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The aim of the present work is to study the phenomenological behavior of unitegrated parton distribution
functions (UPDF) by using the Kimber-Martin-Ryskin (KMR) and Martin-Ryskin-Watt (MRW) formal-
isms. In the first method, the leading order (LO) UPDF of the KMR prescription is extracted, by taking into
account the PDF of Martin et al., i.e., MSTW2008-LO and MRST99-NLO and. While in the second
scheme, the next-to-leading order (NLO) UPDF of the (MRW) procedure is generated through the set of
MSTW2008-NLO PDFas the inputs. The different aspects of the UPDF in the two approaches, as well as
the input PDF are discussed. Then, the deep inelastic proton structure functions, F2ðx;Q2Þ, are calculated
from the above UPDF in the two schemes, and compared with the data, which are extracted from the ZEUS,
NMC, and H1þ ZEUS experimental measurements. In general, it is shown that the calculated structure
functions based on the UPDF of two schemes, are consistent to the experimental data, and by a good
approximation, they are independent to the input PDF. But the proton structure functions, which are
extracted from the KMR prescription, have better agreement to the data with respect to that of MRW.
Although the MRW formalism is in more compliance with the Dokshitzer-Bribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equation requisites, but it seems in the KMR case, the angular ordering constraint
spreads the UPDF to the whole transverse momentum region, and makes the results to sum up the leading
DGLAP and Balitski-Fadin-Kuraev-Lipatov (BFKL) Logarithms. This point is under study by the authors.
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I. INTRODUCTION

The parton distribution functions (PDF), aðx; μ2Þ ¼
xqðx; μ2Þ or xgðx; μ2Þ, in which x and μ are the longitudinal
momentum fraction and the factorization scale, respec-
tively, are the main theoretical objects in the phenomeno-
logical computations, in the high energy particle physics
experiments. These PDF are obtained from the global
analysis of deep inelastic and related hard scattering data
and they satisfy the standard Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations [1–4]. The
DGLAP equations which are derived by integrating over
the parton transverse momentum up to k2t ¼ μ2. So conven-
tionally, they are called the integrated PDF. Thus the usual
PDF are not k2t -dependent distributions. The plenty of
available experimental data on the various events, such as
the exclusive and semi-inclusive processes in the high
energy collisions in LHC, indicates the necessity for
computation of the kt-dependent distributions, which are
unintegrated over kt and the are called the unintegrated
parton distribution functions (UPDF). The UPDF,
faðx; k2t ; μ2Þ, are the two-scale dependent functions, i.e.,

k2t and μ2, and they satisfy the Ciafaloni-Catani-Fiorani-
Marchesini (CCFM) equations [5–9]. Working in this
framework is a complicated task. So, in general, the
Monte Carlo event generators [10–17] are the main users
of these equations. Since there is not a complete quark
version of the CCFM formalism, the alternative prescrip-
tions are used for producing the quarks and gluons UPDF.
Therefore, to obtain the UPDF, Kimber, Martin and Ryskin
(KMR) [18] proposed a different procedure based on the
standard DGLAP equations in the LO approximation,
along with a modification due to the angular ordering
condition, which is the key dynamical property of the
CCFM formalism. Later on, Martin, Ryskin and Watt
(MRW) extended the KMR approach for the NLO approxi-
mation [19], with this aim to improve the exclusive
processes. These two procedures, which are reviewed in
the Sec. , are the modifications to the standard DGLAP
evolution equations and can produce the UPDF by using
the PDF as the inputs.
Previously, we have investigated the general behavior

and stability of the KMR and MRW prescriptions [20–24].
But here, in order to check the reliability of generated
unintegrated parton distributions, we will compare their
relative behaviors and use them to calculate the observ-
able, deep inelastic scattering proton structure function
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F2ðx;Q2Þ (see Appendix A). Then the predictions of these
two methods for the structure functions, F2ðx;Q2Þ, are
compared to the measurements of NMC [25], ZEUS [26]
and H1þ ZEUS [27] experimental data. To proceed this
plan, the MRST99 [28] and MSTW2008 [29] set of parton
distribution function at the LO and NLO approximations
are used as the input PDF. These results as well as our
discussions and conclusions are given in the Sec. III.

II. REVIEW OF THE KMR AND THE
MRW FORMALISMS

Here, we briefly introduce the explicit forms of UPDF,
faðx; k2t ; μ2Þ, which have been prescribed by KMR and
MRW, respectively, as follows. In the KMR formalism
the separation of the real and virtual contributions in the
DGLAP evolution chain at the LO level, leads to the
following forms for the quark and gluon UPDF:

fqðx; k2t ; μ2Þ ¼ Tqðkt; μÞ
αsðkt2Þ
2π

×
Z

1−Δ
x

dz

�
PqqðzÞ

x
z
q

�
x
z
; kt2

�

þ PqgðzÞ
x
z
g

�
x
z
; kt2

��
; (1)

fgðx; k2t ; μ2Þ ¼ Tgðkt; μÞ
αsðkt2Þ
2π

×
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1−Δ
x
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�X
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z
q
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x
z
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�

þ PggðzÞ
x
z
g
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respectively, where Paa0 ðxÞ are the splitting functions and
the survival probability factors Ta, are obtained from

Taðkt; μÞ ¼ exp

�
−
Z

μ2

k2t

αsðk0t2Þ
2π

dk0t2

k0t2

×
X
a0

Z
1−Δ

0

dz0Pa0aðz0Þ
�
: (3)

The cutoff, Δ ¼ 1 − zmax ¼ kt
μþkt

, is determined by impos-
ing the angular ordering condition (AOC) [30,31], which is
the consequence of coherent gluon emissions, on the last
step of the evolutionary process, to prevent the z ¼ 1
singularities in the splitting functions, which arise from the
soft gluon emission. As it has been pointed out in Ref. [18],
it is worth mentioning again here that in the unified
BFKLþ DGLAP equation, the scale μ is chosen to be
kt for the DGLAP contribution, which is consistent with the
BFKL term (it is independent of μ at LO). So, kt is the usual

choice of scale for αs in Eqs. (1) and (2). If one chooses
something other than kt for αs, it would make only a
subleading difference [18,32]. The KMR approach has
three main characteristics. (a) The unintegrated distribu-
tions in the integrals of the evolution ladder, have the form
faðx; k2t Þ, and just at the final step, due to the presence of
cutoff, Δ, it becomes μ2 dependent. (b) The same cutoff is
used for all terms in both the quark and gluon evolutions.
While using a cutoff, which is obtained from angular
ordering condition (AOC) is theoretically apprehensible for
gluon parts, but for quarks, it can be understood only
phenomenologically. (c) The existence of the cutoff at the
upper limit of the integrals, makes the distributions to
spread smoothly to the region in which kt > μ, a character-
istic of the small x physics, which is principally governed
by the Balitski-Fadin-Kuraev-Lipatov (BFKL) evolution
[33–37]. The latter feature of the KMR, leads to the UPDF
with the behavior very similar to the unified BFKLþ
DGLAP formalism [18]. These kinds of UPDF have been
widely used for phenomenological calculations related to
the kt dependent distributions (see [38–49] and also [21]
and the references therein). In the MRW formalism, the
same separation of real and virtual contributions to the
DGLAP evolution is done, but the procedure is at the NLO
level. The general forms of their UPDF are

fNLOa ðx; k2t ; μ2Þ ¼
Z

1

x
dzTaðk2; μ2Þ

αsðk2Þ
2π

×
X
b¼q;g

Pð0þ1Þ
ab ðzÞbNLO

�
x
z
; k2

�

× Θðμ2 − k2Þ; (4)

where

Pð0þ1Þ
ab ðzÞ ¼ Pð0Þ

ab ðzÞ þ
αs
2π

Pð1Þ
ab ðzÞ;

k2 ¼ k2t
1 − z

: (5)

In Eqs. (4) and (5) the Pð0Þ
ab and the Pð1Þ

ab denote the LO and
the NLO contributions of splitting functions, respectively.
It is obvious from Eq. (4) that, in the MRW formalism, the
UPDF are defined such that, to ensure k2 < μ2. Also, the
survival probability factors, Ta, are obtained as follows:

Taðk2; μ2Þ ¼ exp

�
−
Z

μ2

k2

αsðκ2Þ
2π

dκ2

κ2

×
X
b¼q;g

Z
1

0

dζζPð0þ1Þ
ba ðζÞ

�
; (6)

where PðiÞ
ab (which is singular in the z → 1) is given in

Ref. [50]. Therefore the MRW formalism shows the first
characteristics of the KMR approach, but not the second,
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and (obviously) the third ones. Consequently the MRW
mechanism is more faithful to the DGLAP prerequisites.
MRW have demonstrated that the sufficient accuracy can

be obtained by keeping only the LO splitting functions,
together with the NLO integrated parton densities. So, by
considering angular ordering, we can use Pð0Þ instead of
Pð0þ1Þ. As it is mentioned above, unlike the KMR formal-
ism, where the angular ordering is imposed in the all of
the terms of the Eqs. (1) and (2), in the MRW formalism,
the angular ordering is imposed by the terms in which the
splitting functions are singular, i.e., the terms which include
Pqq and Pgg.

III. RESULTS, DISCUSSIONS AND CONCLUSIONS

As it was described in the Sec. II, the KMR and MRW
formalisms operate as the UPDF generating mechanisms,
with the input PDF. In order to make the comparison more
clear, the typical inputs, the gluon and up quark PDF at
scale Q2 ¼ 27 GeV2, by using the MRST99-NLO [28]
(full curves), MSTW2008-LO [29] (dash curves) and
MSTW2008-NLO [29] (dot curves), are plotted in
Fig. 1. The well known behavior of these integrated
PDF has been discussed in detail in the related
Refs. [28,29]. In particular: The sizable NLO contributions
(especially for the gluons PDF) at very low x regions and
the similarity of MRST99-NLO and MSTW2008-NLO
data, for different values of x are clearly seen. In Fig. 2, the
general behaviors of gluons and up quarks UPDF (fg and
fu) versus x, for the KMR and MRW approaches are
shown. The typical factorization scales are μ2 ¼ 27 and
100 GeV2, for the left and right panels, respectively. The
results are obtained at k2t ¼ 0.4μ2 and 0.9μ2. For better
comparison of two prescriptions, i.e., KMR and MRW, we
have used the same inputs, i.e., MSTW2008-NLO PDF. At
k2t ¼ 0.4μ2 the output UPDF are similar, but by increasing
the transverse momentum to k2t ¼ 0.9μ2, there are a sizable
decrease in the MRW-UPDF (dash curves), and they
become different from the KMR-UPDF (solid curves).
On the other hand, by increasing the factorization scale
from μ2 ¼ 27 to 100 GeV2, the differences slowly rise due
to the growing of the KMR-UPDF. The values of these
differences are more sensitive to the variation of the kt, than
the PDF scales μ2. It is clear from large discrepancies due to
changing the k2t from 0.4 μ2 to 0.9 μ2 along each column in
Fig. 2, (for example, 13.5 GeV2 for μ2 ¼ 27 GeV2), which
can be compared with the smaller discrepancies for the
change in the factorization scale, μ2, from 27 to 100 GeV2

(73 GeV2), in each row. These effects are more prominent
in the case of up quarks. The appearance of these features
has roots in the characteristics of the KMR and MRW
schemes. As it was stated in the Sec. II, applying the
angular ordering constraint (AOC) on all terms in the KMR
equations, leads to a behavior very similar to the unified
BFKLþ DGLAP approach [18], which in turn brings,
different behaviors from the MRW, that is more DGLAP

like approach, especially at lower values of x. In all of the
diagrams of Fig. 2, the discrepancies grow up with
reduction of x. Therefore the growth of kt and lowering
x, which are characteristics of the very high energy and kt-
factorization region, cause more differences, in comparison
to the variation of the factorization scale μ2, which is a
common feature of both prescriptions, inherited from the
DGLAP evolution. On the other hand, although the
increase of the scale μ2 causes similar effects in the input
PDF for both frameworks, but in the KMR equations,
because of the dependence of upper limit of z integration on
the scale μ (i.e., zmax ¼ μ

μþkt
), by growing μ, the upper limit

zmax increases, which in turn leads to additional rise in the
output UPDF.
The difference between these two prescriptions is more

distinguishable in the quark parts, where MRW is more
restricted to the collinear factorization requirements. The
above features can be seen again in Fig. 3, where for
comparing the UPDF at LO and NLO approximation, the

FIG. 1 (color online). The integrated gluon and up quark
distribution function (see the text for detail).
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LO and NLO PDF are used as the appropriate inputs for the
KMR and MRW formalisms, respectively. In addition to
above characteristics, more discrepancies appear at lower
values of x, which are a heritage of the same behavior of
parent PDF (see Fig. 1). It is interesting that at lower values
of kt, where the situation is closer to the collinear state,
the differences decrease compares to the parent PDF.
Previously we have studied in details the general behavior
of these kinds of UPDF in Refs. [20–24]. In these works, in
each type of above approaches, the stability of the output
UPDF versus the variation of input PDF has been tested. In

Fig. 3, by reducing kt, two types of the UPDF approach to a
unique distribution and the PDF discrepancies are sup-
pressed in the outputs.
In Fig. 4, the UPDF are plotted versus k2t at typical values

of x ¼ 0.1, 0.01, and 0.001 and the factorization scale
μ2 ¼ 100 GeV2. The above features are again observed in
Fig. 4, i.e., such as the remarkable distinctions at high k2t .
Here the input distributions are the same, i.e., MSTW2008-
NLO. At large x, the difference between the dynamical
scales in the evolution chain, i.e., k2t in the KMR and
k2 ¼ k2t

1−z in the MRW, become important [19,20], that in
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FIG. 2 (color online). The unintegrated gluon and up quark distribution function versus x using MSTW2008-NLO PDF as the inputs.
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turn affects the domain of integration in the PDF and
particularly for αsðk2Þ (see the Eqs. (4) and (6)), which
leads to the relative reduction of MRW-UPDF, especially at
lower k2t , where the relative variation raises. At lower x, the
above differences are suppressed, but the presence of cutoff
Δ in the KMR Eqs. (1–3), causes the relative decrease in
the KMR-UPDF. This behavior is more noticeable in the
quark UPDF, where the different application of AOC is
specified. The AOC (in the form of Δ) is applied to all
terms in the KMR, but only to the singular terms in the

MRW. Because of the convolution forms of evolution
equations and the larger amplitude of input gluon PDF,
it is natural that both sets of the gluon UPDF (fg) become
very similar. While in the case of quarks, the role of
singular splitting function Pqq suppressed by the lower
values of the input quark PDF, and the role of nonsingular
term, such as Pqg × g in Eq. (4), becomes more prominent.
One should notice that, the KMR prescription is a LO
scheme and more compatible inputs are LO PDF. This is
what has been plotted in Fig. 5, where like Fig. 3, the LO
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FIG. 3 (color online). The unintegrated gluon and up quark distribution function versus x with the KMR [18] (MRW [19])
prescriptions by using the MSTW2008-LO PDF (MSTW2008-NLO PDF) as the inputs.
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and NLO PDF are used in the KMR and MRW frame-
works, respectively. Unlike the former behavior, here both
of the UPDF sets, approach to the unique outputs. The
exception is for x ¼ 0.1 i.e., at large x, where the
distinctions between k2t and k2 is important, as it was
discussed previously.
For more precise investigation, it is useful to use these

UPDF in the phenomenological calculations of high energy
observable, and analyze their results in the exclusive
processes. Here we proceed this study, by computing the
inclusive observable F2ðx;Q2Þ with both types of the
calculated UPDF, via the kt-factorization framework, as
its input. The calculation procedure is introduced briefly in
the Appendix A [18]. The resulting structure functions,
F2ðx;Q2Þ, versus x are plotted in Fig. 6 and compared with
the data from the NMC [25], ZEUS [26] and H1þ ZEUS
[27] measurements at scales Q2 ¼ 27, 90, and 250 GeV2.
The UPDF applied for this procedure are the KMR and
MRW at the LO and NLO, respectively by using the
MSTW2008 set of PDF at the LO and NLO as inputs. As it
is expected, the main contribution to the F2ðx;Q2Þ at low x,

comes from the gluons ðfgðx; k2t ; μ2ÞÞ, while at large x, it
belongs to the quarks ðfqðx; k2t ; μ2ÞÞ. For the KMR
approach, the results are also generated by using the
MRST99-NLO set of partons that is used in Ref. [18].
As it has been demonstrated, the two sets of F2ðx;Q2Þ
graphs are obtained by using the KMR distributions. The
small differences are due to the variations in the input PDF,
i.e., MRST99-NLO and MSTW2008-LO. As it was shown
in Refs. [21–24], the KMR formalism suppresses the
discrepancies between the inputs PDF, in which the
presence of cutoff Δ ¼ kt

μþkt
has the key role. This property

leads the outputs UPDF which are more similar. As a result,
the UPDF generated via applying two different inputs PDF
have less discrepancies and in turn, the F2ðx;Q2Þ values are
very close to each other. Although, the plots become
different at smaller values of x, but it happens at very
lower rate than the PDF themselves. For obtaining the
values of F2ðx;Q2Þ, by using the MRW distributions,
because of the heavier amount of computations, the typical
points are considered. On the other hand, the computation
time increases by raising the scaleQ2. The effects of former
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FIG. 4 (color online). The unintegrated gluon and up quark distribution function versus k2t using MSTW2008-NLO PDF as the inputs
for the KMR [18] and MRW [19] prescriptions.
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discussed features of the UPDF, are appeared in the resulted
F2ðx;Q2Þ (see Fig. 6). The smaller values of MRW UPDF
in Figs. 3 and 5, leads to the lower estimate for F2ðx;Q2Þ.
As a general behavior, the values of F2ðx;Q2Þ are relatively
in good agreement with the experimental data, although the
KMR results are more consistent, especially at higher Q2

scales. The better agreement on the KMR approach can be
interpreted as a consequence of its continuation to the
kt > μ domain, which is far from the standard DGLAP
scope, i.e., a behavior that has roots in applying the AOC
and is similar to a BFKL type effect [18]. We have to
emphasize that this is not a final justification between the
KMR and MRW approaches. For example, the deviations
from the experimental data of F2ðx;Q2Þ can lead to
refitting the data in order to make the output UPDF and
the final extracted F2ðx;Q2Þ (in the kt-factorization
scheme) more consistent.
It should be noted that there are two different roles in the

single-scale distributions for the description of data in the
inclusive observable. The first role is the traditional one,

where the integrated parton distribution functions are fitted
directly to the data in the framework of collinear factori-
zation, for example, see [29] and [28]. The second role is
demonstrated in the KMR andMRWapproaches, where the
single-scale functions are used as an input to the last-step
procedure, see for example Eq. (1). In this case, the single-
scale functions should be determined by a global fit to the
same data using the kt-factorization framework. Similar to
Ref. [18], we have produced the unintegrated parton
distribution functions in the frameworks of KMR and
MRWapproaches, (which is based on the AOC constraint),
by using the traditional integrated parton distribution
functions as the input to the last step of the evolution.
As it has been explained in Ref. [51], this treatment is
adequate for initial investigations and descriptions of
exclusive processes. Although the traditional PDF have
been fitted via the collinear factorization framework to the
deep inelastic scattering data, Fig. 6 shows that the
F2ðx;Q2Þ which is calculated from these unintegrated
parton distribution functions give an adequate description
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FIG. 5 (color online). The unintegrated gluon and up quark distribution function versus k2t with the KMR [18] (MRW [19])
prescriptions by using the MSTW2008-LO PDF (MSTW2008-NLO PDF) as the inputs.
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of the data, especially at highQ2. Therefore, as it was stated
before, the obtained UPDF may be used to evaluate the
exclusive processes, a work which is in progress also by the
present authors. So, we would expect that the small
discrepancy between the kt-factorization prediction of
F2ðx;Q2Þ and the experimental data can be eliminated
by using the PDF which have been fitted to the same data
using the kt-factorization framework. In this case as it has
been mentioned in Refs. [18,52] the relation between the
PDF and UPDF will be exactly satisfied, i.e.,

aðx; μ2Þ ¼
Z

μ2 dk2t
k2t

faðx; k2t ; μ2Þ:

On the other hand, one can follow the angular-ordered
CCFM equation to satisfy the above equation [52],
which leads to the incomplete angular ordering of the
BFKL contribution (for example, see the Sec. VI of
Ref. [18]).
In conclusion, the phenomenological investigation of

Kimber-Martin-Ryskin and Martin-Ryskin-Watt uninte-
grated parton distribution functions as well as the phe-
nomenological study of the proton deep inelastic structure
functions F2ðx;Q2Þ was performed in this work. In the first
method, the leading order UPDF of the KMR prescriptions
were applied, by taking into account the PDF of Martin
et al., i.e., MSTW2008-LO and MRST99-NLO. While in
the second scheme, the next-to-leading order UPDF of the
Martin-Ryskin-Watt procedures were used with the PDF of
MSTW2008-NLO as the inputs. The different aspects of
the UPDF in the two approaches as well as the input PDF
were discussed. Then, the deep inelastic proton structure
functions, F2ðx;Q2Þ were calculated from the unintegrated
parton distribution functions in the two schemes, and
compared with the data which were extracted from the
ZEUS, NMC and H1+ZEUS experimental measurements.
In general, it was shown that the calculated structure
functions based on the UPDF were consistent with the
experimental data, and with good approximation, they were
independent of the input PDF. But the proton structure
functions which were extracted from the KMR prescription
have better agreement to the data with respect to that of
MRW. Although the MRW formalism is in more compli-
ance with the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations requisites, but in the KMR
case, the angular ordering constraint spreads the UPDF to
whole transverse momentum region and it seems that the
KMR formalism makes the results to sum up the leading
DGLAP and Balitski-Fadin-Kuraev-Lipatov (BFKL) log-
arithms. The longitudinal structure function, FLðx;Q2Þ,
can a be also calculated by using the same formalisms and
compared with those give in Refs. [53–55], and the HERA
data [27]. With this comparison the UPDF presented in this
work can be better evaluated for the future calculations.
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FIG. 6 (color online). The deep inelastic proton structure
functions F2ðx;Q2Þ with the KMR [18] (MRW [19]) prescrip-
tions by using the MRST99-NLO [28] and the MSTW2008-
LO (MSTW2008-NL0) [29] as the inputs. Note that q (g
(qþ g)) is the contribution of unintegrated quarks to F2ðx;Q2Þ
(the contribution of unintegrated gluon to F2ðx;Q2Þ (the
structure function F2ðx;Q2Þ which is the sum of q
and g)).
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APPENDIX CALCULATION OF F2ðx;Q2Þ IN
THE kt-FACTORIZATION

Here we briefly describe the different steps for calcu-
lations of the structure function F2ðx;Q2Þ, from the
unintegrated parton distributions [18], in which the

unintegrated gluons and quarks distributions are equally
treated as the inputs to F2ðx;Q2Þ. The unintegrated gluons
and quarks contributions to F2ðx;Q2Þ come from the
g → qq̄ and q → qg, respectively. The relevant diagrams
are those shown in Fig. 7. As it was noted before, the
gluons in the proton can only contribute to F2ðx;Q2Þ via an
intermediate quark, so one should calculate F2ðx;Q2Þ in
the kt-factorization approach by using the gluons and
quarks UPDF. There are six diagrams corresponding to
the subprocess g → qq̄ and q → qg, (see Fig. 6 of
Ref. [56]). Similar to Ref. [56], a physical gauge for the
gluon, i.e., Aμq0μ ¼ 0 (qprime ¼ qþ xp), should be fixed
such that the splitting kernels are obtained only from the
ladder-type diagrams. Therefore, the diagrams where a
gluon is radiated from the final quark line (comes from the
subprocess q → qg) are strongly suppressed in this gauge,
due to one or more of the propagators, which have the very
large virtualities. So, the diagrams of Fig. 7 are the only
contributions which should be included in the proton
structure function. The crossed box diagram which comes
from the subprocess g → qq̄ is included, although it gives
only a relatively small contribution to the cross section.
These contributions may be written in the kt factorization

form, by using the unintegrated gluon distributions
fgðxz ; k2t ; μ2Þ as follows [57–60]:

F2ðx;Q2Þ ¼
Z

1

x

dz
z

Z
dk2t
k2t

f

�
x
z
; k2t

�
Sboxðz; k2t ; Q2Þ; (A1)

where the part of Sbox, which contains the quark box and
crossed box approximations to the photon-gluon subpro-
cess, is evaluated in Refs. [53,54,61], which leads to the
g → qq̄ structure function:

Fg→qq̄
2 ðx;Q2Þ ¼

X
q

e2q
Q2

4π

Z
dk2t
k4t

Z
1

0

dβ
Z

d2κtαsðμ2Þfg
�
x
z
; k2t ; μ2

�
Θ
�
1 − x

z

�

×

�
½β2 þ ð1 − β2Þ�

�
κt
D1

− ðκt − ktÞ
D2

�
2

þ ½m2
q þ 4Q2β2ð1 − βÞ2�

�
1

D1

− 1

D2

�
2
�
: (A2)

In the above equation, in which the graphical representa-
tions of kt and κt have been introduced in Fig. 7, the
variable β is defined as the light-cone fraction of the photon
momentum carried by the internal quark [18]. Also, the
denominator factors are

D1 ¼ κ2t þ βð1 − βÞQ2 þm2
q;

D2 ¼ ðκt − ktÞ2 þ βð1 − βÞQ2 þm2
q; (A3)

and

1

z
¼ 1þ κ2t þm2

q

ð1 − βÞQ2
þ k2t þ κ2t − 2κt:kt þm2

q

βQ2
: (A4)

As in Ref. [53], the scale μ controls the unintegrated
gluon and the QCD coupling constant αs is chosen as
follows,

μ2 ¼ k2t þ κ2t þm2
q: (A5)

The charm quark mass is taken to be mc ¼ 1.4 GeV,
and u, d and s quarks masses are neglected. As in Ref. [32],
to save the computation time, we also use the same

FIG. 7. The diagrams contributing in the calculation of
the structure functions F2ðx;Q2Þ, which comes from the
g → qq̄ and q → qg.
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approximation, i.e., the representative “average” value for
ϕ, hϕi ¼ π

4
. The unintegrated gluons distributions are not

defined for kt < k0, i.e., the nonperturbative region. So,
according to Ref. [54], k0 is chosen to be about 1 GeV,

which is around the charm mass in the present calcula-
tion, as it should be. Then, the contribution of the non-
perturbative region for the gluons is approximated, as
follows,

Z
k2
0

0

dk2t
k2t

fgðx; k2t ; μ2Þ
�
remainder of equation ðA2Þ

k2t

�
≃ xgðx; k20ÞTgðk0; μÞ½�kt¼a; (A6)

where a is a suitable value of kt between 0 and k0, which its value is not important to the nonperturbative contribution.
The contributions of unintegrated quarks to F2ðx;Q2Þ come from an “initial” quark with Bjorken scale x

z and the
perturbative transverse momentum kt > k0, which split to a radiated gluon and a quark with Bjorken scale x and transverse
momentum κt. This “final” quark interacts with the photon and contributes to the F2ðx;Q2Þ, as follows,

F2
quark→quark
perturbative ðx;Q2Þ ¼

X
q¼u;d;s;c

e2q

Z
Q2

k2
0

dκ2t
κ2t

αsðκ2t Þ
2π

Z
κ2t

k2
0

dk2t
k2t

Z Q
ðQþktÞ

x
dz

�
fq

�
x
z
; k2t ; Q2

�
þ fq̄

�
x
z
; k2t ; Q2

��
PqqðzÞ: (A7)

The contribution of the nonperturbative region is also calculated according to Ref. [18]:

F2
qðnonperturbativeÞðx;Q2Þ ¼

X
q

e2qðxqðx; k20Þ þ xq̄ðx; k20ÞÞTqðk0; QÞ: (A8)

Finally, the structure function F2ðx;Q2Þ is given by the sum of the gluon contributions, the Eqs. (A2) and (A6), and the
quark contributions, the Eqs. (A7) and (A8).
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