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perturbative corrections are observed. The implications on the threshold production of top-quark pairs are
briefly discussed.
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I. INTRODUCTION

In recent years effective field theories constructed from
quantum chromodynamics (QCD) have been enormously
successful at describing phenomena where masses and
momenta follow certain limits. Among them is nonrela-
tivistic QCD (NRQCD) [1,2] which is applicable to a
system of two heavy quarks moving with small relative
velocity. Next to properties of the ψ andϒ families also the
threshold production of top-quark pairs is among the
prominent examples (see, e.g., Ref. [3] for a review).
The common method to construct an effective theory is

based on the so-called matching procedure: appropriately
chosen Green’s functions are computed in the full and
effective theory and equality is required up to power-
suppressed terms. In this way the couplings of the effective
operators (i.e. the matching coefficients) are determined
which completely specifies the effective theory.
A crucial operator both in QCD and NRQCD is the vector

current of a heavy quark-antiquark pair. The corresponding
matching coefficient enters as a building block in a variety of
physical observables, for example the bottom-quark mass
from ϒ sum rules (see, e.g., Refs. [4,5] for recent analyses)
and top-quark threshold production at a future electron
positron linear collider [6]. The latter process allows for
an extraction of the top-quark mass with an accuracy below
100 MeV [7–9]—an improvement of about an order of
magnitude as compared to the current results from the
Fermilab Tevatron or the CERN Large Hadron Collider [10].
Several quantities are needed in order to perform a

third-order analysis of a heavy quark-antiquark system
at threshold. Ultrasoft effects have been considered
in Refs. [11,12], the three-loop static potential has been
computed in Refs. [13–15] and in Refs. [16,17] a prelimi-
nary analysis of the top-quark threshold production cross
section has been presented including also third-order
potential effects. Details on the potential contributions
can be found in Refs. [18,19]. In this paper we compute

the three-loop matching coefficient between the vector
current in QCD and NRQCD. Thus all ingredients are
available to obtain the complete next-to-next-to-next-to
leading order (NNNLO) QCD prediction of the cross
section eþe− → tt̄ close to threshold or the decay width
of the ϒð1SÞ meson to leptons. The results for the latter are
presented in an accompanying paper [20] where all build-
ing blocks are combined to a phenomenological analysis.

II. VECTOR CURRENTS IN QCD AND NRQCD

The vector current in the full theory (QCD) is given by

jμv ¼ Q̄γμQ; (1)

where Q denotes a generic heavy quark with mass mQ.
On the other hand in the effective theory (NRQCD) the
current is represented by an expansion in 1=mQ where at
each order effective operators have to be considered which
are multiplied by coefficient functions. The leading con-
tribution involves one operator given by

~jk ¼ ϕ†σkχ; (2)

where ϕ and χ are two-component Pauli spinors for the
quark and antiquark, respectively, and σk (k ¼ 1; 2; 3) are
the Pauli matrices. Hence, the matching coefficient of the
vector current is defined through

jkv ¼ cvðμÞ~jk þO
�

1

m2
Q

�
: (3)

Note that the 0-component of jμv is only relevant for the
power-suppressed contributions.
The purpose of this paper is the evaluation of the

purely gluonic three-loop corrections to cv. The fermionic
contributions have already been considered in Refs. [21,22].
In order to compute cv it is convenient to consider

on-shell vertex corrections involving the currents jkv and ~jk.
After taking into account the wave function renormalization
one obtains (see also Ref. [18])
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Z2Γv ¼ cv ~Z2
~Z−1
v

~Γv þ � � � ; (4)

where the quantities with a tilde are defined in the effective
theory and the ellipsis represents terms suppressed by the
heavy-quark mass. ~Z−1

v is the renormalization constant of the
current ~jk which is used to subtract the remaining poles after
renormalization. These poles are due to the separation of
long and short distance contributions in the effective theory.
In order to evaluate physical quantities it is important that
the same subtraction scheme is also adopted in the contribu-
tions originating from the effective theory [11,12]. It is well
known that in the full theory the renormalization constant
of the vector current is equal to 1.
In Eq. (4) Z2 is the on-shell wave function renormalization

constant which has been computed up to three-loop accuracy
in Refs. [23–25]. Γv denotes the one-particle irreducible
vertex diagrams with on-shell quarks carrying momenta q1
and q2. It incorporates all one-particle irreducible vertex
graphs and the corresponding counterterms for mQ and αs.
Sample Feynman diagrams are shown in Fig. 1.
The counterparts of Γv and Z2 in the effective theory can

be found on the right-hand side of Eq. (4). It is convenient
to apply the threshold expansion [26,27] to Eq. (4). This
requires the identification of the hard, soft, potential and
ultrasoft momentum regions in the integrals contributing to
Γv and ~Γv. Since NRQCD is obtained from QCD by
integrating out the hard modes one has by construction that
the soft, potential and ultrasoft modes agree in Γv and ~Γv
and thus drop out from Eq. (4). As a consequence Γv is
evaluated for q2 ¼ ðq1 þ q2Þ2 ¼ 4m2

Q, which corresponds
to the leading term of the hard integration region, and
~Γv ¼ 1. Furthermore, we have ~Z2 ¼ 1.
There are several technical difficulties which one has to

overcome in order to compute the vertex corrections. Among
them are the large number of diagrams which leads to several
thousand Feynman integrals to be evaluated in the first
place, their reduction to a small set of about 100 basis

integrals, so-called master integrals, and the evaluation of the
latter in an expansion in ϵ ¼ ð4 −DÞ=2, where D is the
space-time dimension. The last two tasks become more
complicated by the additional condition q2 ¼ 4m2

Q on the
external momentum. An automated setup for the calculation
has been described in Ref. [22] and applied to the fermionic
contributions. Its core parts are a powerful implementation of
Laporta’s algorithm in the program CRUSHER [28], and
FIESTA [29–31] which is based on sector decomposition
and is used for the numerical integration of the master
integrals. The main differences compared to the gluonic part
considered in this paper are the larger number of diagrams
and the increased complexity of the integrals which have to
be reduced to master integrals. Furthermore, the master
integrals are more numerous and more involved.

III. MATCHING COEFFICIENT TO ORDER α3s

Before discussing the matching coefficient it is instruc-
tive to consider the renormalization constant ~Zv. The
analytical results can be extracted from Refs. [11,21,32,33]:

~Zv ¼ 1þ
�
αðnlÞs ðμÞ

π

�2 CFπ
2

ϵ

�
1

12
CF þ 1

8
CA

�
þ
�
αðnlÞs ðμÞ

π

�3

CFπ
2

�
C2
F

�
5

144ϵ2
þ
�
43

144
− 1

2
ln 2þ 5

48
Lμ

�
1

ϵ

�

þ CFCA

�
1

864ϵ2
þ
�
113

324
þ 1

4
ln 2þ 5

32
Lμ

�
1

ϵ

�
þ C2

A

�
− 1

16ϵ2
þ
�
2

27
þ 1

4
ln 2þ 1

24
Lμ

�
1

ϵ

�

þ Tnl

�
CF

�
1

54ϵ2
− 25

324ϵ

�
þ CA

�
1

36ϵ2
− 37

432ϵ

��
þ CFTnh

1

60ϵ

�
þOðα4sÞ; (5)

where CA ¼ Nc, CF ¼ ðN2
c − 1Þ=ð2NcÞ and T ¼ 1=2 for a

SUðNcÞ gauge group and Lμ ¼ lnðμ2=m2
QÞ. Note that the

strong coupling is defined in the effective theory with nl
active quarks where nl þ nh is the total number of quark
flavors. In our case we have nh ¼ 1; however, we keep nh
in the formulas for convenience.

From our calculation we can extract the renormalization
constant ~Zv and compare with Eq. (5). The central values of
our numerical coefficients agree at the percent level with
the analytical result of Eq. (5) which constitutes a first
nontrivial check and provides quite some confidence in the
overall setup of our calculation.

(a)

(c) (d)

(b)

FIG. 1. Feynman diagrams contributing to Γv. Straight and
curly lines denote heavy quarks with mass mQ and gluons,
respectively.
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We write the perturbative expansion of the matching
coefficient in the form

cv ¼ 1þ αðnlÞs ðμÞ
π

cð1Þv þ
�
αðnlÞs ðμÞ

π

�2

cð2Þv

þ
�
αðnlÞs ðμÞ

π

�3

cð3Þv þOðα4sÞ; (6)

and decompose cð3Þv according to the color structures as

cð3Þv ¼ CF½C2
FcFFF þ CFCAcFFA þ C2

AcFAA

þ TnlðCFcFFL þ CAcFAL þ TnhcFHL þ TnlcFLLÞ
þ TnhðCFcFFH þ CAcFAH þ TnhcFHHÞ�
þ singlet terms: (7)

Note that all color factors of the nonsinglet part can be
expressed in terms of CF, CA, and T. In this paper we do not
consider the singlet contribution where the external current

does not couple to the fermion line in the final state. At two-
loop order such contributions have been computed [34] for
axial-vector, scalar and pseudoscalar currents in Ref. [35].
Their numerical effect in those cases is below 3% as comp-
ared to the nonsinglet contributions and thus quite small.
The one- and two-loop corrections are known since more

than ten years and have been computed in Refs. [36] and
[32,35,37], respectively. On the other hand, the fermionic
three-loop term became available only a few years ago
[21,22]. The so-called renormalon contribution, consisting
of the one-loop diagram with arbitrarily many massless
quark loop insertions in the gluon propagator, has been
computed in Ref. [38]. Supersymmetric one-loop correc-
tions to cv have been computed in Ref. [39].
In the following we present the results for the indivi-

dual coefficients in Eq. (7) parametrized in terms of
αðnlÞs ðmQÞ. The reconstruction of the full dependence on
the renormalization scale is straightforward; the corre-
sponding expressions can be obtained from [40]. Our
results read [41]

cð1Þv ¼ −2CF;

cð2Þv ¼
�
− 151

72
þ 89

144
π2 − 5

6
π2 ln 2 − 13

4
ζð3Þ

�
CACF þ

�
23

8
− 79

36
π2 þ π2 ln 2 − 1

2
ζð3Þ

�
C2
F

þ
�
22

9
− 2

9
π2
�
CFTnh þ

11

18
CFTnl − 1

2
π2
�
1

2
CA þ 1

3
CF

�
CFLμ;

cFFF ¼ 36.55ð0.53Þ þ
�
− 9

16
þ 3

2
ln 2

�
π2Lμ − 5

32
π2L2

μ;

cFFA ¼ −188.10ð0.83Þ þ
�
− 59

108
− 3

4
ln 2

�
π2Lμ − 47

576
π2L2

μ;

cFAA ¼ −97.81ð0.38Þ þ
�
− 2

9
− 3

4
ln 2

�
π2Lμ þ

1

6
π2L2

μ;

cFFL ¼ 46.691ð0.006Þ þ 25

108
π2Lμ − 1

18
π2L2

μ; cFAL ¼ 39.624ð0.005Þ þ 37

144
π2Lμ − 1

12
π2L2

μ;

cFHL ¼ −
557

162
þ 26

81
π2; cFLL ¼ −

163

162
− 4

27
π2; cFFH ¼ −0.846ð0.006Þ − 1

20
π2Lμ;

cFAH ¼ −0.098ð0.051Þ; cFHH ¼ −
427

162
þ 158

2835
π2 þ 16

9
ζð3Þ: (8)

All uncertainties originating from the individual master
integrals are added quadratically. In order to obtain a
conservative error estimate we interpret the uncertainty
of the numerical integration as 1 standard deviation from a
Gaussian distribution and multiply it by a factor of 5 which
is accounted for in Eq. (8) [42]. The coefficients of Lμ

could be obtained in analytic form since all renormalization
constants are known analytically.
In most applications it is sufficient to know the result for

the matching coefficient with numerically evaluated color

factors. Setting CF ¼ 4=3, CA ¼ 3, T ¼ 1=2 and nh ¼ 1
before inserting the master integrals and combining the
numerical uncertainties we get

cv ≈ 1 − 2.667
αðnlÞs

π
þ
�
αðnlÞs

π

�2

½−44.551þ 0.407nl�

þ
�
αðnlÞs

π

�3

½−2091ð2Þ þ 120.66ð0.01Þnl−0.823n2l �
þ singlet terms; (9)
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whereμ ¼ mQ has been chosen.Note that thenl-independent
three-loop term contains the contribution with a closed
massive quark loop which amounts to cð3Þv jnl¼0

nh ≈ −0.93ð8Þ
[22]. One observes that for nl ¼ 3, 4 and 5 all coefficients in
Eq. (9) have the same sign and that they grow quite rapidly
when going from NLO to NNNLO. At NNLO and NNNLO
the fermionic corrections screen the nonfermionic ones, but
even fornl ¼ 5onlya reductionofatmost30%isobtained.A
first glance at Eq. (9) would suggest that for the quantity cv
perturbation theorybreaksdowneven though themomentum
scale involved in theproblem,mQ, is quite large.However, as
already mentioned above, cv itself does not represent a
physical quantity. It has to be combined with contributions
originating from soft, potential and ultrasoft momentum
regions which can compensate the large coefficients in
Eq. (9). Further discussions on this topic can be found in
Ref. [20]. It might very well be that the MS scheme adopted
in our calculation is not well suited for separating the
divergences occurring in the different regimes. In fact,
also the ultrasoft contribution studied in Refs. [11,12] shows
large numerical effects.
We have performed several checks on the correctness

of our result which we want to mention in the following. In
our calculation we allowed for a general gauge parameter ξ
which manifests as a polynomial dependence of the indi-
vidual diagrams. After summing the three-loop results forZ2

and Γv (taking into account the corresponding quark mass
counterterm contribution) we concentrated on the coefficient
of the linear ξ dependence and have verified that it vanishes.
As a further check we recomputed the nl contribution [21]
usingour automated setup. In this contextwewant tomention
that in Ref. [21] all occurring master integrals have been
computed either analytically or using a numerical method
different from the one used in the present paper. As already
mentioned above, with our calculation we could also repro-
duce the renormalization constant in Eq. (5) with high
accuracy which checks all but the highest ϵ coefficients of
themaster integrals.Wenote in passing thatwe have a similar
accuracy for the cancellation of the spurious poles up to
seventh order occurring due to our reduction procedure.
At this point it is instructive to show a result for a typical

master integral contributing to cv. For the Feynman
diagram in Fig. 2, which we need up to order ϵ, we obtain
with the help of FIESTA [29–31]

M ¼ e3ϵγE

m4
Q

�
μ2

m2
Q

�
3ϵ
�
þ 0.411236ð3Þ

ϵ2
þ 3.4860ð1Þ

ϵ

þ 34.520ð2Þ þ 339.68ð4ÞϵþOðϵ2Þ
�
: (10)

Avery powerful check on the correctness of our result is
provided by the change of basis for the master integrals. We
employ the integral tables generated during the reduction
procedure in order to reexpress the master integrals, which
are not known analytically, through different, in general

more complicated ones. This transformation is done ana-
lytically for general space-time dimensionD. In a next step
the new master integrals are again evaluated with FIESTA
and inserted in the new expression for cv. In Table I we
compare the results for the purely gluonic coefficients and
the complete result for cð3Þv obtained in the two bases. We
observe an excellent agreement within the uncertainties. In
the case of the “alternative basis” one has to keep in mind
that the integrals to be evaluated numerically are signifi-
cantly more complicated which explains the larger uncer-
tainties for the coefficients in Table I.
As a further check on the numerical evaluation of the

master integrals we have used a different momentum
assignment in the input for FIESTA. As a consequence
different expressions are generated in intermediate steps
leading to different numerical integrations. The final results
are in complete agreement with Eq. (9).
We are now in the position to have a first look at the

phenomenological consequences of our result for cv. We
consider the residue of the two-point function of the vector
currents

ð−q2gμν þ qμqνÞΠðq2Þ ¼ i
Z

dxeiqxh0jTjμðxÞj†νð0Þj0i;

(11)

TABLE I. Comparison of the purely gluonic coefficients of
Eq. (8) and cð3Þv with nl ¼ 4 and nl ¼ 5 for two different choices
of the master integral basis. For convenience μ ¼ mQ has been
adopted. The given uncertainties are obtained by combining the
numerical uncertainties of each master integral contribution in
quadrature. In contrast to Eqs. (8) and (9) no factor 5 has been
introduced for this comparison.

Default basis [cf. Eq. (8)] Alternative basis

cFFF 36.55(0.11) 36.61(2.93)
cFFA −188.10ð0.17Þ −188.04ð2.91Þ
cFAA −97.81ð0.08Þ −97.76ð2.05Þ
cð3Þv (nl ¼ 4) −1621.7ð0.4Þ −1621ð23Þ
cð3Þv (nl ¼ 5) −1508.4ð0.4Þ −1507ð23Þ

FIG. 2. Typical master integral appearing in our calculation.
The solid lines and dashed lines represent massive and massless
lines, respectively. For the external momenta we have the
conditions q21 ¼ q22 ¼ m2

Q and ðq1 þ q2Þ2 ¼ 4m2
Q.
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which is obtained by considering Πðq2Þ close to
the QQ̄ threshold. In this limit Πðq2Þ is dominated
by pole contributions originating from bound-state
effects

Πðq2Þ ¼E→En Nc

2m2
Q

Zn

En − ðEþ i0Þ þ � � � ; (12)

where the ellipsis denotes contributions from the continuum.
Zn and En are the residue and energy of the nth resonance
which determine the height and position of the threshold
cross section, respectively. In the following we consider the
residue of the 1S (pseudo)bound state of top quarks,

Zt ¼
�
c2v − E1

mt
cv

�
cv þ

dv
6

��
jψ1ð0Þj2; (13)

where ψ1ð0Þ denotes the wave function of the 1S state at the
origin and dv is the matching coefficient of the 1=m2

Q
suppressed term in Eq. (3). Note that terms which contribute
only to fourth and higher orders have been neglected in
Eq. (13). We extend the considerations of Ref. [16,43] by
including the nonfermionic contribution of cð3Þv and theOðϵÞ
term of the 1=mQ potential [20]. Choosing the potential
subtracted scheme [44] with μf ¼ 20 GeV to define the top-
quark mass we obtain mPS

t ¼ 171.4 GeV which leads to

Zt ¼
ðCFmPS

t αsÞ3
8π

½1þ ð−2.131þ 3.661LÞαs þ ð8.38þ1.27xf − 7.26 ln αs − 13.40Lþ 8.93L2Þα2s
þ ð5.46þ ð−2.23þ 0.78LfÞxf þ 2.21a3þ21.48b2ϵ þ 37.53cf − 134.8ð0.1Þcg
þð−9.79 − 44.27LÞ ln αs − 16.35 ln2 αsþð53.17þ 4.66xfÞL − 48.18L2 þ 18.17L3Þα3sþOðα4sÞ�

¼ ðCFmPS
t αsÞ3
8π

½1 − 2.13αs þ 23.66α2s−113.0ð0.1Þα3s þOðα4sÞ�; (14)

where xf ¼ μf=ðmPS
t αsÞ, L ¼ ln ðμ=ðmPS

t CFαsÞÞ, and
Lf ¼ ln ðμ2=μ2fÞ. We have used αsðMZÞ ¼ 0.1184 to
compute αs ¼ αsðμSÞ ≈ 0.141 where the soft scale μS ¼
mQCFαsðμSÞ ≈ 32.16 GeV has been adopted after the
second equality sign. In order to get an impression about
the importance of the individual contributions we mark the
μ-independent coefficients from the three-loop static po-
tential (a3), from the two-loop OðϵÞ term of the 1=ðmQr2Þ
potential (b2ϵ), and from the three-loop fermion (cf) and
purely gluonic (cg) contribution to cð3Þv separately. For this
choice of μ one observes quite big NNNLO contributions
which are dominated by cg. Thus, it is instructive to
investigate the μ dependence of Zt which is shown in
Fig. 3. Around the soft scale no convergence is observed.
Allowing, however, for higher scales one finds a quite flat
behavior of the NNNLO curve. Furthermore, the NNNLO
corrections become quite small. E.g., considering the top-
quark system for μ ≈ 80 GeV, the NLO terms amount
to about þ15% and the NNLO to roughly þ20%.
The third-order contribution is practically zero. Similar

observations also hold for the bottom-quark case; see
Ref. [20].

IV. CONCLUSIONS

The third-order contribution to the matching coefficient
of the vector current between QCD and NRQCD has been
computed. An automated setup has been developed where
even the occurring master integrals are identified automati-
cally, processed with the help of the computer program
FIESTA, and prepared for the insertion into the analytic

reduction of cð3Þv .
In the MS scheme the numerical impact of cð3Þv is

quite big as can be seen from Eq. (9) which constitutes the
main result of this paper. In a dedicated analysis one has
to investigate the consequences for the bottom-quark
mass extracted from ϒ sum rules and the top-quark
threshold production cross section at a future linear collider.
An analysis of the residue of the 1S state indicates

that at energy scales around two to three times the soft scale
good convergence of the perturbative series is observed.

LO

NLO

NNLO

NNNLO

NNNLO (ferm.)

µ (GeV)

Z
t(µ

)/
Z

tL
O

(µ
S)

0.6

0.7

0.8

0.9

1

1.1

1.2

20 40 60 80 100 120 140 160

FIG. 3. Residue for the top-quark system normalized to ZLO
t ðμSÞ

as a function of the renormalization scale μ. Dotted, dash-dotted,
short-dashed and solid lines correspond to LO, NLO, NNLO and
NNNLO prediction. In the long-dashed curve only the fermion
contributions to cð3Þv are taken into account [NNNLO (ferm.)].
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