1
n=0 (heavy smearing)
n=1 (heavy smearing)

FIG. 10 (color online). The nucleon ground (filled symbols)
and first excited states (open symbols) in the negative parity
channel evaluated via a 4 × 4 GEVP using two different

basis sets: fχð1Þ1 ; χð5Þ1 ; χð1Þ2 ; χð5Þ2 g (black circles) and the set

fχð7Þ1 ; χð8Þ1 ; χð7Þ2 ; χð8Þ2 g (blue diamonds); 250 configurations were
used for this test.

FIG. 11 (color online). The nucleon ground (filled symbols)
and first excited states (open symbols) in the negative parity
channel evaluated using a 4 × 4 correlation matrix (black circles)
and a 2 × 2 correlation matrix (blue diamonds). The variational
bases used are χðiÞa , a ¼ 1, 2 and i ¼ 1, 5 and fχð5Þ1 ; χð5Þ2 g; 250
configurations were used for this analysis.

FIG. 12 (color online). The effective masses of the two lowest
lying nucleon states for the negative (upper panel) and positive
(lower panel) states for the twisted mass ensemble with β ¼ 3.9,
aμ ¼ 0.004 and volume 323 × 64. For the positive parity states

we use a 4 × 4 correlation matrix with fχð7Þ1 ; χð8Þ1 ; χð7Þ2 ; χð8Þ2 g,
while for the negative parity states we use a 2 × 2 correlation

matrix with χð5Þ1 and χð5Þ2 as explained in the text.

FIG. 13 (color online). The effective masses of the two lowest
lying nucleon states for the negative (upper panel) and positive
(lower panel) states for the Clover ensemble. The notation is the
same as in Fig. 12.
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nucleon the variational analysis using basis B is preferable
to basis A. Furthermore, we showed that the interpolating
fields χðiÞa with a ¼ 1, 2 and i ¼ 7, 8 suffice to determine
the two lowest states. Thus we construct a 4 × 4 correlation
matrix, with variational basis consisting of χ1 and χ2 with
two different smearing levels, one yielding a small rms
radius and one a large one. The negative parity states were
shown to be best extracted from a 2 × 2 correlation matrix
analysis, with a single level of smearing using both
interpolating operators [i.e. χð7Þ1 and χð7Þ2 ]. We also note
that results presented from here on have been obtained with
the statistics listed in Table I.
In Figs. 12 and 13 we show the effective masses for

both positive and negative parity states, for a twisted mass
ensemble and for the Clover ensemble analyzed in this
work. As can be seen, a plateau region can be identified for
all states.
The results for all of the ensembles of Table I and the

single Clover ensemble are displayed in Fig. 14. For the
nucleon mass we apply continuum chiral perturbation theory
to extrapolate lattice results to the physical pion mass,
omitting the Clover point from the fit. We use SU(2) heavy
baryon chiral perturbation theory to Oðp3Þ given by

mNðmπÞ ¼ mð0Þ
N − 4cð1ÞN m2

π − 3g2A
16πf2π

m3
π: (7)

Since the lattice spacing was fixed using the nucleon mass
for the twisted mass ensembles it is no surprise that the curve
passes through the physical value. Since the Clover point

was not included in the fit the fact that it lies on the curve
provides a consistency check for our procedure. In the figure
we also show a curve obtained by adding the pion mass
to the nucleon mass. As can be seen, for all pion masses
considered here, the negative parity ground state is consistent
with the mass of the pion plus nucleon, indicating that this is
the two-particle πN state in an S-wave configuration. We
also observe that the first excited states in the positive and
negative channels remain close together for all pion masses.
In Figs. 15 and 16 we compare the results of this work

with three other calculations available in the literature.
Namely, we compare with the results obtained using a
Clover improved fermion action by the CSSM Collaboration
[24] with a≃ 0.09 fm, a calculation using anisotropic
Clover lattices by the Hadron Spectrum Collaboration
[25] with spatial lattice spacing as ¼ 0.123 fm and a
calculation using the chirally improved Dirac operator by
the BGR Collaboration [20] and lattice spacings between
0.13 and 0.14 fm. We note that the lattice spacings for the
two latter calculations are notably larger than those used in
this work arising issues about cutoff effects.
The first observation is that all lattice results are in

reasonable agreement for the ground state energies of both
parity channels. The second major observation is that our
data for the first excited state of the nucleon in the positive
parity channel, although consistent at near-physical pion
mass with the other lattice calculation at similar pion mass,
namely that from the CSSM Collaboration, are still higher
than the experimentally measured mass for the Roper.
Given that our lattice volume is comparable to that of
Ref. [24] volume effects can be responsible for the larger

FIG. 14 (color online). The first two positive and negative
parity states measured on all gauge ensembles considered in this
work. The twisted mass ensembles are plotted with filled
symbols, while the results from the single Clover ensemble
are denoted with the open symbols. We show chiral extrapola-
tions for the nucleon ground state toOðp3Þ as in Eq. (7), omitting
the Clover point from the fit. The dashed line is a result of adding
the pion mass to the Oðp3Þ curve. Physical masses for the
different states are indicated by the magenta filled circles.

FIG. 15 (color online). The positive parity states of this work
(filled and open squares) compared with results from other groups
that include aNf ¼ 2þ 1 Clover improved fermion calculation by
the CSSM Collaboration [24] (red diamonds), a calculation using
anisotropic clover lattices by the Hadron Spectrum Collaboration
[25] (open hexagons) and a calculation using the chirally improved
Dirac operator by the BGR Collaboration [20] (yellow triangles).
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values. In the negative parity channel our results are
consistent with the ones from the BGR Collaboration.
We can clearly see that for all pion masses considered the
negative parity ground state is consistent with a πN state in
an S wave. To the statistical accuracy available to us, the
first excited negative parity state appears to be converging
to N−ð1535Þ; however, the errors are too large to draw
concrete conclusions. Overall, the early loss of signals
seen in the plateaus of the excited states shown in Figs. 12
and 13 indicates that a high statistics calculation of these
quantities is merited using e.g. recently developed noise
reduction techniques [27].

V. CONCLUSIONS

In this workwe apply thevariationalmethod to investigate
the excited states of the nucleon. Two sets of variational bases
are used and the analysis of the resulting GEVP is performed
using the standard approach of fixing t0 as well as by varying
t0 such that t0 ≥ t=2 as advocated in Ref. [10]. Within the
current statistical accuracy, we find that for the nucleon
excited states no observable improvement is obtained as
compared to fixing t0. Limiting ourselves to the first excited

state of the nucleon in the positive parity channel requires a
combination of one broadly and one narrowly smeared
interpolating field. Including both χ1 and χ2 yields a 4 × 4
correlation matrix, which we use to extract results in the
positive parity channel for a number ofNf ¼ 2 twisted mass
fermion ensembles. Besides the twistedmass fermion ensem-
bles we use in addition an Nf ¼ 2 clover fermion ensemble
with pion mass almost equal to the physical value. At this
lightest pion mass of 160 MeV we find an excited state,
which is still higher than the Roper but consistent with
another calculation at similar pion mass from the CSSM
Collaboration. We do not observe a strong pion mass
dependence and the higher value may be due to finite volume
effects, which must be further investigated. In the negative
parity channel we obtain results that reveal the πN scattering
state and an excited state, which at mπ ¼ 160 MeV is still
higher than the physical value of N−. It is clear from this
analysis that extracting the excited states is still a challenge
and more work is needed to understand the low-lying
spectrum of the nucleon.
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