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A detailed study of nucleon parton distribution functions is performed within a radiative next-to-next-to-
leading-order (NNLO) parton model whose low-scale input is rigidly described by wave functions which
include quarks and dressing a meson cloud. The light-front Hamiltonian dynamics fixes the three-quark
wave functions, and the meson cloud is introduced by means of high-order Fock components in time-
ordered perturbation theory in the infinite momentum frame. Nonstrange as well as strange meson-baryon
fluctuations are considered (π, ρ, ω,K, and K�, together with N, Δ, Λ, and Σ) and the effects on strange and
nonstrange parton distributions investigated showing the large effects due to (nonstrange) sea asymmetries
and the delicate balance of the strange asymmetry. The nonstrange and the strange components, the valence
as well as the gluon distributions, are compared with available experimental data confirming the need of
both nonperturbative degrees of freedom and perturbative (NNLO) radiative effects.
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I. INTRODUCTION

The dressing of a nucleon with its meson cloud is deeply
and consistently connected to the spontaneous chiral
symmetry breaking exhibited by quantum chromodynam-
ics (QCD). In the specific case of deep inelastic scattering
(DIS), the presence of a meson cloud has relevant conse-
quences as first discussed by Feynman [1] and Sullivan [2].
One had to wait till the discovery of the Gottfried sum rule
violation [3] to realize that the cloud contribution can
quantitatively account for the excess of d̄ antiquarks over ū
antiquarks [4]. The inclusion of a strange component into
the meson cloud has been first discussed by Signal and
Thomas [5] showing that the strange cloud component
exhibits peculiar characteristics, since all the s̄ antiquarks
come from the kaon, whereas all the s quarks come from
the hyperon. In particular, it was demonstrated that the
meson-cloud contribution to the antistrange distribution is
softer than the contribution to the strange component. Some
shortcomings were present in the approach proposed in
Refs. [4,5], and a better formulation of the meson-cloud
model was proposed within a time-ordered perturbation
theory in the infinite momentum frame [6]. Using the time-
ordered approach, one has, in fact, the advantage that the
struck hadrons remain on mass shell, avoiding ambiguities
and allowing the use of experimental structure functions
as input.
The question of a possible quark-antiquark asymmetry in

the strange sea received new interest in the early 2000s as a
result of the experimental evidence of the NuTeV
Collaboration [7] for a significantly smaller value of the
weak mixing angle. The measure has to be corrected for
several charge symmetry violation effects [8–11] and a

possible significant contribution of the second moment of
the strange asymmetry hxðs − s̄Þi. As matter of fact, a quark-
antiquark asymmetry hxðs − s̄Þi ≈ −ð0.004–0.006Þ would
explain the discrepancy between the NuTeV value and the
accepted value of the weak mixing angle sin2 θW ¼
0.2227� 0.0004. However, at present, even the sign of
the strange asymmetry is not known, and the phenomeno-
logical values range in the interval −0.001 < hxðs − s̄Þi <
0.005. In particular, hxðs − s̄Þi ¼ 0.0005� 0.0086 from
Ref. [12], 0.0013� 0.0009� 0.0002 from Ref. [13],
0.0016þ0.0011

0.0009 from Ref. [14], and 0.0� 0.0020 from
Refs. [9,10].
The strange-antistrange asymmetry manifests not only

the nonperturbative component due to the strange meson
cloud, but it exhibits also a dependence on the hard-
scattering scale Q2, at which the nucleon is probed.
Perturbative QCD alone definitely predicts a nonvanishing,
Q2-dependent value of the strange asymmetry. In fact, the
nonsinglet evolution of the parton densities at the three-
loop level [next-to-next-to-leading-order (NNLO)] gener-
ates a strange asymmetry of the order hxðs − s̄Þi ≈ 5 ×
10−4–10−3 atQ2 ≈ 20 GeV2 even if the strange asymmetry
is vanishing at the starting scale, an effect which occurs in
both QCD and QED, and it is a genuine quantum
phenomenon [15]. As a consequence, the three-loop level
is the correct and needed order for discussing parton
distributions when a strange sea is included, in particular,
strange asymmetry [10,16]. The present paper will make
use of an original (MATLAB) NNLO evolution code built by
using the unpolarized splitting functions of Refs. [17,18]
and making reference to the PEGASUS (FORTRAN) code by
Vogt [19] (see Sec. III and the Appendix). The MATLAB
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code is a descendant of the NLO (FORTRAN) code written
15 years ago in collaboration with Vento, Mair, and
Zambarda [20]. Various versions of that code have been
regularly used by the author and by others for both
unpolarized [21] and polarized [22–24] parton distributions,
as well as the evolution of their more complex generaliza-
tion [the generalized parton distributions (GPDs)] [25].
The perturbative approach to QCD is able to connect

observables at different resolution scales, but the full
knowledge of the consequences of the gluon and quark
dynamics requires the input of unknown nonperturbative
matrix elements to provide absolute values for the observ-
ables at any scale. In the present paper, I will apply a
radiative parton model procedure which, starting from low-
resolution scale Q2

0, has been able to reproduce and predict
[26] important features of the experimental deep inelastic
structure functions at high momentum transfer (see also
[27–30] and [20–25]). The procedure assumes the existence
of a scale where the short-range (perturbative) part of the
interaction is suppressed (and therefore the gluons and the
sea are suppressed) and the long-range part of the inter-
action produces a proton composed mainly by three valence
quarks [31]. Jaffe and Ross [32] proposed to ascribe the
quark model calculations of matrix elements to that
hadronic scale Q2

0. In this way, the quark models, sum-
marizing a great deal of hadronic properties, may substitute
the low energy parametrization, while evolution to larger
Q2 is dictated by perturbative QCD. In the following, I will
use a relativistic quark model (formulated within a light-
front dynamics) to describe the three quark bound states.
The inclusion of the nonperturbative sea contribution is
obtained within a fluctuation expansion of meson-baryon
states in the infinite momentum frame. Nonstrange (π, ρ,
andω, together withN andΔ) as well as strange (K andK�,
together with Λ and Σ) meson-baryon fluctuations are
considered following the rich literature [33].
The light-front quark model with a meson cloud is

revisited in Sec. II (the bare nucleon model is discussed in
Sec. II A, while Sec. II B is devoted to investigating the role
of the nucleon cloud within different scenarios (Sec. II B 5);
Sec. III is dedicated to the NNLO evolution procedure and
its features (expanded also in the Appendix); results are
presented and discussed in Sec. IV. Some conclusions are
drawn in Sec. V. In the Appendix, the relevant formulas
appear for the adopted NNLO evolution procedure.

II. THE MODEL

A. The bare nucleon and parton distributions

1. The quark wave function

In the light-front quark model, the intrinsic momenta of
the constituent quarks (ki) can be obtained from the
corresponding momenta (pi) in a generic reference frame,
through a light-front boost ki ¼ L−1

f ðPtotÞpi such that the

Wigner rotations reduce to identities. With the specific
choice L−1

f ðPtotÞPtot ¼ ðM0; 0; 0; 0Þ, one has
P

3
i¼1 ki ¼ 0

and M0 ¼
P

3
i¼1 ωi ¼

P
3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
i þm2

i

p
. The nucleon state

is characterized by isospin (and its third component), parity,
light-front (noninteracting) angular momentum operators J
and projection Jn, where the unitary vector n̂ ¼ ð0; 0; 1Þ
defines the spin quantization axis. The nucleon state
factorizes into jN; J; Jnij ~Pi, where j ~Pi is the total light-
front nucleon momentum ~P≡ ðPþ;P⊥Þ ¼ ~p1 þ ~p2 þ ~p3.
Pþ ¼ P0 þ n̂ · P, and the subscript ⊥ indicates the
perpendicular projection with respect to the n̂ axis. In
order to retrieve the usual composition rules, the intrinsic
light-front angular momentum eigenstate jN; J; Jnimust be
obtained from the canonical angular momentum eigen-
states jN; j; jni by means of a unitary transformation that is
a direct product of generalized Melosh rotations [34].
Finally, the intrinsic part of the nucleon state, jN; j; jni,
is the eigenstate of the mass operator

ðM0 þ VÞjN; j; jni ¼ MjN; j; jni;

where the interaction term V must be independent of the
total momentum Ptot and invariant under rotations [35].
In the following, I will discuss results of a confining

three-quark mass operator

ðM0 þ VÞψ0;0ðξÞ≡
�X3

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
i þm2

i

q
− τ

ξ
þ κlξ

�
ψ0;0ðξÞ;

(1)

where ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ λ2

p
is the radius of the hypersphere in

six dimensions and ρ and λ are the intrinsic Jacobi
coordinates ρ ¼ ðr1 − r2Þ=

ffiffiffi
2

p
and λ ¼ ðr1 þ r2 − 2r3Þ=ffiffiffi

6
p

, respectively.
The intrinsic nucleon state is antisymmetric in the

color degree of freedom and symmetric with respect to
the orbital, spin, and flavor coordinates. In particular
(disregarding the color part), one has

jN; j; jn¼þ 1=2i ¼ ψ0;0Y
ð0;0Þ
½0;0;0�ðΩÞ

½χMSϕMS þ χMAϕMA�ffiffiffi
2

p ;

(2)

where ψγ;ν is the hyperradial wave function solution of

Eq. (1), YðL;MÞ
½γ;lρ;lλ�ðΩÞ the hyperspherical harmonics defined

on the hypersphere of the unitary radius, and ϕ and χ the
flavor and spin wave functions, respectively, of mixed
SUð2Þ symmetry. In order to preserve relativistic covari-
ance, χ has to be formulated by means of the appropriate
Melosh transformation of the ith quark spin wave function.
The mass equation (1) is solved numerically by expand-

ing the hyperradial wave function ψγ;ν on a truncated set of
hyperharmonic oscillator basis states [36]. By making use
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of variational principles, the harmonic oscillator constant
has been determined, and convergence has been reached by
considering a basis of 17 components. The parameters of
the interaction have been determined phenomenologically
in order to reproduce the basic features of the (nonstrange)
baryonic spectrum up to ≈1.6 GeV, namely, the position of
the Roper resonance and the average value of the 1− states.
The well-known problem of the energy location of the
Roper resonance is solved, in the present case, by the use of
the “Coulomb-like” potential 1=ξ as already discussed in
Ref. [37] for the nonrelativistic formulation and in Ref. [23]
within the light-front dynamics. One obtains τ ¼ 3.3 and
κl ¼ 1.80 fm−2 (to be compared with the corresponding
nonrelativistic fit τ ¼ 4.59 and κl ¼ 1.61 fm−2) [36].
As a result, a huge number of high momentum compo-

nents are generated in solving the mass equation, and they
play an important role on the high-x behavior of the parton
distributions. Such an effect emerges naturally if one
evaluate the momentum distribution

nðkÞ ¼
X3
j¼1

Z Y3
l¼1

dklδ

�X3
i¼1

ki

�
δðk − kjÞjψ0;0j2; (3)

as it is shown in Fig. 1.
The mass equation (1) does not contain hyperfine

interaction terms which would split the nucleon and the
Δmasses. Such a SUð6Þ-breaking term must be considered
in a more detailed analysis of the nucleon and baryon
spectrum, and the nucleon wave function (2) would include
a larger number of SU6Þ configurations (e.g. Ref. [38]).
The consequences and limitations due to the choice (1) will
become more clear when I will discuss the large-x behavior

of the valence partons in Sec. IV B. For the moment, let me
recall that I am mostly interested in the sea distribution,
located at lower x.

2. Partons in the bare nucleon

Following previous work (e.g. Refs. [23,39]), the parton
distribution in the (bare) relativistic light-front quark model
takes the form [39]

qðx; μ20Þ ¼
X3
j¼1

X
λiτi

δτjτq

Z Y3
i¼1

dk⃗iδ

�X3
i¼1

k⃗i

�

× δ

�
x − kþj

M0

�
jΨ½c�

λ ðfk⃗i; λi; τigÞj2; (4)

where kþj ¼ ðk0j þ k3jÞ=
ffiffiffi
2

p
is the quark light-cone momen-

tum andM0 ¼
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2i þm2

i

q
is the free mass for the three-

quark system. Ψ½c�
λ ðfk⃗i; λi; τigÞ is the canonical wave

function of the nucleon in the instant form obtained by
solving the eigenvalue equation for the mass operator (1) in
momentum space.
The distribution (4) automatically fulfills the support

condition and satisfies the (particle) baryon number and
momentum sum rules at the hadronic scale μ20 where the
valence contribution dominates the twist-two response:

Nq ¼
Z

dxqðx; μ20Þ; (5)

with Nq being the number of valence quarks of flavor q; in
addition,Z

dxx
X
q

qðx; μ20Þ≡
Z

dxx½uVðx; μ20Þ þ dVðx; μ20Þ� ¼ 1;

(6)

and the valence partons exhaust the momentum sum rule at
the scale of the bare nucleon.

B. The meson cloud and the Sullivan process

Let me now introduce the meson-cloud model to
incorporate qq̄ pairs into the valence-quark picture of
the parton distributions described in the previous section
and dressing the bare nucleon to a physical nucleon.
The physical nucleon state is built by expanding it [in the

infinite momentum frame (IMF) and in the one-meson
approximation] in a series involving bare nucleons and
two-particle, meson-baryon states. Its wave function can,
therefore, be written as a sum of meson-baryon Fock states:

jNi ¼
ffiffiffiffi
Z

p
jNibare þ

X
BM

X
λλ0

Z
dyd2k⊥ϕλλ0

BMðy;k2⊥Þ

× jBλðy;k⊥Þ;Mλ0 ð1 − y;−k⊥Þi: (7)

0 2 4 6 8 10

0.0001

0.001

0.01

0.1

1
 Non Relativistic mass operator
         Relativistic mass operator

FIG. 1 (color online). The momentum distribution nðkÞ of
Eq. (3) as a function of k ¼ jkj. The results of a full covariant
light-front calculation for the mass operator of Eq. (1) (full curve)
are compared with the nonrelativistic approximation (dashed
curve). The normalization is such that

R
d3k nðjkjÞ ¼ 3.
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ϕλλ0
BMðy;k2⊥Þ is the probability amplitude of the Fock state

containing a virtual baryon (B) with longitudinal momen-
tum fraction y, transverse momentum k⊥, and helicity λ
and a meson (M) with longitudinal momentum fraction
1 − y, transverse momentum −k⊥, and helicity λ0. Z is the
renormalization constant and is equal to the probability to
find the bare nucleon in the physical nucleon.
One can express the amplitudes ϕλ;λ0

BMðy;k2⊥Þ in the
following way:

ϕλ;λ0
BMðy;k2⊥Þ ¼

1

2π
ffiffiffi
y

p ð1 − yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mHmB

p
m2

H −M2
BMðy;k2⊥

×GHBMðy;k2⊥ÞVλ;λ0
IMFðy;k2⊥Þ; (8)

wheremH is the physical mass of the fluctuating hadron (in
the present case a proton, but the approach can be
generalized as in Ref. [40]).

M2
BMðy;k2⊥Þ ¼

k2⊥ þm2
B

y
þ k2⊥ þm2

H

1 − y
(9)

is the invariant mass of the meson-baryon system.
Vλ;λ0
IMFðy;k2⊥Þ is the vertex function, and it contains the spin

dependence of the amplitude. Its form can be found (e.g. in
Refs. [41,42]). The extended nature of the vertex is described
by a phenomenological form factor GHBMðy;k2⊥Þ, which
embodies the unknown dynamics at the vertex. In the present
work,

GHBMðy;k2⊥Þ ¼ exp

�
m2

H −M2
BMðy;k2⊥Þ

2Λ2
BM

�
;

as suggested in recent analysis (see Ref. [43] and references
therein). ΛBM is a cutoff parameter, and the recommended
values Λoct ¼ 0.8 eV and Λdec ¼ 1.0 GeV will be used for
meson-baryon fluctuations involving octect and decuplet
baryons, respectively.
The cutoff parameters are fixed by making reference to

experimental data which naturally include SUð6Þ-breaking
effects. The model Hamiltonian (1) does not contain such
perturbative contributions, and the consistency with the
cutoff parameters can be questioned. However, one should
notice that, within the light-front model, SUð6Þ-symmetry
effects are not equivalent to the simple idea suggested by
nonrelativistic dynamics. In the relativistic approach, both
the correlations between motion and spin (helicity) and the
large number of high momentum components in the wave
function (due to the relativistic kinetic operator) change the
intuitive picture considerably. In particular, the SUð6Þ-
breaking effects are emphasized, within the relativistic
approach, by such correlations and high momentum tails,
reducing the number of explicit SUð6Þ-breaking terms
required by nonrelativistic approaches. An investigation
of the order of magnitude of these breaking-symmetry

effects can be performed better by analyzing the spin
observables, in particular, by means of helicity-dependent
GPDs where the nonintuitive interplay between SUð6Þ-
breaking effects and relativistic contributions to spin
dynamics can be studied in a more direct way. Critical
elements of such an investigation can be found in the
paragraph dedicated to results and discussion in Ref. [44],
where the interplay between SUð6Þ-breaking effects and
relativistic contribution to spin dynamics is investigated by
studying their contribution to the total spin of the nucleon
within a light-front quark model.

1. The Sullivan process

The Sullivan process description of deep inelastic
scattering implies that the virtual photon can hit either
the bare proton p or one of the constituents of the higher
Fock states. In the IMF, where the constituent of the
target can be assumed as free during the interaction, the
contribution of those higher Fock states to the quark
distribution of the physical proton can be written

δqpðxÞ ¼
X
BM

�Z
1

x

dy
y
fMB=pðyÞqM

�
x
y

�

þ
Z

1

x

dy
y
fBM=pðyÞqB

�
x
y

��
: (10)

The splitting functions fBM=pðyÞ and fMB=pðyÞ are related
to the probability amplitudes ϕλλ0

BM by

fBM=pðyÞ ¼ fMB=pð1 − yÞ ¼
Z

∞

0

dk2⊥
X
λ;λ0

jϕλ;λ0
BMðy;k2⊥Þj2:

(11)

The quark distributions in a physical proton are then
given by

qðx;Q2
0Þ ¼ Zqbarep ðxÞ þ δqpðxÞ; (12)

where qbarep is given by Eq. (4), δqp is from Eq. (10), and

Z ¼ 1 −X
MB

Z
1

0

dyfBM=pðyÞ: (13)

The conservation of both momentum and baryon number
sum rules is guaranteed by the correct formulation of the
meson cloud, in particular, by the symmetry fBM=pðyÞ ¼
fMB=pð1 − yÞ in Eq. (11) and by the renormalization factor
Z of Eqs. (7) and (13). The new scale Q2

0 related to the
presence of a bare nucleon dressed by its meson cloud will
be discussed in Sec. III B.
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2. The nonstrange cloud: Pseudoscalar mesons

The lowest-lying fluctuations (for the proton) included in
the present calculation involve the pseudoscalar meson cloud

pðuudÞ → nðuddÞπþðud̄Þ;

pðuudÞ → pðuudÞπ0
�
1ffiffiffi
2

p ðdd̄ − uūÞ
�
;

pðuudÞ → ΔþðuudÞπ0
�
1ffiffiffi
2

p ðdd̄ − uūÞ
�
;

pðuudÞ → Δ0ðuddÞπþðud̄Þ;
pðuudÞ → ΔþþðuuuÞπ−ðūdÞ: (14)

From isospin symmetry

fnπþ=p ¼ 2fpπ0=p ¼ 2

3
fNπ=p;

fΔþþπ−=p ¼ 3

2
fΔþπ0=p ¼ 3fΔ0πþ=p ¼ 1

2
fΔπ=p; (15)

while the coupling constants are as in Table I.
(a) The nucleon.—In order to model the partonic con-

tent at the scale μ20 for the nucleon, the Δ, and the
pion, we make use of the light-front approach
discussed in Sec. II A 1 and calculate the inclusive
parton distributions by means of

qbarep ðxÞ≡ qðx; μ20Þ; (16)

where qðx; μ20Þ is given by Eq. (4).
(b) The Δ.—The calculation of the cloud contribution

involves the explicit form of the parton distributions
qΔðxÞ of the Δ [see Eq. (10)]; we use the results of
the relativistic model for the nucleon and the isospin
symmetries:

uΔþþðx; μ20Þ ¼
3

2
upðx; μ20Þ;

dΔþþðx; μ20Þ ¼ 0;

uΔþðx; μ20Þ ¼ upðx; μ20Þ;
dΔþðx; μ20Þ ¼ dpðx; μ20Þ;

uΔ0ðx; μ20Þ ¼
1

2
upðx; μ20Þ;

dΔ0ðx; μ20Þ ¼ 2dpðx; μ20Þ;
uΔ−ðx; μ20Þ ¼ 0;

dΔ−ðx; μ20Þ ¼ 3dpðx; μ20Þ: (17)

(c) The pion.—The canonical wave function of the pion
is taken from Ref. [47] and reads

Ψ½c�ðk⃗1; k⃗2; μ1; μ2Þ ¼
1

π3=4β3=2

�
1

2
μ1

1

2
μ2j00

�
× exp ð−k2=ð2β2ÞÞ; (18)

with k⃗ ¼ k⃗1 ¼ −k⃗2, x ¼ x1 ¼ kþ=M0, x2 ¼ 1 − x,
M2

0 ¼ ðk⃗2⊥ þm2
qÞ=xþ ðk⃗2⊥ þm2

qÞ=ð1 − xÞ, and β ¼
0.3659 GeV. The choice of the model from Ref. [47]
is consistent with the hypercentral constituent quark
model we adopt for the nucleon; in fact, the central
potential between the two constituent quarks is de-
scribed as a linear confining term plus Coulomb-like
interaction. The canonical expression (18) represents a
variational solution to the mass equation.

The light-front parton distribution of the πþ is given by

vπðxÞ≡ qπþðxÞ ¼
X2
j¼1

δτjτq

Z Y2
i¼1

dk⃗iδ
�X2

i¼1

k⃗i

�

× δ

�
x − kþj

M0

�
× jΨ½c�

λ ðfk⃗i; λigÞj2: (19)

Isospin symmetry imposes uπ
þ

V ¼ d̄π
þ

V ¼ ūπ
−

V ¼ dπ
−

V ¼
vπðx; μ20Þ, while, due to the model restrictions, the pion sea
at the hadronic scale vanishes: ūπ

þ ¼ dπ
þ ¼ uπ

− ¼ d̄π
− ¼ 0.

One obtains the following fluctuations probabilities:

PNπ=p ¼ Ppπ0=p þ Pnπþ=p ¼ 3Ppπ0=p ¼ 13%;

PΔπ=p ¼ PΔþþπ−=p þ PΔþπ0=p þ PΔ0πþ=p

¼ 2PΔþþπ−=p ¼ 11%: (20)

3. The nonstrange cloud: Vector mesons

The lowest-lying fluctuations (for the proton) involving
vector mesons, and included in the present calculation, are

pðuudÞ → nðuddÞρþðud̄Þ;

pðuudÞ → pðuudÞρ0
�
1ffiffiffi
2

p ðdd̄ − uūÞ
�
;

pðuudÞ → ΔþðuudÞρ0
�
1ffiffiffi
2

p ðdd̄ − uūÞ
�
;

pðuudÞ → Δ0ðuddÞρþðud̄Þ;
pðuudÞ → ΔþþðuuuÞρ−ðūdÞ;

pðuudÞ → pðuudÞω0

�
1ffiffiffi
2

p ðdd̄þ uūÞ
�
: (21)

TABLE I. The coupling constants for various considered fluctuations are taken from [45,46].

g2Nπ=p

4π ¼ 13:6
f2Δπ=p
4π ¼ 12:3 GeV−2 g2Nρ=p

4π ¼ 0.84 fNρ=p

gNρ=p
¼ 6.1

4mp

f2Δρ=p
4π ¼ 34:5 GeV−2 g2Nω=p

4π ¼ 8.1 fNω=p

gNω=p
¼ 0

gΛK=p ¼ −13:98 gΣK=p ¼ 2.69 gΛK�=p ¼ −5.63 fΛK�=p ¼ −4.89 GeV−1 gΣK�=p ¼ −3.25 fΣK�=p ¼ 2.09 GeV−1
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From isospin symmetry

fnρþ=p ¼ 2fpρ0=p ¼ 2

3
fNρ=p;

fΔþþρ−=p ¼ 3

2
fΔþρ0=p ¼ 3fΔ0ρþ=p ¼ 1

2
fΔπ=p;

fpω0=p ¼ fNω=p; (22)

and the coupling constant is from Table I.
The ρ-meson wave function differs from the pion in the

spin component only (the rest-frame qq̄ pairs are coupled to
J ¼ 1). The ω is also described by the same spin and
momentum wave function as the ρ and an isospin singlet
state (the effects of the ϕ-ω mixing are neglected as well as
the ρ0-ω mixing). One obtains

PNρ=p ¼ Ppρ0=p þ Pnρþ=p ¼ 3Ppρ0=p ¼ 1.8%;

PΔρ=p ¼ PΔþþρ−=p þ PΔþρ0=p þ PΔ0ρþ=p

¼ 2PΔþþρ−=p ¼ 4.1%;

PNω=p ¼ Ppω0=p ¼ 0.34%: (23)

4. Strangeness in the meson cloud

The following fluctuations will be considered:

pðuudÞ → Λ0ðudsÞKþðus̄Þ;
pðuudÞ → Σ0ðudsÞKþðus̄Þ;
pðuudÞ → ΣþðuusÞK0ðds̄Þ;
pðuudÞ → Λ0ðudsÞK�þðus̄Þ;
pðuudÞ → Σ0ðudsÞK�þðus̄Þ;
pðuudÞ → ΣþðuusÞK0ðds̄Þ: (24)

From isospin symmetry

fΣ0Kþ=p ¼ 2fΣþK0=p ¼ 2

3
fΣK=p;

fΣ0K�þ=p ¼ 2fΣþK�0=p ¼ 2

3
fΣK�=p;

fΛ0Kþ=p ¼ fΛK=p;

fΛ0K�þ=p ¼ fΛK�=p; (25)

and coupling constant is from Table I.
One obtains the following fluctuations probabilities:

PΣK=p ¼ PΣþK0=p þ PΣ0Kþ=p ¼ 3PΣK0=p ¼ 0.013%;

PΛK=p ¼ PΛ0Kþ=p ¼ 0.2%;

PΣK�=p ¼ PΣþK�0=p þ PΣ0K�þ=p ¼ 3PΣK�0=p ¼ 0.018%;

PΛK�=p ¼ PΛ0K�þ=p ¼ 0.054%: (26)

The relations

sΛ
0ðxÞ ¼ sΣ

þðxÞ ¼ sΣ
0ðxÞ ¼ sΣ

−ðxÞ ¼ 1

2
upðxÞ (27)

and [43,48]

s̄K
þðxÞ ¼ s̄K

0 ¼ ½1 − 0.540ð1 − xÞ0.17�vπðxÞ (28)

complete the meson and baryon distributions I will use.

5. Scenarios

In the following, I will assume that, at the lowest
hadronic scale μ20, the bare nucleon is described by the
relativistic quark model wave function formulated within
the light-front dynamics, and, as a consequence, only
valence partons will contribute to the partonic content of
the bare nucleon: cf. Eqs. (4) and (16). The inclusion of the
meson cloud will renormalize the partonic content of the
physical nucleon [cf. Eq. (12)], and a new scale Q2

0 > μ20
has to be defined. Such a scale will depend on the partonic
content included. The model can indeed be formulated in
order to include the lowest π-N andΔ contributions, as well
as the additional vector meson components and strange
components. An example is given in Fig. 2. The upper
panel shows the contribution to the d̄ − ū distribution
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x 10
−3

FIG. 2 (color online). Sea distributions at the scale Q2
0 of the

meson-cloud model. Upper panel: The difference d̄ − ū distri-
bution is entirely due to the presence of the nonperturbative sea.
The dashed line includes the pion only; the continuous line shows
the additional contribution due to the presence of vector mesons.
Lower panel: The strange-antistrange distribution xðs − s̄Þ with
K meson contribution only (dashed line) and including K�
(continuous line) at the same scale Q2

0.
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coming from pion fluctuation only (dashed line) and the
results obtained including the additional vector-meson
fluctuations (the inclusion of a strange component into
the meson cloud will not give an additional contribution).
The lower panel is devoted to the strange components
showing the contribution to the xðs − s̄Þ asymmetry com-
ing from the inclusion ofK� fluctuations. One can stress the
possible evidence of more than one node in the distribution.
The role of K� is also illustrated in Fig. 3 for the strange xs
and antistrange xs̄ distributions separately.
A last illustrative example is given in Fig. 4, where the

valence momentum distribution x½uVðxÞ þ dVðxÞ� is shown
and the effects of the meson-cloud renormalization, as in
Eq. (12), emphasized. In particular, let me note that

Z
dxx½uVðx; μ20Þ þ dVðx; μ20Þ�j

bare
¼ 1;Z

dxx½uVðx; Q̄2
0Þ þ dVðx; Q̄2

0Þ�j
π only

¼ 0.88;Z
dxx½uVðx;Q2

0Þ þ dVðx;Q2
0Þ�j

πþρþωþKþK�
¼ 0.84; (29)

and

xSeaðx; Q̄2
0Þ ¼

Z
dx2x½ūðx; Q̄2

0Þ þ d̄ðx; Q̄2
0Þ�j

π only

¼ 0.119; (30)

xSeaðx;Q2
0Þ ¼

Z
dxx½2ūðx;Q2

0Þ þ 2d̄ðx;Q2
0Þ

þ sðx;Q2
0Þ þ s̄ðx;Q2

0Þ�jπþρþωþKþK�

¼ 0.158; (31)

where the different scales (μ20, Q̄
2
0, and Q2

0) related to the
three different scenarios have been clearly indicated. Their
actual values will be discussed in Sec. III B.
Figures 5 and 6 are devoted to illustrating the crucial role

of the wave function detail on the strange asymmetry.
Numerically, one finds

Z
dx2x½ūðx; Q̄2

0Þ þ d̄ðx; Q̄2
0Þ�j

π only
¼ 0.119;Z

dx2x½ūðx;Q2
0Þ þ d̄ðx;Q2

0Þ�j
πþρþω

¼ 0.157;Z
dxx½sðx;Q2

0Þ þ s̄ðx;Q2
0Þ�j

KþK�

¼ 7.9 × 10−4jK only þ 2.7 × 10−4jK� only ¼ 0.0011; (32)
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K only

FIG. 3 (color online). Strange xsðxÞ (dashed lines) and anti-
strange xs̄ðxÞ (continuous lines) distributions evaluated including
K meson fluctuations only and adding the K� contributions atQ2

0.
The K� component is, in fact, rather important and enhances both
xsðxÞ and xs̄ðxÞ in an appreciable way.
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0.5
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2

FIG. 4 (color online). The valence momentum distribution
xðuVðxÞ þ dVðxÞÞ evaluated within the bare light-front quark
model of Eq. (4) (dotted line),

R
dxxðuV þ dVÞ ¼ 1.00; including

pion fluctuations only (dashed line),
R
dxxðuV þ dVÞ ¼ 0.92;

and evaluated adding also the vector meson and strange cloud as
in Eq. (12) (continuous line)

R
dxxðuV þ dVÞ ¼ 0.89.
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FIG. 5 (color online). The meson distribution for pion vπðxÞ
from Eq. (19) (continuous line) and for K and K� from Eq. (28)
(dashed line). The dot-dashed curve shows the K, K�-meson
distribution due to a different choice, namely, s̄K

þðxÞ ¼ s̄K
0 ¼

ð1 − xÞ0.18vπðxÞ proposed in Ref. [49].
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making more clear the contribution of the vector mesons to
the nonstrange sea and the strange meson effects to the
strange sea.
From the point of view of the asymmetry, one hasZ

dxx½sðx;Q2
0Þ − s̄ðx;Q2

0Þ�j
KþK�

¼ 6.1 × 10−5jK only − 1.6 × 10−5jK� only

¼ 4.5 × 10−5; (33)

while Z
dx½sðx;Q2

0Þ − s̄ðx;Q2
0Þ�j

KþK�

¼ 9.3 × 10−4jK only þ 2.7 × 10−4jK� only

¼ 12 × 10−4: (34)

The results for the strange asymmetry are rather delicate.
The contributions from K and K� mesons are of similar
relevance and rather dependent on the details of the
meson wave function. The results of evolutions at leading
order and next-to-leading order would not increase the
asymmetry, because strange and antistrange distributions
would keep the property sðxÞ ¼ s̄ðxÞ in the evolution.
However, the strange distribution asymmetry receive
large contributions from the perturbative evolution at
NNLO [10,15,16] as will be discussed in the next
sections, where the nonperturbative and perturbative
effects will be shown to act coherently, amplifying the
low-scale asymmetry. A further source of uncertainty on
the strange asymmetry is, again, due to the possible
effects of SUð6Þ breaking which would modify the
identities (27). The lack of SUð6Þ-breaking effects
remains the weak point of the approach I am proposing
(cf. Ref. [40]).

III. NNLO QCD EVOLUTION

In the present section, I will discuss a few points of the
general framework of the QCD evolution in order to
illustrate crucial aspects of my code for the evolution in
Mellin space.
The NNLO expansion is performed within the modified

minimal subtraction (M̄S) factorization and renormaliza-
tion scheme. In addition, heavy quarks like c, b, and t will
not be considered in the number of active light quarks and
the flavors nf appearing in the splitting functions, and the
corresponding Wilson coefficients will be fixed at nf ¼ 3
[the so-called fixed flavor number scheme (FFNS) [19]].
The heavy quarks (and gluons) are, therefore, produced
entirely perturbatively from the initial light u, d, and s
quarks, a scheme which is predictive and supported by
experiments [28,29].

A. The running coupling constant

Even within the FFNS scheme, the strong coupling
constant

αsðQ2Þ ¼ 4πas (35)

is correctly evaluated by using the standard variable nf
scheme for the β function, and it plays a major role in the
present approach to the evolution of parton densities. At
NmLO, the scale dependence of as is given by

das
d ln Q2

¼ βNmLOðasÞ ¼ −X2
k¼m

βkakþ2
s ; (36)

and the expansion coefficients βk of the β function of QCD
are known up to k ¼ 3, i.e. the N3LO: β0 ¼ 11− 2nf=3,
β1¼102−38nf=3, β2¼2857=2−5033nf=18þ325n2f=54,
and β3¼29243:0−6946:30nfþ405:089nfþ1093=729nf
[50], and nf stands for the number of effectively massless
quark flavors.
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FIG. 6 (color online). The role of the K and K� wave functions.
Upper panel: The strange asymmetry xðs − s̄Þ is due to the
inclusion of the strange mesons and is largely influenced by the
choice of the K and K� wave function. The dotted curve refers to
the wave function of Eq. (28), while the dot-dashed curve to the
wave function of Ref. [49] and introduced in the caption of Fig. 5.
Lower panel: The same notations are used to show the role of the
strange meson wave function on the total strange sea xðsþ s̄Þ.
The distributions xs and xs̄ are also shown, their sum reproduced
by the dot-dashed curve. The asymmetry remains the observable
more influenced by the details of the strange meson wave
functions.
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They have the following solutions (up to N2LO≡
NNLO):

as;LO ¼ 1

β0 lnðQ2=Λ2
LOÞ

; (37)

ln
Q2

Λ2
NLO

− 1

β0as;NLO
þ β1
β20

ln

�
1

β0as;NLO
þ β1
β20

�
¼ 0; (38)

ln
Q2

Λ2
NNLO

− 1

β0as;NNLO
þ β1
2β20

× ln

�
1

β0

�
1

as;NNLO

�
2

þ β1
β30

1

as;NNLO
þ β2
β30

�

þ 2ffiffiffiffi
Δ

p
�
1

2

�
β1
β20

�
2 − β2

β30

�
arctan

�β1
β2
0

þ 2 β2
β3
0

as;NNLOffiffiffiffi
Δ

p
�
; (39)

with Δ ¼ 4β2=β30 − ðβ1=β20Þ2 and Λ is the QCD scale
parameter.
Equations (38) and (39) are transcendental equations to

be solved in order to calculate αs at NLO and NNLO. They
allow for asymptotic analytical solutions in the region
Q2 ≫ Λ:

as;NLO ≈
1

β0 lnðQ2=Λ2
NLOÞ

�
1 − β1

β20

ln lnðQ2=Λ2
NLOÞ

lnðQ2=Λ2
NLOÞ

�
;

(40)

as;NNLO ≈
1

β0 lnðQ2=Λ2
NNLOÞ

×

�
1 − β1

β20

ln lnðQ2=Λ2
NNLOÞ

lnðQ2=Λ2
NNLOÞ

�

þ 1

β50
½β21 ln ln lnðQ2=Λ2

NNLOÞ

− β21 ln lnðQ2=Λ2
NNLOÞ þ β2β0 − β21�: (41)

However, the approximate solutions (40) and (41)
produce an unwanted inconsistency [19] between the
N-space Mellin evolution (used in the present approach)
and the x-space evolution programs (which are very
popular). To preserve consistency, the present approach
makes use of the iterative solutions of Eqs. (38) and (39), a
crucial procedure in order to start evolution from low-
resolution scale (see also Ref. [20] for an equivalent
discussion at NLO). As a matter of fact, beyond the leading
order the exact numerical solution of Eq. (36) is one of the
most important ingredients for evolutions starting from
low-resolution scales as in the present case. The situation is
illustrated in Fig. 7, where typical results are shown in the
low-Q2 range (upper and middle panels), while the results
for a larger range of Q2 are summarized in the lower panel.
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FIG. 7 (color online). Upper panel: NLO coupling constant
asðQ2Þ ¼ αs=ð4πÞ [cf. Eq. (38)] as function of Q2 in the low-Q2

region. The solution of the transcendental equation (38)
(full line) is compared with the approximate solution (40)
(dashed line). ΛNLO ¼ 0.248 GeV. Middle panel: NNLO
coupling constant asðQ2Þ ¼ αs=ð4πÞ [cf. Eq. (39)] as function
of Q2 in the low-Q2 region. The solution of the transcendental
equation (39) (full line) is compared with the approximate
solution (41) (dashed line). ΛNNLO ¼ 0.240 GeV. Lower panel:
The numerical solutions of the transcendental equations at
NLO (38) and NNLO (39) are compared with the LO coupling
constant of Eq. (37) which does not imply ambiguous
expansions. ΛLO ¼ 0.232 GeV.

NEXT-TO-NEXT-TO-LEADING-ORDER NUCLEON PARTON … PHYSICAL REVIEW D 89, 034021 (2014)

034021-9



In particular, the upper part Fig. 7 shows the results for
the approximated NLO solution (40) compared with the
numerical transcendental solution (38) in the relevant
region 0.15 GeV2 < Q2 < 0.5 GeV2: the large effect of
the nonphysical expansion is evident. In the same figure,
the analogous results for the approximated NNLO solution
(41) and for the numerical solution (39) are shown in the
same region 0.15 GeV2 < Q2 < 0.5 GeV2: the large effect
of the nonphysical expansion is even more dramatic.

1. The freezing of the QCD running coupling

Quite recently, Courtoy, Scopetta, and Vento [51]
proposed an interpretation of the validity of a perturbative
evolution starting from low-resolution scale as due to the
fact that the QCD running coupling (effective charges)
freezes in the deep infrared. Such a freezing could be
reinterpreted as a generation of an effective momentum-
dependent gluon mass.1 At the level of the Schwinger-
Dyson equations, the generation of such a mass is
associated with the existence of infrared finite solutions
for the gluon propagator. One possibility (physically
motivated) is the logarithmic (gluon) mass running

m2ðQ2Þ ¼ m2
0

�
ln ðQ2þϱm2

0

Λ2 Þ
ln ðϱm2

0

Λ2 Þ

�−1−γ
; (42)

where ϱ ∼ 1–4, γ ¼ 1=11, and m0 ∼ Λ − 2Λ. The (non-
perturbative) generalization of the coupling of Eq. (37)
assumes the form

as;NP ¼ αs;NP

4π
¼ 1

β0 lnf½Q2 þ ϱm2ðQ2Þ�=Λ2g : (43)

With values in the region ϱ ∼ 1.5, γ ¼ 1=11, and m0 ∼ Λ,
the LO (perturbative) evolution and the nonperturbative
evolution of the second moment of the valence distributions
remain quantitatively close, up to values of momenta as
small as Q2

0 ∼ 0.15 GeV2. Such a conclusion is illustrated
by means of Fig. 6 of Ref. [51]. The work by Courtoy,
Scopetta, and Vento represents a first step for the dynamical
interpretation of low-resolution (perturbative) evolution.
The evolution converges, and it approximates the non-
perturbative evolution in an interesting and quantitative
way, offering further justification of the use of the NNLO
expansion proposed in the present work.

B. The initial scale of evolution

As previously discussed, it will be assumed that at the
lowest hadronic scale the bare nucleon is described by the
relativistic quark model wave function formulated within

the light-front dynamics and, as a consequence, valence
partons only will contribute to the partonic content of the
bare nucleon [cf. Eq. (4)]. The full (nonperturbative)
antiquark content will be generated by the meson-cloud
mechanism described in Sec. II B. The method is flexible
enough to study different scenarios as summarized in
Sec. II B 5. It remains to elucidate the criteria to fix the
low-resolution scale.
In my previous works on the quark parton models (e.g.

[20–22,25]), the initial scale Q2
0 has been fixed by evolving

back (at the appropriate perturbative order) unpolarized
data until the valence distribution matches the required
momentum dictated by the model [in the present case,
Eqs. (29)]. However, performing a sensible back evolution
to low scale is not a trivial task. The evolution is performed
(in fact) by using Mellin moments in the complex plane,
and one has to guarantee complete symmetry from Q2

0 to
Q2 ≫ Q2

0 and back, avoiding further approximations asso-
ciated to additional Taylor expansions but not with genuine
perturbative QCD expansions. The scheme used is some-
times called the iterated solution (e.g. [19]), and it has a
simple expression for the nonsinglet sector only (for a more
detailed discussion, see Sec. 1 of the Appendix). The
solution has been calculated and implemented at NLO also
for the singlet sector by Mair and Traini (in Refs. [21,22]).
At NNLO the complexity of the singlet evolution prevents
the complete reformulation of the equations. The way out is
offered by the possibility of evolving forward the distri-
butions from the static point to a scale low enough to keep
the features of the starting point and where the distributions
are good enough to reproduce the experimental scale at
high Q2. The ideal reference is to the NLO and NNLO
approach by Jimenez-Delgado, Reya, and Glück [28–30].
From a practical point of view, the scales Q̄2

0 and Q2
0 of

Eqs. (29) have been fixed by evolving the distributions of
the quark model with a virtual sea from the (unknown) Q2

0

to Q2 ¼ 0.55 GeV2 (the scale of the distributions proposed
by Jimenez-Delgado and Reya at NNLO [29]) and in order
to reproduce the NNLO total valence momentum at
Q2 ¼ 0.55 GeV2.
Two scenarios will be considered:
scenario A.—if only the pion cloud (π only) is consid-

ered in Eq. (29);
scenario B.—if the additional meson contributions

ðρ;ω; K; K�Þ are included in Eq. (29); in particular, the
strange sea is added.
For both scenarios, one could include the presence

of a gluon distribution as proposed by Mair and
Traini [21,22,25]. In fact, following the philosophy of
the radiative parton model suggested by the Dortmund
group [27], one could choose a “valencelike” gluon
distribution at Q2

0:

Gðx;Q2
0Þ ¼

N g

3
½uVðx;Q2

0Þ þ dVðx;Q2
0Þ�; (44)

1In the fundamental QCD Lagrangian, the gluon remains
massless to all order in perturbation theory and the local
SUð3Þc invariance remains intact. The gluon mass generation
is a purely nonperturbative effect [52].

MARCO TRAINI PHYSICAL REVIEW D 89, 034021 (2014)

034021-10



where N g ¼
R
dxGðx;Q2

0Þ can be chosen to be the mini-
mum number of gluons required to make a color singlet
N g ¼ 2. Because of the total momentum sum rule

Z
dxx½uVðxÞ þ dVðxÞ þ SeaðxÞ þ GðxÞ�Q2

0
¼ 1;

with

SeaðxÞjQ2
0
¼ ½2ūðxÞ þ 2d̄ðxÞ þ sðxÞ þ s̄ðxÞ�Q2

0
; (45)

one can identify the scale Q2
0 (again) by means of the

valence momentum [Eqs. (31)]:

Z
dxx½uVðx;Q2

0Þ þ dVðx;Q2
0Þ�

¼ 3

3þN g

�
1 −

Z
dxxSeaðx;Q2

0Þ
�

¼ 0.552ðπ onlyÞ
¼ 0.534ðπ þ ρþ ωþ K þ K�Þ: (46)

Gluons are introduced at the initial scale by means of
their integral properties (number of gluons and total
momentum conservation), while their shape is induced
from heuristic arguments [in the present case, the valence-
like form (44)], the initial scale can be fixed by means of the
values (46).
Table II summarizes the parameters for the scenarios A-g

(with gluons) and B-g (with gluons) as well as for the
scenarios A (no gluons) and B (no gluons). They are the
parameters used in the present study and also discussed
in Ref. [10].
The values of Table II (upper panel, scenarios A-g and

B-g) are physically sensible: the presence of a nonpertur-
bative sea due to the virtual cloud is connected to a certain
number of gluons fixed by general arguments like those
ones summarized in Eq. (46).

Table II (lower panel, scenarios A and B) summarizes the
parameters for the scenarios where gluons are neglected at
the initial scale. Of course, that scenario is also physically
sensible: it entirely stands on a theoretical basis without
inclusion (or contamination) of heuristic arguments. It
seems also more transparent from the point of view
of the assumptions made and the procedures used to
obtained the numerical results. In particular, in order to
emphasize the role of the meson cloud, it seems fully
justified to remain within that model, assigning to it a scale
through the valence contribution and pushing the scale at a
low level by means of the transcendental equations (38) and
(39). Of course, the sensitivity on the starting scale is
amplified, amplifying at the same time the sensitivity of the
results to the model used. Within the scenario which
includes the gluons, the distributions at Q2

0 are strongly
influenced by the ansatz (46) and the role of the model is
softened. In particular, a perturbative evolution (at NNLO,
for instance) of the valence distribution from the scales
where valence and sea components are present (Q̄2

0 ¼
0.149 GeV2 or Q2

0 ¼ 0.161 GeV2) to the scales where
also gluons are considered (Q̄2

0 ¼ 0.72 GeV2 or Q2
0 ¼

0.85 GeV2) is implied any way in order to construct
valence distribution. In this way, the dependence on the
low scale is reintroduced in a nontransparent way.

IV. RESULTS

In conclusion, the procedure adopted including only a
meson cloud seems to be more transparent. It is not only
converging but also theoretically better founded and
specifically sensitive to the meson-cloud effects empha-
sized in the present work. In showing the actual results of
the model, experimental evidence (or fit to parton distri-
butions) will be systematically included. In particular, I will
compare the present predictions with the dynamically
generated parton distributions obtained (at NNLO) within
the radiative parton fit of Jimenez-Delgado and Reya
(JDR) [29]. The optimally fixed low-resolution scale

TABLE II. Upper panel: The evolution parameters within scenarios A-g and B-g, where the valence and sea
partons are considered at the initial scale together with a gluon distribution evaluated by means of a valencelike
radiative parton model [see Eq. (44)]. Lower panel: The same parameters if the gluons are not added and the partons
included are from valence and sea contribution only. [Note that as0;NmLO ¼ αs;NmLOðQ2

0Þ=ð4πÞ]; cf. Eq. (35).
With gluons

Scenario A-g π only
With gluons cenario B-g

π, ρ, ω, K, K�

NmLO ΛNmLO (GeV) Q̄2
0 (GeV2) as0;NmLO Q2

0 (GeV2) as0;NmLO
NNLO 0.240 0.72 0.034 0.85 0.032
NLO 0.248 0.54 0.034 0.65 0.032
LO 0.232 0.38 0.057 0.44 0.053

No gluons Scenario A π only No gluons Scenario B π, ρ, ω, K, K�
ΛNmLO (GeV) Q̄2

0 (GeV2) as0;NmLO Q2
0 (GeV2) as0;NmLO

NNLO 0.240 0.149 0.114 0.161 0.099
NLO 0.248 0.110 0.104 0.118 0.093
LO 0.232 0.087 0.231 0.094 0.199
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(Q2 ¼ 0.55 GeV2 at NNLO) allows one to evolve the
21-parameter JDR fit to a high scale. In order to specify the
comparison in Figs. 8 and 9, the parton distributions of
scenario B are shown at the initial scale of the JDR
parametrization Q2 ¼ 0.55 GeV2. Even by starting from
a scenario where gluons are neglected and only valence and
sea partons are present, the number of radiative gluons
generated evolving from the input scale of the quark-meson
model (Q2

0 ¼ 0.161 GeV2) to the initial scale of the JDR
parametrization (Q2 ¼ 0.55 GeV2) is quite relevant, in
particular, at low x. In fact, the choice of the JDR

parametrization for the gluon distribution is valencelike
and shows its maximum at x ≈ 0.15. On the contrary, both
the valence and the sea distributions appear to have the
same x dependence also from a quantitative point of view.

A. The sea distributions

1. d̄ and ū

Experimental evidence shows that d̄ and ū have different
sizes and distributions. In Fig. 2 (upper panel), the
(positive) difference d̄ðxÞ − ūðxÞ at the scale of the model
is shown. The meson-cloud excess of d̄ within the
framework of the Sullivan process accounts for the asym-
metry. Evolving the distributions to a high scale opens the
possibility to compare the sea distributions with exper-
imental data. In Fig. 10, the comparison of the present
meson-cloud model with the data from E886 experiment is
shown. The experiment is designed to study the ratio d̄=ū
over a large x range [53]. The nonstrange sea distributions
are not specifically sensitive to the presence of strange
components at the initial scale even at NNLO. In particular,
the experimental ratio d̄=ū amplifies the effects of a large ū
distribution at intermediate values of x, a behavior which is
not well reproduced by the meson-cloud model. For
example, d̄ū jE866hxi≈0.2 ≈ 1.56 in the E866 data, while the same

ratio is ≈1.3 as a result of a NNLO evolution.

2. The strange sea

An interesting result for the strange distribution is shown
in Fig. 11 for the total strange sea xsþðx;Q2Þ ¼
xðsðx;Q2Þ þ s̄ðx;Q2ÞÞ at Q2 ¼ 2.5 GeV2, the scale of
the HERMES experiment. Data adapted from Ref. [54]
are also shown for comparison. Evolving the initial dis-
tributions at LO and NLO within scenario B (where the
strange sea is considered at the initial scale) induces a
vanishing asymmetry xs− ¼ xðsðx;Q2Þ − s̄ðx;Q2ÞÞ but a
consistent symmetric total strange momentum. The impor-
tant perturbative evolution component at NNLO is shown
by the tiny dashed curve, rather close to the experimental
data also when scenario A is assumed. A comparison with
the NNLO calculation within scenarios B and A clearly
shows that the perturbative component dominates at that
order. Evaluation of strange distributions makes sense at the
NNLO only. At the same time, one could expect important
effects on the strange sea from the nonperturbative intro-
duction of strange components to be evolved at LO and
NLO. The inference is correct, but the quantitative agree-
ment obtained at NNLO (in particular, at low x) is lost. In
the same figure are also the predictions of theNNLOfit toDIS
data from Ref. [29] (triangles). The fit assumes a symmetric
strange sea at the initial scale [sðx;Q2

0Þ ¼ s̄ðx;Q2
0Þ], and the

totalmomentumiswell reproducedat largexbutnotat smallx,
despite the dominance, in that region, of the perturbative
component.
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FIG. 8 (color online). The parton distributions at the scale of the
present meson-cloud model [Q̄2

0 ¼ 0.161 GeV2 (dotted lines),
scenario B] are evolved at NNLO till Q2 ¼ 0.55 GeV2

(continuous lines), the scale of the JDR parametrization.
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FIG. 9 (color online). The NNLO parton parametrization by
Jimenez and Reya [28,29] at their input scale Q2 ¼ 0.55 GeV2

(dashed lines). For comparison the parton distributions at NNLO
due to the present meson-cloud model (continuous lines) ob-
tained by evolving at Q2 ¼ 0.55 GeV2 from Q̄2

0 ¼ 0.161 GeV2

at NNLO the input partons of scenario B (cf. Fig. 8).
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Recently, the results shown in Fig. 11 have been
critically reviewed [55] with the argument that the sole
analysis of the sum of K� multiplicities, as done in the
Hermes paper [54], might not be sufficient to draw a solid
conclusion about the (rather elusive) strange sector. A
simultaneous analysis of the difference of K� multiplicities
should be performed (see also Ref. [56]). Complementary
information come from the differential measurements of the
inclusive W� and Z boson cross sections at the LHC,
recently performed by the ATLAS Collaboration [57] using
pp collision data recorded in 2010 [58]. Because of the
weak couplings of the quark involved, complementary

information to F2 is provided constraining the total light
sea xΣðx;Q2Þ ¼ 2xðūþ d̄þ sþ s̄Þ. The parton distribu-
tion analysis of Ref. [57] is performed at NNLO (and
directly comparable with the present approach) using
ATLAS data jointly with inclusive deep inelastic scattering
data from HERA. The ATLAS analysis is compared with
the present theoretical results in Fig. 12, where the total
light ATLAS sea data xΣ ¼ 2xðūþ d̄þ s̄Þ for a fitted
fraction of strangeness of about unity (squares) are shown
in the region 10−3 ≤ x ≤ 1 and compared with the NNLO
evolutions to the scale of the data, i.e. Q2 ¼ 1.9 GeV2.
Predictions for both scenarios are shown to appreciate the
role of the unperturbed strange sea. In particular, it is
evident that the experimental data at low x (0.001 ≤
x ≤ 0.02) show a shoulder not reproduced by the present
approach, while the data at larger x (0.03 ≤ 1) are well
reproduced in both scenarios. The large perturbative
production of a strange sea due (in the present approach)
to the large evolution scale difference seems to be at the
origin of the steep behavior of the total sea below x ¼ 0.02.
In Fig. 13, the results for the asymmetry xs−ðx;Q2Þ ¼

xðsðx;Q2Þ − s̄ðx;Q2Þ at Q2 ¼ 4 GeV2 are shown. As
already discussed, such a quantity is extremely sensitive
to the choice of the quark wave functions and meson-cloud
content. The results shown (within scenario B) refer to the
choice of Eq. (28) (see Sec. II B 4 for a discussion). The
figure emphasizes also the contribution due to the presence
of an asymmetric strange component in the meson cloud and
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FIG. 10 (color online). Upper panel: The nonstrange sea
distribution asymmetries d̄ − ū at the scale of the E866 experi-
ment [53] Q2 ¼ 54 GeV2 whose data are shown for comparison
(squares). The same quantities at Q2

0 are shown in Fig. 2, upper
panel. The dot-dashed line is the result of a NLO evolution for
scenario B where calculations include the nonperturbative strange
sea at the initial scale, while the dotted curve is the result of a LO
evolution within the same scenario. The NNLO evolution results
are shown by the continuous line for scenario B and the dashed
line for scenario A, where only π mesons are considered. The
triangles show the results of the JDR parametrization [29]. Lower
panel: The results of the ratio d̄=ū, with the same notations.
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lations include a nonperturbative strange sea at the initial scale (see
the lower panel in Fig. 6). Comparisonwith results with a vanishing
strange sea at the starting scale (scenario A) is made (at NNLO) by
means of the tiny dashed line. Recall that the strange asymmetries at
NLO and LO would be strictly zero if the strange sea is assumed to
vanish at Q2

0. Triangles are from Ref. [29].
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the role of perturbative evolution at different orders. In
particular, the asymmetry vanishes at LO and NLO if one
neglects asymmetric strange nonperturbative components
(namely, the K and K� fluctuations). At NNLO a large
perturbative component is present for both scenarios A and
B (cf. also Ref. [10]). As a matter of fact, the perturbative
part gives a significantly large contribution to the asymmetry
at NNLO, softening the dependence of the present results on
the cloud model and stressing the role of NNLO effects.
Figure 14 emphasizes such a conclusion showing the

effects of nonperturbative and perturbative components at
the scale Q2 ¼ 16 GeV2. Disentanglement, at such a large
resolution scale, of perturbative and nonperturbative con-
tributions to the strange asymmetry is assured by a
complete parton distribution evolution at NNLO as in
the present approach. An approximate attempt has been
proposed in Ref. [16], where the analysis is performed by
evolving in a separate way the nonperturbative strange
asymmetry due to the meson cloud and valence distribution
(related to the perturbative component of the asymmetry, in
the x space). Neglecting the interference effects between
the two responses, in a small and delicate quantity like the
strange asymmetry, can introduce uncontrolled uncertain-
ties. In Fig. 14, a comparison with the results by Feng,
Cao, and Signal [16] is explicitly performed at the scale
Q2 ¼ 16 GeV2 chosen by those authors.
Table III confirms that the asymmetry is not well con-

strained at NLO, and a NNLO investigation is mandatory, an

observation which helps in drawing some conclusions
also on the role of strange asymmetry in the analysis of
the NuTeVexperiment. Charge symmetry violations play an
important role in the interpretation of the experiment;
however, the sources of uncertainty and the needed correc-
tions are of a more general origin including electrodynamic
isospin violations and nuclear effects on structure functions.
Taking into account all the corrections coherently (for a
summary, see Ref. [11]), no more anomaly in the NuTeV
experiment can be invoked even for an accepted (mean)
value of zero strange asymmetry. In Ref. [10], for instance, I
have demonstrated that the interpretation of the experiment
is consistent with a value of hxðsðxÞ − s̄ðxÞÞi≈
0.0� 0.0020, and it is not necessary to invoke large strange
asymmetry to explain the NuTeV result.

B. Valence partons and gluons

I have emphasized, till now, the effects of nonperturba-
tive and perturbative origin on the specific flavor sea
components, in particular, strangeness. The results show
strong NNLO effects with respect to NLO, as if the NNLO
expansion had no perturbative meaning. However, one has
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FIG. 12 (color online). The total sea distribution xΣðx;Q2 ¼
1.9 GeV2Þ ¼ xð2ūþ 2d̄þ sþ s̄Þ as a function of x. The ATLAS
data analysis (squares) assumes a fitted fraction s̄=s ¼ 0.93�
0.15 at x ¼ 0.023 (present result 1.04 for scenario B), while the
ratio ðsþ s̄Þ=d̄ is consistent with unity (1.8 for scenario B). The
present theoretical predictions are shown by the dot-dashed line
for scenario A and the full line for scenario B where the strange
sea is included at low scale. The quantity xΣlight ¼ 2xðūþ d̄Þ
(defined as “light” in the legend) is also shown for scenarios A
(dotted line) and B (dashed line) in order to illustrate the role of
the strange sea.
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FIG. 13 (color online). The strange asymmetry distribution
xs−ðx;Q2Þ ¼ xðsðx;Q2Þ − s̄ðx;Q2ÞÞ at Q2 ¼ 4.0 GeV2. The
dotted line is the result of a LO evolution for scenario B where
calculations include the nonperturbative strange sea at the initial
scale Q2

0 (see the lower panel in Fig. 6), while the dot-dashed
curve is the result of a NLO evolution within the same scenario.
Both LO and NLO distribution would vanish identically for
scenario A, i.e. when the strange sea in neglected at the
nonperturbative levelQ2

0. The NNLO evolution results are shown
by the continuous line for scenario B and tiny dashed line for
scenario A. The asymmetry at Q2

0 is shown for comparison (see
the legend). The triangles are the results of the dynamical
(NNLO) fit of Ref. [29], where a symmetric strange sea
[s−ðxÞ≡ 0] is assumed at low scale.
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to notice that I discussed the largest effects and therefore
also effects which appears for the first time at NNLO. For
those observables (the strange asymmetry is the prototype)
the perturbative expansion starts at NNLO. In this section,
results of genuine higher order will be investigated, in
particular, the effects on the nonsinglet valence and gluon
distributions. Both these observables are strongly influ-
enced by perturbative expansion. The valence partons share
almost the total momentum at low-resolution scale, a
choice discussed in Secs. II B 5 and III B. The introduction
of the effects due to the meson cloud lowers the total
valence momentum from 1 to 0.88 within scenario A and to
0.84 within scenario B [cf. Eqs. (29) of Sec. III B]. During
the evolution, gluon radiation enhances the gluon and sea
components and lowers the valence contribution, keeping
the total number of valence quarks and total momentum
fixed. A typical example is shown in Fig. 15, where the

initial partons of scenario B are evolved at NNLO, NLO,
and LO from low-resolution scale to Q2 ¼ 6464, a scale
of the H1 Collaboration experiments [60]. The huge
number of sea and gluon components is stressed by the
factor 100 needed to make the figure illustrative. Also, the
convergence of the perturbative expansion shows up clearly
despite the large range chosen at low x.
In Fig. 16, the NNLO evolution at the H1 scale Q2 ¼

6464 GeV2 is shown for both scenarios A and B, making
clear the role of the nonperturbative meson cloud in
calculating the valence, total sea, and gluon distributions.
Let me stress that the results represent absolute predictions
starting from a quark model wave function on the light-
front and meson fluctuations. The model is fixed and also
the low resolution scale, without adjustable parameters.
The comparison with the dynamical fits of Ref. [29]
(evolved at the same scale) gives a quantitative comparison
with the experimental results.

1. SUð6Þ breaking and the valence region x → 1

The investigation of valence partons implies the descrip-
tion of the distributions at large x (x → 1). This region
manifests specific aspects: higher-order twist effects could
become important as well as the resummation of a large
log contribution to the evolution near the x ≈ 1 threshold
[61–63]. The model I am presenting could be the frame-
work to investigate also such effects, and work in this
direction is in progress [64]. A more standard aspect of the
large-x region has been mentioned at the end of Sec. II A 1:
SUð6Þ-breaking effects should show up in that region. In
particular, the ratio of the neutron to proton structure
functions (Fn

2=F
p
2 ) is predicted to be 1=4 in the model

where the uV distribution dominates with respect to the dV
distribution at large x. In SUð6Þ-symmetric models where
the symmetry implies dV ¼ uV=2, the ratio is simply
constant and, in the region where the valence quark
contribution dominates, equal to 2=3. I am using a
SUð6Þ-symmetric model, and the expected result (2=3)
is in disagreement with the experiments which confirm a
lower limiting value (for a critical review on the extraction of
the dV=uV ratio at large x, see, for example, Refs. [62,63]).
While all familiar parton distributions vanish at x ¼ 1, ratios
of two of them need not, and, under evolution, the value of
such a ratio is (practically) invariant and can reflect signifi-
cant nonperturbative features of QCD [61].
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FIG. 14 (color online). The asymmetry xs−ðx;Q2Þ ¼
xðsðx;Q2Þ − s̄ðx;Q2ÞÞ at Q2 ¼ 16:0 GeV2. The NNLO evolu-
tion results are shown by the continuous line within scenario B
and the tiny dashed line for scenario A. The difference (dotted
line) represents the nonperturbative contribution at Q2 ¼
16 GeV2, i.e. the contribution due to the presence of asymmetric
components at the initial evolution scale. The net result of a
complete genuine NNLO emphasizes the small nonperturbative
part (shown in Fig. 13 at Q2

0). The nonperturbative part is clearly
positive in the region 0.001 ≤ x ≤ 0.2. The dot-dashed line shows
the approximate results of Ref. [16] to be compared with the full
line predictions of the present approach.

TABLE III. Moments of the strange distributions calculated within scenarios A and B and evolved at NNLO (Q2 ¼ 4 GeV2) are
compared with the results of the lattice calculation of Ref. [59] (the authors warn that their calculation is subject to large systematic
errors). The results of the NLO evolution are shown in square brackets ½:::::�.

hxðsðxÞ þ s̄ðxÞÞi hxðsðxÞ − s̄ðxÞÞi hx2ðsðxÞ − s̄ðxÞÞi
A: no strange sea at Q2

0 0.047 [0.036] −0.0016 [0] −0.00018 [0]
B: strange sea at Q2

0 0.042 [0.033] −0.0013 [2.0 × 10−5] −0.00016 [−9.0 × 10−6]
From Ref. [59] 0.027� 0.006 Consistent with zero Consistent with zero
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Since fundamental aspects of nonperturbative QCD are
encoded in the ratios at large x, it seems that a direct
relation between the SUð6Þ-breaking effects at low energy
and the parton distributions can be established in a simple
way. Actually, the situation is more intricate, as it has been
demonstrated by calculating the Fn

2=F
p
2 ratio within both

nonrelativistic [20,21] and relativistic quark-parton models
[23,24] as the input scale. To summarize the situation, I will
refer to the paper by Pasquini, Traini, and Boffi [24]
dedicated explicitly to that topic. It has been shown that the
effects due to the SUð6Þ-breaking needed at low energy to

reproduce the mass spectrum (or other nucleon properties)
cannot reproduce the high-x behavior of the Fn

2=F
p
2 ratio

[66]. Apparently, such a conclusion contradicts other
contributions (e.g. the well-known paper by Close [67]).
The reason is rather simple: the calculation by Close (as
well as other similar investigations [24,68] and references
therein) does not satisfy the Pauli principle for the sym-
metry of the three-quark wave function, an observation due
to Isgur [68]. The approach proposed in Ref. [24] has the
advantage to fully satisfy the Pauli principle of the quark
and parton distributions, opening the possibility of a direct
connection between the effects incorporated within low-
energy quark models and the parton dynamics. The result is
mainly negative: the SUð6Þ breaking manifested by the
large-x behavior cannot be reduced to the SUð6Þ-breaking
mechanism at low energy. The approach I am proposing in
the present manuscript seems to be promising also for
investigating in more detail the large-x region once higher-
order effects [69] and the resummation contribution have
been integrated. As already mentioned, work in this
direction is in progress [64].

V. CONCLUSIONS

The radiative parton model has been demonstrated to
have a predictive power since the pioneer work of Glück,
Reya, and Vogt [26,27], where the small-x behavior of
parton distributions was predicted and later checked exper-
imentally. The meaning of such experimental behavior at
low x is rather simple: the structure function is entirely due
to QCD dynamics at x < 10−2, and the parton distributions
at Q2 > 1 GeV2 are generated radiatively from input
distributions at an optimally determined low scale
Q2

0 < 1 GeV2. The phenomenological view [31,32] that
there exists a scale where the short-range (perturbative) part
of the interaction is suppressed (and therefore the gluons
and the sea) and that the long-range part of the interaction
reveals the nucleon as a composite system of (mainly) three
quarks receives some specific support. Following this
suggestive hypothesis, the paper investigates the actual
results of parton distributions generated when the low-input
scale is rigidly fixed by a detailed model of the nucleon
which includes quarks and a meson cloud. The light-front
Hamiltonian dynamics fixes the three-quark wave func-
tions, and the meson cloud is introduced by means of high-
order Fock component in time-ordered perturbation theory
in the infinite momentum frame. Nonstrange as well as
strange meson-baryon fluctuations are considered follow-
ing the rich literature (π, ρ, ω, K, and K�, together with N,
Δ, Λ, and Σ), and the effects on strange and nonstrange
parton distributions investigated in detail showing the large
effects due to (nonstrange) sea asymmetries and the delicate
balance of strange asymmetry. The total strange component
is compared with the available experiments. The intense
comparison of the results of the present approach with more
conventional fits of parton distributions shows the quality
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FIG. 15 (color online). Parton distributions, valence, total sea
and gluons, evolved at Q2 ¼ 6464 GeV2 (scale of the H1
Collaboration experiments [60]) within scenario B. Continuous
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FIG. 16 (color online). Parton distributions, valence, total sea
and gluons, evolved at Q2 ¼ 6464 GeV2 (scale of the H1
Collaboration experiments [60]). The dashed lines show the
result obtained without including strange components in the
meson cloud at nonperturbative level (scenario A). The continu-
ous lines represent the numerical results obtained when the
nonperturbative strange sea component is introduced explicitly at
the model scale (scenario B). Triangles represent the results of the
dynamical fit to the experimental data of Ref. [29].
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of a study fully based on the quark and meson dynamics at
low-resolution scale. The dynamical origin of some fea-
tures of the parton distributions have been directly related
to properties of the nucleon wave functions and meson-
baryon fluctuations. In this way the presence of a strange
asymmetry can be correlated to both perturbative (NNLO is
mandatory) and nonperturbative effects (the nonperturba-
tive strange sea cannot be neglected).
Despite the lack of gluons at low-resolution scale

(nonperturbative gluons have been neglected in favor of
a nonambiguous determination of the sea contribution and
the related input scale), the large number of gluons at small
x (10−4 ≤ x ≤ 0.01) is reasonably reproduced together with
the small-x behavior of the total sea. Again, NNLO
approximation produces results better in agreement with
data fits.
The model is complete and flexible enough (in both the

nonperturbative and perturbative sectors) to investigate in
detail the role of the individual mesons in the virtual cloud.
In this way, for instance, the role of both K and K� strange
mesons has been investigated with particular emphasis on
the total strange sea and asymmetry. The completeness of
the approach is also seen by the possibility of integrating
subsidiary elements in the study of delicate quantities like
charge-symmetry-violation effects of both strong and
electrodynamics (QED-radiative corrections) origin. The
topic has been briefly mentioned, but a specific contribu-
tion has been recently devoted to a detailed analysis
(cf. Ref. [10]) within the same approach.
It seems to me that one of the actual potentialities of the

radiative dynamical approach to parton distributions is just
opening the door to the connection of the low-energy
model and the large amount of high-energy data. The
discussion devoted to the choice of the (initial) low-
resolution scale in Sec. III (in particular, Sec. III A 1)
on the freezing of the QCD running coupling [51,52] has
to be further elaborated but can be a real interesting key to
bridge different worlds.
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APPENDIX: SOLVING EVOLUTION EQUATIONS

The Mellin Nth moments of the parton distributions
fðx;Q2Þ (f ¼ q, q̄, g),

hfðQ2ÞiN ¼
Z

1

0

dxxN−1fðx;Q2Þ; (A1)

evolve according to the coupled flavor-singlet evolution
equation

dhq⃗SðQ2ÞiN
d ln Q2

¼ P̂Sðas; NÞhq⃗SðQ2ÞiN

×

�
¼ − 1

2
γ̂Sðas; NÞhq⃗SðQ2ÞiN

�
; (A2)

where2

q⃗S ¼
�
Σ
g

�
(A3)

with Σ ¼Pqðqþ q̄Þ and

P̂Sðas; NÞ ¼
X2
k¼0

akþ1
s P̂ðkÞ

S ðNÞ

¼
X2
k¼0

akþ1
s

 
PðkÞ
qq ðNÞ PðkÞ

qg ðNÞ
PðkÞ
gq ðNÞ PðkÞ

gg ðNÞ

!
: (A4)

The Pð0Þ
rs , P

ð1Þ
rs , and P

ð2Þ
rs are called the LO, NLO, and NNLO

(three-loop) splitting functions, respectively, [17,18].
In the flavor-nonsinglet (NS) sector, Eq. (A2) is

uncoupled and reads

dhqiNSðQ2ÞiN
d ln Q2

¼ Pi
NSðas; NÞhqiNSðQ2ÞiN

×

�
¼ − 1

2
γiNSðas; NÞhqiNSðQ2ÞiN

�
; (A5)

with (see footnote)

Pi
NSðas; NÞ ¼

X2
k¼0

akþ1
s PðkÞ;i

NS ; (A6)

and PðkÞ;i
NS refers to the NS splitting functions PðkÞ;�

NS and
PðkÞ;v
NS (i.e. i ¼ �, v). They are the evolving functions

for the NS combinations of parton distributions
q�NS;3 ¼ u� − d�, q�NS;8 ¼ u� þ d� − 2s�, where q� ¼
q� q̄ and qvNS ¼

P
qðq − q̄Þ. The NNLO splitting func-

tions Pð2Þ;i
NS can be found in Ref. [18].

For the evolution I used the basis [19]

v�ðk2−1Þ ¼
Xk
i¼1

ðqi � q̄iÞ − kðqk � q̄kÞ; (A7)

with k ¼ 1;…; nf. After performing the evolution, indi-
vidual quark and antiquark distributions can be recovered
by means of the relations

2The factor −1=2 has been introduced to define the functions γ
which have been used in our previous work [20–22].
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qi � q̄i ¼
1

nf
qS − 1

i
vþi2−1 þ

Xf
k¼iþ1

1

kðk − 1Þ v
þ
k2−1; (A8)

where vþ0 ≡ 0, as well as the corresponding equation for the
differences qi − q̄i.

1. Flavor-nonsinglet

Since no matrices are involved in the NS evolution, let us
start the discussion with the evolution of that sector. By
combining Eqs. (36), (A5), and (A6), one can express the
evolution of the NS moments

dhqNSðQ2ÞiN
das

¼ −
P

2
k¼0 a

kþ1
s PðkÞ

NSðNÞP
2
k¼0 βka

kþ2
s

hqNSðQ2ÞiN; (A9)

and the solution can be written

hqNSðQ2ÞiN
hqNSðQ2

0ÞiN
¼ exp

�
−
Z

as

as0

das

P
2
k¼0 a

kþ1
s PðkÞ

NSðNÞP
2
k¼0 βka

kþ2
s

�
;

(A10)

where as0 ¼ αsðQ2
0
Þ

4π . The previous integrals have a closed
form, and for k ¼ 0 (LO), k ¼ 1 (NLO), and k ¼ 2
(NNLO) become

hqNSðQ2ÞiN
hqNSðQ2

0ÞiN

����
LO

¼ exp

�
−
Z

as

as0

das
asP

ð0Þ
NSðNÞ
β0a2s

�

¼
�
as
as0

�−P
ð0Þ
NS

ðNÞ
β0 ; (A11)

hqNSðQ2ÞiN
hqNSðQ2

0ÞiN

����
NLO

¼ exp

�
−
Z

as

as0

das
asP

ð0Þ
NSðNÞ þ a2sP

ð1Þ
NSðNÞ

β0a2s þ β1a3s

�

¼
�
as
as0

�−P
ð0Þ
NS

ðNÞ
β0

�
1þ β1

β0
as

1þ β1
β0
as0

�λ0ðNÞ
; (A12)

hqNSðQ2ÞiN
hqNSðQ2

0ÞiN

����
NNLO

¼ exp

�
−
Z

as

as0

das
asP

ð0Þ
NSðNÞ þ a2sP

ð1Þ
NSðNÞ þ a3sP

ð2Þ
NSðNÞ

β0a2s þ β1a3s þ β2a4s

�

¼
�
as
as0

�−P
ð0Þ
NS

ðNÞ
β0

�
1 − 1

x1
as

1 − 1
x1
as0

�λ1ðNÞ
·

�
1 − 1

x2
as

1 − 1
x2
as0

�λ2ðNÞ
; (A13)

where

x1 ¼ − β1
2β2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
β1
2β2

�
2 − β0

β2

s
;

x2 ¼ −
β1
2β2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
β1
2β2

�
2 − β0

β2

s
; (A14)

and

λ0ðNÞ ¼ −
�
Pð1Þ
NSðNÞ
β1

− Pð0Þ
NSðNÞ
β0

�
;

λ1ðNÞ ¼ −
1

β2

1

x1 − x2

�
þPð1Þ

NSðNÞ − β1
β0

Pð0Þ
NSðNÞ þ x1

�
Pð2Þ
NSðNÞ − β2

β0
Pð0Þ
NSðNÞ

��
;

λ2ðNÞ ¼ −
1

β2

1

x1 − x2

�
−Pð1Þ

NSðNÞ þ β1
β0

Pð0Þ
NSðNÞ − x2

�
Pð2Þ
NSðNÞ − β2

β0
Pð0Þ
NSðNÞ

��
: (A15)

Equation (A11) is the well-known LO evolution expression for NS components, and it keeps a symmetric form for
evolutions fromQ2

0 → Q2 and back. Equation (A12) is its analog at NLO, but it is less known in the literature. The reason is
rather simple: it contains higher-order corrections in as, and several authors prefer to expand Eq. (A12) by keeping lower-
order terms (in as and as0) around the LO solution. Developing Eq. (A13), one gets

MARCO TRAINI PHYSICAL REVIEW D 89, 034021 (2014)

034021-18



hqNSðQ2ÞiN
hqNSðQ2

0ÞiN

����
NLO

≈
�
as
as0

�−P
ð0Þ
NS

ðNÞ
β0

�
1þ λ0ðNÞ β1

β0
ðas − as0Þ

�
; (A16)

an expansion which has to pay the price of a nonsymmetric form in Q2 and Q2
0, losing the possibility of a backward

evolution into the region of validity of the same Eq. (A12).
In our previous works, we tried to keep a symmetric form to establish a backward evolution needed to fix the actual scale

of some nucleon model, and we have developed the following NLO expansion [21]:

hqNSðQ2ÞiN
hqNSðQ2

0ÞiN

����
NLO

≈
�
as
as0

�−P
ð0Þ
NS

ðNÞ
β0

�
1þ λ0ðNÞ β1β0 as
1þ λ0ðNÞ β1β0 as0

�
; (A17)

which can also be derived from Eq. (A12) by expanding the numerator and the denominator independently.3

The NNLO NS evolution of Eq. (A13) found application after the explicit calculation of all splitting functions at NNLO
[17,18]. Similarly to the NLO expression (A12), also the NNLO expression (A13) contains higher-order corrections, and
some authors prefer to further expand it around the LO order result (A11) (e.g. [19] and references therein). The expansion
would lead to (let me use a simplified notation dropping the N and Q2 dependence where obvious)

hqNSðQ2ÞiN
hqNSðQ2

0ÞiN

����
NNLO

≈
�
as
as0

�−P
ð0Þ
NS

ðNÞ
β0

(
1 − ðλ1x1 þ

λ2
x2
Þas þ 1

2
½ðλ1x1 þ

λ2
x2
Þ2 − ðλ1x2

1

þ λ2
x2
2

Þ�a2s
1 − ðλ1x1 þ

λ2
x2
Þas0 þ 1

2
½ðλ1x1 þ

λ2
x2
Þ2 − ðλ1x2

1

þ λ2
x2
2

Þ�a2s0

)
(A18)

¼
�
as
as0

�−P
ð0Þ
NS

ðNÞ
β0

�
1 − R1as þ 1

2
ðR2

1 − R2Þa2s
1 − R1as0 þ 1

2
ðR2

1 − R2Þa2s0

�
(A19)

≈
�
as
as0

�−P
ð0Þ
NS

ðNÞ
β0

�
1 −

�
λ1
x1

þ λ2
x2

�
ðas − as0Þ þ

1

2

��
λ1
x1

þ λ2
x2

�
2

−
�
λ1
x21

þ λ2
x22

��
ða2s − a2s0Þ −

�
λ1
x1

þ λ2
x2

�
2

as0ðas − as0Þ
�

(A20)

¼
�
as
as0

�−P
ð0Þ
NS

ðNÞ
β0

�
1 − ðas − aS0ÞR1 þ

1

2
ða2s − a2s0ÞðR2

1 − R2Þ − as0ðas − as0ÞR2
1

�
; (A21)

with Rk ¼ PðkÞ
NS=β0 −

P
k
i¼1 βiRk−i=β0. Explicitly,

R0 ¼
Pð0Þ
NS

β0
; (A22)

R1 ¼
1

β0

�
Pð1Þ
NS − β1

β0
Pð0Þ
NS

�
; (A23)

R2 ¼
1

β0

�
Pð2Þ
NS − β1

β0
Pð1Þ
NS þ

��
β1
β0

�
2 − β2

β0

�
Pð0Þ
NS

�
; (A24)

3The comparison with [20,21] implies a redefinition of the splitting functions: P → −γ=2; see Eqs. (A2) and (A5).
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and from (A15), (A23), and (A24)

R1 ¼
�
λ1
x1

þ λ2
x2

�
;

R2 ¼
�
λ1
x21

þ λ2
x22

�
; (A25)

which check the validity of the equalities (A18) and (A19).
In summary,

(i) the basic NS evolution at NNLO is given by
Eq. (A12) and its symmetric (A19) or not symmetric
(A21) expansions;

(ii) the coupling constant as ¼ αs=ð4πÞ is given at
NNLO by the solution of the transcendental equa-
tion (39). The approximation (41) is not appropriate
within a radiative approach like ours, because the
starting point of the evolution is rather low;

(iii) the use of a symmetric evolution form is specifically
suitable for fixing the low-resolution scale allowing
for a forward and back evolution of valence partons.

2. Flavor-singlet

The singlet splitting-function matrices Rk of different
orders k do not commute. Therefore, the solution of the
evolution equation (A2) cannot be written in a closed
exponential form beyond LO, and one is left with a series
expansion around the lowest-order solution.
Differently from the nonsinglet evolution, one cannot

introduce the symmetrized version of the evolution at
NNLO (for an attempt at NLO, see Ref. [21]). The
procedure is lengthy, but standard, and I refer to the paper
by Vogt [19] for a clear discussion. The NNLO (truncated)
evolution can be written

hq⃗SðQ2ÞiN jNNLO ¼ ½L̂þ asÛ1L̂ − as0L̂Û1

þ a2sÛ2L̂ − asas0Û1L̂Û1

þ a2s0L̂ðÛ2
1 − Û2Þ�hq⃗SðQ2

0ÞiN: (A26)

The LO and NLO approximations are obtained from
Eq. (A26) by, respectively, retaining only the first or the
first, second, and third terms (linear in as and as0) in the
square bracket:

hq⃗SðQ2ÞiN jLO ¼ L̂ðas:as0; NÞhq⃗SðQ2
0ÞiN; (A27)

hq⃗SðQ2ÞiN jNLO ¼ ½L̂ðas:as0; NÞ þ asÛ1L̂ðas:as0; NÞ
− as0L̂ðas:as0; NÞÛ1�hq⃗SðQ2

0ÞiN (A28)

with

L̂ ¼ Lðas:as0; NÞ≡
�
as
as0

�−R̂0

¼ ê−
�
as
as0

�−λ− þ êþ

�
as
as0

�−λþ

and R̂0 ¼ P̂ð0Þ
S =β0. The projection matrices

ê� ¼ 1

λ� − λ∓
½R̂0 − λ∓1̂�

and λ−ðλþÞ denote the smaller (larger) eigenvalue
of R̂0:

λ� ¼ 1

2β0

�
Pð0Þ
qq þPð0Þ

gg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPð0Þ

qq −Pð0Þ
gg Þ2 þ 4Pð0Þ

qq P
ð0Þ
gg

q �
;

i:e: R̂0 ¼ λ−ê− þ λþêþ:

The Ûk matrices are defined by

Ûk¼1;2 ¼ − 1

k
ðê− ~̂Rkê− þ êþ ~̂RkêþÞ þ

êþ ~̂Rkê−
λ− − λþ − k

þ ê− ~̂Rkêþ
λþ − λ− − k

;

with

~̂Rk¼1;2 ¼ R̂k þ
Xk−1
i¼1

R̂k−iÛi;

R̂k ¼
P̂ðkÞ

β0
− 1

β0

Xk
i¼1

βiR̂k−i: (A29)

For the actual calculations,
(i) all the matrix manipulations have been performed

numerically;
(ii) the NNLO splitting Pð2Þ

ij as well as the standard LO

Pð0Þ
ij and NLO Pð1Þ

ij are from Ref. [18];
(iii) the Bjorken-x distributions q⃗Sðx;Q2Þ and

qNSðx;Q2Þ are obtained numerically by inverting
the Mellin moments in the complex-N plane by
means of a contour integral around the singularities
of hq⃗SðQ2

0ÞiN and hqNSðQ2
0ÞiN (see, for example,

[20–22]).
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