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We present theoretical predictions for five-jet production in proton-proton collisions at next-to-leading-
order accuracy in QCD. Inclusive as well as differential observables are studied for collision energies of 7
and 8 TeV. In general the next-to-leading-order corrections stabilize the theoretical predictions with respect
to scale variations. In the case of the inclusive jet cross sections, we compare with experimental data where
possible and find reasonable agreement. We observe that the four-to-three and five-to-four jet ratios show
better perturbative convergence than the known three-to-two ratio and are promising candidates for future
αs measurements. Furthermore, we present a detailed analysis of uncertainties related to parton distribution
functions. The full color virtual matrix elements used in the computation were obtained with the NJET
package [1], a publicly available library for the evaluation of one-loop amplitudes in massless QCD.
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I. INTRODUCTION

The wealth of data recorded at the LHC experiments in
run 1 presents an excellent opportunity to test QCD in a
new energy regime. Furthermore, multijet production at
large transverse momentum can provide useful information
to constrain the parton distribution functions (PDFs).
Where precise theoretical results are available, the data
can also be used to determine the strong coupling constant
αs. In that context large multiplicities may turn out to be
particularly useful, in analogy to what has been observed in
electron-positron annihilation. Pure QCD reactions with
multiple jet production can also give large backgrounds to
various new physics searches, and therefore precision
predictions are required.
Next-to-leading-order (NLO) predictions at fixed order in

αs for dijet production have been known for more than
20 years [2]. Three-jet production represents a considerable
increase in computational complexity, and a full computation
was completed in 2002 [3] and implemented in the public
code NLOJET++, though pure gluonic contributions were

known previously [4]. Breakthroughs in virtual amplitude
computations have recently enabled predictions of four-jet
production [5,6], with results generally in good agreement
with the experimental data [7]. Dijet production is known to
suffer from large corrections from soft gluon radiation which
requires resummation beyond fixed-order perturbation
theory. Theoretical predictions at NLO including the parton
shower (NLOþ PS) allow one to account for these effects
and obtain a better description of the available data [8,9]. The
CMSCollaborationhas recently completed ameasurement of
αs from the inclusive three-jet to inclusive two-jet ratio. The
measurement illustrates well the LHC’s potential for preci-
sionmeasurements.With next-to-next-to-leading-orderQCD
corrections to dijet production just around the corner [10],
theoretical uncertainties look to be under good control and
enable future QCD predictions tomove beyond the “industry
standard” LOþ PS=ME ðmatrix elementÞ þ PS accuracy.
There has been much progress in the automation of NLO

computations. Processes with four or five final-state
particles—previously thought to be impossible—are now
available in public codes [1,11–14]. New methods and
algorithms [15–18] have been pushing the boundaries of
perturbative QCD computations and increasing the range of
phenomenological applications (recent examples can be
found in Refs. [19–23]; see also Ref. [24] for a more
complete overview). Powerful on-shell unitarity methods
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have been available for many years [25,26] which continue
to demonstrate the ability to simplify calculations of
extremely high multiplicity amplitudes that are inaccessible
with alternative tools. Recent state-of-the-art computations
include the NLO QCD corrections to pp → W þ 5 jets
[20] by the BLACKHAT Collaboration. In this paper we
present the first computation for the production of five hard
jets at NLO in QCD. High-multiplicity computations such
as this one would be interesting to compare with predictions
of universal scaling patterns for QCD jets [27], though six-
jet production would be the first occasion where it would be
possible to extract a statistical error on such a fit from a
fixed-order computation.
This article is organized as follows. We first give an

overview of the computational framework for the various
partonic subchannels in Sec. II. Section III contains our
results for the NLO QCD corrections to pp → 5 jets. We
describe the numerical setup and interface with the SHERPA

Monte Carlo (MC) event generator [28] in Sec. III A along
with kinematic cuts. Results for total cross sections and jet
ratios are compared to the available data in Sec. III B. We
present differential distributions in the jet transverse
momenta and rapidity and perform a detailed comparison
of different PDF fits. We finally present our conclusions and
outlook for the future. Two appendices containing a com-
plete set of distributions and numerical values used in the
plotted histograms are included to ease future comparisons.

II. OUTLINE OF THE CALCULATION

The calculation is done in QCD with five massless quark
flavors including the bottom quark in the initial state. We
expect the neglected contributions from top-quark loops to
be much smaller than the estimated theoretical uncertainty.1

The processes contributing to five-jet production may be
derived from the following four basic channels via crossing
symmetry:

0 → ggggggg; 0 → qq̄ggggg;

0 → qq̄q0q̄0ggg; 0 → qq̄q0q̄0q″q̄″g;

where q, q0, and q″ denote generic quarks of different
flavor. Amplitudes with like-flavor quark pairs can always
be obtained from the amplitudes for different flavors by an
appropriate (anti)symmetrization. The n-jet differential
cross section expanded in the coupling αs reads

dσn ¼ dσLOn þ dδσNLOn þOðαnþ2
s Þ; (1)

where dσLOn ∼ αns and dδσNLOn ∼ αnþ1
s . In the QCD-

improved parton model, the leading-order differential cross
section dσLOn is given by

dσLOn ¼
X

i;j∈fq;q̄;gg
dxidxjFj=H2

ðxj; μfÞFi=H1
ðxi; μfÞ

× dσBn ðiðxiP1Þ þ jðxjP2Þ → n part:Þ: (2)

P1, P2 are the momenta of the two incoming hadrons H1,
H2, which we assume to be massless. The total incoming
momentum of the initial-state partons P ¼ xiP1 þ xjP2

leads to a partonic center-of-mass energy squared
ŝ ¼ 2xixjðP1 · P2Þ ¼ x1x2shad, with shad being the had-
ronic center-of-mass energy squared. The parton distribu-
tion functions Fi=Hðx; μfÞ describe, roughly speaking, the
probability to find a parton i inside a hadron H with a
momentum fraction between x and xþ dx. Note that, in
addition to x, the parton distribution functions also depend
on the unphysical factorization scale μf. The partonic
differential cross section dσBn ðiðx1P1Þ þ jðxjP2Þ →
n partÞ describes the reaction ðij → n-jetsÞ in the Born
approximation using the leading-order matrix elements
jMnðij → n part:Þj2 and a suitable jet algorithm Θn-jet,

dσBn ¼ 1

2ŝ

Yn
l¼1

d3kl
ð2πÞ32El

Θn-jet

× ð2πÞ4δ
�
P −Xn

m¼1

km

�
jMnðij → n partÞj2: (3)

ki are the four-momenta of the outgoing partons obeying
ŝ ¼ ðPn

i¼1 kiÞ2. The jet algorithmΘn-jet is a functiondepend-
ing solely on the final-state parton momenta ki and on
parameters defining the geometric extensions of the jet. Its
value is equal to 1 if the final-state momentum configuration
corresponds to a valid n-jet event, and it is 0 otherwise. The
Born matrix elementsMðij → n partÞ. have been evaluated
with COMIX [29] within the SHERPA framework. The SHERPA

Monte Carlo event generator [30] has also been used to
perform the numerical phase-space integration.
At NLO accuracy both the virtual corrections dσVn (one-

loop contribution interferedwith the Born amplitude) and the
real corrections dσRnþ1 (tree-level amplitudes with one addi-
tional parton in the final state) contribute to the n-jet cross
section. Both dσVn and dσRnþ1 contain separately collinear and
soft divergences. Only after combining the two contributions
and factorizing the initial-state singularities into renormalized
parton distributions does one obtain a finite result. In order to
perform the cancellation of the divergences numerically we
apply the Catani-Seymour subtractionmethod [31]. The idea
is to add and subtract local counterterms dσSnþ1 with (nþ 1)-
parton kinematics which, on the one hand, mimic pointwise
the singularity structure of the real corrections and, on the
other hand, are chosen such that the singularity due to the
additional parton emission can be calculated analytically via a

1Through the matching between five- and six-flavor QCD,
logarithmically enhanced terms of ultraviolet origin are taken into
account. Power-suppressed terms are however neglected. Since
the massless quark loops contribute less than 5% to the total cross
section for Nf ¼ 5 we expect the contribution from closed top-
quark loops to the total cross section to be very small. At large
transverse momenta the effect of power-suppressed terms may
however increase.
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separate integration of the one-particle phase space. Since by
construction the latter cancel the divergences from the virtual
corrections, only finite quantities remain,making the numeri-
cal integration with a Monte Carlo program feasible.
Schematically, we may write the total cross section as

δσNLO ¼
Z
n

�
dσVn þ

Z
1

dσSnþ1

�
þ
Z
n
dσFacn

þ
Z
nþ1

ðdσRnþ1 − dσSnþ1Þ: (4)

dσFacn is due to the factorization of initial-state singularities.
The NLO corrections can then be written in terms of three
finite contributions,

dδσNLOn ¼ dσ̄Vn þ dσ̄In þ dσRSnþ1; (5)

where dσ̄Vn denotes the finite part of the virtual corrections,
dσ̄In the finite part of the integrated subtraction terms together
with the contribution from the factorization, and dσRSnþ1 the
real corrections combined with the subtraction terms. For the
computation ofdσ̄In anddσRSn weuse SHERPA,which provides
a numerical implementation of the Catani-Seymour subtrac-
tion scheme. The required tree-level amplitudes are, as in the
LO case, computed with COMIX as part of the SHERPA

framework.
The necessary one-loop matrix elements for the virtual

corrections dσ̄Vn are evaluated with the publicly available
NJET2 package [1]. NJET uses an on-shell generalized
unitarity framework [32–35] to compute multiparton
one-loop primitive amplitudes from tree-level building
blocks. An accurate numerical implementation is achieved
using the integrand reduction procedure of Ossola,
Papadopoulos, and Pittau [36]. For a more complete
discussion of these methods we refer the reader to a recent
review in Ref. [37] and references therein. The algorithm is
based on the NGLUON library [11], following the descrip-
tion of D-dimensional generalized unitarity presented in
Refs. [38,39] and using Berends-Giele recursion [40] for
efficient numerical evaluation of tree-level amplitudes. For
a more detailed description of the employed methods and
the usage of the program, we refer to Refs. [1,11]. The
scalar loop integrals are obtained via the QCDLOOP/FF
package [41,42]. We note that NJET is so far the only
publicly available tool that is able to compute all one-loop
seven-point matrix elements that contribute to five-jet
production in hadronic collisions. For reference, numerical
evaluations of the one-loop matrix elements at a single
phase-space point have been presented previously [1].

III. RESULTS FOR FIVE-JET PRODUCTION
AT THE LHC AT 7 AND 8 TeV

A. Numerical setup

As mentioned earlier, we use the SHERPA Monte Carlo
event generator [28] to handle phase-space integration and
the generation of tree-level and Catani-Seymour dipole
subtraction terms using the color-dressed formalism imple-
mented in COMIX [29,30]. The virtual matrix elements are
interfaced using the Binoth Les Houches Accord [43,44].
To combine partons into jets we use the anti-kt jet

clustering algorithm as implemented in FASTJET [45,46].
Furthermore asymmetric cuts on the jets ordered in trans-
verse momenta, pT , are applied to match the ATLAS
multijet measurements [7],

pj1
T > 80 GeV; pj≥2

T > 60 GeV; R ¼ 0.4: (6)

The PDFs are accessed through the LHAPDF interface
[47], with all central values using NNPDF2.1 [48] for LO
[αsðMZÞ ¼ 0.119] and NNPDF2.3 [49] for NLO
[αsðMZÞ ¼ 0.118] if not mentioned otherwise.
Generated events are stored in Root Ntuple format [50]

which allows for flexible analysis. Renormalization and
factorization dependence can be reweighted at the analysis
level, as well as the choice of PDF set. Since the event
generationofhigh-multiplicityprocesses atNLO is computa-
tionally intensive, an analysis of PDF uncertainties and scale
choiceswould be prohibitivewithout this technique.We note
that the Root Ntuple files can also be used to provide NLO
results directly to the experimental collaborations.

B. Numerical results

In this section we present the numerical results for total
cross sections and selected3 distributions at center-of-mass
energies of 7 and 8 TeV. Within the setup described in the
previous section we have chosen the renormalization and
factorization scales to be equal, μr ¼ μf ¼ μ, and we use a
dynamical scale based on the total transverse momentum
ĤT of the final-state partons,

ĤT ¼
XNparton

i¼1

pparton
T;i : (7)

We then obtain the five-jet cross section at 7 TeV:

μ σ7 TeV-LO
5 [nb] σ7 TeV-NLO

5 [nb]

ĤT=2 0.699(0.004) 0.544(0.016)
ĤT 0.419(0.002) 0.479(0.008)
ĤT=4 1.228(0.006) 0.367(0.032)

2To download NJET visit the project home page at https://
bitbucket.org/njet/njet/.

3The complete set of results presented in this section together
with additional distributions for 7 and 8 TeV can be obtained
from https://bitbucket.org/njet/njet/wiki/Results/Physics.
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(Numerical integration errors are quoted in parentheses.)
We show the values of the cross section at three values of
the renormalization scale, μ ¼ xĤT=2, where x ¼ 0.5, 1, 2.
We observe significant reduction in the residual scale
dependence when including NLO corrections. Within the
chosen scale band, the LO predictions lie within a range of
0.810 nb, while at NLO the range is 0.177 nb. The
analogous results at 8 TeV are shown below.

μ σ8 TeV-LO
5 [nb] σ8 TeV-NLO

5 [nb]

ĤT=2 1.044(0.006) 0.790(0.021)
ĤT 0.631(0.004) 0.723(0.011)
ĤT=4 1.814(0.010) 0.477(0.042)

In Fig. 1 the scale dependence of the leading-order and
next-to-leading-order cross section is illustrated. The
dashed black line indicates μ ¼ ĤT=2. The horizontal
bands show the variation of the cross section for a scale
variation between ĤT=4 and ĤT . The uncertainty due to
scale variation is roughly reduced by a factor of one third.
Furthermore, we see that around μ ¼ ĤT=2 the NLO cross
section is flat, indicating that μ ¼ ĤT=2 is a reasonable
choice for the central scale. This is further supported by the
fact that for μ ¼ ĤT=2 the NLO corrections are very small.
It is also interesting to observe that the two bands, LO and
NLO, nicely overlap. Note however that we have used the
NLO setup in the leading-order calculation. In particular,
the NLO PDFs with the corresponding αs are employed. In
Fig. 2 we show the scale dependence using LO PDFs in the
leading-order prediction with the respective αs. Compared
to Fig. 1, we observe in Fig. 2 a much larger difference
between the LO and NLO predictions. To some extent the
difference is due to the change in αs. Similar to what was
found in Ref. [6], we conclude that using the NLO PDFs in
the LO predictions gives a better approximation to the full
result compared to using LO PDFs.

Although not a physical observable, it is interesting to
ask how the different partonic channels contribute to the
inclusive five-jet rate. Ignoring different quark flavors, we
distinguish nine partonic channels in LO,

gg → 5g; gg → qqþ 3g; qg → qþ 4g;

qq → 5g; gg → 4qþ g; qg → 3qþ 2g;

qq → qqþ 3g; qg → 5q; qq → 4qþ g;

where q may be any quark or antiquark with the exception
of the top quark, i.e., qq ¼ fuu; uū; ud; ud̄; :::::g. In Table I
the individual contribution of each channel is presented.
The most important contribution is provided by the qg
initial state. Almost 50% of the cross section can be
attributed to this channel. This is a consequence of the
large parton luminosity in combination with the sizeable
cross sections. Among the qg-initiated reactions the qg →
qþ 4g channel is the most important process, accounting
for about 40% of the cross section. Replacing the quark line
in this process by a gluon will still lead to large partonic
cross sections. However, the gg parton flux is reduced
compared to the qg initial state. As a consequence

FIG. 1 (color online). Same as Fig. 2 but using the NLO setup
in LO.

FIG. 2 (color online). Residual scale dependence of the five-jet
cross section in leading and next-to-leading order.

TABLE I. Contribution of individual partonic channels.

qg → qþ 4g 39.2%
gg → 5g 27.3%
qq → 2qþ 3g 13.5%
qg → 3qþ 2g 9.0%
gg → 2qþ 3g 8.5%
qq → 4qþ g 1.8%
gg → 4qþ g 0.5%
qg → 5q 0.2%
qq → 5g 0.04%
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the purely gluonic reaction leads to a slightly smaller
contribution and is responsible for about 25% of the cross
section. The composition of the cross section may provide
useful information when jet rates are used to constrain the
PDFs. Since the luminosity functions

Lijðŝ; shad; μfÞ ¼
1

shad

Z
shad

ŝ

ds
s
Fi=p

�
μf;

s
shad

�
Fj=p

�
μf;

ŝ
s

�

(8)

depend on the partonic center-of-mass energy, the compo-
sition may be different for different kinematical configu-
rations. We will come back to this point when we discuss
differential distributions.
In Table II we show for completeness the cross sections

for two-, three-, and four-jet production as calculated with
NJET using the same setup as in the five-jet case. The real
corrections to five-jet production also allow us to calculate
the cross section for six-jet production, albeit only in
leading-order QCD. The results are as follows:

μ σ7 TeV-LO
6 [nb] σ8 TeV-LO

6 [nb]

ĤT=2 0.0496(0.0005) 0.0844(0.0010)
ĤT 0.0263(0.0003) 0.0452(0.0005)
ĤT=4 0.0992(0.0011) 0.1673(0.0021)

Here the NNPDF2.3 NLO PDF set with αs ¼ 0.118 has
been used. The jet rates have been measured recently by
ATLAS using the 7 TeV data set [7]. In Fig. 3 we show the
data together with the theoretical predictions in leading and
next-to-leading order. In the case of the six-jet rate only LO
results are shown. In the lower plot the ratio of theoretical
predictions with respect to data is given. With the exception
of the two-jet cross section, the inclusion of the NLO
results significantly improves the comparison with data.
For the higher multiplicities where NLO predictions are
available the ratio between theory and data is about 1.2–1.3.
Given that inclusive cross sections are intrinsically difficult
to measure, we consider this agreement as remarkably
good. In particular, for three-, four-, and five-jet production
the theoretical predictions agree within the uncertainties
with the data. One should also keep in mind that a one
percent uncertainty of the collider energy may lead to
sizeable changes in the cross sections. [For example, the

inclusive cross section for top-quark pair production
changes by about 3% when the energy is changed from
7 TeV to (7� 0.07) TeV.] Instead of studying inclusive
cross sections it is useful to consider their ratios, as many
theoretical and experimental uncertainties (i.e., uncertain-
ties due to luminosity, scale dependence, PDF dependence,
etc.) may cancel between numerator and denominator. In
particular, one may consider

Rn ¼
σðnþ1Þ-jet
σn-jet

: (9)

This quantity is proportional to the QCD coupling αs in
leading order and can be used to determine the value of αs
from jet rates. In Fig. 4 we show QCD predictions in NLO
using different PDF sets together with the results from
ATLAS. The results obtained from NNPDF2.3 are also
collected in Table III where, in addition, the ratios at
leading order (using the LO setup with NNPDF2.1) are
shown. In the case ofR3 andR4, perturbation theory seems
to provide stable results. The leading-order and next-to-
leading-order values differ by less than 10%. In addition,
NNPDF [49], CT10 [51], and MSTW08 [52] give com-
patible predictions. ABM11 [53] gives slightly smaller
results for R3 and R4. Within uncertainties the predictions
also agree with the ATLAS measurements. For R2 a
different picture is observed. First of all, the theoretical

FIG. 3 (color online). Cross sections for two-, three-, four-,
five- and six-jet production in leading and next-to-leading order
as calculated with NJET, as well as results from ATLAS
measurements [7]. All LO quantities use NNPDF2.1 with
αsðMZÞ ¼ 0.119. NLO quantities use NNPDF2.3 with
αsðMZÞ ¼ 0.118; the six-jet cross section is only available at
LO accuracy.

TABLE II. Results for two-, three-, and four-jet production with
the same setup as in the five-jet case. All values are in units of nb.

μ σ7 TeV-NLO
2 [nb] σ7 TeV-NLO

3 [nb] σ7 TeV-NLO
4 [nb]

ĤT=2 1175(3) 52.5(0.3) 5.65(0.07)
ĤT 1046(2) 54.4(0.2) 5.36(0.04)
ĤT=4 1295(4) 33.2(0.4) 3.72(0.12)
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predictions change by about −50% when going from LO to
NLO. The origin of this behavior is traced back to the
inclusive two-jet cross section which is affected by large
perturbative corrections. As a function of the leading jet pT ,
all PDF sets agree well with the 3=2 ratio from the ATLAS
data at large pT , as shown in Fig. 5. In Fig. 6 we compare
LO and NLO predictions forRn as a function of the leading
jet pT . While for R3 and R4 the corrections are moderate,
for all values of pT we observe large negative corrections
independent from pT in the case of R2. Most likely the
two-jet rate is very sensitive to soft gluon emission while
the higher jet multiplicities are less affected. As a conse-
quence the fixed-order calculations fail to give reliable
predictions for the two-jet rate. A possible improvement
could be expected from soft gluon resummation and
matching with parton shower calculations. As long as only
fixed-order calculations are used to predict R2 we do not
expect a perfect agreement with the data, especially in the
low-pT region. Similar to what is observed in Fig. 3,

the comparison with data indeed shows significant
discrepancy in R2

Let us now move on to less inclusive quantities. In Fig. 7
we show the transverse momentum distribution of the
leading jet for five-jet production. Similar to the inclusive
quantities, a significant reduction of the scale uncertainty is
observed when going from LO to NLO. Using again the

FIG. 4 (color online). Theoretical predictions for the jet ratios
Rn compared with recent ATLAS measurements [7]. Theoretical
predictions are made with the central values of the four listed PDF
sets with NLO αs running. αsðmZÞ ¼ 0.118 for NNPDF2.3,
CT10, and ABM11, and αsðmZÞ ¼ 0.120 for MSTW2008

FIG. 5 (color online). The 3=2 jet ratio as a function of the pT of
the leading jet. ATLAS data is taken from Ref. [7]. The cuts are
given in Sec. III A except the jet-cone radius, which is taken as
R ¼ 0.6.

TABLE III. Results for the jet ratios Rn for the central scale of
ĤT=2 and the NNPDF2.3 PDF set.

Rn ATLAS [7] LO NLO

2 0.070þ0.007−0.005 0.0925(0.0002) 0.0447(0.0003)

3 0.098þ0.006−0.007 0.102(0.000) 0.108(0.002)

4 0.101þ0.012−0.011 0.097(0.001) 0.096(0.003)

5 0.123þ0.028−0.027 0.102(0.001) � � � FIG. 6 (color online). The Rn ratio as a function of the pT
of the leading jet.
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NLO setup to calculate the LO predictions, the NLO
calculation gives very small corrections. Over a wide range
the LO predictions are modified by less than 10%. A
remarkable feature observed already in the four-jet calcu-
lation [5,6] is the almost constant K factor. Again, the
dynamical scale seems to resum possible large logarithms
which would appear at large transverse momentum using a

fixed scale. Similar findings apply to the transverse
momentum distribution of the subleading jets. In Fig. 8
we show the rapidity distribution of the leading jet, again in
LO and NLO QCD. In the range −2 < η < 2 the distri-
bution is remarkably flat. Again, the NLO corrections are
below 10% for most η values and the K factor is roughly
constant. We have also investigated differential distribu-
tions for a center-of-mass energy of 8 TeV. Studying
normalized distributions to account for the increase of
the inclusive jet cross section when going from 7 to 8 TeV,
we find a remarkable agreement between the 7 and 8 TeV
predictions. For example, we present in Fig. 9 the double
ratio

1

σ7 TeV-LO
5

dσ7 TeV-LO
5

dη

�
1

σ8 TeV-LO
5

dσ8 TeV-LO
5

dη
:

For simplicity we do not expand the double ratio in αs.
Since the NLO corrections are moderate in size we do
not expect a significant change in the prediction—the
difference is formally of higher order in αs. As can be
seen in Fig. 9, the normalized rapidity distribution
changes by less than 5% when going from 7 to
8 TeV. For the transverse momentum distribution we
expect a harder spectrum for a center-of-mass energy of
8 TeV compared to 7 TeV. This is indeed observed in
Fig. 10. The fact that for low transverse momenta the
ratios are below 1 is an effect of the normalization to
the total cross section. For 8 TeV the regions where the
inclusive cross section gets significant contributions is
extended to larger pT, leading to a ratio below 1 when

FIG. 7 (color online). The pT distribution of the leading jet.
Both LO and NLO use the NNPDF2.3 PDF set with
αsðMZÞ ¼ 0.118.

FIG. 8 (color online). The rapidity distribution of the leading
jet. Both LO and NLO use the NNPDF2.3 PDF set with
αsðMZÞ ¼ 0.118.

FIG. 9 (color online). Comparison of LO rapidity distributions
of the pT ordered jets for 7 and 8 TeV.
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comparing with the 7 TeV case. Using data for jet
production may provide useful input to constrain
PDFs. In this context it is very interesting to study the
decomposition of the jet rates with respect to individual
partonic channels not only for inclusive quantities but for
differential distributions as well. In Fig. 11 the decom-
position of the rapidity distribution of the leading jet is
shown. As in the inclusive case we restrict the discussion

to leading order. Evidently we find again that the qg →
qþ 4g channel is the most important channel, followed
by the pure gluonic channel. Since the rapidity distribu-
tion is only mildly affected by the partonic center-of-mass
energy we do not expect a strong rapidity dependence of
the composition. Indeed, as can be seen from Fig. 11 the
decomposition shows only a weak dependence on the
rapidity. This information can be used to define control
samples when using jet data to constrain the parton
luminosities. In Fig. 12 the analogous results for the
transverse momentum distribution are presented. Unlike
the rapidity distribution, a significant dependence of the
decomposition on the transverse momentum is visible.
While at small transverse momentum the gg → 5g domi-
nates over qq → 2qþ 3g, the situation changes at about
300 GeV and the qq → 2qþ 3g becomes more important
than gg → 5g. This behavior is a direct consequence of
the fact that at high partonic center-of-mass energies the
quark luminosity Lqq̄ dominates over the gluon flux Lgg.
A similar pattern—although less pronounced—can also
be observed in the qq → 5g and gg → 4qþ 1g channels.
A cut in the transverse momentum can thus be used to
change the mixture of the individual partonic channels
and to provide additional information on specific parton
luminosities. From the above discussion we expect that
different PDF sets should give very similar results for the
rapidity distribution since each bin is rather inclusive with
respect to the partonic center-of-mass energies where the
luminosities are sampled. On the other hand, if any
difference is observed when using PDF sets from differ-
ent groups it will most likely show up in the transverse
momentum distribution. In Fig. 13 the rapidity

FIG. 10 (color online). Comparison of LO pT distributions of
the pT ordered jets for 7 and 8 TeV.

FIG. 11 (color online). Contribution of the different partonic
channels to the leading jet rapidity distribution.

FIG. 12 (color online). Contribution of the different partonic
channels to the leading jet pT distribution.
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distribution is shown using four different PDF sets. The
PDF sets NNPDF2.3, CT10, and MSTW2008 lead to
very similar results. A major difference is observed when
comparing the aforementioned PDF sets with ABM11.
ABM11 leads to a reduction of about 20% with respect
to NNPDF2.3, CT10, and MSTW2008. However, one
can see that the shape for the distribution predicted by
ABM11 agrees well with the other PDF sets. In Figs. 14
and 15 we show results for the normalized distributions.
For the rapidity distribution the four different PDF sets
agree well within �5%. The rapidity distributions of the
subleading jets show a similar behavior. In Fig. 15 the
transverse momentum distribution is studied for different
PDF sets. As expected, one can observe a richer structure
at large transverse momentum. While minor differences
are visible between ABM11, MSTW08, and NNPDF,
they still give rather similar results at large pT at the level
of 10%–15%. However, the CT10 PDF set leads to
significantly larger results at large pT . In the highest-pT
bin the normalized cross section is enhanced by about
20%–30% compared to ABM11, MSTW08, and NNPDF.
Unfortunately it is not easy to distinguish the different
predictions experimentally since the cross section for this
bin is reduced by several orders of magnitude. A
significant amount of data is thus required to achieve
the required statistical sensitivity.

FIG. 13 (color online). Comparison of different PDF sets on
the rapidity distributions. All sets use αsðMZÞ ¼ 0.118. The
lower plot shows the ratio of the various PDF sets with
respect to NNPDF2.3. Error bars in the upper plot are
MC errors while shaded areas in the lower plot are PDF
uncertainties.

FIG. 14 (color online). Comparison of different PDF sets on
the rapidity distributions normalized to the total cross section.
The lower plot shows the ratio of the various PDF sets with
respect to NNPDF2.3. Error bars in the upper plot are
MC errors while shaded areas in the lower plot are PDF
uncertainties.

FIG. 15 (color online). Comparison of different PDF sets on
the pT distributions normalized to the total cross section. The
lower plot shows the ratio of the various PDF sets with
respect to NNPDF2.3. Error bars in the upper plot are MC
errors while shaded areas in the lower plot are PDF un-
certainties.
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IV. CONCLUSIONS

In this article we have presented the first results for
five-jet production at NLO accuracy in QCD. We found
moderate corrections at NLO with respect to a leading-
order computation using NLO PDFs. Typically, corrections
of the order of 10% are observed. Identifying the renorm-
alization and factorization scales and using the total trans-
verse momentum ĤT as a dynamical scale leads to a flat K
factor for the differential distributions. We have compared
theoretical predictions for inclusive jet cross sections and
jet rates with data from ATLAS. With the exception of
quantities affected by the two-jet rate we find good
agreement between theory and data. As a major uncertainty
of the theoretical predictions we have investigated the
impact of using different PDF sets. While good agreement
is seen between different sets for rather inclusive quantities
and distributions that are not sensitive to a specific partonic
center-of-mass energy (in the case of distributions this
requires one to study normalized predictions), significant
differences are observed in the transverse momentum
distribution of the leading jet at large momentum.
The analysis of the ðnþ 1Þ=n jet ratios shows that the

4=3 and 5=4 predictions appear to be perturbatively more
stable than the 3=2 predictions with a modest correction at
NLO. This indicates that these quantities are good candi-
dates for future extractions of αs from the LHC data, where
reliable fixed-order predictions are mandatory. We hope the
results presented here will be useful for these and other
analyses in the future.

ACKNOWLEDGMENTS

This work is supported by the Helmholtz Gemeinschaft
under contract HA-101 (Alliance Physics at the Terascale), by
the German Research Foundation (DFG) through the trans-
regional collaborative research center “Computational
Particle Physics” (SFB-TR9) and by the European
Commission through Contract No. PITN-GA-2010-264564
(LHCPhenoNet). We would also like to thank the DESY
Zeuthen theory group for providing computer resources.

APPENDIX A: NUMERICAL ACCURACY
OF THE VIRTUAL CORRECTIONS

The details of the numerical evaluation of the virtual
amplitudes included in this appendix are highly

dependent on the system architecture and integration
parameters. In our calculation a large cluster with a
wide range of different CPUs has been used and so the
information above should be considered only as a guide.
We include it here since the results may be of interest to
experts in the field.
The virtual matrix elements needed for the compu-

tation are complicated and it is important to keep a
close eye on numerical stability. In NJET this is done

TABLE IV. Average accuracy and evaluation speeds achieved
during integration of the virtual amplitudes. The abbreviations are
as follows: quadruple precision (QP); quadruple precision with
scaling test (two evaluations) (QP2); octuple precision (OP).

Virtual part Time per event QP QP2 OP

leading 17 s 2% 0.5% 0.01%
subleading 112 s 2.5% 1% 0.05%

FIG. 16 (color online). pT distribution of the leading jet. LO
uses NNPDF2.1 with αsðMZÞ ¼ 0.119, while NLO uses
NNPDF2.3 αsðMZÞ ¼ 0.118.

FIG. 17 (color online). pT distribution of the second leading jet.
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using the scaling test [11] which evaluates each
amplitude twice per phase-space point to obtain a
reliable estimate of the numerical accuracy. If fewer
than five digits are reliable the point is reevaluated
using quadruple precision via the QD library [54]. If
one or no digits are considered reliable in the scaling
test it is repeated in quadruple precision. If the
quadruple precision test fails we can resort to octuple
precision; however, in practice this happens so rarely

that it has no effect on the final result. For the present
implementation of NJET we improve the computational
cost of the virtual cross section by integrating leading
color and subleading color parts separately. The lead-
ing approximation (which includes desymmetrized
sums for processes with more than two final-state
gluons) gives about 90 percent of the total virtual
contribution, which is around 50 percent of the total
cross section. On average, leading color events were

FIG. 18 (color online). pT distribution of the third leading jet.

FIG. 19 (color online). pT distribution of the fourth leading
jet.

FIG. 20 (color online). pT distribution of the fifth leading jet.

FIG. 21 (color online). η distribution of the leading jet. LO uses
NNPDF2.1 with αsðMZÞ ¼ 0.119, while NLO uses NNPDF2.3
αsðMZÞ ¼ 0.118.
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generated at 17 seconds per event and subleading color
events at just under 2 minutes per event. We found that
roughly 2 percent of points required reevaluation using
extended floating point precision, with 0.5 percent
requiring two evaluations in quadruple precision.
Approximately 0.01 percent of points failed the quad-
ruple precision test. Table IV shows a summary of
these results.

APPENDIX B: DIFFERENTIAL DISTRIBUTIONS
FOR SUBLEADING JETS

In this appendix we present all rapidity and pT distri-
butions for jets ordered in pT shown in Figs. (16–25). A
complete set of histograms and plots for

ffiffiffi
s

p ¼ 7 and 8 TeV
can be obtained from https://bitbucket.org/njet/njet/wiki/
Results/Physics.

FIG. 22 (color online). η distribution of the second leading jet.

FIG. 23 (color online). η distribution of the third leading jet.

FIG. 24 (color online). η distribution of the fourth leading jet.

FIG. 25 (color online). η distribution of the fifth leading jet.
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APPENDIX C: NUMERICAL RESULTS FOR
DIFFERENTIAL DISTRIBUTIONS

We provide numerical values for the histograms in
Figs. 7 and 8 in Tables V and VI for ease of future
comparisons.
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