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vector form factors, the sigma terms and the momentum fraction and helicity are among the quantities we
evaluate. We compare the disconnected contributions to the connected ones and give the physical
implications on nucleon observables that probe its structure.
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I. INTRODUCTION

Lattice QCD simulations are currently performed near or
at the physical value of the pion mass. This allows a study
of hadron structure that can provide valuable information
for phenomenology and experiment. However, a number
of important observables are computed neglecting dis-
connected quark loop contributions. The evaluation of
disconnected quark loops is therefore of paramount impor-
tance if we want to eliminate a systematic error inherent in
the determination of hadron matrix elements in lattice
QCD. The computation of disconnected quark loops within
the lattice QCD formulation requires the calculation of the
so-called all-to-all or time-slice-to-all propagators, for
which the computational resources required to estimate
them with, e.g. stochastic methods, are much larger than
those required for the corresponding connected contribu-
tions. In addition, they are prone to large gauge noise. It is
for these reasons that in most hadron structure studies up
to now the disconnected contributions were neglected,
introducing an uncontrolled systematic uncertainty [1].
Recent progress in algorithms, however, combined with

the increase in computational power, have made such
calculations feasible. On the algorithmic side, a number
of improvements like the one-end trick [2–4], dilution
[5–9], the truncated solver method (TSM) [9–11] and the
hopping parameter expansion [2,12] have led to a sig-
nificant reduction in both stochastic and gauge noise
associated with disconnected quark loops. Moreover, using
special properties of the twisted mass fermion Lagrangian
[13–16] one can further enhance the signal-to-noise ratio by
taking the appropriate combination of flavors. On the
hardware side, graphics cards (GPGPUs or GPUs) can
provide a large speedup in the evaluation of quark propa-
gators and contractions. In particular, for the TSM, which

relies on a large number of inversions of the Dirac matrix in
single or half precision, GPUs provide an optimal platform.
In this paper, the aim is to use our findings on the

performance of recently developed methods [17] to com-
pute to high accuracy the disconnected contributions that
enter in the determination of nucleon form factors, sigma
terms and first moments of parton distributions. The
evaluation will be performed using one ensemble generated
with two light degenerate quarks and a strange and charm
quark with masses fixed to their physical values (Nf ¼
2þ 1þ 1) using the twisted mass fermion discretization.
The lattice size is 323 × 64, the lattice spacing extracted
from the nucleon mass [18] a ¼ 0.082ð1Þð4Þ fm and the
pion mass about 370 MeV. This ensemble will be hereafter
referred to as the B55.32 ensemble. The aim is to compare
the disconnected contributions computed using Oð105Þ
measurements to the connected ones and assess the
importance of the disconnected contributions to nucleon
observables computed in lattice QCD for this given
ensemble. The paper is organized as follows: in Sec. II
we summarize the algorithms and variance reduction tech-
niques employed, and in Sec. III we present the main
numerical results of this paper, namely the disconnected
contributions to nucleon generalized form factors. In
Sec. IV we compare the disconnected contributions with
the corresponding connected ones. In Sec. V we give our
conclusions and outlook.

II. METHODS FOR DISCONNECTED
CALCULATIONS

A. Truncated solver method

The exact computation of all-to-all (or time-slice-to-all)
propagators on a lattice volume of physical interest is
outside our current computer power, since this would
require volume (or spatial volume) times inversions of
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the Dirac matrix, whose size ranges from ∼107 for a 243 ×
48 lattice to ∼109 for the largest volumes of 963 × 192
considered nowadays. We will use the TSM combined
with the one-end trick to evaluate the disconnected
contributions. This method was shown to be optimal for
most observables involved in nucleon structure computa-
tions [17]. For completeness we summarize here the
methods and refer the reader to Ref. [17] for a more
detailed description and the comparison against other
methods.
The usual approach to evaluate disconnected contribu-

tions is to compute an unbiased stochastic estimate of the
all-to-all propagator [19] by generating a set of Nr sources
jηri randomly drawn from e.g. Z2 ⊗ iZ2. Solving for
jsri in

Mjsri ¼ jηri (1)

and calculating

M−1
E ≔

1

Nr

XNr

r¼1

jsrihηrj ≈M−1 (2)

provides an unbiased estimate of the all-to-all propagator as
Nr → ∞. Since, in general, the number of noise vectors Nr
required is much smaller than the lattice volume V, the
computation becomes feasible. How large Nr should be
depends on the observable.
The TSM is a way to increase Nr at a reduced

computational cost. The idea behind the method is the
following: instead of inverting to high precision the
stochastic sources in Eq. (1), we can aim at a low precision
(LP) estimate

jsriLP ¼ ðM−1ÞLPjηri; (3)

where the number of inversions of the conjugate gradient
(CG) used is truncated. The criterion for the low precision
inversions can be selected by specifying a relaxed stopping
condition in the CG e.g. by allowing a relatively large value
of the residual, which in turn determines the number of
iterations required to invert a source to low precision.
Following Refs. [9,17], we choose a stopping condition at
fixed value of the residual jr̂jLP ∼ 10−2. NHP is then
selected by requiring that the bias introduced when using
NLP low precision vectors is corrected. We estimate the
correction CE to the bias stochastically by inverting a
number of sources to high and low precision, and calculat-
ing the difference,

CE≔
1

NHP

XNHP

r¼1

½jsriHP − jsriLP�hηrj; (4)

where the jsriHP are calculated by solving Eq. (1) up to high
precision, so our final estimate becomes

M−1
ETSM

≔
1

NHP

XNHP

r¼1

½jsriHP − jsriLP�hηrj

þ 1

NLP

XNHPþNLP

j¼NHP

jsriLPhηrj; (5)

which requires NHP high precision (HP) inversions and
NHP þ NLP low precision inversions. The ratio of the
number of HP inversions to the LP ones is determined
with the criterion of choosing as large a ratio as possible
while still ensuring that the final result is unbiased. In this
work, we will compute fermion loops with the complete set
of Γ-matrices up to one-derivative operators. The tuning is,
thus, performed using an operator that requires a large
number of stochastic noise vectors, such as the nucleon
isoscalar momentum fraction hxiuþd and we optimize NHP
and NLP so as to get the smallest error at the lowest
computational cost. In Fig. 1 we show the error on hxiuþd
as one varies NHP and NLP. As can be seen, the error

decreases like 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b

NHPþNLP

q
with a and b positive

parameters. Fixing NHP ¼ 24 and increasing NLP reduces
the error rapidly until NLP reaches about NLP ∼ 300. In
Ref. [17] we showed that a ratio of NLP to NHP of about 20
can be considered sufficient to produce an unbiased
estimate for the class of observables considered here.
Therefore, in this work we take NHP ¼ 24 and choose
NLP ¼ 500 for the light quark sector. For the strange and
charm quarks we take NLP ¼ 300. These values were
shown to also be optimal for the isoscalar axial charge [17].

B. The one-end trick

The twisted mass fermion (TMF) formulation allows the
use of a very powerful method to reduce the variance of
the stochastic estimate of the disconnected diagrams. From
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FIG. 1 (color online). The error on the isoscalar momentum
fraction δhxiuþd as a function of NHP þ NLP for 68000 mea-
surements. The three leftmost points (red squares) correspond to
NLP ¼ 0 and the three rightmost toNHP ¼ 24. The dotted line is a
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the discussion given in Sec. IIA, the standard way to
proceed with the computation of disconnected diagrams
would be to generate Nr stochastic sources ηr, invert them
as indicated in Eq. (1), and compute the disconnected
diagram corresponding to an operator X as

1

Nr

XNr

r¼1

hη†rXsri ¼ TrðM−1XÞ þO

�
1ffiffiffiffiffiffi
Nr

p
�
; (6)

where the operator X is expressed in the twisted basis.
However, if the operator X involves a τ3 acting in flavor
space, one can utilize the following identity of the twisted
mass Dirac operator with þμ denoted by Mu and −μ
denoted by Md:

Mu −Md ¼ 2iμaγ5: (7)

Inverting this equation we obtain

M−1
u −M−1

d ¼ −2iμaM−1
d γ5M−1

u : (8)

Therefore, instead of using Eq. (6) for the operator Xτ3, we
can alternatively write

2iμa
Nr

XNr

r¼1

hs†rγ5Xsri

¼ TrðM−1
u XÞ − TrðM−1

d XÞ þO

�
1ffiffiffiffiffiffi
Nr

p
�

¼ −2iμaTrðM−1
d γ5M−1

u XÞ þO

�
1ffiffiffiffiffiffi
Nr

p
�
: (9)

Two main advantages result due to this substitution:
(i) the fluctuations are effectively reduced by the μ factor,
which is small in current simulations, and (ii) an implicit
sum of V terms appears in the right-hand side (rhs) of
Eq. (8). The trace of the left-hand side (lhs) of the same
equation develops a signal-to-noise ratio of 1=

ffiffiffiffi
V

p
, but

thanks to this implicit sum, the signal-to-noise ratio of the
rhs becomes V=

ffiffiffiffiffiffi
V2

p
. In fact, using the one-end trick yields

for the same operator a large reduction in the errors for the
same computational cost as compared to not using it [2–4].
A similar approach proved to be very successful in the
determination of the η0 mass [20–22]. The identity given in
Eq. (8) can only be applied when a τ3 flavor matrix appears
in the operator expressed in the twisted basis. For other
operators one can use the identity

Mu þMd ¼ 2DW; (10)

where DW is the Dirac-Wilson operator without a twisted
mass term. After some algebra, one finds

2

Nr

XNr

r¼1

hs†rγ5Xγ5DWsri

¼ TrðM−1
u XÞ þ TrðM−1

d XÞ þO

�
1ffiffiffiffiffiffi
Nr

p
�
: (11)

This lacks the μ-suppression factor, which, as we will
see in the following sections and as discussed in more
detail in Ref. [17], introduces a considerable penalty in the
signal-to-noise ratio.
Because of the volume sum that appears in Eq. (8) and

Eq. (11), the sources must have entries on all sites, which in
turn means that we can compute the fermion loop at all
current time insertions in a single inversion. This allows us
to evaluate the three-point function for all combinations of
sink-source separation and insertion time slices, which will
prove essential in identifying the contribution of excited
state effects for the different operators.

III. RESULTS

In this section we present results from a high statistics
evaluation of all the disconnected contributions involved in
the evaluation of nucleon form factors and first moments of
generalized parton distributions as well as sigma terms. As
already mentioned, the analysis is performed using an
ensemble of Nf ¼ 2þ 1þ 1 twisted mass configurations
simulated with pion mass of amπ ¼ 0.15518ð21Þð33Þ and
strange and charm quark masses fixed to approximately
their physical values (B55.32 ensemble) [23]. The lattice
size is 323 × 64 giving mπL ∼ 5. We use the one-end trick
method combined with the TSM with NHP ¼ 24 and
NLP ¼ 500 noise vectors for the light quark loops. For
the strange and charm quark sector we use NHP ¼ 24 and
NLP ¼ 300. Using 2300 gauge-field configurations, with
16 source positions for the two-point function and by
averaging results for the proton/neutron and forward/back-
ward propagating nucleons we effectively have ∼150000
measurements.
An advantage of the one-end trick is that, having the loop

at all time slices, we can combine with two-point functions
produced at any source time slice. Furthermore, since the
noise sources are defined on all sites, we obtain the fermion
loops at all insertion time slices. We can thus compute all
possible combinations of sink-source separations and
insertion times in the three-point function. This feature
enables us to use the summation method, in addition to the
plateau method, with no extra computational effort.
The summation method has been known for a long time

[24,25] and has been revisited in the study of gA [26]. In
both the plateau and summation approaches, one constructs
ratios of three- to two-point functions in order to cancel
unknown overlaps and exponentials in the leading con-
tribution such that the matrix element of the ground state is
isolated. For general momentum transfer we consider the
ratio

DISCONNECTED QUARK LOOP CONTRIBUTIONS TO … PHYSICAL REVIEW D 89, 034501 (2014)

034501-3



Rðtins; tsÞ ¼
G3ptðΓν; p⃗; q⃗; tins; tsÞ

G2ptðp⃗0; tsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ptðp⃗; ts − tinsÞG2ptðp⃗0; tinsÞG2ptðp⃗0; tsÞ
G2ptðp⃗0; ts − tinsÞG2ptðp⃗; tinsÞG2ptðp⃗; tsÞ

s
(12)

where the two- and three-point functions are given, respectively, by

G2ptðq⃗; tsÞ ¼
X
x⃗s

e−ixs·q⃗Γ0
βαhJαðts; x⃗sÞJ̄βð0; 0⃗Þi (13)

G3ptðΓν; p⃗; q⃗; tins; tsÞ ¼
X
x⃗ins;x⃗s

eix⃗ins·q⃗e−ix⃗s·p⃗Γν
βαhJαðts; x⃗sÞOμ1���μnðtins; x⃗insÞJ̄βð0; 0⃗Þi: (14)

q ¼ p0 − p is the momentum transfer, ts is the time
separation between the sink and the source with the source
taken at zero, and tins the time separation between the
current insertion and the source. We consider the complete
set of operators Oμ1;���;μn up to one derivative, namely the
scalar ψ̄ψ, vector ψ̄γμψ, axial-vector ψ̄γ5γμψ and the tensor
ψ̄σμνψ currents, and the one-derivative vector ψ̄γfμ1Dμ2gψ
and axial-vector ψ̄γ5γ

fμ1Dμ2gψ operators. We consider
kinematics for which the final momentum p⃗0 ¼ 0 when
computing the connected contributions. For the evaluation
of disconnected contributions we use kinematics where
p⃗ ¼ p⃗0 ≠ 0 as well as p⃗0 ¼ 0. The projection matrices Γ0

and Γk are given by:

Γ0 ¼ 1

4
ð1þ γ0Þ; Γk ¼ Γ0iγ5

X3
k¼1

γk: (15)

For zero momentum transfer the ratio simplifies to

Rðtins; tsÞ ¼
G3ptðΓν; p⃗; tins; tsÞ

G2ptðt;p⃗Þ
: (16)

The leading time dependence of the ratio Rðtins; tsÞ is given
by

Rðtins; tsÞ ¼ RGS þOðe−ΔEKtinsÞ þOðe−ΔEKðts−tinsÞÞ; (17)

where RGS is the matrix element of interest, and the other
contributions come from the undesired excited states of
energy difference ΔEK . In the plateau method, one plots
Rðtins; tsÞ as a function of tins. For large time separations tins
and ts − tins when excited state effects are negligible this
ratio becomes a constant (plateau region) and therefore

fitting it to a constant yields RGS. In the alternative
summation method, one performs a sum over tins to obtain:

RsumðtsÞ ¼
Xtins¼ts

tins¼0

Rðtins; tsÞ ¼ tsRGS þ aþOðe−ΔEKtsÞ;

(18)

where a is a constant and the exponential contributions
coming from the excited states decay as e−ΔEKts as opposed
to the plateau method where excited states are suppressed
like e−ΔEKðts−tinsÞ, with 0 ≤ tins ≤ ts. Therefore, we expect a
better suppression of the excited states for the same ts. Note
that one can exclude from the summation the initial and
final time slices ts and 0 without affecting the dependence
on ts in Eq. (18). The results given in this work are obtained
excluding these contact terms from the summation. The
drawback of the summation method is that one requires
knowledge of the three-point function for all insertion times
and multiple sink times and one needs to fit to a straight line
with two fitting parameters instead of one.
Before comparing the lattice matrix elements RGS with

experiment we need to renormalize them. We denote the
renormalized ratio by ~Rðtins; tsÞ. Regarding the renormal-
ization of the sigma terms, the twisted mass formulation has
the additional advantage of avoiding any mixing, even
though we are using Wilson-type fermions [4]. For the case
of the axial charge, renormalization involves mixing from
the three quark sectors. For the tree-level Symanzik
improved gauge action this mixing was shown to be a
small effect of a few percent [27]. We expect this to hold
also for the Iwasaki action used in this work and for
the other isoscalar quantities. In this work, we neglect the
small difference in the renormalization constant between

TABLE I. Renormalization constants in the chiral limit at β ¼ 1.95 in the MS-scheme at μ ¼ 2 GeV. ZA, ZT and
ZP are the renormalization constants for the axial-vector, tensor and scalar currents, and ZDV and ZDA for the
one-derivative vector and axial-vector operators Oμν. The errors given are statistical.

ZA ZT ZP Zμμ
DV Zμ≠ν

DV Zμμ
DA Zμ≠ν

DA

0.757(3) 0.769(1) 0.506(4) 1.019(4) 1.053(11) 1.086(3) 1.105(2)
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connected and disconnected contributions and we use the
same renormalization constants as for the connected piece.
They are given in Table 1. The value of ZP needs a pole
subtraction and is taken from Refs. [28,29], while all the
others have been calculated using the approach given in
Refs. [30,31]. All the renormalization constants, except ZA
which is scheme and scale independent, are converted from
RI-MOM to MS at a scale of μ ¼ 2 GeV. The conversion
factors for ZT are taken from Ref. [32], and for the
one-derivative operators from Ref. [30], computed to
three-loops. We remark that in the twisted basis the scalar
charge is renormalized with ZP.
In Fig. 2 we show the results for the disconnected

contribution to the ratio from which the σπN-term is
extracted. The ratio is plotted versus the time separation
of the current insertion tins from the source, shifted by ts=2.
When this ratio becomes time independent (plateau region)
fitting to a constant yields σπN . As can be seen, however,
increasing the sink-source separation increases the value
extracted from fitting to the plateau (plateau value). We
observe that one requires a sink-source separation of at least
18 to 20 time slices in order for the plateau value to
stabilize. This is a distance of ≳1.5 fm, which is signifi-
cantly larger than the nominal sink-source separation of
1.0 fm–1.2 fm typically used in nucleon matrix element
calculations. In the central panel we show the ratio summed
over the insertion time slice as given in Eq. (18) referred to
as summation method (SM) as a function of the sink-source
time separation time. As explained earlier, by fitting the
ratio to a straight line one obtains the desired matrix
element as the slope. This is done for several choices of
the initial and final fit time slices (ti and tf, respectively)
with the results displayed in the lower panel of the figure.
As one increases the initial fit time slice the excited state
contributions are expected to become smaller and thus the
fitted value stabilizes. Note, however, that the slope
changes and one needs to vary the fit range until the slope
converges. Therefore, if one has only a small number of
sink-source time separations one may miss the variation of
the slope. As in the case of the plateau method where we
take the smallest ts for which excited states are sufficiently
suppressed, it is desirable to take the smallest ti for which
the excited states no longer contribute significantly, since
the error to signal ratio increases with ti. Taking the value of
the slope to be the one given by the star yields the value of
σπN shown by the gray band in the upper panel of the
figure. As can be seen, the resulting value is in agreement
with the (colored) band obtained from the plateau method
for ts=a ¼ 20.
A similar analysis is undertaken for the strange- and

charm-quark sigma terms, shown in Figs. 3 and 4,
respectively. For σs, similar remarks can be made as in
the case of σπN , most notably concerning the large sink-
source separation required for the plateau method to
converge. As expected, the results obtained using the

summation and the plateau methods are consistent also
in this case, when excited states are suppressed. Nonzero
results for σs were also obtained in Ref. [33] using optimal
noise sources and low-mode substitution techniques. For
the case of the charm content, our results are consistent
with zero both when using the plateau method as well as

FIG. 2 (color online). The disconnected contribution to the ratio
from which σπN is extracted. On the upper panel we show the
ratio as a function of the insertion time slice with respect to the
mid-time separation (tins − ts=2) for sink-source separations, ts ¼
14a (red filled circles), ts ¼ 16a (blue filled squares), ts ¼ 18a
(green open squares) and ts ¼ 20a (yellow filled triangles). In the
central panel we show the summed ratio, for which the fitted
slope yields the desired matrix element. On the lower panel we
show the results obtained for the fitted slope of the summation
method for various choices of the initial and final fit time slices.
The star shows the choice for which the gray bands are plotted in
the upper and central panels.
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when using the summation method allowing us only to
obtain an upper bound to its value. In Ref. [33] a nonzero
result was obtained as one approaches the chiral limit.
Since our aim in this work is to compute quark loops using
high statistics for one ensemble we will address the quark
mass dependence in a follow-up work.
Similar analyses are carried out for the disconnected

contributions entering the ratios determining the nucleon
axial charge. For observables like gA where one does not
have the τ3 flavor combination in the twisted basis it is
advantageous to use the discrete symmetries of the twisted
mass formulation [15,16], namely parity combined with
isospin flip u↔d, γ5-isospin hermiticity, and charge-γ5-
isospin hermiticity, in order to reduce gauge noise.

Considering the properties of the quark loops and of the
nucleon two-point functions that enter in the computation
of the disconnected three-point function under these
symmetries one can derive appropriate products taking
their real or imaginary parts thus suppressing gauge noise.
This was shown to be advantageous in the calculation of the
first moments of the unpolarized momentum distribution in
Ref. [34]. These symmetries are used for the results shown
from now on. In Figs. 5, 6 and 7 we show, respectively,
results for the ratio from which the nucleon matrix elements
of the axial-vector current yielding the isoscalar guþd

A , the
strange gsA and the charm gcA are extracted. We first note that
for the case of guþd

A we observe less contamination from
excited states than in the case of the sigma terms. This is

FIG. 3 (color online). The ratio from which the strange quark
content of the nucleon, σs, is extracted. The notation is the
same as that of Fig. 2.

FIG. 4 (color online). The ratio from which the charm quark
content of the nucleon, σc, is extracted. The notation is the same
as that of Fig. 2.
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evident from the smaller sink-source time separation
required in order for the plateau or summation method
to converge. Furthermore, we clearly observe a nonzero
value for the case of the disconnected contributions to the
isoscalar guþd

A as well as for gsA. For gcA our results are
consistent with zero and we can only give an upper bound

to its value. The nucleon tensor charge guþd
T is also

computed and the ratio from which is extracted is shown
in Fig 8. We observe a very small value for the discon-
nected contribution, with an error of about 90%. For the
summation method the statistical uncertainty does not
allow a meaningful fit.
The nucleon matrix elements involving derivative oper-

ators probe moments of parton distributions, which are
extracted from deep inelastic scattering measurements. In
this work we compute the disconnected contributions to the
isoscalar nucleon momentum fraction hxiuþd, which
involves the vector derivative operator, and the isoscalar
nucleon polarized moment hxiΔuþΔd involving the axial-
vector derivative operator. We apply the symmetries of the

FIG. 5 (color online). The disconnected contribution to the
renormalized ratio which yields the isoscalar axial charge of the
nucleon, guþd

A . The upper panel shows the ratio as a function of
the insertion timeslice with respect to the mid-time separation
(tins − ts=2) for sink-source separations ts ¼ 8a (red filled
circles), ts ¼ 10a (blue filled squares), ts ¼ 12a (green open
squares) and ts ¼ 14a (yellow filled triangles). The central panel
shows the summed ratio and the lower panel the results obtained
for the fitted slope of the summation method for various choices
of the initial and final fit time slices as explained in the text. The
star shows the choice of ti, which yields the gray bands shown in
the upper and central plots.

FIG. 6 (color online). The strange-quark contribution to the
renormalized ratio yielding the nucleon axial charge gsA. The
notation is the same as that of Fig. 5.
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twisted mass action discussed above as well as consider a
moving frame and thus have the nucleon carrying nonzero
equal initial and final momentum. We find that, when the
nucleon carries the lowest momentum allowed for this
lattice, the statistical error is reduced. The disconnected
contributions to the ratios from which the matrix elements
of the vector and axial-vector derivative operators are
extracted are shown in Figs. 9 and 10, respectively. For
hxiuþd we find a value consistent with zero both with the
plateau and summation method. Having one unit of
momentum improves the signal enabling us to deduce
an upper bound on the value of this matrix element. For
hxiΔuþΔd the statistical errors remain large but nevertheless
we obtain a nonzero value. Considering a moving nucleon

leads in this particular case to a substantial reduction in the
error. We note that increasing the sink-source time sepa-
ration is crucial in order for this observable to develop a
nonzero result. This is clearly seen in the slope which
becomes nonzero for ts=a > 8. Since a large ts also leads to
larger errors it is no surprise that such a large number of
statistics is needed to obtain a meaningful signal. This may
also indicate that even larger number of statistics is needed
to stabilize further the signal.
Apart from matrix elements for zero momentum transfer

presented so far, disconnected contributions arise in the
isoscalar electromagnetic and axial form factors at finite
momentum. Computationally, these are straightforward
to extract, since one takes the Fourier transform of the

FIG. 7 (color online). The charm-quark contribution to the
renormalized ratio yielding the nucleon axial charge gcA. The
notation is the same as that of Fig. 5.

FIG. 8 (color online). The disconnected contribution to the
renormalized ratio yielding the nucleon isoscalar tensor charge
guþd
T . The notation is the same as that of Fig. 2.
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insertion coordinate of the loop to obtain the matrix
element at all momenta. The finite momentum matrix
elements, however, are expected to be noisier than the
zero-momentum ones, since the energy factors appearing in
the exponents of the signal are larger. The disconnected
contributions to the axial form-factors, electric form-factor
and magnetic form-factor are shown in Fig. 11 for a single
unit of momentum transfer. Due to the structure of the
matrix elements and the way these are computed on
the lattice, for the case of the axial form factors GA and
Gp, the plot shows the ratio of a linear combination from
which these form factors are extracted after the plateau
fit. GE and GM, on the other hand, can be extracted from
different ratios allowing us to plot them separately. We note

that we perform a similar analysis for these quantities as for
the zero-momentum case where both plateau and summa-
tion methods are investigated for the optimal fit ranges. For
the axial form factors we obtain a clearly nonzero value.
For the electromagnetic case, the disconnected contribu-
tions for both the isoscalar electric and magnetic form
factors are statistically consistent with zero.
Finally we comment on the issue of correlations. The

summation and plateau methods for all the various quan-
tities considered in this work are compared using the same
set of gauge configurations and found to be consistent.
Since these results can be correlated, the difference between
the results of the two methods may be underestimated.
Thus, it is worthwhile to investigate the two methods using

FIG. 9 (color online). The disconnected contribution to the
renormalized ratio yielding the nucleon isoscalar momentum
fraction hxiuþd. The notation is the same as that of Fig. 5.

FIG. 10 (color online). The disconnected contribution to the
renormalized ratio yielding nucleon isoscalar helicity moment
hxiΔuþΔd. The notation is the same as that of Fig. 5.
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different sets of configurations. To perform this check we
split our ensemble into two equal sets, which wewill refer to
as A-set and B-set, and redo our analysis on these two sets
separately. We show the result for the case of the strange-
quark contribution to the axial charge in Fig. 12. As can be
seen, the values computed in each set both using the plateau
and summation methods are in agreement. Furthermore, the
plateau computed on the A-set is consistent with the
summation method computed on B-set and vice versa.
This agreement indicates that the consistency between the
results extracted using the summation and plateau methods
on the full ensemble is not due to the correlations.

IV. COMPARISON WITH CONNECTED
CONTRIBUTION

The main motivation for calculating disconnected fer-
mion loops is to eliminate the systematic uncertainty, which
arises when these are omitted from calculations of hadronic
matrix elements. For instance, the nucleon axial charge is
typically computed in the isovector combination, where
the fermion loops of the up- and down- quarks cancel.
However, if one is interested in the intrinsic spin fraction
carried by the individual quarks, one needs, in addition to
the isovector, the isoscalar combination, which involves
disconnected diagrams. Typically, in lattice QCD calcu-
lations up to now, the disconnected contributions have been
omitted. It is, therefore, important to identify how large
the contributions of disconnected diagrams are, in order to
bound the systematic error introduced when these are
neglected.
In order to assess the importance of disconnected

contributions we evaluate the connected contributions to
the isoscalar matrix elements of the operators discussed in
the previous section. In Figs. 13 and 14 we show the
renormalized ratios from which the connected part of the
isoscalar matrix elements are extracted. These results are
obtained using 1200 gauge field configurations and
inverted for multiple sink-source time separations to allow
applying the summation method. We stress that, for the
evaluation of the connected contributions unlike the case of
the disconnected, to obtain multiple sink-source time
separations one needs to do a new set of inversions for
each sink-source time separation.
The multiple sink-source separations are computed more

efficiently by using the EigCG [35,36] method to deflate
the lowest eigenvalues with every new right-hand side. For
the connected contributions shown here, we compute the

FIG. 11 (color online). Disconnected contributions to the
renormalized ratio yielding the isoscalar axial-vector and pseu-
doscalar form factors GA and Gp (upper), the electric form factor
GE (center) and the magnetic form factor GM (lower) at the
lowest nonzero momentum transfer allowed for this lattice size.

FIG. 12 (color online). The renormalized ratio which yields the
strange-quark contribution to the axial charge of the nucleon, gsA.
In the left panel, the plateau method is used on the first half of the
ensemble (A-set), while the summation method is used on
the second half of the ensemble (B-set). In the right panel, the
plateau method is used on the A-set, while the summation method
is used on the B-set.
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sequential propagators for eight sink-source time separa-
tions, namely from ts ¼ 4a to ts ¼ 18a for every even time
separation. In addition, the sequential propagators are
computed for both unpolarized and polarized nucleon
sinks, meaning in total 16 sequential propagators per
configuration, or 16 × 12 ¼ 192 right-hand sides are
needed, one for each color-spin component. Our EigCG
is set up such that ten eigenvalues per right-hand side are
deflated, stopping after a total of 24 right-hand sides, after
which the deflated space is kept constant at 240 eigen-
values for the remaining 168 right-hand sides. With this
setup, and at this pion mass, we observe a speedup of
more than 3 times, i.e. the 192 right-hand sides are
computed for the same computational cost needed to
compute 64 right-hand-sides when not using EigCG.
The ratios yielding the connected contribution to σπN ,

and the isoscalar gA are shown in Fig. 13. These can be
compared with the corresponding ratios yielding the dis-
connected contributions to σπN and isoscalar gA shown in
Figs. 2 and 5, respectively. As can be seen, the behavior of
the connected contributions is similar to the disconnected
ones, namely the sigma term shows large excited state
contamination requiring large sink-source time separations
whereas in the case of guþd

A the excited states are negligible

even for ts=a ¼ 10. For a better comparison between
connected and disconnected contributions we collect the
results extracted from the plateau method for all nucleon
observables in Table II. The disconnected contribution to
the σπN and isoscalar gA are found to be larger than 10% of

FIG. 13 (color online). Connected contributions to the ratio
yielding σπN (upper) and nucleon isoscalar axial charge (lower),
for various sink-source time separations. We show results
obtained from a fit to a constant to the ratio (colored band)
and from a linear fit to the summed ratio (gray band).

FIG. 14 (color online). Connected contributions to the renor-
malized ratio yielding the isoscalar nucleon momentum fraction
(upper), the isoscalar nucleon helicity moment (center) and the
axial and pseudoscalar form factors GAðQ2Þ and GpðQ2Þ at a
single unit of momentum (lower). For the momentum fraction
and helicity, we show the results obtained from a fit to a constant
to the renormalized ratio (colored band) and from a linear fit to
the summed renormalized ratio (gray band).
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the connected contribution at this quark mass. Clearly for
both σπN and guþd

A these are sizable effects and have to be
taken into account. The scalar charge derives from the same
matrix element as the sigma term and therefore it also
requires inclusion of disconnected contributions. For the
case of the momentum fraction, the disconnected contri-
bution is found to be consistent with zero as can be seen in
Fig. 9, and therefore we can only give an upper bound to its
size to be included in the systematic error of hxiuþd. For the
polarized moment hxiΔuþΔd, on the other hand, one obtains
a sizable nonzero result. Note that the disconnected con-
tribution is negative decreasing the value of hxiΔuþΔd quite
substantially. The disconnected contribution to the tensor
charge is essentially zero not affecting its total value.
A comment can also be made for the case of the

disconnected contributions to the nucleon form factors
computed at nonzero momentum shown in Fig. 11 at a
single unit of momentum transfer squared. For the electro-
magnetic form factors GE and GM, we find that the
disconnected contributions are consistent with zero and
with magnitude less than 1%. With the connected con-
tributions at this momentum transfer being of Oð1Þ, this
means that the disconnected contributions will at most be at
the 1% level. For the case of the axial form factor Guþd

A the

disconnected contribution is about 10% that of the con-
nected and thus must be included. In the case of the
pseudoscalar form factor Gp, we find that the disconnected
contribution is of similar magnitude as the connected one
and thus it is crucial in order to get reliable results for this
observable to include the disconnected part.
Having the complete set of isoscalar matrix elements

with both connected and disconnected contributions, one
can combine with the corresponding isovector matrix
elements, which do not depend on disconnected contribu-
tions, to obtain the separate quark contributions to nucleon
matrix elements. This is done in Table II for various
quantities of interest. Namely, the up- and down-quark
contributions to the nucleon spin ΔΣu=2 and ΔΣd=2 are
obtained by combining the isovector and isoscalar axial
charges. Including the disconnected contributions affects
the values of the intrinsic spin in particular in the case of the
d-quark. In contrast, the values of the nucleon total spin Ju

and Jd, obtained by combining the isoscalar and isovector
vector generalized form factors A20 and B20, are not
affected and the disconnected contributions only contribute
an upper bound to the error. Finally, the proton/neutron
electric and magnetic form factors Gp=n

E and Gp=n
M at a

single unit of momentum transfer squared, which for this

TABLE II. The connected and disconnected contributions to the various nucleon observables for the B55.32
ensemble are given in column two and three, whereas column four has the total contribution. The form factors GE,
GM, GA and Gp, and generalized form factor B20 are given for q⃗ ¼ 2π=L. The disconnected contributions are
obtained using about 150000 measurements.

Observable Connected Disconnected Total

Results at zero momentum transfer (Q2 ¼ 0)
σπN [MeV] 164.6(7.2) 16.6(2.4) 181.3(7.6)
σs [MeV] 21.7(3.6) 21.7(3.6)
σc [MeV] 16(30) 16(30)
guþd
S 6.30(27) 0.639(95) 6.94(29)
gsS 0.246(41) 0.246(41)
guþd
A 0.576(13) −0.0699ð89Þ 0.506(15)
gsA −0.0227ð34Þ −0.0227ð34Þ
guþd
T 0.673(13) −0.0016ð14Þ 0.671(13)
hxiuþd 0.586(22) 0.027(76) 0.614(80)
hxiΔuþΔd 0.1948(51) −0.058ð22Þ 0.136(23)
Ju 0.2781(94) −0.076ð77Þ 0.202(77)
Jd −0.0029ð94Þ −0.076ð77Þ −0.078ð77Þ
ΔΣu=2 0.4273(50) −0.0174ð75Þ 0.4098(55)
ΔΣd=2 −0.1389ð50Þ −0.0174ð75Þ −0.1564ð55Þ

Results for q⃗2 ¼ ð2π=LÞ2 or Q2 ≃ 0.19 GeV2

Guþd
E 2.2698(78) 0.015(13) 2.284(15)

Guþd
M 2.088(49) −0.041ð46Þ 2.047(67)

Guþd
A 0.5155(94) −0.0564ð72Þ 0.459(11)

Guþd
p 9.81(65) −1.90ð35Þ 7.90(74)

Buþd
20 −0.035ð16Þ −0.33ð29Þ −0.36ð29Þ

Gp
E 0.7453(32) 0.0024(51) 0.7478(39)

Gn
E 0.0113(32) 0.0025(51) 0.0138(39)

Gp
M 1.847(28) −0.006ð40Þ 1.840(29)

Gn
M −1.151ð28Þ −0.006ð40Þ −1.158ð29Þ
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lattice size and quark mass corresponds to Q2≃
0.19 GeV2, are obtained from the isovector and isoscalar
proton electric and proton magnetic form factors assuming
flavor-SU(2) isospin symmetry between up- and down-
quarks. Only the value of Gn

E is affected although, within
error bars, it is still consistent with the connected value.

V. CONCLUSIONS

The computation of disconnected contributions for
flavor singlet quantities has become feasible, due to the
development of new techniques to reduce the gauge and
stochastic noise, and due to the increase in computational
resources. In this work, we use the truncated solver method
and the one-end trick on GPUs for the determination of
disconnected contributions to the nucleon matrix elements.
The usage of GPUs is particularly important, due to its
efficiency in the evaluation of disconnected diagrams using
the TSM, since GPUs can yield a large speedup when
employing single- and half-precision for the computation
of the LP inversions and contractions. The calculation is
performed for one ensemble of Nf ¼ 2þ 1þ 1 twisted
mass fermions using very high statistics. This is necessary
in order to reduce the gauge noise and obtain statistically
significant results.
The results for all observables are analyzed using both

the plateau and the summation methods. A careful analysis
of excited states is performed and we find that the methods
yield results that are compatible, as expected when excited
states contributions are negligible and identification of the
fitting ranges in both methods are well selected. Therefore,
agreement of the values extracted with the plateau and
summation methods provides a good consistency check.
Since the one-end trick provides results for all sink-source
separations at no additional computational cost, such a
check can be always carried out.
Comparison of the connected to the disconnected con-

tributions reveals clearly that the latter are important for a
number of observables related to nucleon structure. For the
sigma terms and scalar charge the disconnected contribu-
tions amount to 10% the total value and thus they must be
taken into account. Similarly for the isoscalar axial charge

we find more than 10% contributions that must be taken
into account in the discussion of the spin carried by quarks
in the proton. The disconnected contribution reduces the
value of Σd by more than 10%, an effect that is important if
we aim at a few % accuracy. On the other hand, we find that
the disconnected contributions to the electromagnetic form
factors at low q2-values are less than 1% at this pion mass.
For the axial form factor Guþd

A the disconnected contribu-
tions are sizable and persist at the level of 10% of the value
of the connected contribution even at nonzero momentum-
transfer. For Guþd

p the disconnected contribution is even
larger reaching 20%.
In the future we plan to compute the disconnected

contributions to these quantities using simulations at
physical pion mass. Such a computation will require very
large computational resources in order to obtain results
with meaningful statistical errors.
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