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This paper reports on a new procedure for the lattice spacing setting that takes advantage of the very
precise determination of the strong coupling in the Taylor scheme. Although it can be applied for the
physical scale setting with the experimental value of ΛMS as an input, the procedure is particularly
appropriate for relative “calibrations.” The method is here applied for simulations with four degenerate light
quarks in the sea and leads to prove that their physical scale is compatible with the same one for simulations
with two light and two heavy flavors.
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I. INTRODUCTION

The field theory of the strong interactions, QCD, is
essentially nonperturbative in its low energy domain.
There, its asymptotic states differ from the noninteracting
elementary fields and it should properly account for the
main features of the strong phenomenology: chiral sym-
metry breaking and confinement. One of the most fruitful
nonperturbative approaches to the QCD low-energy phe-
nomenology is the lattice field theory [1] which, more and
more in the past few years, is providing with accurate
numerical results to account for the rich phenomenology of
QCD.1 To this goal, a key role is played by the physical
scale setting or lattice “calibration”: the adjustment of
the lattice spacing to reproduce properly a low-energy
experimental value: masses, decay constants, etc.
The purpose of this paper is to present a novel technique

to perform this scale setting, which is based on the direct
computation of the strong coupling constant from the gauge
and ghost propagators in Landau gauge. This computation
results from applying the so-called Taylor renormalization
scheme to the ghost-gluon vertex, which prescribes an
incoming vanishing ghost momentum for the kinematics

configuration at the renormalization point [3,4]. In the past,
gluonic quantities, as the string tension for the linear static
interquark potential [5–8], has been used to perform a
relative calibration: to fix the lattice spacing for one
simulation from that known from another different simu-
lation. The method presented here avails for a relative
calibration from gluonic quantities but, the strong coupling
being directly accessible from experiments, also for an
absolute lattice calibration with ΛQCD as an input. At this
point, it is worthwhile to recall that the running with
momentum for the Taylor coupling lattice data have been
successfully described by applying continuum computa-
tions, based on perturbation theory at the four-loop level and
operator product expansion (OPE) nonperturbative correc-
tions roughly above 2 GeV [9,10] and on Dyson-Schwinger
equations (DSE) solutions for the deep IR limit [11–13].
The method we propose is particularly useful for

simulations with many degenerate light flavors, as those
to compute renormalization constants in the flavor massless
limit [14] or motivated by the expected similarities of
many-light-flavors QCD with Walking models for techni-
color [15] as Refs. [16–20]. In those cases, there is no
physical quantity to compare with for the scale setting, but
ΛQCD can be well defined by assuming the strong coupling
running not to depend on the quark masses, at least far
away from the flavor thresholds. Furthermore, for more
than two light degenerate flavors and three Goldstone

1See the lattice review of [2] or the contributions from plenary
presentations of 30th (2012) Lattice conference that can be found
here: http://pos.sissa.it/cgi‑bin/reader/conf.cgi?confid=164.
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bosons, the standard chiral behavior cannot be reliably
applied to guide the chiral fits of masses or decay constants.
On the other hand, ΛQCD being the fundamental scale of
QCD, to which many different experiments refer, to use it
for the scale setting could be taken as a theoretical “ace.”
Last but not least, the strong coupling running being
obtained from data for different simulations, the results
can be compared to each other and directly confronted to
continuum QCD predictions. This provides with a very
valuable cross-check for the scale setting reliability and
ensures the best accuracy.

II. THE MATCHING BY THE TAYLOR COUPLING

The strategy is to get the ratios of lattice spacings
from different simulations by the intercomparison of a
renormalization-group invariant quantity, as the one defin-
ing a coupling, computed with the lattice gauge field
configurations obtained from the simulations.

A. The matching strategy

In the following, we will first describe the matching scale
setting, without loss of generality, for any appropriate
lattice quantity. Let us call Q this quantity that could be
computed from lattice QCD such that one would have

QphysðpÞ ¼ QLattðpLÞ þOðaÞ; (1)

where the physical and the lattice momenta are related such
that pL ¼ aðβ; μÞp, where aðβ; μÞ stands for the lattice
spacing. We consider a particular simulation in a N3 × Nt
lattice with β, for the bare lattice coupling, and μ, standing
for any other relevant setup parameter (in our next
application, the twisted mass of the light2 degenerated
quarks [21,22]). After the appropriate Fourier transform of
data in configuration space from the simulations, one
would be left with

p2
L ¼

�
2π

N

�
2
�
n2x þ n2y þ n2z þ

N2

N2
t
n2t

�
; (2)

defined by the four integers nx, ny, nz and nt. In the right-
hand side of Eq. (1), we included terms of the order a to
account for the lattice artifacts that should tend to disappear
when approaching the continuum limit. Qphys will be
now supposed not to depend on the lattice setup parameters
at sufficiently high energy where the matching is possible,
such that, for two different simulations with parameters
ðβ1; μ1Þ and ðβ2; μ2Þ, after neglecting (or properly
correcting) the lattice artifacts, we can write

Qðβ1;μ1Þ
Latt ðpLÞ≡QphysðpÞ≡Qðβ2;μ2Þ

Latt ðp0
LÞ; (3)

where p0
L=aðβ2; μ2Þ ¼ pL=aðβ1; μ1Þ ¼ p. Then, the ratio

of lattice spacings, aðβ2; μ2Þ=aðβ1; μ1Þ is to be obtained by
computing Q from the two different simulations and
impose the results to match as Eq. (3) requires. The latter
implies that, where the matching is required, any depend-
ence of Q on β and μ has been supposed to be captured by
the lattice spacing through the scale setting. This will be
confirmed, in our procedure, by the comparison of the
running of Q with the momentum for the different
simulations, after the scale setting.

B. The Taylor coupling

In order to apply now the matching procedure above
described, we need to make an appropriate choice for Q. In
particular, we will use the running coupling defined in the
so-called Taylor scheme [3,4],

QLattðpLÞ≡ αLattT ðpLÞ ¼
g20ðaÞ
4π

~Z2
3ðpL; aÞZ3ðpL; aÞ; (4)

where ~Z3 and Z3 are the ghost and gluon propagator
renormalization constants in MOM scheme and in Landau
gauge. The latter is a main advantage for the Taylor
coupling to be used as, only involving two-point Green
functions to be computed, it can be very accurately
estimated from lattice simulations. Furthermore, its running
with momenta obtained from the lattice has been exhaus-
tively studied and proven to be very well described by
continuum predictions forNf ¼ 0 [4], 2 [23] and 2þ 1þ 1
[9,10,24,25] flavor numbers, after properly dealing with the
UV cutoff effects.
After learning from these studies the appropriate lessons,

we will compute the Taylor coupling from different lattice
simulations as Eq. (4) reads and then apply the so-called
Hð4Þ-extrapolation procedure [26–28], that exploits the
remaining symmetrywhich is restricted to theHð4Þ isometry
group for the elimination of Oð4Þ-breaking lattice artifacts,

αLattT ðpLÞ ⇒ αHð4Þ
T ðpLÞ: (5)

Wewill next correct for theOð4Þ-invariant lattice artifacts as
shown in Refs. [9,24],

αHð4Þ
T ðpLÞ ¼ αphysT ða−1pLÞ þ ca2p2p2

L: (6)

A brief description of the way this procedure works to cure
from theUV lattice artifacts can be also found inAppendixA
of Ref. [10]. Thus, we will finally be left with the
“continuum” Taylor coupling that has been shown to be,
in practice, very well described by [9,10,24]

αphysT ðpÞ ¼ αTðp2Þ þ dx
px ; (7)

with
2The dependence in the heavy masses will be dealt with at

length in this paper.
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αTðp2Þ ¼ αpertT ðp2Þ
�
1þ 9

p2
RðαpertT ðp2Þ; αpertT ðq20ÞÞ

×

�
αpertT ðp2Þ
αpertT ðq20Þ

�
1−γA2

0
=β0 g2Tðq20ÞhA2iR;q2

0

4ðN2
C − 1Þ

�
; (8)

derived from the OPE description of ghost and gluon
dressing functions in terms of the dimension-two gluon
condensate.3 The OPE Wilson coefficient also accounts for
higher-order corrections beyond the leading logarithm
which appears included in Rðα; α0Þ for Eq. (8), while the
purely perturbative running is given by αpertT up to four-loops
through the integration of the β function [2],

αpertT ðμ2Þ ¼ 4π

β0t

�
1 − β1

β20

logðtÞ
t

þ β21
β40

1

t2

��
logðtÞ − 1

2

�
2

þ β2β0
β21

− 5

4

�
þ 1

ðβ0tÞ3
�
β3
2β0

þ 1

2

�
β1
β0

�
3

×

�
−2log3ðtÞ þ 5log2ðtÞ

þ
�
4 − 6

β2β0
β21

�
logðtÞ − 1

���
(9)

in terms of t ¼ lnðp=ΛTÞ where ΛT=ΛMS ¼ 0.5608
for Nf ¼ 4. In Ref. [9], Eqs. (6)–(8) have been success-
fully applied to fit the running of the Taylor coupling
obtained from unquenched lattice simulationswith two light
degenerate quark flavors and two heavier nondegenerate
ones (Nf ¼ 2þ 1þ 1). The results, recently updated in
Ref. [10], for the best-fit parameters are ΛMSāð1.90; 0Þ ¼
0.1413ð32Þ, g2hA2iā2ð1.90; 0Þ ¼ 0.76ð11Þ, x ¼ 5.73ð27Þ
and dxāxð1.90; 0Þ ¼ −0.157ð10Þ; expressed in units of
āð1.90; 0Þ (we used here ā for simulations with Nf ¼ 2þ
1þ 1 and keep a for Nf ¼ 4 degenerate flavors).

C. The procedure and its validity

Then, for any simulation with setup parameters ðβ; μÞ,
according to Eqs. (3)–(6), one can write

αHð4Þ
T;ðβ;μÞðpLÞ ¼ αphysT

�
p0
L

āð1.90; 0Þ
�
þ ca2p2p2

L; (10)

where p0
L ¼ pLāð1.90; 0Þ=aðβ; μÞ, pL being the lattice

momentum for the simulation, Eq. (2), and the running
of αphysT given by Eqs. (7) and (8) and expressed in units of
āð1.90; 0Þ,

αphysT

�
p0
L

āð1.90; 0Þ
�

¼ αT

�
p0
L
2

ā2ð1.90; 0Þ
�
þ dxāxð1.90; 0Þ

p0
L
x ;

(11)

with x ¼ 5.73 and the central value for the parameters
ΛMSāð1.90; 0Þ, g2hA2iā2ð1.90; 0Þ and dxāxð1.90; 0Þ above
presented. The latter is a consequence of our main
assumption: ΛMS and the nonperturbative corrections,
coded by g2hA2i and dx, are supposed to depend only
on the number of active quarks and, far above the quark
mass thresholds, their masses should not matter so much.
As the matching of coupling data for simulations with μ and
μ0 setup parameters naturally implies4

Λμ0

MS

Λμ

MS

≃
�
g2hA2iμ0
g2hA2iμ

�
1=2

≃
�
dμ

0
x

dμx

�1=x

≃ 1; (12)

this main assumption will appear supported a posteriori:
as can be seen in Fig. 2, a perfect matching for the Taylor
coupling data is obtained from three simulations with
different β’s at Nf ¼ 4 and one with β ¼ 2.10 at
Nf ¼ 2þ 1þ 1. Furthermore, the data from this last sim-
ulation have been strikingly shown to behave as continuum
computations predicts for above 1.7 GeV [9,10], where our
fits will be performed. Thus, taking the ratios in Eq. (12) to
be exactly 1, the ratio of lattice spacings, āð1.90; 0Þ=aðβ; μÞ,
and the coefficient ca2p2 are the two only free parameters to
be determined by the best fit of Eqs. (10) and (11) to the
Taylor coupling lattice data above 1.7 GeV.
One more question is very in order here for discussion:

the Taylor coupling is a Landau-gauge quantity, obtained
from gauge-dependent ghost and gluon propagators, which
suffers from the problem of the Gribov ambiguity [33].
Thus, the standard Landau-gauge fixing procedure by the
minimization of a functional of the gauge field, Aa

μ,
verifying ∂μAa

μ ¼ 0 with the Fadeev-Popov operator being
positive, leads to many local minima of the gauge orbit,
usually called “Gribov copies.” Such an ambiguity on the
gauge fixing may introduce disrupting deviations for the
confrontation of continuum and Landau-gauge lattice
quantities. On the lattice, this ambiguity has been scruti-
nized by comparing the results from a “best copy,” selected
as the minimum of the functional for a sample of random
copies, with the ones from the “first copy” resulting from
the minimization [34,35]. The selection of the best copy has
been also improved in recent investigations by the appli-
cation of the so-called simulated annealing gauge-fixing
algorithm [36–38]. The main conclusion from these inves-
tigations is that Gribov-copy effects are found not to have
any impact on SU(2) gluon and ghost propagators above a

3The OPE power corrections of Landau-gauge gluon and ghost
propagators have been found to be dominated by a nonvanishing
gauge-dependent dimension-two gluon condensate [29–32].

4Deviations from Eq. (12) should be included in the proce-
dure’s systematic uncertainties.
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given momentum, pmin. This momentum pmin is also found
to decrease with the lattice size in physical units, L, for a
hypercubic lattice. The authors of Ref. [38] studied results
from simulations with L roughly ranging from 1 to 8 GeV
and generally concluded that Gribov-copy effects were
relevant for p < 1 GeV. In particular, their Fig. 5 shows
that pmin ≃ 0.7 GeV for L≃ 5 fm.
In our case, we studied SU(3) Taylor coupling results

from nonhypercubic lattice simulations where the spatial
size roughly ranges from 2 to 3 fm (while the time-direction
one is twice the spatial). Therefore, performing fits for the
matching above p≃ 1.7GeV, the results are expected to be
free of Gribov-copies ambiguities. However, as far as the
matching works for a fitting window reaching the UV
domain, whatsoever the lower bound might be, the ratios of
lattice spacings will be the same in the UV region, free of
ambiguities, as for any IR momenta inside the window.
Then, the scale setting can be proven a posteriori to be safe
from the Gribov-ambiguity problem through, again, the
quality of the matching for the Taylor coupling results
obtained from the different involved simulations. As will be
seen in Fig. 2, this is indeed the case for the results here
presented.

III. THE RESULTS

In the following, the above-described procedure will be
applied to estimate the lattice spacing for simulations with
Nf = 4 degenerate twisted-mass flavors [14] (Table I
gathers their setup parameters), produced by ETM col-
laboration (ETMC) to apply the massless renormalization.
To our knowledge, no other method allows for such a
reliable scale setting in this case, as the Taylor coupling can
be properly taken not to depend very much5 on the setup
parameters for Nf ¼ 4 and Nf ¼ 2þ 1þ 1 simulations.

A. Relative calibration

We will take the lattice spacing to depend on the bare
gauge coupling, β, and on the dynamical degenerate-flavor
mass only through the bare polar mass,M0 (see Table I and
Ref. [14]). Then, we compute the Taylor coupling, αLattT ,
given by Eq. (4) for each lattice ensemble. Next, we
average for the two ensembles with roughly the same
mPCAC but opposite sign, as explained in Ref. [14], in order
to achieve approximatively the OðaÞ improvement though
working out of the maximal twist. We apply the H4
extrapolation procedure to remove the hypercubic artifacts
and, finally, the cured results for the coupling is fitted
with Eqs. (10) and (11), as explained in the previous
section. Thus, we obtain the ratios of lattice spacings,
āð1.90; 0Þ=aðβ; aM0Þ, and ca2p2 as the best-fit parameters

TABLE I. Setup parameters, mPCAC and the bare polar mass for
the ensembles here exploited (borrowed from Ref. [14]).

β aμ amPCAC aM0 Configurations

1.90 0.0080 −0.0390ð01Þ 0.0285(01) 130
1.90 0.0080 0.0398(01) 0.0290(01) 130
1.90 0.0080 −0.0358ð02Þ 0.0263(01) 200
1.90 0.0080 0.0356(01) 0.0262(01) 200
1.90 0.0080 −0.0318ð01Þ 0.0237(01) 200
1.90 0.0080 0.0310(02) 0.0231(01) 200
1.90 0.0080 −0.0273ð02Þ 0.0207(01) 130
1.90 0.0080 0.0275(04) 0.0209(01) 130
1.95 0.0085 −0.0413ð02Þ 0.0329(01) 130
1.95 0.0085 0.0425(02) 0.0338(01) 130
1.95 0.0085 −0.0353ð01Þ 0.0285(01) 130
1.95 0.0085 0.0361(01) 0.0285(01) 130
1.95 0.0020 −0.0363ð01Þ 0.0280(01) 120
1.95 0.0020 0.0363(01) 0.0274(01) 120
1.95 0.0180 −0.0160ð02Þ 0.0218(01) 130
1.95 0.0180 0.0163(02) 0.0219(01) 130
1.95 0.0085 −0.0209ð02Þ 0.0182(01) 130
1.95 0.0085 0.0191(02) 0.0170(01) 130
1.95 0.0085 −0.0146ð02Þ 0.0141(01) 130
1.95 0.0085 0.0151(02) 0.0144(01) 130
2.10 0.0078 −0.00821ð11Þ 0.0102(01) 180
2.10 0.0078 0.00823(08) 0.0102(01) 180
2.10 0.0064 −0.000682ð13Þ 0.0084(01) 180
2.10 0.0064 0.00685(12) 0.0084(01) 180
2.10 0.0046 −0.00585ð08Þ 0.0066(01) 120
2.10 0.0046 0.00559(14) 0.0064(01) 120
2.10 0.0030 −0.00403ð14Þ 0.0044(01) 240
2.10 0.0030 0.00421(13) 0.0045(01) 240

TABLE II. Ratios of lattice spacings obtained as explained in
the text. The values obtained by performing a chiral extrapolation
down to a zero light quark mass are also shown. The quality of the
fits is characterized by the χ2=d:o:f: All the errors have been
derived by applying the jackknife method.

β aM0 āð1.90; 0Þ=aðβ; aM0Þ ca2p2 χ2=d:o:f:

1.90 0.0288 0.932(18) −0.0074ð14Þ 5.6=44
1.90 0.0263 0.969(17) −0.0067ð5Þ 3.3=45
1.90 0.0234 0.969(11) −0.0080ð10Þ 7.6=45
1.90 0.0208 1.004(25) −0.0056ð12Þ 2.4=46
1.90 0 1.049(46)
1.95 0.0334 1.024(12) −0.0079ð8Þ 4.4=46
1.95 0.0285 1.059(12) −0.0088ð9Þ 10.2=49
1.95 0.0277 1.019(20) −0.0099ð9Þ 5.6=46
1.95 0.0219 1.086(20) −0.0069ð9Þ 3.4=47
1.95 0.0176 1.105(11) −0.0066ð11Þ 19.8=48
1.95 0.0143 1.115(18) −0.0054ð7Þ 9.9=50
1.95 0 1.134(18)
2.10 0.0102 1.530(15) −0.0053ð4Þ 142=93
2.10 0.0084 1.518(15) −0.0048ð5Þ 90.3=93
2.10 0.0065 1.533(19) −0.0049ð5Þ 161=93
2.10 0.0045 1.578(42) −0.0055ð10Þ 240=94
2.10 0 1.533(35)

5This is the case, as the matching we reach shows, at least for
quark masses varying not too much, as happens for our
simulations.
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gathered in Table II. The results appear also plotted in
Fig. 1, where a linear extrapolation on M2

0, as the use of a
OðaÞ-improved lattice action suggests, down to the chiral
limit is also shown. It should be noticed that the fitted
parameters for the coefficient correcting the Oð4Þ-invariant
lattice artifacts, ca2p2 , shows no important dependence on
the light quark mass, as expected, and fairly well agree with
the same parameter obtained for our previous analysis with
simulations for Nf ¼ 2þ 1þ 1 [9,10].
In Table III, the ratios of Nf ¼ 4 lattice spacings over

that at β ¼ 1.90 for Nf ¼ 2þ 1þ 1 from Table II, after the
chiral extrapolation, are shown in comparison with ratios of
the same lattice spacings for Nf ¼ 2þ 1þ 1, borrowed
from Refs. [10,39]. They all agree within the errors,
although the lattice spacings for Nf ¼ 2þ 1þ 1 appear
to be systematically larger (∼5%) than those for Nf ¼ 4.

B. Absolute calibration from ΛMS

In the previous section, the matching of the Taylor
coupling led to a relative scale setting for the analyzed
simulations, i.e. in terms of a given lattice spacing for
another simulation (β ¼ 1.90 and Nf ¼ 2þ 1þ 1, with
chiral light flavors). Then, the “absolute” calibration of the
former, in physical units, requires from the latter’s knowl-
edge. On the other hand, the Taylor coupling from lattice
data confronted to Eqs. (6) and (8) provided with an

estimate for ΛMS in terms of the lattice spacing. Such an
estimate was used in Refs. [9,10,24] to compute, after the
scale setting from ETMC, ΛMS in physical units and hence
αMSðm2

ZÞ. Alternatively, one can also take the experimental
value for ΛMS and use it to estimate the lattice spacing.
We have āð1.90; 0ÞΛMS ¼ 0.1413ð32Þ, from lattice data
with Nf ¼ 2þ 1þ 1 unquenched flavors, as mentioned

above, and Λ
Nf¼4

MS
¼ 296ð10Þ MeV from PDG [2]. Then,

for Nf ¼ 2þ 1þ 1, one would have āð1.90; 0Þ ¼
0.0940ð38Þfm, which compares fairly well to the very
recent ETMC result: āð1.90; 0Þ ¼ 0.0885ð36Þ fm [39]. It
should be furthermore noticed that the determination of
āð1.90; 0ÞΛMS in Ref. [10] takes into account systematic
uncertainties we do not include in the present calibration.
These uncertainties could be drastically reduced by per-
forming a simulation at as larger a β parameter as possible,
to reach larger physical momenta but keeping the higher-
order hypercubic artifacts under control.
Thus, we can take our estimate for the lattice spacing and

set the physical scale for all the lattices in Table I, with the
help of the ratios from Table II. Then, we verify that the
running of αphysT , defined by Eq. (6), is the same for all of
them and the same as for Nf ¼ 2þ 1þ 1, as can be seen in
Fig. 2. In particular, in the chiral limit, we obtain

aðβ; 0Þ
1 fm

¼
8<
:

0.0896ð53Þ β ¼ 1.90

0.0829ð36Þ β ¼ 1.95

0.0613ð29Þ β ¼ 2.10;

(13)

for the Nf ¼ 4 simulations. The results from Eq. (13)
compare pretty well with those obtained for the same
ETMC simulations by setting the scale through chiral fits of
the pseudoscalar meson masses in terms of the renormal-
ized light quark mass [39]: 0.0885(36) at β ¼ 1.90, 0.0815
(30) at β ¼ 1.95 and 0.0619(18) at β ¼ 2.10; that have been
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Μ
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FIG. 1 (color online). Ratios of lattice spacings (see Table II)
obtained by the matching procedure of the Taylor coupling and
the corresponding chiral extrapolation in the solid line.
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FIG. 2 (color online). The physical running of the Taylor
coupling, defined by Eq. (6), for all the properly calibrated
lattices from Table I. Nf ¼ 2þ 1þ 1 data from [10] are included
for comparison.

TABLE III. Comparison of the ratios of lattice spacings for
Nf ¼ 4 (noted as a) obtained here and those for Nf ¼ 2þ 1þ 1
simulations (noted as ā) from Refs. [10,39].

β āð1.90; 0Þ=aðβ; 0Þ að1.90; 0Þ=aðβ; 0Þ āð1.90; 0Þ=āðβ; 0Þ
1.90 1.049(46) 1 1
1.95 1.134(18) 1.081(50) [39]: 1.085(59)
2.10 1.533(35) 1.461(72) [10]: 1.477(28)

[39]: 1.429(71)

NOVEL METHOD FOR THE PHYSICAL SCALE SETTING … PHYSICAL REVIEW D 89, 034026 (2014)

034026-5



used for the computation of the renormalization constants
with Nf ¼ 4 simulations, within the massless quark
renormalization scheme approach. It might be worthwhile
to recall that our scale-setting procedure does not invoke
any hadronic quantity in order to provide with the results
of Eq. (13).

IV. CONCLUSIONS

We have proposed a novel method for the scale setting on
lattice simulations that only needs the evaluation of gauge
and ghost propagators to determine the strong coupling
running and requires for it, after the appropriate removal of
lattice artifacts, to be the same for different simulations,
when the scale is properly fixed. The method allows for a
relative calibration of lattices, the lattice spacing for them
being expressed in terms of the one in another given
simulation, but also for an absolute calibration with ΛMS as
an input. A major advantage of this procedure comes from

the necessity of reproducing with the lattice data a running
with momenta which is well known from continuum
calculations, the validity of the results relying on the
appropriate fulfillment of this requirement.
The method has been successfully applied to perform the

scale setting for unquenched simulations including four
degenerate light flavors. We have found that, within our
statistical uncertainties, the lattice spacings for Nf ¼ 4 and
Nf ¼ 2þ 1þ 1 simulations appear to be compatible. Thus,
we should conclude that, with our procedure, heavy-quark
mass effects on the scale setting for our Nf ¼ 2þ 1þ 1
simulations are of the same order as the statistical errors.
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