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We calculate the full two-loop electroweak matching corrections to the operator governing the decay
Bq → lþl− in the standard model. Their inclusion removes an electroweak scheme and scale uncertainty
of about �7% of the branching ratio. Using different renormalization schemes of the involved electroweak
parameters, we estimate residual perturbative electroweak and QED uncertainties to be less than �1% at
the level of the branching ratio.
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I. INTRODUCTION

The rare decays of Bq → lþl− with q ¼ d, s and
l ¼ e, μ, τ are helicity suppressed in the standard model
(SM) and can be predicted with high precision, which turns
them into powerful probes of nonstandard interactions. In
November 2012, LHCb [1] reported first experimental
evidence of the decay Bs → μþμ− with a signal signifi-
cance of 3.5σ and the time integrated and Charge Parity
(CP)-averaged branching ratio

BrðBs → μþμ−Þ ¼ ð3.2þ1.4−1.2ðstatÞþ0.5−0.3ðsysÞÞ×10−9; (1)

well in agreement with SM predictions. More recently,
the signal significance was raised to 4.0σ after analyzing
the currently available data set of 1 fb−1 at

ffiffiffi
s

p ¼ 7 TeV
and 2 fb−1 at

ffiffiffi
s

p ¼ 8 TeV, with the result [2]

BrðBs → μþμ−Þ ¼ ð2.9þ1.1−1.0ðstatÞþ0.3−0.1ðsysÞÞ × 10−9: (2)

CMS confirmed this independently utilizing the
complete data set of 5 fb−1 at

ffiffiffi
s

p ¼ 7 TeV and 20 fb−1
at

ffiffiffi
s

p ¼ 8 TeV [3] obtaining

BrðBs → μþμ−Þ ¼ ð3.0þ0.9−0.8ðstatÞþ0.6−0.4ðsysÞÞ × 10−9 (3)

and the slightly better signal significance of 4.3σ.
The large decay width difference ΔΓs of the Bs system

implies that the instantaneous branching ratio at time
t ¼ 0, Br½t¼0�ðBq → lþl−Þ, deviates from Br. Neglecting
for a moment cuts on the lifetime in the experi-
mental determination of Br, the fully time-integrated

and the instantaneous branching ratios are related in the
SM as [4]

Br ¼ Br½t¼0�

1 − yq
; where yq ¼

ΔΓq

2Γq
: (4)

LHCb has measured ys ¼ 0.088� 0.014 [5,6] and
established a SM-like sign for ΔΓs [7]. By 2018, the
experimental accuracy in Br is expected to reach
0.5 × 10−9 and with 50 fb−1 0.15 × 10−9 [8], the latter
corresponding to the level of about 5% error with respect to
the current central value. Results of comparable precision
may be expected from CMS, and perhaps also
from ATLAS.
Motivated by the experimental prospects, this work

presents a complete calculation of the next-to-leading
(NLO) electroweak (EW) matching corrections in the
SM, supplemented with the effects of the QED renormal-
ization group evolution (RGE). Thereby, we remove a
sizable uncertainty which has often been neglected in the
past and became one of the major theoretical uncertainties
after the considerable shrinking of hadronic uncertainties
from recent progress in lattice QCD.
After decoupling the heavy degrees of freedom

of the SM—the top quark, the weak gauge bosons and
the Higgs boson—at lowest order in EW interactions, the
decay Bq → lþl− is governed by an effective ΔB ¼ 1
Lagrangian

Leff ¼ VtbV�
tqC10P10 þ Lð5Þ

QCD×QED þ H:c: (5)

with a single operator P10 ¼ ½q̄LγμbL�½l̄γμγ5l� and its
Wilson coefficient C10, as well as the QCD × QED inter-
actions of leptons and five light quark flavors. Vij denotes
the relevant elements of the Cabibbo-Kobayashi-Maskawa
(CKM) quark mixing matrix. Here we deviate from the
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usual convention to factor out combinations of EW
parameters1, such as Fermi’s constant, GF, the QED fine
structure constant, αe, the W-boson mass, MW , or the sine
of the weak mixing angle sW ≡ sinðθWÞ. The most common
normalizations are

C10 ¼
4GFffiffiffi

2
p c10; C10 ¼

G2
FM

2
W

π2
~c10; (6)

with the LO Wilson coefficients

c10 ¼ − αe
4π

Y0ðxtÞ
s2W

; ~c10 ¼ −Y0ðxtÞ: (7)

They depend on the gauge-independent function Y0 [9],
where xt ¼ ðMt=MWÞ2 denotes the ratio of top-quark to
W-boson masses. We will frequently refer to the choice c10
and ~c10 as the “single-GF” and “quadratic-GF” normaliza-
tion, respectively. The former choice is the standard con-
vention of the ΔB ¼ 1 effective theory in the literature,
whereas the latter choice removes the dependence on
αe and sW in favor of GF and MW [10]. At lowest
order in the EW interactions both normalizations may
be considered equivalent due to the tree-level relation
GF ¼ παe=ð

ffiffiffi
2

p
M2

Ws
2
WÞ. In practice, however, large

differences arise oncenumerical input for theEWparameters
is used that corresponds to different renormalization
schemes. For example, a noticeable 7% change of the
branching ratio is caused by choosing s2W ¼ 0.2231 in the
on-shell scheme instead of s2W ¼ 0.2314 in the MS scheme
with the numerical values taken from Ref. [11]. At higher
orders in EW couplings, the analytic form of C10 depends on
the choice of normalization as well as the EW renormaliza-
tion schemeof the involvedparameters.Especially thepower
of GF affects the matching, whereas the choice of EW
renormalization scheme impliesdifferent finite counterterms
for the parameters. Thereby, the overall numerical
differences among the different choices of normalizations
and EW renormalization schemes become much smaller,
removing the large uncertainty present at lowest order.
The instantaneous branching ratio takes the form

Br½t¼0�ðBq → lþl−Þ ¼ N jC10j2; (8)

with the normalization factor

N ¼
τBq

M3
Bq
f2Bq

8π
jVtb V�

tqj2
m2

l

M2
Bq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l=M
2
Bq

q
: (9)

It exhibits the helicity suppression due to the lepton mass
ml and depends on the lifetime τBq

and the massMBq
of the

Bq meson. Moreover, a single hadronic parameter enters,
the Bq decay constant fBq

,

h0jq̄γμγ5bjB̄qðpÞi ¼ ifBq
pμ: (10)

It is nowadays subject to lattice calculations with errors at a
few percent level, eliminating this previously major source
of uncertainty [12–15]. The uncertainties due to fBq

, τBq

and yq approach a level of below 3% [16] in Br. Concerning
perturbative uncertainties, the strong dependence of C10 on
the choice of the renormalization scheme forMt is removed
when including the NLO QCD contribution in the strong
coupling αs [17–20]. So far the full NLO EW corrections
have not been calculated and in this work we close this
gap as previously done for the analogous corrections to
s → dνν̄ [21]. Being usually ignored in the budget of
theoretical uncertainties of Eq. (8), the importance of a
complete calculation has recently been emphasized [22].
There, the NLO EW corrections in the limit of large top-
quark mass have been employed, which is known to be
insufficient at the level of accuracy aimed at Ref. [21] and
the residual EW uncertainties were estimated to be at least
5% on the branching ratio.
In Sec. II we describe the calculation of the NLO EW

correction to C10 adopting the two choices of normalization
and using different renormalization schemes for the
involved EW parameters. In Sec. III, we summarize the
solution of the RGE and obtain C10 at the low-energy scale
of the order of the bottom-quark mass at the NLO in EW
interactions. Finally, in Sec. IV we discuss the reduction of
the EW renormalization-scheme dependences in C10 after
the inclusion of NLO EW corrections. In the accompanying
appendices A and B we collect additional technical
information on the matching calculation and the RGE,
respectively. Some supplementary details of Sec. IV have
been relegated to Appendix C.

II. MATCHING CALCULATION OF NLO
ELECTROWEAK CORRECTIONS

We obtain the EW NLO corrections to the Wilson
coefficient C10 by matching the effective theory of EW
interactions to the standard model. For this purpose we
evaluate one-light-particle irreducible Greens functions
with the relevant external light degrees of freedom up to
the required order in the EW couplings in both theories.
The Wilson coefficients are determined by requiring equal-
ity of the renormalized Greens functions order by order

Afullðμ0Þ¼! Aeffðμ0Þ (11)

at the matching scale μ0. It is chosen of the order of the
masses of the heavy degrees of freedom to minimize
otherwise large logarithms that enter the Wilson coeffi-
cients. The Wilson coefficients have the general expansion

1Since we shall not vary the EW renormalization scheme of the
CKM factor VtbV�

tq, we prefer to keep it as a prefactor, to have a
universal C10 for both q ¼ d, s.
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Ciðμ0Þ ¼ Cð00Þi þ ~αsC
ð10Þ
i þ ~α2sC

ð20Þ
i

þ ~αeðCð11Þi þ ~αsC
ð21Þ
i þ ~αeC

ð22Þ
i Þ þ � � � ; (12)

in the strong and electromagnetic ~αs;e ≡ αs;e=ð4πÞ running
couplings of the effective theory at the scale μ0, where we
follow the convention of Ref. [23]. This expansion starts
with tree-level contributions denoted by the superscript
(00), has higher-order QCD corrections ðm0Þ with m > 0,
pure QED corrections ðmmÞ with m > 0 and mixed QCD-
QED corrections ðmnÞ with m > n > 0, all of which
depend explicitly on μ0 except for (00). For C10 the nonzero
matching corrections start at order ~αe, i.e., for n ≥ 1. The

Cð11Þ10 [9] and Cð21Þ10 [17–20] contributions are known and

here we calculate Cð22Þ10 . Above, Eq. (12) has to be under-

stood as the definition of the components CðmnÞ
i that

complies with the single-GF normalization in the literature
[23]. Comparison with Eqs. (6) and (7) yields

Cð11Þ10 ¼ 4GFffiffiffi
2

p cð11Þ10 ¼ − 4GFffiffiffi
2

p Y0ðxtÞ
s2W

(13)

and

Cð11Þ10 ¼ G2
FM

2
W

π2 ~αe
~cð11Þ10 ¼ −G2

FM
2
W

π2 ~αe
Y0ðxtÞ (14)

showing that this convention introduces an artificial factor
1=αe into the components in the case of the quadratic-GF
normalization. However, we will organize the renormali-
zation group evolution (see Sec. III) such that these factors
are of no consequence, as should be.
Although the operator P10 does not mix with other

ΔB ¼ 1 operators under QCD, at higher order in QED
interactions such an operator mixing does take place
[23,24]. As a consequence the effective Lagrangian (5)
has to be extended

C10P10 →
X
i

CiPi; (15)

where the term ∼VubV�
uq½C1ðPc

1 − Pu
1Þ þ C2ðPc

2 − Pu
2Þ�

does not contribute to the order considered here. The
operators relevant to Bq→lþl− at the considered order
in strong and EW interactions comprise the current-current
operators (i ¼ 1, 2), QCD-penguin operators (i¼3, 4, 5, 6)
and the semileptonic operator (i ¼ 9, 10). We follow the
operator definition of Ref. [23] that does not include
the factor αe=ð4πÞ in P9;10. This factor is included in the
matching conditions of the Wilson coefficients at the
matching scale μ0 in Eq. (12). In the matching calculation
only P2 and P9 as defined in Appendix A1 are needed,
whereas the remaining operators enter in the renormaliza-
tion group evolution discussed in Sec. III.
We describe the calculation ofAfull andAeff in Secs. II A

and II B, respectively. In the SM calculation of Afull, we

apply different EW renormalization schemes for the
involved parameters to demonstrate in Sec. IV that the
renormalization scheme dependence is reduced to subper-
cent effects when including Cð22Þ10 . The schemes differ by
finite parts of the counterterms that renormalize the bare
parameters of the Lagrangian or equivalently the param-
eters appearing in the LOWilson coefficient. Nevertheless,
we use the same physical input in all schemes for the
numerical evaluation that we have chosen to be

GF; αeðMpole
Z Þ; αsðMpole

Z Þ;
Vij; Mpole

Z ; Mpole
t ; Mpole

H : (16)

GF is the Fermi constant as extracted from muon lifetime
experiments. It is itself a Wilson coefficient of the effective
theory and plays thus a special role in the calculation of EW
corrections; we postpone further discussion to Sec. II B.
The couplings αe and αs are the MS couplings at the scale
of the Z pole mass in the SM with decoupled top quark2.
Vij are elements of the CKMmatrix.Mpole

Z ,Mpole
t andMpole

H
are the pole masses of Z boson, top quark and Higgs boson,
respectively. The numerical values are summarized in
Table I.

A. Standard model calculation

We keep only the leading contributions of the expansion
in the momenta of external states, in which case the full
amplitude for b → qlþl− takes the form

Afull ¼
X
i

Afull;iðμÞhPiðμÞið0Þ: (17)

hPiðμÞið0Þ denote the tree-level matrix elements of oper-
ators mediating b → qlþl−, i.e., i ¼ 9, 10 as well as
evanescent operators defined in Appendix A 1. The Afull;i’s
are coefficient functions with the electroweak expansion

TABLE I. The physical input. αs;e are the running MS
couplings of the five-flavor theory at μ ¼ MZ. Masses are the
experimentally measured pole masses.

Parameter Value Ref.

GF 1.166379 × 10−5 GeV−2 [11]

αsðMpole
Z ÞðNf ¼ 5Þ 0.1184� 0.0007 [11]

αeðMpole
Z ÞðNf ¼ 5Þ ð127:944� 0.014Þ−1 [11]

Mpole
Z ð91:1876� 0.0021Þ GeV [11]

Mpole
t ð173:1� 0.9Þ GeV [11,25,26]

Mpole
H ð125:9� 0.4Þ GeV [11,27,28]

Δαð5Þe;hadrðMpole
Z Þ 0.02772� 0.00010 [11]

2i.e. W and Z bosons are still dynamical degrees of freedom.
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Afull;i ¼ Að0Þ
full;i þ ~αeA

ð1Þ
full;i þ ~α2eA

ð2Þ
full;i þ � � � ; (18)

with αe of the SM, i.e. six active quark flavors as well as
heavy weak gauge bosons and the Higgs boson. In the case

of the single-GF normalization, Að0Þ
full;i ¼ 0 for b → qlþl−

mediating operators, whereas Að0Þ
full;i ≠ 0 for the quadratic-

GF normalization due to the substitution αe=s2W → GF.
Our focus here is the calculation of the two-loop

contribution to Afull;10 and some parts of Afull;i at one-
loop that involve evanescent operators E9 and E10 (see
Appendix A 1). For this purpose, we calculate all two-loop
EW Feynman diagrams and the corresponding one-loop
diagrams with inserted counterterms, Fig. 1 depicts some
examples. We proceed as in Ref. [21] and perform all
calculations in the Feynman gauge ξ ¼ 1 using two
independent setups. Similarly to Ref. [21] also here we
find contributions from electroweak gauge bosons that are
1=s2W enhanced. In Appendix A 2 we discuss the more
technical aspects of the calculation, e.g. γ-algebra in d-
dimensions and loop-integrals. Here, we concentrate on the
electroweak renormalization conditions.
Having fixed the physical input, we define three

renormalization schemes and discuss the relation of their
renormalized parameters to the physical input in Eq. (16).
In all three schemes we use MS renormalization for αe and
the top-quark mass under QCD, whereas additional finite
terms are included into the field renormalization constants
as explained in more detail in Appendix A 2. Therefore, our
schemes differ only by finite EW renormalizations of sW ,
Mt andMW appearing at LO in c10. For ~c10, sW is absorbed
in the additional factor GF and needs no further
specification.

1. On-shell scheme

In the on-shell scheme, at the order we consider, the on-
shell masses of Z boson and top quark coincide with their
pole masses. The mass of the W boson is a dependent
quantity for our choice of physical input. We calculate it
including radiative corrections following Ref. [29]. This
relation introduces a mild Higgs-mass dependence of C10 at
LO. The weak mixing angle in the on-shell scheme is
defined by

s2W ≡ ðson–shellW Þ2 ¼ 1 − ðMon–shell
W =Mon–shell

Z Þ2: (19)

Therefore, the only finite counterterms necessary are δM2
Z,

δM2
W and δMt at one-loop, they are given in Refs. [30,31].

We also treat tadpoles as in Refs. [30,31]: we include
tadpole diagrams (see Fig. 1), and a renormalization δt to
cancel the divergence and the finite part of the one-loop
tadpole diagram. This way we ensure that all renormaliza-
tion constants apart from wave function renormalizations
are gauge invariant [32].

2. MS scheme

In the MS scheme the fundamental parameters are those
of the “unbroken” SM Lagrangian

g1; g2; g3; v; λ and yt: (20)

Here g3, g2 and g1 are the couplings of the SM gauge
group SUð3Þc × SUð2ÞL ×Uð1ÞY , v is the vacuum
expectation value of the Higgs field and λ its quartic
self-coupling, whereas yt is the top-Yukawa coupling.
The parameters are renormalized by counterterms sub-
tracting only divergences and logð4πÞ − γE terms, i.e.,
they are running MS parameters. We do not treat tadpoles
differently in this respect, only their divergences are
subtracted by the counterterm for v. By expressing the
parameters of the LO Wilson coefficients in terms of the
“unbroken”-phase parameters

s2W ¼ g21=ðg21 þ g22Þ; 4παe ¼ g21g
2
2=ðg21 þ g22Þ;

MW ¼ vg2=2; xt ¼ 2y2t =g22; (21)

we iteratively fix the values of the “unbroken” parameters
at the matching scale μ0. To this end, we require that the
physical input in Eq. (16) is reproduced to one-loop
accuracy.

3. Hybrid scheme

For Eq. (7), where sW appears at LO, we may adopt yet
another scheme. We renormalize the couplings αe and sW in
the MS scheme and the masses in xt on-shell. Effectively
this corresponds to including the on-shell counterterms for
masses and using Eq. (21) instead of Eq. (19) for sW.
Correspondingly, we use sW , αe, Mt, MW and MH as
fundamental parameters for the hybrid scheme. This
scheme is a better-behaved alternative to the on-shell

FIG. 1. Two-loop diagrams in the SM contributing to the b → qlþl− at NLO in EW interactions.
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scheme, in which the counterterm for sW receives large top-
quark mass dependent corrections. (see Appendix C).
Having fixed all renormalization conditions we evaluate

Að2Þ
full;10. In practice we calculate the MS amplitude and

include the appropriate counterterms in Að1Þ
full;10 to shift

from the MS to the on-shell or hybrid scheme. The full
expression for Að2Þ

full;10 is too lengthy to be included here.3

B. Effective theory calculation

The effective theory is described by the effective
Lagrangian in Eqs. (5) and (15) with canonically normal-
ized kinetic terms for all fields. To simplify the notation we
drop any indices indicating an expansion in ~αs throughout
this section. The fields and couplings are MS-renormalized
via the redefinitions of bare quantities

d →
ffiffiffiffiffiffi
Zd

p
d; l →

ffiffiffiffiffiffi
Zl

p
l; Cj →

X
i

CiẐi;j;

(22)

where d denotes down-type quark fields and l denotes
charged-lepton fields. The renormalization constant of the
Wilson coefficients is the matrix Ẑi;j arising from operator
mixing. It has an expansion in ~αe

Ẑi;j ¼ δi;j þ ~αeẐ
ð1Þ
i;j þ ~α2eẐ

ð2Þ
i;j þ � � � (23)

analogous to the expansion of the renormalization con-
stants of the fields and couplings given in Eq. (A12).
All loop diagrams in the effective theory vanish, since we

set all light masses to zero, expand in external momenta and
employ dimensional regularization. Accordingly, the effec-
tive theory amplitude is entirely determined through the
product of tree-level matrix elements hPjið0Þ, the Wilson
coefficients Ci and appropriate renormalization constants.
The renormalized amplitude reads

AeffðμÞ ¼
X
i

Aeff;iðμÞhPiðμÞið0Þ

¼ VtbV�
tq

X
i;j

CiðμÞẐi;jZjhPjðμÞið0Þ: (24)

As mentioned above, both the Wilson coefficients Ci and
the renormalization constants are expanded in ~αe as given
in Eqs. (12) and (23), respectively. The Zj’s summarize
products of field- and charge-renormalization constants of
the operator in question, i.e. for P10

Z10 ¼ ZdZl; (25)

which is the one required up to two-loop level in ~αe.

Only a few physical operators contribute to the part of
the amplitude in Eq. (24) proportional to hP10ið0Þ since only
a few mix either at one-loop or two-loop level into P10 and
have, at the same time, a nonzero Wilson coefficient at one-
loop or tree-level, respectively. These are: the operator P2

having a nonzero Wilson coefficient Cð00Þ2 as well as an
entry in Ẑð2Þ

2;10 and P9 that mixes at one-loop into P10 and
have a nonvanishing Cð11Þi . Apart from the physical oper-
ators also one evanescent operator, i.e. E9 contributes. We
give the definition of the operators in Appendix A 1 and
present some details on the calculation of the renormaliza-
tion constants in the five-flavor theory in Appendix A 3. All
contributing mixing renormalization constants of physical
operators can be extracted from the anomalous dimension
in the literature [24]. We collect all constants and discuss
the mixing of evanescent operators in Appendix A 3.
Finally, at the two-loop level

Að2Þ
eff;10 ¼ VtbV�

tqð ~αeÞn
�
Cð22Þ10 þ Cð11Þ10 Zð1Þ

10 þ Cð00Þ2 Ẑð2Þ
2;10

þ
X
i¼9;E9

Cð11Þi Ẑð1Þ
i;10

�
(26)

with the power n ¼ 2 and n ¼ 1 for the single- and
quadratic-GF normalization, respectively. In this equation
αe is the electromagnetic coupling constant in the ΔB ¼ 1
effective theory. It differs from the one in Table I by
threshold corrections due to W and Z gauge bosons and
from the one in the SM in Eq. (18) by the additional top-
quark threshold corrections as explained above Eq. (A9).
Note that the renormalization constant Ẑð2Þ

2;10, see Eq. (A14),
implies the existence of a quadratic logarithm that will be
resummed with the help of the RGE in Sec. III.
The one-loop Wilson coefficients in Eq. (26), multiplied

with renormalization constants, contribute finite terms to
the matching through their OðϵÞ terms. We reproduce the
finite andOðϵÞ parts of Cð11Þ9;10 in [33]. For C

ð11Þ
E9

only the finite
term is needed, we give it in Appendix A 3. For this
purpose we have matched also the one-loop amplitudes
proportional to the hP9;10; E9ið0Þ keeping OðϵÞ terms when
required.
The Fermi constant, GF, is very precisely measured in

muon decay and provides a valuable input for the deter-
mination of the EW parameters. Following [21], we define
GF to be proportional to the Wilson coefficient Gμ of the
operator Qμ ¼ ðν̄μLγρμLÞðēLγρνeLÞ that induces muon
decay in the effective Fermi theory

GF ≡ 1

2
ffiffiffi
2

p Gμ ¼
1

2
ffiffiffi
2

p ðGð0Þ
μ þ ~αeG

ð1Þ
μ þ � � �Þ; (27)

with the tree-level matching relation

3The complete analytic two-loop EW contribution in the on-
shell scheme for the quadratic-GF normalization, ~cð22Þ10 are given
in [44].

ELECTROWEAK CORRECTIONS TO … PHYSICAL REVIEW D 89, 034023 (2014)

034023-5



Gð0Þ
μ ¼ 2παe

s2WM
2
W
¼ 2

v2
(28)

and the NLO EW correctionGð1Þ
μ . Since we work at NLO in

EW interactions, Gð1Þ
μ enters the effective theory amplitude

in Eq. (24). Moreover, the power ofGF in the normalization
of the effective Lagrangian affects the matching contribu-

tion of Gð1Þ
μ =Gð0Þ

μ × Cð11Þi to Cð22Þi , in contrast to the leading

EW components Cð11Þi that remain unchanged when using
different powers. This can be best understood by the
explicit ~αe expansion for the single-GF normalization

C10 ∼GFc10 ∼ ½Gð0Þ
μ þ ~αeG

ð1Þ
μ �½cð11Þ10 þ ~αec

ð22Þ
10 �

¼ Gð0Þ
μ

�
cð11Þ10 þ ~αe

�
cð22Þ10 þ Gð1Þ

μ

Gð0Þ
μ

cð11Þ10

��
þOð ~α2eÞ (29)

and the quadratic-GF normalization

C10 ∼ ðGð0Þ
μ Þ2

�
~cð11Þ10 þ ~αe

�
~cð22Þ10 þ 2

Gð1Þ
μ

Gð0Þ
μ

~cð11Þ10

��
; (30)

which receives an additional factor of 2. Depending on the
choice of normalization, the according contribution propor-

tional to Gð1Þ
μ =Gð0Þ

μ × Cð11Þi enters Eq. (26).
The merit of defining GF to be itself a Wilson coefficient

at the matching scale is that the large uncertainties from the
scale dependence of the vacuum expectation value in Gð0Þ

μ

do not appear at all at LO in the Wilson coefficient.
This way, we obtain Cð22Þ10 , which has been known only in

the large top-quark-mass limit [34,35], by matching the
parts of Aeff ∼ hP10ið0Þ and Afull ∼ hP10ið0Þ at NLO order in
~αe and verify the explicit cancellations of all leftover
divergences.

III. RENORMALIZATION GROUP EVOLUTION

This section summarizes the results of the evolution of
the Wilson coefficients under the renormalization group
equations from the matching scale μ0 down to the low scale
μb. The matching scale μ0 is of the order of the masses of
the decoupled heavy degrees of freedom ∼100 GeV and
μb ∼ 5 GeV of the order of the bottom-quark mass at which
matrix elements are evaluated. The according anomalous
dimension matrices of the ΔB ¼ 1 effective theory, includ-
ing NLO EW corrections, are given in Ref. [24] and the
RGE is solved in Ref. [23] for the single-GF normalized
Lagrangian in Eqs. (5) and (7) including the running of αe.
These corrections have already been considered in Ref. [10]
in the analysis of Bq → lþl−.
The evolution operator Uðμb; μ0Þ relates the Wilson

coefficients at the matching scale, see Eq. (12), to the
ones at μb:

CiðμbÞ ¼
X
j

Uðμb; μ0ÞijCjðμ0Þ: (31)

At the low-energy scale the Wilson coefficients may
again be expanded in αsðμbÞ and the small ratio
κ ≡ αeðμbÞ=αsðμbÞ:

CiðμbÞ ¼
X
m;n¼0

½ ~αsðμbÞ�m½κðμbÞ�n Ci;ðmnÞ: (32)

We obtain the explicit expressions for the components
Ci;ðmnÞðμbÞ from the solution given in Ref. [23] with further
details and the solution for i ¼ 10 presented in
Appendix B.
In the single-GF normalization the Wilson coefficient

c10ðμbÞ starts at order αe with the following nonzero
contributions

c10ðμbÞ ¼ ~αeðc10;ð11Þ þ ~αsc10;ð21ÞÞ

þ ~α2e

�
c10;ð02Þ
~α2s

þ c10;ð12Þ
~αs

þ c10;ð22Þ

�
: (33)

The components ci;ðmnÞ are functions of the ratio η≡
αsðμ0Þ=αsðμbÞ and the high-scale components cðmnÞ

j of
Eq. (12). For illustration, we give here numerical results
for the exemplary values μ0 ¼ 160 GeV and μb ¼ 5 GeV,
yielding η ¼ 0.509,

c10;ð11Þ ¼ cð11Þ10 ; c10;ð21Þ ¼ ηcð21Þ10 ; c10;ð02Þ ¼ 0.0058cð00Þ2 ;

c10;ð12Þ ¼ 0.068cð00Þ2 þ 0.005cð10Þ1 − 0.005cð10Þ4

þ 0.252cð11Þ9 þ 1.118cð11Þ10 ;

c10;ð22Þ ¼ 0.133cð10Þ1 þ 0.066cð10Þ4 þ 0.002cð20Þ1

þ 0.001cð20Þ2 þ 0.004cð20Þ3 − 0.002cð20Þ4

þ 0.033cð20Þ5 − 0.039cð20Þ6 − 1.593cð11Þ9

− 2.226cð11Þ10 þ 0.128cð21Þ9 þ 0.569cð21Þ10 þ cð22Þ10 :

(34)

We give the explicit solution for arbitrary values of η in
Appendix B 2. Furthermore, the c10;ðmnÞ depend on the
initial matching conditions of the Wilson coefficients, the
cðmnÞ
i in Eq. (12), at various orders: tree-level for i ¼ 2, one-
loop in αs for i ¼ 1, 4 and in αe for 9, 10 and two-loop in α2s
for i ¼ 1;…; 6 and in αeαs for i ¼ 9, 10 [33] as well as the
two-loop NLO EW correction for i ¼ 10 presented
in Sec. II.
We derive the equivalent expressions for the case of the

quadratic-GF normalization from the single-GF normali-
zation in Eq. (32)
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~ciðμbÞ ¼
X
m;n¼0

½ ~αsðμbÞ�m−1½κðμbÞ�n−1 ~ci;ðmnÞ: (35)

For i ¼ 10 the lowest-order nonzero terms

~c10ðμbÞ ¼ ~c10;ð11Þ þ ~αs ~c10;ð21Þ

þ ~αe

�
~c10;ð02Þ
~α2s

þ ~c10;ð12Þ
~αs

þ ~c10;ð22Þ

�
; (36)

already start at order α0e. The components of the initial
Wilson coefficients in Eq. (12) are related as

~cðmnÞ
i ¼ s2Wc

ðmnÞ
i for n < 2; (37)

where a factor ~αeðμ0Þ has been pulled out and substituted
by ~αeðμbÞ. For cases n ≥ 2, which is here only of concern
for C10, an additional shift has to be taken into account
explicitly in the matching analogously to the discussion
below Eq. (27). Eventually, the downscaled components
~ci;ðmnÞ in Eq. (35) are given by Eq. (34) with the replace-
ment cðmnÞ

i → ~cðmnÞ
i and by omitting the contributions of

~cð11Þ10 in ~c10;ð12Þ as well as ~cð11Þ10 and ~cð21Þ10 in ~c10;ð22Þ, as
explained in more detail in Appendix B.

IV. NUMERICAL IMPACT OF NLO
EW CORRECTIONS

In Sec. II we presented the details of the calculation of
the complete NLO EW matching corrections to the Wilson
coefficient C10 in the SM and in Sec. III the effects of the
renormalization group evolution within the ΔB ¼ 1 effec-
tive theory from the matching scale μ0 to the low energy
scale μb. In this section, we discuss the numerical impact of
these corrections on C10 at both scales and assess the
reduction of theoretical uncertainties associated with the
different choices of the renormalization scheme. Finally, we
shall briefly comment on the branching ratio Br ∝ jC10j2.
Throughout, we use the four-loop β function for αs

including the three-loop mixed QCD × QED term given in
Ref. [23]. When crossing the Nf ¼ 5 to Nf ¼ 6 threshold
at the matching scale μ0, we include the three-loop QCD
threshold corrections using the pole-mass value for the
top-quark mass Mpole

t (see Table I). The running of αe is
implemented including the two-loop QED and three-loop
mixed QED × QCD terms presented in [23], where the
threshold corrections have been omitted when crossing the
Nf ¼ 5 to Nf ¼ 6 threshold entering the evolution of αs.
We list the initial conditions for the coupling constants in
Table I and remark that the value of αe given in Ref. [11]
refers to the coupling within the SM with the top quark
decoupled. From this value we determine αe at μ ¼ MZ in
the SM with Nf ¼ 6 with the help of the decoupling
relation of Eq. (A9) thereby omitting the constant and
logarithmic term from the gauge boson contribution and
determine the dependent EW parameters as described in

Sec. II A. The value of αe in the effective theory is found as
described below the decoupling relation of Eq. (A9).
We determine the running top-quark mass in the MS

scheme with respect to QCD from Mpole
t with the aid of

the three-loop relation4, mtðmtÞ ¼ 163:5 GeV, and evolve
it to the matching scale applying the four-loop expression
of the quark-mass anomalous dimension. Here mt denotes
the top-quark mass, where QCD corrections are MS-
renormalized, but EW corrections are considered in the
on-shell scheme. In the case that the latter are also
MS-renormalized, we shall choose the notation m̄t. The
additional shift from mt → m̄t, while numerically quite
significant yielding m̄tðm̄tÞ ¼ 172:4 GeV, is dominated by
the contribution of tadpole diagrams. The tadpole-induced
shift cancels in the ratio xt ¼ m̄2

t =M̄2
W entering the LO

Wilson coefficient.
As already emphasized in Sec. II, once considering

higher EW corrections, the different choices of normali-
zation of the effective Lagrangian from Eq. (6) affects
differently the NLO EW matching corrections of C10. As
renormalization schemes (RS) we consider the on-shell
scheme, the MS scheme and the hybrid scheme introduced
in Sec. II A, which we abbreviate in the following as
RS ¼ OS, MS and HY. We apply both, the single-GF and
the quadratic-GF normalization for the on-shell scheme
denoted as RS ¼ OS-1 and OS-2, respectively. For RS ¼
MS and HY we use only the single-GF normalization.
We first consider the size and the reduction of the scheme

dependences in C10 at the matching scale

C10ðμ0Þ ¼
( 4GFffiffi

2
p ~αeðμ0Þ½cð11Þ10 þ ~αeðμ0Þcð22Þ10 ðμ0Þ�
G2

FM
2
W

π2
½~cð11Þ10 þ ~αeðμ0Þ~cð22Þ10 ðμ0Þ�

; (38)

for the single- and quadratic-GF normalization, respec-
tively, after including the NLO EW corrections Cð22Þ10 . To
separate the effects of the EW calculation, we first switch
off any QCD dependence. Namely, we omit the NLO QCD
correction Cð21Þ10 and neglect the μ0 dependence of the top-
quark mass under QCD by fixing the QCD scale and using
mtðmtÞ as the on-shell top-quark mass under EW renorm-
alization, as far as OS-1, OS-2 and HY schemes are
concerned. In the MS scheme we perform the additional
shift mt → m̄t using the value of mtðmtÞ as input value.
Note, that for the choice of scale of mt in the running QCD

top mass, the omitted NLO QCD correction Cð21Þ10 is

particularly small [18–20], i.e. the LO result Cð11Þ10 accounts
for the dominant part of the higher-order QCD correction.
The LO and (LO þ NLO EW) results are depicted

in Fig. 2 for the four renormalization schemes. For
μ0-independent top-quark mass the LO C10 is μ0

4The choice of the matching scale that determines the Nf ¼ 5
to Nf ¼ 6 threshold has a numerically negligible impact for μ0 ∈½50; 300� GeV considered here.
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independent in the OS-2 scheme, whereas the replacement
GF → αeðμ0Þ=ðson−shellW Þ2 introduces a μ0 dependence in
OS-1 and a quite significant shift of about 4% with respect
to OS-2, which translates into an 8% change of the LO
branching ratio. Although based on the same single-GF
normalization, the MS and HY schemes exhibit relatively
large shifts with respect to OS-1 and a modified μ0
dependence due to the MS renormalization of sW in both
HY and MS schemes and additionally the EW MS
renormalization of the top-quark and W mass in the MS
scheme. The overall uncertainty due to EW corrections
at LO may be estimated from the variation of C10 given by
all four schemes ranging in the interval C10ðμ0Þ ∈
½−8.9;−8.2� × 10−8 for μ0 ∈ ½50; 300� GeV corresponding
to a �8% uncertainty on the level of the branching ratio.
The inclusion of the NLO EW corrections eliminates
this large uncertainty, as all four schemes yield aligned
(LOþ NLO EW) results and the μ0 dependence cancels to
large extent in all schemes. The residual uncertainty due to
EW corrections is now confined to the small interval of
C10ðμ0Þ ∈ ½−8.31;−8.25� × 10−8 at the scale μ0, it is less
than �0.4% corresponding to �0.8% on the branching
ratio. The strong reduction of the μ0 dependence in Fig. 2 is
due to the inclusion of NLO corrections in the relation of
EW parameters, which are formally not part of the effective
theory and hence cannot be canceled by the RGE in the
effective theory. At LO in the effective theory there is no
renormalization group mixing of C10 and the μ0 dependence
may be used directly as an uncertainty. As discussed in
Sec. III, beyond LO in QED the operator mixing will
reduce the remaining μ0 dependence even further.
Before proceeding, we comment on the OS-1 and MS

scheme and why we shall discard them for the estimate of
residual higher-order uncertainties. The OS-1 scheme
exhibits the worst perturbative behavior of all four schemes,
as seen in Fig. 2. The sW-on-shell counterterm induces this,
for an electroweak correction, unnaturally large shift at
two-loop. As further discussed in Appendix C, the top-
quark mass dependence of the sW-on-shell counterterm
implies a significant higher-order QCD scale dependence,
which we consider artificial. On the other hand, the OS-2
and HY schemes do not exhibit this strong dependence

on the top-quark mass and the estimate of the size of
higher-order QCD contributions by varying the scale of mt
indicates much smaller corrections. In view of this, we
restrict ourselves to schemes with reasonable convergence
properties and leave OS-1 aside. In the case of the MS
scheme, the application of RG equations is required for the
iterative determination of the EW parameters from the input
given in Eq. (16). For the purpose of Fig. 2, the presence of
QCD could be ignored and lowest-order RG equations
were sufficient. However, in the general case the solution of
the according RG equations are rather involved and we
prefer to use the comparison of the HYand OS-2 scheme to
estimate higher order EW × QCD corrections.
In the following, we include QCD effects and discuss

C10 at the low-energy scale μb after applying the RGE
running presented in Sec. III. We express the Wilson
coefficient C10ðμbÞ as a double series in the running
couplings ~αs and ~αe, see Eqs. (32) and (34), with five
relevant contributions C10;ðmnÞ, (mn ¼ 11, 21, 02, 12, 22),
that depend on Wilson coefficients of various other
operators at the matching scale μ0. So far, only the LO≡
ðmn ¼ 11Þ and the NLO QCD≡ ðmn ¼ 11þ 21Þ con-
tributions were known. Now, we can include the full
NLO EW correction with the additional contributions
ðmn ¼ 11þ 21þ 02þ 12þ 22Þ≡ NLO ðQCDþ EWÞ5.
For this purpose, also the scale dependence of mt that
originates from QCD will be taken into account when
varying the matching scale μ0. Note that C10ðμbÞ is
independent of the matching scale μ0 up to the consid-
ered orders in couplings due to the inclusion of the RGE
evolution. However, the residual μb dependence will only
be canceled by the according μb dependence of the
matrix elements of the relevant operators.
Figure 3 shows the μ0 dependence of C10ðμb ¼ 5 GeVÞ

at LO, NLO QCD and NLO (QCDþ EW) in the OS-2 and
HY schemes. It is clearly visible that the dependence on the
renormalization scale ofmt reduces when going from LO to
NLO QCD and that the LO results coincide with the ones at

FIG. 2. Comparison of the matching scale, μ0, dependence of C10 at the scale μ0 in four renormalization schemes (OS-2, OS-1, HYand
MS) at LO (dotted) and with NLO EW corrections (solid). See text for more details.

5These corrections were discussed in the large top-quark-mass
limit including the RGE effects in Ref. [10], whereas RGE effects
were neglected in Ref. [22] for ðmn ¼ 02; 12; 22Þ.
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NLO QCD at the scale μ0 ≈ 150 GeV. A further reduction
of this scheme dependence requires the inclusion of
NNLO QCD corrections [36]. The NLO QCD result is
quite different in the OS-2 and HY scheme comprising
values of C10ðμbÞ ∈ ½−8.54;−7.97� × 10−8. The NLO
(QCDþ EW) result shows again rather large shifts with
respect to NLO QCD and a clear convergence of both
schemes toward the same value. The results of the OS-2
and HY schemes are now confined within C10ðμbÞ ∈
½−8.34;−8.11� × 10−8 reducing the combined uncertainty
due to scheme dependencies of both QCD and EW
interactions to �1.4%. Again, we would like to remind
the reader that a substantial part of this uncertainty is due to
so far unknown NNLO QCD corrections. We estimate the
uncertainty due to higher-order EWand QCD corrections to
our two-loop EW result from (i) the ratio of the results of
the HY to the OS-2 scheme, thereby eliminating the
numerically leading QCD μ0-dependence of mt, and (ii) by
varying the scale μ0 only in mt of the two-loop EW

matching corrections cð22Þ10 (or ~cð22Þ10 ). As can be seen in

Fig. 4, at the level of NLO QCD the ratio deviates quite
strongly from 1 whereas at NLO ðQCDþ EWÞ the devia-
tions are less than 0.3%. The ratio of the LO results
coincides with the ratio of the NLO QCD one. We find a
similar μ0 dependence of the OS-2 and HY results (about
�0.1%) when varying the scale only in mt of the
EW two-loop matching correction. We choose the OS-2
scheme with μ0 ¼ 160 GeV to predict the central value
of C10 ¼ −8.341 × 10−8, the HY scheme yields
−8.329 × 10−8, and we assign an error due to higher-order
EW corrections from the variation of μ0 of about �0.3%
as suggested by the comparison of the OS-2 and HY
schemes.
We now turn to the discussion of the residual μb

dependence for the fixed value μ0 ¼ 160 GeV. As already
mentioned above, including the according matrix elements
of the involved operators shall decrease this dependence
further, however, for the moment it remains an additional
source of uncertainty. Figure 5 shows C10ðμbÞ at LO, NLO
QCD and NLO ðQCDþ EWÞ in the OS-2 and HY
schemes. Whereas the values of C10ðμbÞ are quite different
in all three schemes at NLO QCD, the inclusion of NLO
ðQCDþ EWÞ corrections in the form of the renormaliza-
tion group evolution yields a convergence toward the same
value and a very small residual μb dependence in each
scheme of less than �0.2% (OS-2: �0.16% and HY:
�0.20%) when varying μb ∈ ½2.5; 10� GeV. We would like
to note, that the nonperturbative uncertainty due to
unknown QED corrections in the evaluation of the matrix
elements is an additional source of uncertainty not included
in the above estimate.
The dependence of the EW corrections on the Higgs

mass is entirely negligible. Varying MH ∈ ½120; 130� GeV
induces variations in C10 of less than �0.01%.
As our final result we choose for the central value the

OS-2 scheme with scale settings μ0 ¼ 160 GeV and
μb ¼ 5 GeV

C10 ¼ ð−8.34� 0.04Þ × 10−8; (39)

FIG. 3. The μ0 dependence of the Wilson coefficient C10ðμb ¼ 5 GeVÞ in two renormalization schemes (OS-2, HY) at LO (dotted),
NLO QCD (dashed) and NLO (QCD þ EW) (solid). See text for more details.

FIG. 4. The μ0 dependence of the ratio of the Wilson coefficient
C10ðμb ¼ 5 GeVÞ in the HY and the OS-2 scheme at LO and
NLO QCD (dashed) and NLO (QCDþ EW) (solid). LO and
NLO QCD curves coincide.
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where we have estimated higher-order corrections of EW
origin from the scale variations of μ0 ∈ ½50; 300� GeV and
μb ∈ ½2.5; 10� GeV in two schemes, OS-2 and HY, and
added linearly the two errors. We have neither included into
the error budget the residual errors associated to higher
QCD corrections that can be removed by means of the
NNLO QCD calculation [36] nor any of the parametric
errors listed in Table I. To show the improvements of our
final result (39), we quote for comparison the results at
NLO QCD

COS−210 ¼ −8.54 × 10−8; CHY10 ¼ −8.14 × 10−8 (40)

taken from the according curves of the OS-2 and HY
schemes in Fig. 3.

Finally, we compare our prediction with the previous
estimate [22], which was obtained using the large-mt
approximation of Cð22Þ10 and neglecting the effects of the
RGE evolution. In particular, the authors found in the HY
scheme BR½t¼0� ¼ 3.28 × 10−9 in Table II of their work.
Adopting the same numerical input (fBs

¼ 227 MeV,
τBs

¼ 1.466 ps−1, MBs
¼ 5.36677 GeV, jVtbV�

tsj ¼
0.0405, mμ ¼ 105:6584 MeV ⇒ N ¼ 4.48409 × 105)
and Eq. (39), our result BR½t¼0� ¼ 3.13 × 10−9 is about
5% lower, mainly due to the above mentioned approx-
imations. Furthermore, the authors of Ref. [22] argued that
NLO EW corrections in the HY scheme should be small
and suggested a procedure, based on LO expressions, that
lead to the preliminary value of BR½t¼0� ¼ 3.23 × 10−9 (see
Eq. (17) in Ref. [22]), which is closer to our result and
deviates only by 3%. In particular it was suggested to use

FIG. 5. The μb dependence of the Wilson coefficient C10ðμbÞ for fixed μ0 ¼ 160 GeV in two renormalization schemes (OS-2, HY) at
LO (dotted), NLO QCD (dashed) and NLO (QCD þ EW) (solid). See text for more details.

TABLE II. Numerical values of bi, d
ðjÞ
i and eðjÞi entering (B10).

i 1 2 3 4 5 6 7 8

bi 0.00354 0.01223 −0.00977 −0.01070 −0.00572 0.00022 0.01137 −0.00117
dð2aÞi 0 0 0.61602 0.44627 0.57472 0.08573 −0.48807 −0.24089
dð2bÞi −1.18162 0.22940 0.06522 −0.04380 −0.02201 −0.00316 −0.03366 −0.00414
dð1Þi 0.01117 −0.03088 0.00411 0.00713 0.00478 0.00012 0.00379 −0.00023
dð4Þi −0.00799 −0.03666 0.06300 0 −0.01519 −0.00071 0 −0.00344
eð1aÞi 0 0 −0.25941 −0.29751 −0.48014 0.04647 −0.16269 −0.04728
eð1bÞi 1.13374 0.09381 −0.03041 0.00781 0.01838 −0.00138 −0.02259 0.00121

eð4aÞi 0 0 −4.03683 0 1.52565 −0.27461 0 −0.70642
eð4bÞi 3.38669 −0.10885 0.16283 0 0.06697 −0.01681 0 0.00137

eð1Þi 0.01117 −0.03088 0.00411 0.00713 0.00478 0.00012 0.00379 −0.00023
eð2Þi 0.00354 0.01223 −0.00977 −0.01070 −0.00572 0.00022 0.01137 −0.00117
eð3Þi 0.02179 −0.12336 0.07870 0 0.01930 0.00873 0 −0.00516
eð4Þi −0.00799 −0.03666 0.06400 0 −0.01519 −0.00071 0 −0.00344
eð5Þi 0.19550 −0.93249 0.37858 0 0.39909 0.05921 0 −0.09989
eð6Þi −0.17154 0.39616 0.01201 0 −0.19423 0.00357 0 −0.04597
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EW parameters αe and sW in the MS scheme at the scale
MZ ≈ 90 GeV and the LO expression cð11Þ10 ∼ Y0ðxtÞ with
mtðmtÞ with an additional correction factor ηY to account
for higher-order QCD corrections from cð21Þ10 . We find from
Fig. 2, 3rd panel for the HY scheme, at μ0 ¼ 90 GeV a
deviation of about 1.5% between the LO result and the
NLO EWone. We would like to close this comparison with
the remark that the authors of Ref. [22] work at LO in the
EW couplings allowing them to combine values of the
input parameters which are dependent beyond the LO,
where as in our case certain EW parameters, especiallyMW
and sW , do depend on the input quantities of our choice in
Eq. (16). As a consequence, a straightforward numerical
comparison is not possible, however, adopting the sug-
gested procedure using our numerical values of dependent
quantities we obtain a slightly larger value BR½t¼0� ¼
3.24 × 10−9 instead of 3.23 × 10−9. For definiteness we
give here our value Mon–shell

W ¼ ð80:358� 0.008Þ GeV
obtained with [29] and our input values, which is close
to the current measurement MPDG

W ¼ð80:385�0.015ÞGeV
[11]. The largest uncertainty is due to the variation ofMpole

t
by �0.9 GeV. Moreover, we use the nondecoupling
version for the MS renormalization of s2W and obtain
s2WðMZÞ ¼ 0.2317 compared to the value 0.2314 compiled
by the PDG [11].

V. CONCLUSIONS

We have calculated the NLO EW corrections to the
Wilson coefficient C10 that governs the rare decays
Bq → lþl− in the standard model. To assess the size of
higher-order corrections, the numerical analysis has been
performed within three different renormalization schemes
of the involved EW parameters, described in Sec. II A, and
two different normalizations of the effective Lagrangian,
given in Eq. (6). The inclusion of NLO EW corrections
strongly reduced the scheme dependences present at LO for
all considered schemes. We identified the two schemes with
the better convergence behavior and estimated the uncer-
tainty from missing beyond NLO EW corrections to be
about �0.3% for C10. The first renormalization scheme is
based on a new normalization [10] that eliminates the ratio
αe=s2W → GF in favor of Fermi’s constant. The second is
based on the MS scheme for both quantities entering the
ratio αe=s2W [21].
Apart from the NLO EWmatching corrections to C10, we

took into account the effects of the renormalization group
running of C10 caused by operator mixing at higher order in
QED in the effective theory. As we do not include QED
corrections to the matrix elements of the relevant operators
we estimated the remaining perturbative uncertainty due to
the variation of the low-energy scale μb and found an about
�0.2% uncertainty for C10.
In the error budget, we do not include uncertainties due

to higher-order QCD corrections, which are removed by the
NNLO QCD calculation [36], nor parametric uncertainties

of C10 and the branching ratio, which are discussed in detail
in Ref. [37].
Our calculation removes an uncertainty of about �7% at

the level of the branching ratio and gives smaller values
compared to the conjecture given in [22] by about ð3–4Þ%.
We have estimated the final uncertainties due to beyond
NLO EW corrections at the matching scale μ0 and low-
energy scale μb. The combination of both results in
uncertainties of�0.5% at the level of C10 and consequently
�1% on the branching ratio.
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APPENDIX A: DETAILS ON THE MATCHING
CALCULATION

1. Operator basis

Throughout the paper, we use the same definition of the
operators as in Ref. [23]. The RGE evolution from the
matching scale μ0 down to μb involves the operators
mentioned in Sec. III, whereas here we list only operators
whose Wilson coefficients contribute to the matching of the
NLO EW correction to C10 in Sec. II. They are the physical
operator P2 and the according evanescent operator E2

6 that
mediate b → qc̄c

P2 ¼ ðq̄LγμcLÞðc̄LγμbLÞ; (A1)

E2 ¼ ðq̄LγμνρcLÞðc̄LγμνρbLÞ; (A2)

as well as P9, P10 and the according evanescent operators
E9 and E10 [24] that mediate b → qlþl−

P9 ¼ ðq̄LγμbLÞ
X
l

ðl̄γμlÞ; (A3)

P10 ¼ ðq̄LγμbLÞ
X
l

ðl̄γμγ5lÞ; (A4)

E9 ¼ ðq̄LγμνρbLÞ
X
l

ðl̄γμνρlÞ − 10P9 þ 6P10; (A5)

6Actually, E2 does not contribute to the matching, but only
because it does not mix in P10 at one-loop, i.e. Ẑð1Þ

E2;10
¼ 0.
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E10 ¼ ðq̄LγμνρbLÞ
X
l

ðl̄γμνργ5lÞ þ 6P9 − 10P10: (A6)

The evanescent operators vanish algebraically in d ¼ 4
dimensions. Above γμνρ ≡ γμγνγρ and γμνρ ≡ γμγνγρ. In our
case, there are no equation-of-motion vanishing operators
with a projection on hP10ið0Þ to contribute to the matching.

2. Details on the standard model calculation

The two-loop EW SM calculation is very similar to the
analogous calculation for the K → πνν̄ decays [21]. The
calculation comprises of generating and calculating all two-
loop topologies for the transition b → qlþl− (Fig. 1).
We perform two independent calculations, in the first we

use FEYNARTS [38] to generate the topologies and a self-
written MATHEMATICA program to evaluate them and in the
second QGRAF [39] and a self-written FORM [40]
program, respectively.
By setting the external momenta and the masses of all

fermions except for the top quark to zero all diagrams
reduce to massive tadpoles with maximally three different
masses. We reduce them to a few known master integrals
using the recursion relations from Refs. [33,41].
We work in dimensional regularization, which raises the

question of how to treat γ5 in d ≠ 4 dimensions. The naive
anticommutation relation (NDR) fγ5; γμg ¼ 0 can lead to
algebraic inconsistencies in the evaluation of traces with
γ5’s. Yet, the algebraically consistent definition of γ5 by ’t
Hooft-Veltman (HV) [42] leads to spurious breaking of the
axial-current Ward identities and as such requires the
incorporation of symmetry-restoring finite counterterms.
Diagrams that are free of algebraic inconsistencies in the
NDR scheme yield the same finite result after the appro-
priate counterterms are added. This trivially holds for all
diagrams free of internal fermion loops as well as for
diagrams that involve traces with an even number of γ5
matrices if the γ5 matrices are eliminated through naive
anticommutation from the relevant traces [43]. Since self-
energy diagrams involving a single axial coupling vanish,
diagrams involving fermionic loops on bosonic propagators
also correspond to the same finite expression in both
schemes after appropriate renormalization. Accordingly,
special care has to be taken only for diagrams involving a
fermion-triangle loop and coming with an odd number of γ5
matrices. We use the HV prescription for these type of
diagrams, since in particular the diagram with three γ5
matrices cannot be simply calculated in the NDR scheme.
Here we note that the finite renormalization, which will
restore the axial-anomaly relation of diagrams involving
fermion traces, will drop out in our calculation after the sum
over the complete set of standard model fermions is
performed. This follows from the fact that the standard
model is anomaly free and can be understood by noting that
e.g. the difference of the singlet and nonsinglet counterterm
in Ref. [45] has opposite sign for up-type and down-type

quarks. Yet, one subtlety could arise from charged W and
Goldstone bosons connecting the fermion-triangle diagram
with the external fermion line. The axial couplings on the
external line could in principle result in a spurious breakingof
the axial-current Ward identity if treated in the HV scheme.
Yet, only the 4-dimensional part of this coupling contributes if
the fermion triangle contains an odd number of γ5 matrices,
since the corresponding diagrams are either finite after
applying the Glashow-Iliopoulos-Maiani mechanism or their
traces vanish. Accordingly, we can safely use the HV scheme
in these circumstances without the need of an extra finite
renormalization and calculate all other diagrams in the NDR
scheme. The effective theory calculation does not involve
fermion traces with γ5 and for this reason can be performed
completely in the NDR scheme.
In the SM, the renormalization scheme of the fermion

fields f ¼ q;l, i.e. quarks and leptons, is chosen such that
the kinetic terms in the effective theory remain canonically
normalized at NLO in EW interactions. As a consequence,
Wilson coefficients of dimension three b → s mediating
operators in the effective theory are zero. The bare SM
fields, fð0Þ, with flavor type i and of chirality-type a are
renormalized

fð0Þi;a ¼
�
δij þ

1

2
Za
ij

�
fj;a (A7)

with the help of the matrix-valued field renormalization
constant Za. The latter is determined from one-loop f → f0
two-point functions such that the matching relation for the
fields in the SM and effective theory

ffull ¼ feff ; (A8)

holds, implying that tree-level matrix elements of operators,
hPiið0Þ, are the same in the SM and effective theory
amplitude, see Eqs. (17) and (24), respectively. For this
purpose, the two-point functions are evaluated in an
expansion up to first order in external momenta and masses
over heavy masses. The heavy particle contributions yield
finite parts to Za, whereas light particle contributions
eventually drop out in the matching and thus may be
discarded in the calculation. In addition, the flavor off-
diagonal quark-field renormalization constant Zbq is deter-
mined at two-loop level from the two-point function b → q.
The counterterm of the CKM matrix is entirely

determined by the field renormalization constants ZL of
the up- and down-quark fields. This renormalization
prescription corresponds to a definition of the CKM
elements in the effective theory where the kinetic terms
of all light quark fields are canonical.
Since we renormalize both the couplings αfulle and αeffe of

the full and effective theory, respectively, in the MS
scheme, the αe threshold corrections have to be included
in the case of the single-GF normalization. In the threshold
corrections, Δαe,
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αfulle ¼ αeffe

�
1þ αeffe

4π
Δαe

�
;

Δαe ¼ − 2

3
− 14 ln

μ

MW
þ 32

9
ln

μ

Mt
(A9)

the first two terms arise from the decoupling of the
electroweak gauge bosons and the last term from the top
quark at the scale μ. Since the definition of αeðMZÞ in
Table I compiled by the particle data group [11] already
implies a decoupled top quark, we determine αeffe from
αeðMZÞ using only the gauge boson contribution and find
αeffe ðMZÞ ¼ 1=127:751 that we use in our numerical
evaluations.
In order to match consistently, we apply Eq. (A9) to

substitute the αfulle → αeffe , which affects the matching at
next-to-leading order due to an additional contribution in
the amplitude of the full theory from the lower order part in
Eq. (18) (omitting here the subscript Afull;10 → A)

~αfulle Að1Þ þ ð ~αfulle Þ2Að2Þ

¼ ~αeffe Að1Þ þ ð ~αeffe Þ2½Að2Þ þ ΔαeAð1Þ�: (A10)

3. Details on the effective theory calculation

Before being able to evaluate the two-loop b → qlþl−
amplitude in the effective theory we need to know all
Wilson coefficients and renormalization constants appear-
ing in Eq. (26). The tree-level contribution Cð00Þ2 and the
one-loop results Cð11Þ9 and Cð11Þ10 are given in Ref. [33]
including the OðϵÞ terms for the latter two. Here we give in
addition the Wilson coefficients of the two evanescent
operators

cð11ÞE9
¼ cð11ÞE10

¼ 1

16s2W

xt
ðxt − 1Þ2 ð1 − xt þ log xtÞ þOðϵÞ:

(A11)

The OðϵÞ terms of cð11ÞE9
and cð11ÞE10

do not contribute to the
matching7 as the mixing renormalization constants Ẑð1Þ

E9;10
and Ẑð1Þ

E10;10
carry no divergent terms, only finite ones.

Having all relevant Wilson coefficients we return to the
renormalization constants. We fix the field renormalization
constants by extracting the UV poles of the appropriate
photonic one-loop two-point functions in the five-flavor
theory. The results are

Zi ¼ 1þ ~αeZ
ð1Þ
i þ � � � (A12)

with

Zð1Þ
d ¼ − 1

9ϵ
; Zð1Þ

l ¼ − 1

ϵ
:

We proceed similarly for the constants governing the
mixing of operators into P10. We calculate the UV poles
of all one-loop insertions of a given operator, project on the
tree-level matrix element of P10 and absorb the leftover
pole in the mixing renormalization constant.
For the case of physical operators mixing into physical

operators we absorb only the divergences into the constants
ẐP;P. For evanescent operators this is not the case.
Evanescent operators are unphysical in four dimensions
and at each order in perturbation theory their operator basis
needs to be extended. To ensure that the Wilson coefficients
at a given fixed order are independent from the choice of
evanescent operators in some higher order we include finite
terms in ẐE;P and completely cancel the mixing of
evanescent to physical operators.
We have calculated all contributing one-loop mixing

renormalization constants including the mixing of evan-
escent to physical operators. The mixing of physical
operators can also be extracted from the anomalous
dimension matrices in Refs. [23,24]. Here we report the
relevant nonzero constants

Ẑð1Þ
9;10 ¼ − 2

ϵ
; Ẑð1Þ

E9;10
¼ 32

3
: (A13)

We extract the 1=ϵ-part of the one two-loop renormalization
constant we need from the corresponding anomalous
dimension in Ref. [24] and calculated the 1=ϵ2-term

Ẑð2Þ
2;10 ¼

4

9ϵ2
− 26

27ϵ
: (A14)

APPENDIX B: DETAILS ON THE RGE

1. General

The dependence of the Wilson coefficients Ci on the
renormalization scale μ is governed by the anomalous
dimension matrix γ̂

μ
d
dμ

CiðμÞ ¼ ½γ̂TðμÞ�ijCjðμÞ (B1)

with the expansion in the couplings

γ̂ðμÞ ¼
X
m;n¼0
mþn≥1

~αsðμÞm ~αeðμÞnγ̂ðmnÞ; (B2)

which is known up to and including relevant entries in
ðmnÞ ¼ ð30Þ and (21). It has been solved as an expansion
in terms of the small quantities [23]

7The operator E10 does not contribute to the matching at all
because Ẑð1Þ

E10;10
¼ 0.
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ω≡ 2βs00 ~αsðμ0Þ; (B3)

λ≡ βe00
βs00

~αeðμ0Þ
~αsðμ0Þ

¼ βe00
βs00

κðμ0Þ (B4)

in which case the evolution operator in Eq. (31) takes the
form

Uðμb; μ0Þ ¼
X2
m;n≥0

ωmλnUðmnÞ; (B5)

excluding the term ðmnÞ ¼ ð22Þ that requires the knowl-
edge of higher-order contributions to the anomalous
dimension matrix. The UðmnÞ can be read off from
Eq. (47) of Ref. [23], whereas the initial Wilson coefficients
(in the single-GF normalization) at the scale μ0 have the
expansion

ciðμ0Þ ¼ cð00Þi þ ω
cð10Þi

2βs00
þ ω2

cð20Þi

ð2βs00Þ2
þ ωλ

cð11Þi

2βe00

þ ω2λ
cð21Þi

4βe00β
s
00

þ ω2λ2
cð22Þi

ðβe00Þ2
: (B6)

The components Ci;ðmnÞ of the downscaled Wilson coef-
ficients in Eq. (32) are then obtained from the reexpansion
of Eq. (31) in the new parameters ~αsðμbÞ

ω ¼ 2βs00η ~αsðμbÞ; (B7)

and κðμbÞ

λ ¼ βe00
βs00

κðμbÞ
η

½1þ κðμbÞA1ðηÞ þ ~αsðμbÞκðμbÞA2ðηÞ

þOðκ2; ~α2sÞ� (B8)

after inserting Eqs. (B5) and (B6). The coefficients A1;2ðηÞ
are given in Eq. (67) of Ref. [23].

2. Solution

Here the solution of the components c10;ðmnÞ in Eq. (31)
of the single-GF normalization from Eq. (5) at the low scale
μb are given in terms of η ¼ αsðμ0Þ=αsðμbÞ and their initial
components cðmnÞ

i in Eq. (12) at the matching scale μ0. The
derivation of the according results ~c10;ðmnÞ for the quadratic-
GF normalization was given in Sec. III.
The numerical diagonalization of the leading-order

anomalous dimension yields the exponents

ai ¼ ð−2;−1;−0.899395;−0.521739;−0.422989; 0.145649; 0.260870; 0.408619Þ: (B9)

The components read

c10;ð11Þ ¼ cð11Þ10 ; c10;ð21Þ ¼ ηcð21Þ10 ; c10;ð02Þ ¼
X8
i¼1

biηaic
ð00Þ
2 ;

c10;ð12Þ ¼
X8
i¼1

ηaiþ1½ðdð2aÞi η−1 þ dð2bÞi Þcð00Þ2 þ dð1Þi cð10Þ1 þ dð4Þi cð10Þ4 �

− 0.11060
ln η

η
cð00Þ2 þ ðη−1 − 1Þð0.26087cð11Þ9 þ 1.15942cð11Þ10 Þ;

c10;ð22Þ ¼
X8
i¼1

ηaiþ2½ðeð1aÞi η−1 þ eð1bÞi Þcð10Þ1 þ ðeð4aÞi η−1 þ eð4bÞi Þcð10Þ4 þ
X6
j¼1

eðjÞi cð20Þj �

þ ð0.27924cð10Þ1 þ 0.33157cð10Þ4 þ 2.35917cð11Þ9 þ 3.29679cð11Þ10 Þ ln η

þ ð1 − ηÞð0.26087cð21Þ9 þ 1.15942cð21Þ10 Þ þ cð22Þ10 ; (B10)

with the coefficients bi, d
ðjÞ
i and eðjÞi given in Table II.

APPENDIX C: NUMERICAL STUDY
OF C10 IN OS-1 SCHEME

In this appendix we estimate higher-order corrections in
the OS-1 scheme and supplement in this context the
discussion of the OS-2 and HY schemes from Sec. IV.
For this purpose, we proceed as in Figs. 3 and 4 and vary

the matching scale μ0, which allows us to estimate higher-
order QCD corrections via the dependence on the running
top-quark mass. The result is shown in Fig. 6 at NLO QCD
and NLO ðEWþ QCDÞ order normalized to the OS-2
result at the respective orders. To understand the different
μ0 dependence of the NLO QCD result for the OS-1 and

CHRISTOPH BOBETH, MARTIN GORBAHN, AND EMMANUEL STAMOU PHYSICAL REVIEW D 89, 034023 (2014)

034023-14



OS-2 schemes, we remind the reader that they involve
different normalizations [see Eq. (7)], which bear a μ0
dependence due to their mt dependence when determining
values of Mon–shell

W and consequently son–shellW , see Eq. (19)
and the input in Eq. (16). As mentioned in Sec. II A, we

calculate Mon–shell
W with the aid of the result in Ref. [29],

which incorporates various higher-order corrections that
contribute beyond the NLO EW calculation of C10 per-
formed in this work, especially those that require the choice
of a particular renormalization scheme for the top-quark
mass. Throughout we use the pole top mass as numerical
input as in Ref. [29].
At NLO (EWþ QCD) the OS-1 scheme exhibits a very

different μ0 dependence with respect to OS-2 and HY
schemes, which is increased compared to NLO QCD. The
main reason being the large EW two-loop correction to
cð22Þ10 from the sW-on-shell counterterm as already men-
tioned in connection with Fig. 2. The counterterm has a
strong top-quark-mass dependence. To illustrate the latter,
we present in Fig. 6 additionally the NLO (EWþ QCD)
result (dashed-dotted line) when keeping the scale of the
running top-quark mass in the counterterm contribution
fixed at μ0 ¼ 160 GeV. Hence, the large shift caused by the
electroweak two-loop correction in the OS-1 scheme is
accompanied with an artificially large top-quark-mass
dependence. As a consequence we do not consider the
OS-1 scheme in our estimate of higher-order uncertainties.
It would increase the estimate due to μ0 variation of about
�0.3% given in Sec. IV to about þ0.4% and −1.7%.
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