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The η and η0 transition form factors in the spacelike region are analyzed at low and intermediate energies
in a model-independent way through the use of rational approximants. The slope and curvature parameters
of the form factors as well as their values at zero and infinity are extracted from experimental data. The
impact of these results on the mixing parameters of the η-η0 system and the pseudoscalar-exchange
contributions to the hadronic light-by-light scattering part of the anomalous magnetic moment aμ are also
discussed.
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I. INTRODUCTION

The pseudoscalar transition form factors (TFFs)
γ�γ → P, where P ¼ π0; η; η0 or ηc, have attracted a lot
of attention recently, both from the experimental and
theoretical sides, since the release of the BABAR data on
the π0-TFF in 2009 [1]. The TFF describes the effect of the
strong interaction on the γ�γ� → P transition and is
represented by a function FPγ�γ� ðq21; q22Þ of the photon
virtualities. Measuring both virtualities from the two-
photon-fusion reaction eþe− → eþe−P is still an exper-
imental challenge, so the common practice is to extract the
TFF when one of the outgoing leptons is tagged and the
other is not, that is, the single-tag method. The tagged
lepton emits a highly off-shell photon with the momentum
transfer q21 ≡−Q2 and is detected, while the other,
untagged, is scattered at a small angle and its momentum
transfer q22 is near zero. The form factor extracted from the
single-tag experiment is then a function of one of the
virtualities: FPγ�γðQ2Þ≡ FPγ�γ�ð−Q2; 0Þ.
At low-momentum transfer, the TFF can be described by

the expansion

FPγ�γðQ2Þ ¼ FPγγð0Þ
�
1 − bP

Q2

m2
P
þ cP

Q4

m4
P
þ � � �

�
; (1)

where FPγγð0Þ is the normalization, the parameters bP and
cP are the slope (related to the mean square radius of the
meson by bP=m2

P ¼ hr2i=6) and the curvature, respec-
tively, andmP is the pseudoscalar meson mass. FPγγð0Þ can
be obtained either from the measured two-photon partial
width of the meson P,

jFPγγð0Þj2 ¼
64π

ð4παÞ2
ΓðP → γγÞ

m3
P

; (2)

or, in the case of π0, η and η0, from the prediction of the
axial anomaly in the chiral and large-Nc limits of QCD. For
instance, Fπ0γγð0Þ ¼ 1=ð4π2FπÞ, where Fπ ≃ 92 MeV is
the pion decay constant. The corresponding predictions for
the η and η0 are discussed below. Concerning the slope
parameter, chiral perturbation theory (ChPT) predicts [2,3]
bη ¼ 0.51 and bη0 ¼ 1.47 for sin θP ¼ −1=3 [4], being θP
the η-η0 mixing angle in the octet-singlet basis defined at
lowest order. Other theoretical predictions are [4] bη ¼
0.53 and bη0 ¼ 1.33, from vector meson dominance
(VMD); bη ¼ 0.51 and bη0 ¼ 1.30, from constituent-quark
loops; bη ¼ 0.36 and bη0 ¼ 2.11, from the Brodsky-Lepage
interpolation formula [5]; and bη ¼ 0.521ð2Þ and
bη0 ¼ 1.323ð4Þ, from resonance chiral theory [6]. More
recently, the values bη ¼ 0.61þ0.07−0.03 and bη0 ¼ 1.45þ0.17−0.12 have
been obtained from a dispersive analysis for η → γγ⋆ [7].
Experimental determinations of these parameters are usu-
ally obtained after a fit to data using a normalized, single-
pole term with an associated mass ΛP, i.e.,

FPγ�γðQ2Þ ¼ FPγγð0Þ
1þQ2=Λ2

P
: (3)

At large-momentum transfer, the TFF can be calculated
in the asymptotic Q2 → ∞ limit at leading twist as a
convolution of a perturbative hard scattering amplitude
THðγγ� → qq̄Þ and a gauge-invariant meson distribution
amplitude which incorporates the nonperturbative dynam-
ics of the QCD bound state [8].
While the low- and large-momentum transfer regions are

in principle well described by ChPT and perturbative QCD
(pQCD), respectively, it would be highly desirable to have a
model-independent description of the TFFs in the whole
energy range. Unfortunately, such a description is still
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lacking for the η and η0 [6,9–23] (see also a first attempt
beyond single-pole interpolation formulas in Ref. [24]). In
Ref. [25], it was suggested for the π0 case that this model-
independent description can be achieved using a sequence
of rational functions, the Padé approximants (PAs), to fit
the experimental data. In this way, not only the low- and
large-momentum transfer predictions of ChPT and pQCD
should be reproduced but also a reliable description of the
intermediate-energy region would be available. The main
advantage of the method of PAs is indeed to provide theQ2

dependence of the TFF over the whole spacelike region in
an easy, systematic and model-independent way [25,26].
This is relevant, for instance, when extrapolating from the
asymptotic Q2 limit to the charmonium region [27]. We
also notice that for the forthcoming KLOE-2 [28] and
BES-III [29] TFFs measurements will be helpful to have a
more reliable model-independent description of the whole
energy range, and particularly at low energies, in order to
build up a solid Monte Carlo generator for data analysis and
feasibility studies.
The aim of this work is then to extend and further

develop the application of PAs, already initiated in
Refs. [25,26], to the analysis of η and η0 TFFs taking into
account η-η0 mixing effects systematically. As shown
below, this analysis complements our understanding of
the η-η0 mixing pattern and, more important, can shed light
on their relation to the anomalous magnetic moment of the
muon, aμ, through its hadronic light-by-light scattering
contribution (HLBL). Preliminary results were presented
in Ref. [30].
The paper is organized as follows. In Sec. II, we briefly

describe the general method for extracting low-energy
parameters from the TFFs using rational approximants
and then apply this method to the case of η and η0 TFFs. In
Sec. III, we discuss the implications of our results for the
determination of the η-η0 mixing parameters. Finally, in
Sec. IV, we analyze the possible impact of our findings on
the HLBL piece of aμ, with special attention to the η and η0
exchange contributions. The conclusions are presented
in Sec. V.

II. η AND η0 TRANSITION FORM FACTORS
AT LOW AND INTERMEDIATE ENERGIES

In order to extract the low-energy parameters bP and cP
(slope and curvature, respectively) from the available data,
we use the method described in Refs. [25,26]. This method
makes use of PAs as fitting functions to all the experimental
data in the spacelike region. PAs are rational functions
PN
MðQ2Þ [ratio of a polynomial TNðQ2Þ of order N and a

polynomial RMðQ2Þ of orderM] constructed in such a way
that they have the same Taylor expansion as the function to
be approximated up to order OðQ2ÞNþMþ1 [31]. Since
PAs are built in our case from the unknown low-energy
parameters (LEPs) of the TFF, once the fit to the exper-
imental data is done, the reexpansion of the PAs yields the

desired coefficients. We refer the interested reader to
Ref. [25] for details on this technique.
The main feature of this method is the usage of a

sequence of PAs. In this way, one can ascribe a systematic
error to the result assuming a convergent behavior of the
sequence.1 This systematic error is defined as the relative
error between the prediction of a finite-order PA for a given
parameter and the result from the exact function, becoming
eventually zero. However, since the exact function of the
TFF is unknown, the assumption of convergence can only
be checked against well-motivated models. After perform-
ing such a test for several different models, one takes as the
systematic error the most conservative result. It is in this
way that we consider the PAs a systematic and model-
independent approach. In Appendix B, such a test of
convergence with a Regge model for the η TFF is shown.
As soon as convergence is assumed, the largest the
sequence is, the smallest the systematic error turns out
to be. In a realistic case the sequence will not be infinite
since, at some given order, the additional parameters of the
fitted PAs will be statistically compatible with zero. Then,
one should stop the sequence at that order leading to the
intrinsic or systematic error on the LEPs predictions
explained above. In Refs. [25,26], this error was carefully
studied and provided. In accordance with this, we ascribe a
conservative systematic error of the order of 5% and 20%
for the slope and curvature parameters, respectively, to
our final LEP determinations.2 Since in practice, our PA
sequences are quite short (up to 5–6 elements at most), one
needs to consider several kinds of sequences with different
analytical properties for better strengthening the results.
This procedure avoids problems of overfitting as well. The
choice of which type of PA sequence to be used is largely
determined by the analytic properties of the function to be
approximated. As argued in Ref. [25], the timelike region
for the π0-TFF exhibits a predominant role of the ρ meson
contribution with the excited states being much suppressed.
For the η and η0 TFF, the appropriate combination of the ρ,
ω and ϕ mesons should play the same role through an
effective single-pole dominance as the ρ on the π0 TFF. For
that reason, a PL

1 ðQ2Þ sequence (single-pole approximants)
seems the optimal choice in the η and η0. However,
according to Ref. [8], the pseudoscalar TFFs behave as
1=Q2 for Q2 → ∞, which means that, for any value of L,
one will obtain in principle a good fit only up to a finite
value of Q2 but not for Q2 → ∞. Therefore, it would be
desirable to incorporate this asymptotic limit information in
the fits by considering also a PN

NðQ2Þ sequence.

1The convergence of the sequence can only be mathematically
proven (and not assumed) for certain types of special functions
(see Ref. [31] for details).

2In Appendix B, the Regge model used to show convergence
yields smaller systematic errors. Thus, to be conservative, we
prefer to take the results discussed in Refs. [25,26].
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In the following subsection, we present and discuss the
weighted averaged results for the LEPs of the η and η0 TFFs
obtained from the PA sequences mentioned above. Since it
is common to publish experimental data in the form of
Q2Fηð0Þγ�γðQ2Þ instead of Fηð0Þγ�γðQ2Þ, we prefer to fit the
first form. We do this following a bottom-up approach. So,
we start fitting the Q2Fηð0Þγ�γðQ2Þ spacelike data without
any information at Q2 ¼ 0. This means, in particular, that
the mathematical limQ2→0Q

2Fηð0Þγ�γðQ2Þ ¼ 0 is not im-
posed but extracted from data. In a second step, we impose
such limit making use of PAs whose numerator starts at
order Q2, i.e., TNð0Þ ¼ 0. This will allow us to predict the
value of the transition form factors at zero, and therefore the
two-photon partial widths, from pure spacelike data, as well
as the slope and curvature parameters. Finally, as a last step,
we incorporate the measured two-photon partial widths in
our set of data to be fitted together with the spacelike
data. The former bottom-up approach should allow us to
strengthen systematically our results.

A. η and η0 transition form factors

For both the η and η0 TFFs, we collect the experimental
data from the CELLO, 3 CLEO, L3, and BABAR Collab-
orations [32–35]. As stated, we include in our final step the
values Γη→γγ ¼ 0.516ð18Þ keV (obtained after combining
the PDG average [36] together with the recent KLOE-2
result [37]) and Γη0→γγ ¼ 4.35ð14Þ keV from the PDG fit
[36]. Since the asymptotic values of the spacelike and
timelike TFFs are expected to be very similar, we also
comment on the results when including in our analysis the
timelike measurements4 for the η and η0 reported by the
BABAR Collaboration [38].
We start our bottom-up approach by fitting space-

like data alone without including the constraint
limQ2→0Q

2FðQ2Þ ¼ 0. For the η case, the fits “see the
zero” within 2 standard deviations. For instance, the
coefficient that would be fixed to zero in case this constraint
is imposed is found to be 0.059(29) for a fit to a P1

1ðQ2Þ
approximant. For the η0 case, the results are better and the
zero is seen within one standard deviation. As an example,
we find −0.002ð3Þ for a fit to a P3

1ðQ2Þ approximant. Once
this coefficient is seen to be zero, the next one is identified

with Fη0γγð0Þ and found to be 0.38ð6Þ GeV−1, which,
making use of Eq. (2), leads to the prediction
Γη0→γγ ¼ 5.3ð1.7Þ keV. This fact illustrates the potentiality
of the spacelike data, which ranges from 0.6 to 35 GeV2 for
the η and from 0.06 to 35 GeV2 for the η0, to shed light on
the low-energy region of these TFFs.
The next step is to include limQ2→0Q

2FðQ2Þ ¼ 0 into the
fits, that is, to consider PAs whose numerator starts already
at order Q2. Our best fitted approximants for the η and η0
TFFs in this case are shown in Fig. 1 for two scenarios: with
and without including the two-photon partial widths in the
data set. The obtained LEPs are collected in Table I, Γηð0Þ→γγ
not included, and Table II, Γηð0Þ→γγ included, and shown
in Fig. 2, for the slope, and Fig. 3, for the curvature,
respectively. The stability observed for the LEPs with the
PL
1 ðQ2Þ is quite reassuring. For completeness, we also

include in these figures the results obtained by the CELLO
Collaboration [32] using a VMD model fit. To perform an
appropriate comparison of their LEPs with our results, we
add to their determinations the same systematic error we
included in ours, which turns out to be of the order of 40%
following Refs. [25,26]. The coefficients of the best fitted
PL
1 ðQ2Þ approximants when the constraint at Q2 ¼ 0 and

the experimental two-photon decay widths are included can
be found in Appendix A for both TFFs.
All the different PAs considered so far lead to compatible

results. However, for the LEP determinations, the inclusion
of the measured two-photon partial widths in the fits is
crucial for two reasons: first, smaller errors on such decays
immediately yield smaller errors on the slope and curvature
parameters; second, and more important, precise two-
photon partial widths allow us to reach higher PAs in
our sequences, rendering smaller systematic errors. Then,
more precise measurements of such partial widths will be
very welcome for extracting the LEPs with better statistical
and systematical errors. If instead, the two-photon partial
widths are not included in the analysis, these are still well
determined by our fits. Using Eq. (2) and the fitted values
for Fηð0Þγ�γð0Þ from Table I, we predict such partial widths to
be Γη→γγ ¼ 0.38ð17Þ keV and Γη0→γγ ¼ 4.22ð42Þ keV.
These results only differ from the measured ones by 0.8
and 0.3 standard deviations, respectively. We remark on the
importance of the high-energy TFF experimental data to
obtain large PA sequences which in turn permit better
determinations of the LEPs.
The last row in Tables I and II presents our final results for

the LEPs obtained after a weighted average of the different
determinations depending on the type of PA sequence used.
We consider the values shown in Table II, when the
measured two-photon partial widths are taken into account,
as the main results of this work, while the results in Table I
are kept for comparison. For this reason, in the following, we
only comment on the results of Table II.
For the η and η0, respectively, the PL

1 ðQ2Þ sequence
reaches L ¼ 5 and L ¼ 6 as the best approximant. The

3The CELLO Collaboration does not report a systematic error
for each bin of data. While for the η0 case such error is 16% of the
total number of events (which we translate into 32% for each bin),
for the η case, only 12% for the two-photon channel is reported.
Accounting for all the different systematic sources we could find
in the publication, we ascribe 12% of systematic error for the
hadronic η decay which leads to a 6% error for the global number
of events (implying 12% of systematic error for each bin).

4The timelike TFF for the π0 at high energy is not yet available,
but it could be measured at q2 ¼ 14:6 GeV2 by the BES-III
Collaboration [29]. This particular point is in the region, reaching
the asymptotic limit, where the measurements from the BABAR
and Belle Collaborations start to differ, so we encourage BES-III
to measure it.
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fitted poles range ffiffiffiffiffispp ¼ ð0.71–0.77Þ GeV and ffiffiffiffiffispp ¼
ð0.83–0.86Þ GeV, as can be seen in Fig. 4. For comparison,
we also show as orange and blue bands what would
correspond to the effective VMD meson resonance
meff [39], using mρ ¼ 0.775 GeV, Γρ ¼ 0.148 GeV,
mω ¼ 0.783 GeV, Γω ¼ 0.008 GeV, mϕ ¼ 1.019 GeV,
and Γϕ ¼ 0.004 GeV. The bands represent the range of
such mass values due to the half-width rule [40–42], i.e.,
meff � Γeff=2. We obtain meff ¼ 0.732ð71Þ GeV for the η
case and meff ¼ 0.822ð58Þ GeV for the η0, with errors due
to the half-width rule. Notice that raising the poles lowers
the LEPs (slope and curvature) and vice versa. As shown,
fitting spacelike data does not produce an accurate deter-
mination of the resonance poles as already indicated in

Refs. [25,26,43,44]. Thus, we do not recommend to apply
this method for such determinations. That includes the use
of VMD fits to determine the resonance parameters. An
alternative model-independent procedure of extracting
these parameters using PAs can be found in Ref. [45].
To reproduce the asymptotic behavior of the TFFs, we

have also considered the PN
NðQ2Þ sequence (second row in

Tables I and II). The results obtained are in nice agreement
with our previous determinations. The best fits are shown
as black solid lines in Fig. 1. We reach N ¼ 2 for the η case
and N ¼ 1 for the η0. Since these approximants contain
the correct high-energy behavior built in, they can be
extrapolated up to infinity (black dashed lines in Fig. 1) and
then predict the leading 1=Q2 coefficient:
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FIG. 1 (color online). η (left panel) and η0 (right panel) TFF best fits. Blue dashed lines show our best PL
1 ðQ2Þ when the measured two-

photon partial decay widths are not included in the fits, green dot-dashed lines show our best PL
1 ðQ2Þ when the two-photon widths are

included, and black solid lines show our best PN
NðQ2Þ in the latter case. Black dashed lines display the extrapolation of the PN

NðQ2Þ at
Q2 ¼ 0 and Q2 → ∞. Experimental data points are from CELLO (red circles) [32], CLEO (purple triangles) [33], L3 (blue diamonds)
[34], and BABAR (orange squares) [35] Collaborations.

TABLE I. Low-energy parameters for the η and η0 TFFs obtained from the PA fits to experimental data without including the measured
two-photon partial decay widths. The first column indicates the type of sequence used for the fit and N is the highest order reached with
that sequence. The last row shows the weighted average result for each LEP. We also present the quality of the fits in terms of χ2=DOF
(degrees of freedom). Errors are only statistical and symmetrized.

η TFF η0 TFF
N bη cη Fηγγð0Þ GeV−1 χ2=DOF N bη0 cη0 Fη0γγð0Þ GeV−1 χ2=DOF

PN
1 ðQ2Þ 2 0.45(13) 0.20(12) 0.235(53) 0.79 5 1.25(16) 1.57(42) 0.339(17) 0.70

PN
NðQ2Þ 1 0.36(6) 0.13(4) 0.201(28) 0.78 1 1.19(6) 1.42(15) 0.332(15) 0.68

Final 0.45(13) 0.20(12) 0.235(53) 1.25(16) 1.57(42) 0.339(17)

TABLE II. Low-energy parameters for the η and η0 TFFs obtained from the PA fits to experimental data including the measured two-
photon partial decay widths. The first column indicates the type of sequence used for the fit and N is the highest order reached with that
sequence. The last row shows the weighted average result for each LEP. We also present the quality of the fits in terms of χ2=DOF. Errors
are only statistical and symmetrized.

η TFF η0 TFF
N bη cη χ2=DOF N bη0 cη0 χ2=DOF

PN
1 ðQ2Þ 5 0.58(6) 0.34(8) 0.80 6 1.30(15) 1.72(47) 0.70

PN
NðQ2Þ 2 0.66(10) 0.47(15) 0.77 1 1.23(3) 1.52(7) 0.67

Final 0.60(6) 0.37(10) 1.30(15) 1.72(47)
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lim
Q2→∞

Q2Fηγ�γðQ2Þ ¼ 0.160ð24Þ GeV;

lim
Q2→∞

Q2Fη0γ�γðQ2Þ ¼ 0.255ð4Þ GeV: (4)

We emphasize once more the importance of including the
measured two-photon partial widths in the fits, that for the
case of the η TFF allows us to reach N ¼ 2 and then reduce
the uncertainty drastically. Otherwise, we would have
remained at N ¼ 1 with errors 5 times larger.
Finally, our combined weighted average results from

Table II, taking into account both types of sequences,
give

bη ¼ 0.60ð6Þstatð3Þsys; cη ¼ 0.37ð10Þstatð7Þsys;
bη0 ¼ 1.30ð15Þstatð7Þsys; cη0 ¼ 1.72ð47Þstatð34Þsys; (5)

where the second error is systematic (of the order of 5% and
20% for bP and cP, respectively). When the spread of
central values considered for the weighted averaged result
is larger than the error after averaging, we enlarge this error

to cover that spread5 [36]. Equation (5) represents the main
results of this work. For the case of the η0, with the PN

NðQ2Þ
sequence we could only reach N ¼ 1, which turns out to be
the first element on the PL

1 ðQ2Þ sequence. The first element
of each sequence is the worst and should not be taken for
final averaged results.
For the η, the slope of the TFF obtained in Eq. (5) can be

compared with bη ¼ 0.428ð89Þ from CELLO [32] and
bη ¼ 0.501ð38Þ from CLEO [33]. The TFF was also
measured in the timelike region with the results bη ¼
0.57ð12Þ from Lepton-G [46], bη ¼ 0.585ð51Þ from NA60
[47], bη ¼ 0.58ð11Þ from A2 [48], and bη ¼ 0.68ð26Þ
from WASA [49]. Recently, the A2 Collaboration reported
bη ¼ 0.59ð5Þ [50], the most precise experimental extraction
up to date. For the η0, the slope in Eq. (5) can be compared
with bη0 ¼ 1.46ð23Þ from CELLO [32], bη0 ¼ 1.24ð8Þ from
CLEO [33], and bη0 ¼ 1.6ð4Þ from the timelike analysis by
the Lepton-G Collaboration (cited in Ref. [39]). One should

P11 P21 P31 P41 P51 CELLO
0.2

0.3

0.4

0.5

0.6

0.7
b

P11 P21 P31 P41 P51 P61 CELLO

1.0

1.5

2.0

b
'

FIG. 2 (color online). Slope predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).
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FIG. 3 (color online). Curvature predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).

5We thank C. F. Redmer for discussions on the average
procedure.
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notice that all the previous collaborations used a VMD
model fit to extract the slopes. In order to be consistent
when comparing with our results, a systematic error of
about 40% should be added to the experimental determi-
nations based on spacelike data and a smaller one of about
5% on the ones based on timelike data, smaller since such
data are closer to Q2 ¼ 0 [25]. We present all these results
in Fig. 5, where the smaller error is the statistical and the
larger the quadratic combination of both statistical and
systematic. The comparison with the theoretical predictions
mentioned in Sec. I is also displayed.
Eventually, we want to comment on the effective single-

pole mass determination ΛP from Eq. (3). Using bP ¼
m2

P=Λ
2
P and the values in Eq. (5), we obtain Λη ¼

0.706 GeV and Λη0 ¼ 0.833 GeV. These values together
with Λπ ¼ 0.750 GeV obtained in Ref. [25] lead to
Λη < Λπ < Λη0 , in agreement with constituent-quark loops
and VMD model approaches [4].
It is worth mentioning two interesting features of the

low-energy parameters analysis performed above. First, the
values of the η and η0 timelike TFF at q2 ¼ −Q2 ¼
112 GeV2 measured by the BABAR Collaboration [38]
do not modify our LEP determinations at the precision we
are reporting in this work. Second, and more important,

given that the LEPs are defined at zero momentum transfer,
one would expect their fitted values to be dominated by
low-energy data. However, this is not the case; the high-
energy data are relevant in order to reach higher PA
sequences leading to more constrained values of the
LEPs. In the case at hand, only the BABAR Collabora-
tion provides precise measurements in the region between 5
and 35 GeV2. For instance, the value of the η slope
parameter shown in Eq. (5), bη ¼ 0.60ð6Þð3Þ, turns out
to be bη ¼ 0.65ð9Þð7Þ when the BABAR data are not
included in the fits. In view of this behavior and having
in mind the π0 TFF controversy after the measurements of
the BABAR [1] and Belle [51] Collaborations, a second
experimental analysis by the Belle Collaboration covering
this high-energy region would be very welcome.
Another interesting consequence of our analysis is the

possible application of the present method to predict the
timelike version of the TFFs. Once the LEPs are fixed from
a fit to experimental data in the spacelike region, the TFFs
parametrized in the form of a given PA are well defined in
the whole Q2-complex plane except for possible genuine
poles. These poles are usually identified as resonances
appearing in the timelike region, that is for q2 ¼ −Q2 > 0.
Therefore, the spacelike TFF can be used as a suitable
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FIG. 4 (color online). Pole-position predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η

and L ¼ 6 for the η0, respectively. For comparison, we also display (orange and blue bands) the rangemeff � Γeff=2 corresponding to the
effective VMD meson resonance evaluated using the half-width rule (see main text for details).
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FIG. 5 (color online). Slope determinations for η (left panel) and η0 (right panel) TFFs from different theoretical (red circles) and
experimental (blue squares) references discussed in the text. Inner error is the statistical one and larger error is the combination of
statistical and systematic errors.

ESCRIBANO, MASJUAN, AND SANCHEZ-PUERTAS PHYSICAL REVIEW D 89, 034014 (2014)

034014-6



representation of the timelike TFF except in the vicinity of
the poles attributed to resonances. For the case of the η, the
first possible vector resonance, the ρ meson, is beyond the
available phase space. Thus, one can take advantage of this
fact and predict, for instance, the invariant spectrum of the
η → γeþe− Dalitz decay in a reliable and model-indepen-
dent way. In doing so, we find a nice agreement between
our prediction and the reported experimental measurement
[48] (see also Ref. [50] for a preliminary comparison of this
prediction with more precise but not yet published exper-
imental data from the A2 Collaboration at MAMI). For the
case of the η0, however, the ρ and ω mesons are within the
allowed kinematical region. Because of that, the timelike
TFF can only be described by the related spacelike TFF in
the low-energy region, far from these resonance poles, but
not around them.

III. η-η0 MIXING FROM THE TFFS

In Sec. II A, the η and η0 TFFs were analyzed by means
of the PN

NðQ2Þ in order to predict the leading 1=Q2

coefficients. This information together with the predicted
Fηð0Þγγð0Þ, or their experimental measured values calculated
from Eq. (2), allows for the analysis of η-η0 mixing. This
study can be performed either in the octet-singlet basis,
where the physical states are constructed employing the
octet and singlet states, or the quark-flavor basis, through
the flavor states jηqi≡ ðjuūi þ jdd̄iÞ= ffiffiffi

2
p

and jηsi≡ jss̄i.
In both cases, the leading 1=Q2 coefficients and the
normalization of the TFFs at zero are written as functions
of the different four pseudoscalar decay constants, defined

as h0jAða;iÞ
μ jηð0ÞðpÞi ¼ i

ffiffiffi
2

p
Fða;iÞ
ηð0Þ

pμ, where a ¼ 8, 0 or

i ¼ q, s depending on the chosen basis.6 For the reason
explained below, we analyze η-η0 mixing using the quark-
flavor basis [52–64]. In this basis, the η and η0 decay
constants are parametrized as

�
Fq
η Fs

η

Fq
η0 Fs

η0

�
¼

�
Fq cos ϕq −Fs sin ϕs

Fq sin ϕq Fs cos ϕs

�
; (6)

where Fq;s are the light-quark and strange pseudoscalar
decay constants, respectively, and ϕq;s the related mixing
angles. Several phenomenological analyses find ϕq ≃ ϕs,
which is also supported by large-Nc ChPT calculations
where the difference between these two angles is seen to be
proportional to an Okubo-Zweig-Iizuka-rule violating
parameter and hence small [59,65]. This assumption,
ϕq ¼ ϕs ≡ ϕ, is also a requirement of the Feldmann-
Kroll-Stetch (FKS) scheme [54,56].
Within this approximation, the asymptotic limits of the

TFFs take the form

lim
Q2→∞

Q2Fηγ�γðQ2Þ ¼ 2ðĉqFq
η þ ĉsFs

ηÞ

¼ 2ðĉqFq cos ϕ − ĉsFs sin ϕÞ;
lim

Q2→∞
Q2Fη0γ�γðQ2Þ ¼ 2ðĉqFq

η0 þ ĉsFs
η0 Þ

¼ 2ðĉqFq sin ϕþ ĉsFs cos ϕÞ; (7)

and their normalization at zero

Fηγγð0Þ ¼
1

4π2

� ĉqFs
η0 − ĉsF

q
η0

Fs
η0F

q
η − Fq

η0F
s
η

�

¼ 1

4π2

�
ĉq
Fq

cos ϕ − ĉs
Fs

sin ϕ

�
;

Fη0γγð0Þ ¼
1

4π2

�
ĉqFs

η − ĉsF
q
η

Fs
ηF

q
η0 − Fq

ηFs
η0

�

¼ 1

4π2

�
ĉq
Fq

sin ϕþ ĉs
Fs

cos ϕ

�
; (8)

with ĉq ¼ 5=3 and ĉs ¼
ffiffiffi
2

p
=3.

Using Eqs. (7) and (8), one can attempt to predict the
mixing parameters in the quark-flavor basis, that is, the two
decay constants, Fq and Fs, and the single mixing angle ϕ,
with the results obtained in our fits. However, only three of
the four equations are independent, so we have to choose
the set of three equations that will be used to get the three
mixing parameters. Our choice is based on the precision
achieved by the PAs. While for the η0 TFF the PN

NðQ2Þ
sequence reaches only the N ¼ 1 element, with the con-
sequent lack of stability checks and big uncertainties
discussed above, the η TFF reaches N ¼ 2 (when the
measured two-photon partial widths are included in the
fits), where the stabilization is attained and the uncertainty of
the fitted parameters reduced. Accordingly, we do not
recommend to use the asymptotic limit of the η0 TFF to
extract the mixing parameters. For the same reason, con-
fident results for these parameters will be only obtained in
the case of including the two-photon partial widths in the fits.
Nevertheless, for the sake of comparison, we will explore all
the different possibilities for extracting such parameters.
We start considering our best scenario in terms of

confidence and precision. For the normalization at zero
of both TFFs we use jFηγγð0Þjexp ¼ 0.274ð5Þ GeV−1
and jFη0γγð0Þjexp ¼ 0.344ð6Þ GeV−1 from the measured
decay widths Γη→γγ ¼ 0.516ð18Þ keV and Γη0→γγ ¼
4.35ð14Þ keV, respectively, and for the asymptotic value
of the η TFF we take the value shown in Eq. (4),
limQ2→∞Q

2Fηγ�γðQ2Þ ¼ 0.160ð24Þ GeV. With these val-
ues, the mixing parameters are predicted to be

Fq=Fπ ¼ 1.06ð1Þ; Fs=Fπ ¼ 1.56ð24Þ; ϕ¼ 40:3ð1.8Þ∘;
(9)

6The axial-vector currents are defined as Aa
μ ¼ q̄γμγ5

λaffiffi
2

p q,
with Aq

μ ¼ 1ffiffi
2

p ðūγμγ5uþ d̄γμγ5dÞ ¼ 1ffiffi
3

p ðA8
μ þ

ffiffiffi
2

p
A0
μÞ and As

μ ¼
s̄γμγ5s ¼ 1ffiffi

3
p ðA0

μ −
ffiffiffi
2

p
A8
μÞ.
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with Fπ ¼ 92:21ð14Þ MeV [36]. These values represent a
second important result of this work. They can be com-
pared, for instance, with the determination of the mixing
parameters obtained in Ref. [59], Fq=Fπ ¼ 1.10ð3Þ,
Fs=Fπ ¼ 1.66ð6Þ and ϕ ¼ 40:6ð0.9Þ∘, after a careful
analysis of V → ηð0Þγ, ηð0Þ → Vγ, with V ¼ ρ;ω;ϕ, and
ηð0Þ → γγ decays, and the ratio RJ=ψ ≡ ΓðJ=ψ → η0γÞ=
ΓðJ=ψ → ηγÞ. An update of the former values taking into
account the latest experimental measurements of these
decays gives Fq=Fπ ¼ 1.07ð1Þ, Fs=Fπ ¼ 1.63ð3Þ and
ϕ ¼ 39:6ð0.4Þ∘. An older phenomenological analysis
based on the FKS scheme leads to Fq=Fπ ¼ 1.07ð3Þ,
Fs=Fπ ¼ 1.34ð6Þ and ϕ ¼ 39:3ð1.0Þ∘ [54] (see Ref. [56]
for a compendium of different results). The agreement
between these determinations and the values in Eq. (9) is
quite impressive since we only use the information of the
TFFs to predict the mixing parameters.
If instead of using the asymptotic value of the η TFF

for the study of η-η0 mixing, we use the asymptotic value
of the η0 TFF in Eq. (4), the following results are found:

Fq=Fπ ¼ 1.09ð2Þ; Fs=Fπ ¼ 0.96ð4Þ; ϕ¼ 33:5ð0.9Þ∘;
(10)

in clear disagreement with all the values reported by the
phenomenological analyses mentioned above and the results
inEq. (9). This discrepancymaybe an indication of the lackof
stability of the P1

1ðQ2Þ to predict the asymptotic limit. How-
ever, the value we have obtained, limQ2→∞Q

2Fη0γ�γðQ2Þ ¼
0.255ð4Þ GeV, is in accord with the BABARmeasurement in
the timelike regionatq2¼112GeV2,q2jFη0γ�γðq2Þj112GeV2 ¼
0.251ð21Þ GeV [38]. This contrasts with the situation for
the η TFF. Our fitted value, limQ2→∞Q

2Fηγ�γðQ2Þ ¼
0.160ð24Þ, which we have used to get a reasonable estimate
of themixingparameters inEq. (9), is not in linewith thevalue
q2jFηγ�γðq2Þj112GeV2 ¼ 0.229ð31Þ GeV reported by the
BABAR Collaboration. Given this situation, it might be the
case that the mixing scheme used here is not complete
enough to catch the physical features of the η-η0 mixing
(higher order effects of the chiral and large-Nc expansions or
including gluonium effects could be of certain relevance).
Therefore, precise determinations of the mixing parameters
from lattice QCD techniques will be very welcome,7 also for
the implications of suchmixing in the light-by-light scattering
contribution to the anomalousmagneticmoment of themuon,
which are the subject of the next section.
For completeness, we also provide two predictions: the

mixing parameters when the two-photon partial widths

measurements are not included in the fits and the asymp-
totic form factors when the updated values of the mixing
parameters mentioned before are used. For the first pre-
diction, we take the asymptotic value of the η TFF, obtained
now with a P1

1ðQ2Þ, i.e., limQ2→∞Q
2Fηγ�γðQ2Þ¼0.168ð10Þ,

as well as the predicted normalizations at zero, Fηγγð0Þjfit ¼
0.235ð53Þ GeV−1 and Fη0γγð0Þjfit ¼ 0.339ð17Þ GeV−1,
from Table I. We find Fq=Fπ ¼ 1.1ð1Þ, Fs=Fπ ¼ 1.5ð2Þ
and ϕ ¼ 43ð5Þ∘, in fair agreement with the results in Eq. (9)
but less precise. For the second, we obtain from Eq. (7)
the values limQ2→∞Q

2Fηγ�γðQ2Þ ¼ 0.163ð4Þ GeV and
limQ2→∞Q

2Fη0γ�γðQ2Þ¼0.319ð3ÞGeV, respectively, to be
compared with the results shown in Eq. (4). We emphasize
once more the impact of including the two-photon partial
widths in the fits and the relevance of getting higher order
Padé sequences in order to reach stability and reduce the
uncertainties of the fitted parameters. The latter, as dis-
cussed above, is not the case of the η0 where a P1

1ðQ2Þ is the
highest diagonal Padé accessible for the fit.

IV. IMPLICATIONS ON THE HADRONIC LIGHT-
BY-LIGHT CONTRIBUTION TO THE ðg − 2Þμ
The hadronic contributions to the anomalous magnetic

moment of the muon aμ consists on hadronic vacuum
polarization as well as hadronic light-by-light scattering
(HLBL). The latter cannot be directly related to any
measurable cross section and requires the knowledge of
QCD contributions at all energy scales. Since this is not
known yet, one relies on hadronic models to compute it
[69–83]. Indeed, the theoretical value of aμ is currently
limited by uncertainties from the HLBL scattering con-
tribution leading to an uncertainty in aμ of ð2.6–4.0Þ ×
10−10 [84–86] as well as the one from hadronic vacuum
polarization ð4.2–4.9Þ × 10−10 [87,88].
The present world average experimental value is given

by aexpμ ¼ 11659208:9ð6.3Þ × 10−10 [89,90], still limited
by statistical errors, and a proposal to measure the muon
ðg − 2Þμ to a precision of 1.6 × 10−10 has recently been
submitted to Fermi National Accelerator Laboratory [91].
In view of this proposal, it is important to have better
control on the HLBL contribution which as wewill see may
demand also better control on the TFF studied so far.
Using the large-Nc limit ofQCD [92,93] and also the chiral

counting, itwasproposed in [94] to split theHLBLinto a set of
different contributions where the numerically dominant one
arises from the pseudoscalar-exchange piece, the aHLBL;PSμ

(see Refs. [73,85] for details): aHLBL;π
0

μ ∼7×10−10 and

aHLBL;η
ð0Þ

μ ∼1.5×10−10. The main ingredient on the determi-
nation of the pseudoscalar-exchange process aHLBL;PSμ is the
double off-shell TFF FP�γ�γ� ððq1 þ q2Þ2; q21; q22Þ dominated
by an on-shell pseudoscalar [73]. The TFF should be
considered to be off shell (see Refs. [75,76,79,85,86] where
this point is addressed). Since such effects for the η and η0,
whichareexpected tobesmall, arenotknown,weshouldkeep

7Recently, the ETM Collaboration has reported a value for the
η-η0 mixing angle in the quark-flavor basis of ϕ ¼ 46ð1Þstatð3Þ∘sys
[66], in good agreement with other lattice determinations,
ϕ ¼ 40:6ð2.8Þ∘, from the RBC and UKQCD Collaborations
[67], and ϕ ¼ 42ð1Þ∘, from the Hadron Spectrum Collaboration
[68].
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the pseudoscalar-pole simplifications in our calculations. A
preliminary discussion on off-shell effects is reported below.
In this section we plan to study the impact of the results

obtained in Sec. II to the HLBL with the intuition that
it is more important to have a good description at small
and intermediate energies, e.g., by reproducing the slope
and curvature of the TFFs, than a detailed short-distance
analysis since the angular integrals used to compute aHLBLμ

do not seem to be very sensitive to the correct asymptotic
behavior for large momenta [73].
In the large-Nc limit, QCD Green’s functions are

meromorphic functions with simple poles and no branch
cuts since consist of infinitely many noninteracting sharp
mesons states whose masses and decay constants are in
principle unknown. As such sum is not known in practice,
one ends up truncating the spectral function in a resonance
saturation scheme, the so-called minimal hadronic approxi-
mation [95]. The resonance masses used in each calculation
are then taken as the physical ones from PDG instead of the
corresponding masses in the large Nc. This assumption
together with the effect of the spectrum truncation should
be taken into account on the final systematic error [43,96].
A way of evade these caveats comes from the Padé

theory [43]. In this context, one defines the TFF as a PA
defined from its LEPs [82]:

FP01
Pγ�γ� ðQ2

1; Q
2
2Þ ¼ P0

1ðQ2
1; Q

2
2Þ ¼ a

b
Q2

1 þ b
b

Q2
2 þ b

; (11)

where the free parameters are matched at low energies with
the results in Table II, a is fixed by ΓP→γγ and b by the
slope bP.
The convergence of the PA sequence to a meromorphic

function is guaranteed by Pomerenke’s theorem [97]. The
problem is to know how fast this convergence is and also
how to ascribe a systematic error on each element of that
sequence. For meromorphic functions, the simplest way of
evaluating a systematic error is by comparing the difference
between two consecutive elements on the PA sequence [98]
(see Appendix B for details).
In our approach to the TFF, the second element on the PA

sequence is given by

FP12
Pγ�γ� ðQ2

1; Q
2
2Þ ¼ P1

2ðQ2
1; Q

2
2Þ

¼ aþ bQ2
1

ðQ2
1 þ cÞðQ2

1 þ dÞ
aþ bQ2

2

ðQ2
2 þ cÞðQ2

2 þ dÞ ;
(12)

with four coefficients to be matched with ΓP→γγ , the slope
bP, the curvature of the TFF cP and the first effective vector
meson resonance accounted for the appropriate ρ;ω;ϕ
mixing [39], illustrated in Fig. 4. The error for the effective
mass is taken from the half-width rule [40,41]. The results
are collected in Table III.

The weighted average results for the low-energy param-
eters of the η0-TFF collected in Table II considered only the
PL
1 ðQ2Þ sequence since with the PN

NðQ2Þ we only reached
its first element. Therefore, in the determination of the
aHLBL;η

0
μ in Eq. (12) we used the low-energy parameter of

order OðQ2Þ3 instead of the effective mass obtained in
Ref. [39]. Both procedures yield very similar results.
The similarity of the results obtained with both approx-

imants (11) and (12) indicates, as expected [83], that the
low-energy region (up to 1–2 GeV) dominates the con-
tribution to aHLBL;PSμ . To evaluate the error on our approxi-
mation we look for the maximum of the difference in the
region up to 1 GeV between the P0

1ðQ2
1; Q

2
2Þ and

P1
2ðQ2

1; Q
2
2Þ as explained in Ref. [98]. Of course, this

difference depends on the energy, and grows as the energy
increases. At 1 GeV, the relative difference is about 5%, and
we take this error as a conservative estimate of the error on
the whole low-energy region. We should add this error to
the aHLBL;PSμ final result. In Appendix B, a more rigorous
way of estimating such error is presented.
In order to provide aHLBL;PSμ , we also collect the results

for the aHLBL;π
0

μ obtained in Ref. [82], where the same
method was used but with the full off-shell TFF, i.e.,
aHLBL;π

0

μ ¼ 6.49ð56Þ × 10−10 and aHLBL;π
0

μ ¼ 6.51ð71Þ ×
10−10 corresponding to the first and second elements on
the PA sequence, respectively.
There is a second way of computing the HLBL, which

incorporates 1=Nc corrections, that would reassess our
previous results. In this way, one makes use of the meson
dominance and the half-width rule when accounting for the
TFF (see Refs. [40,41,99,100]). Meson dominance means
to take the high-energy behavior given by pQCD and the
minimal number of mesons to satisfy its condition
[41,100]. Then, errors in the meson-dominated form factors
are estimated by the half-width rule, i.e., by treating
resonance masses as random variables distributed with
the dispersion given by its decay width. In this way,

FPγ�γðQ2Þ ¼ 1

4π2FP

m2
eff

m2
eff þQ2

; (13)

provided one has the relation m2
eff ¼ 8π2FPðĉqFq

P þ ĉsFs
PÞ

for P ¼ η; η0 to satisfy the asymptotic limit (7). Numerical

TABLE III. Collection of results for the aHLBL;PSμ for PS ¼ η
and η0 contributions. The last column contains also the result
obtained in Ref. [82] for the π0-TFF, with errors combined in
quadrature. Results are in units of 10−10.

FPγγ� ðQ2
1; Q

2
2Þ η η0 Total

P0
1ðQ2

1; Q
2
2Þ 1.25(15) 1.21(12) 8.96(59)

P1
2ðQ2

1; Q
2
2Þ 1.27(19) 1.22(12) 9.00(74)

Eq. (13) 1.44(19) 1.27(29) 8.84(35)
Eq. (14) 1.38(16) 1.22(9) 8.48(45)
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evaluations are performed with the results in Eq. (4). For
the π0 case, m2

eff ¼ 8π2F2
π .

If we improve our model by including a second
resonance, meff and meff 0 , we get, after imposing the
anomaly and large-Q2 behavior,

FPγ�γðQ2Þ ¼ 1

4π2FP

m2
effm

2
eff 0 þ 8π2FPðĉqFq

P þ ĉsFs
PÞQ2

ðm2
eff þQ2Þðm2

eff 0 þQ2Þ ;

(14)

where meff and meff 0 correspond to the VMD for each
π0; η; η0 TFF [39]: for the η we obtain meff ¼
0.732ð71Þ GeV and for the η0 meff ¼ 0.822ð58Þ GeV, as
described in Sec. II A; we also obtain meff 0 ¼
1.41ð21Þ GeV and meff 0 ¼ 1.51ð16Þ GeV for η and η0,
respectively (using mω0 ¼ 1.425 GeV, Γω0 ¼ 0.215 GeV,
mϕ0 ¼ 1.680 GeV, and Γϕ0 ¼0.150GeV). The errors come
from the half-width rule. Numerical evaluations are per-
formed again with the results in Eq. (4). For the π0 case,
meff ¼ mρ, meff 0 ¼ mρ0 , and the asymptotic limit is 2Fπ .
The results using both Eqs. (13) and (14) are shown in

Table III. For the π0 case, using mρ ¼ 0.775 GeV, mρ0 ¼
1.465 GeV, Γρ ¼ 0.148 GeV and Γρ0 ¼ 0.400 GeV, we
obtain aHLBL;π

0

μ ¼ 6.13ð1Þ × 10−10 and aHLBL;π
0

μ ¼
5.88ð41Þ × 10−10 using Eqs. (13) and (14), respectively.
Equation (14) yields always smaller results due to the fact
that its slope is always larger (bP ¼ m2

P

P
1=m2

eff ) than the
one from Eq. (13) (bP ¼ m2

P=m
2
eff ). The difference between

the results using both equations should be accounted for by
an extra source of systematic error.
The nice agreement between all the different determi-

nations of aHLBL;PSμ collected in Table III is quite reassuring.
We should take the result using the P0

1ðQ2
1; Q

2
2Þ as our main

result and the others as a cross-check of that one. On top we
should add a systematic error of about 5% yielding our final
number as

aHLBL;PSμ ¼ 9.0ð6Þð4Þ × 10−10; (15)

where the first error comes from the input errors and the
second from the systematic error.
This result, which for the first time contains a systematic

error, is in nice agreement with most of the recent
phenomenological calculations for such quantity [78],
but smaller than those determinations that model an off-
shell TFF [75,76,85,86], pointing towards a positive impact
of the off-shellness of the pseudoscalar in such computa-
tion. Indeed, assuming Uð3Þ and chiral symmetries
(neglecting the effect of nonzero quark masses, the η −
η0 mixing and the possible gluonic contribution to the axial
anomaly coming from the η0), one can parameterize the off-
shellness of the η and η0 in the TFF through the quark
condensate magnetic susceptibility χ as done for the π0

contribution in Refs. [82,85,86]. In such a way one can
promote the TFF in Eqs. (11) and (12) to their full off-shell

counterparts in Ref. [82]. One would obtain, then,
1.51ð23Þ × 10−10 and 1.91ð35Þ × 10−10 for aHLBL;ηðη

0Þ
μ ,

respectively. The error is a quadratic combination of the
error report in Table III together with the error coming from
the magnetic susceptibility χ (which leads to the errors
0.17 × 10−10 and 0.33 × 10−10 for the η and the η0 con-
tributions, respectively). While on-shell and off-shell TFFs
yield compatible result for the η case, the same is not true
for the η0 and the compilation of pseudoscalar contributions
in this scenario would yield aHLBL;PSμ ¼ 9.9ð7Þð5Þ × 10−10,
one standard deviation larger than the result in Eq. (15).
This exercise provides an insight on the role of off-shell
effects in the pseudoscalar-exchange contribution although
one should not take them as definitive since, for example,
Uð3Þ breaking effects (i.e., the difference between mη and
mη0 , its mixing or its gluonic content) may be important.
Reference [11] found, however, opposite conclusions, with
a negative impact of the off-shellness of the pseudoscalars
within the nonlocal quark model.
A different approach to this problem may come from the

study of the light- and strange-quark contributions to the
HLBL instead of the ones from the π0; η and η0. Recent
progress from the lattice collaborations to simulate the two-
photon partial decay width from both light- and strange-
quark components suggest the viability of such an
approach.8 These results together with its corresponding
form factors with one and two virtual photons can be used
to cross-check our results and assumptions.
Reference [78] provides a compilation of the different

contributions to the HLBL. They report a final value
aHLBLμ ¼ ð10:5� 2.6Þ × 10−10. Updating the pseudoscalar
piece of the HLBL considered in Ref. [78] using Eq. (15),
we obtain aHLBLμ ¼ ð8.1� 2.4Þ × 10−10. This shift implies
that the difference Δaμ ¼ aexpμ − aSMμ grows from 3.6
standard deviations [85] to 3.9 standard deviations, show-
ing the role of precise information on TFF to constrain the
HLBL piece of the muon ðg − 2Þ.
Primakoff determination of the two-photon partial decay

width of the η meson is not included in the averaged fit on
the Particle Data Tables [36]. If one would use that result
[i.e., Γη→γγ ¼ 476ð63Þ eV] instead, the result for the aHLBL;ημ

would be reduced by 7%. We remark, then, the need of a
precise measurement for such partial decays in order to
better constraint the impact of the TFF in the HLBL. We
notice that such determination with precision of about 1%
would imply an error on HLBL of the same order.

V. CONCLUSIONS

The experimental data on the η and η0 transition form
factors in the spacelike region have been analysed at low
and intermediate energies in a model-independent way
through the use of rational approximants, thus extending

8We thank C. Urbach for discussions and correspondence
along these lines.
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and complementing the previous work done for the π0 case.
The method of Padé approximants is simple and systematic
and provides an estimate of the systematic errors. The slope
and curvature parameters of the form factors as well as their
values at zero and infinity have been extracted. The slopes
of both pseudoscalar mesons are well within phenomeno-
logical determinations although these, based on the VMD
approach, do not include a systematic error associated to
the model dependence. The curvatures are presented for the
first time. At the current level of accuracy, they follow in
both cases the VMD prescription cP ¼ b2P. However, VMD
should be taken only as the simplest model-dependent
approximation to a more general model-independent
rational parametrization, which at present is still compatible
with data. The normalization of the form factors, when this
information is not used as input data, is seen to be
consistent with measurements, even though less precise.
The incorporation of these measurements into the fits
reduces drastically the uncertainty on the η low-energy
parameters, besides reducing the systematic errors, not the
case of the η0, where they are not affected by this inclusion.
The asymptotic behavior of the form factors is in nice
agreement with the BABAR reported values at
q2 ¼ 112 GeV2, better in the case of the η0 than the η.
The influence of our results on the mixing parameters of the
η-η0 system has been also discussed. The values obtained in
the quark-flavor basis are in accord with existing phenom-
enological analyses only in the case of employing the
prediction of the asymptotic value of the η transition form
factor in the extraction of those parameters. Finally, making
use of the Padé techniques and the large-Nc results obtained
in Ref. [73], we have shown the impact of our inves-
tigations in the determination of the pseudoscalar-exchange
contributions to the hadronic light-by-light scattering part
of the anomalous magnetic moment aμ.
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APPENDIX A: PARAMETERIZATION OF
OUR BEST PADÉ APPROXIMANT FITS

In this Appendix we provide the parameterizations of our
best PL

1 ðQ2Þ fits for both the η- and η0-TFFs. Defining
PL
1 ðQ2Þ as

PL
1 ðQ2Þ ¼ TLðQ2Þ

R1ðQ2Þ ¼
t1Q2 þ t2Q4 þ � � � tLðQ2ÞL

1þ r1Q2
; (A1)

the corresponding fitted coefficients9 for both η- and η0-TFF
are collected in Table IV. L ¼ 5 for the η case and L ¼ 6 for
the η0.

APPENDIX B: TEST OF CONVERGENCE OF
THE PA SEQUENCE WITH A MODEL

To test how fast the convergence of our PA sequence is,
we consider a Regge model for a pseudoscalar TFF (see, for
example, [101–103] where similar models are used to study
the π0-TFF). For ease of manipulation, we construct the
model in the large-Nc limit (Nc been the number of colors).
In this limit, the vacuum sector of QCD becomes a theory
of infinitely many noninteracting mesons and the propa-
gators of the hadronic amplitudes are saturated by infinitely
many sharp meson states. In the particular case below, the
pseudoscalar couples first to a pair of vector mesons Vρ;ω;ϕ
which then transform into photons. Thus, we have

FPγ�γ� ðq21; q22Þ ¼
X

V¼Vρ;Vω;Vϕ

FVðq21ÞFVðq22ÞGPVVðq21; q22Þ
ðq21 −M2

VÞðq22 −M2
VÞ

;

(B1)

where P ¼ η; η0, FV is the current-vector meson coupling
and GPVV is the coupling of two vector mesons to the
pseudoscalar η or η0 [39]. The sum in Eq. (B1) should run,
for each vector channel (ρ, ω or ϕ), over all its radial
excitations. The dependence on the resonance excitation
number n is the following:

TABLE IV. Fitted coefficients for our best PL
1 ðQ2Þ for the

η- and η0-TFF.

η-TFF η0-TFF

t1 0.274 0.343
t2 0.011 0.007
t3 0.789 × 10−3 0.986 × 10−3
t4 0.229 × 10−4 0.744 × 10−4
t5 0.169 × 10−6 0.252 × 10−5
t6 0.290 × 10−7
r1 1.968 1.442

9For full precision of the coefficients together with the
correlation matrix, contact the corresponding author.
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M2
Vρ

¼ M2
Vω

¼ 1

a
M2

Vϕ
¼ M2 þ nΛ2;

FVρ
¼ NcVω ¼ − Ncffiffiffi

2
p Vϕ ≡ F

with a ¼ 1.3 [4,39]. The combination of sums in Eq. (B1)
can be expressed in terms of the Digamma function
ψðzÞ ¼ d

dz log ΓðzÞ:

FPγ�γ�ðq21; q22Þ ¼ FPγ�γ� ðQ2; AÞ

¼ c
NcAQ2

�
ψ

�
M2

Λ2
þQ2ð1þ AÞ

2Λ2

�

− ψ

�
M2

Λ2
þQ2ð1 − AÞ

2Λ2

��
; (B2)

where Q2 ¼ −ðq21 þ q22Þ, A ¼ q2
1
−q2

2

q2
1
þq2

2

and c is a constant
[101,102].
To reassemble the physical case we consider Nc ¼ 3,

Λ2 ¼ 1.3 GeV2 (as suggested by the recent light non-
strange qq̄ meson spectrum analysis [40] using the half-
width rule [41]), A ¼ 1=2, M2 ¼ λ × 0.64 GeV2 (λ ¼ 0.95
for the η TFF and λ ¼ 1.05 for the η0 TFF using the standard
VMD scheme [39]) and the constant c in such a way that
the anomaly FPγγð0; 0Þ ¼ 1=ð4π2FPÞ is recovered. In the
following, we consider only the example for the η TFF. The
η0 case is very similar and does not gives new information.
Once the model is defined, by generating a set of

pseudodata we can test how fast the PA sequence converge
to Q2FPγ�γðQ2Þ. Considering 10 points in the region
0.6 < Q2 < 2.2 GeV2, 15 points in the region 2.7 < Q2 <
7.6 GeV2, and 10 more points in the region 8.9 <
Q2 < 34 GeV2, we are able to resemble the physical
situation. We fit these pseudodata with a PL

1 ðQ2Þ sequence
and we collect the LEPs obtained with them (going up to
L ¼ 7) in Table V.
The last column in Table V shows the LEPs calculated

from the model. Comparing each entry in this table with the
corresponding value from the last column we can clearly
see a pattern of convergence. For example, with a P4

1ðQ2Þ
the slope and the curvature are determined with 6% and
19% of error, respectively. With a P6

1ðQ2Þ, such errors
reduce to 3% and 10%, respectively. A similar study can be
done with the PN

NðQ2Þ sequence. In this case, with the
P1
1ðQ2Þ, slope and curvature are determined with 15% and

50% of error, respectively. With the P2
2ðQ2Þ the errors

reduce drastically to 0.5% and 2%, respectively. Since the

uncertainty of the LEPs determination with the P1
1ðQ2Þ is

much larger than with the P2
2ðQ2Þ, the P1

1ðQ2Þ is never used
in this work. Moreover, the errors for the LEPs from the
P2
2ðQ2Þ are even smaller than those from the P5

1ðQ2Þ,
allowing a comparison among them. Since our pseudodata
have no errors, these determinations give us an idea of the
genuine error done due to the fact that the PA sequence is
finite, independently of the statistical errors in the data
points. We call such a kind of error a systematic error. Such
errors depend also on the amount of data points. Including
more data points, especially in the low-energy region,
diminishes all the systematic errors. This exercise is model
dependent. In Ref. [25] different models were analyzed
with the purpose of obtaining a conservative systematic
error for each LEPs at a given L, ascribing as a final
systematic error a value around 5% and 20% for slope and
curvature, respectively, for a P5

1ðQ2Þ. These are the results
used in the present work.
Equations (B1) and (B2) use the large-Nc and chiral

limits and thus have an analytic structure in the complex
momentum plane which consists of an infinity of isolated
poles but no branch cut; i.e., they become meromorphic
functions. As such, they have a well-defined series expan-
sion in powers of momentum around the origin with a finite
radius of convergence given by the first resonance mass. It
is well known [97] and largely explored in the context of
large Nc [43,44,96] that the convergence of any near
diagonal PA sequence to the original function for any
finite momentum over the whole complex plane (except
perhaps in a zero-area set) is guaranteed.

TABLE V. Pattern of convergence for a PL
1 ðQ2Þ sequence up to L ¼ 6 for the value Fηγγð0; 0Þ and the first two derivatives bη and cη.

The last column shows the exact results obtained with the model in Eq. (B2).

P1
1ðQ2Þ P2

1ðQ2Þ P3
1ðQ2Þ P4

1ðQ2Þ P5
1ðQ2Þ P6

1ðQ2Þ P7
1ðQ2Þ Fηγ�γðQ2; 0Þ

Fηγγð0; 0Þ 0.278 0.276 0.276 0.276 0.275 0.275 0.275 0.275
bη 0.492 0.471 0.458 0.450 0.442 0.437 0.434 0.426
cη 0.242 0.220 0.205 0.196 0.188 0.182 0.178 0.166
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FIG. 6 (color online). Relative error for the first and second
elements of the PN

Nþ1ðQ2Þ sequence compared to the TFF
function Eq. (B2) (blue and red dashed lines, respectively).
The green dot-dashed line represents the relative error between
the first and the second element on the approximant sequence.
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By expanding Eq. (B2) one obtains the LEPs that are used
to build up the PN

Nþ1ðq21; q22Þ sequence. Each element of this
sequence approximates better the low-energy region than
the intermediate or large one, although the larger the
sequence, the larger the region well approximated.
Comparing the P0

1ðq21; q22Þ and the P1
2ðq21; q22Þ with

FPγ�γ�ðq21; q22Þ from Eq. (B2) one gets an idea of that q2-
dependent systematic error. We show in Fig. 6 the relative
error for both P0

1ðq21; q22Þ and P1
2ðq21; q22Þ compared to

Fηγ�γ� ðq21; q22Þ (blue and red dashed lines) but also the
relative error between P0

1ðq21; q22Þ and P1
2ðq21; q22Þ (green dot-

dashed line). We remark the similarity between the relative
error of the P0

1ðq21; q22Þ and the one between P0
1ðq21; q22Þ and

P1
2ðq21; q22Þ. This simple exercise suggests to use such

difference to estimate the systematic error done with
the P0

1ðq21; q22Þ.
In such a way, we define an error function ϵðQ2

1; Q
2
2Þ as

FPγ�γ�ðQ2
1; Q

2
2Þ ¼ P0

1ðQ2
1; Q

2
2Þð1þ ϵðQ2

1; Q
2
2ÞÞ; (B3)

with P0
1ðQ2

1; Q
2
2Þ given in Eq. (11) and ϵðQ2

1; Q
2
2Þ emulating

the difference between P0
1ðq21; q22Þ and P1

2ðq21; q22Þ. As
shown in Fig. 6, the error increases with the energy
reaching almost 10% of relative error for energies around
2 GeV, the region which dominates the aHLBLμ . The error
function can be naively parameterized as

ϵðQ2
1; Q

2
2ÞÞ ¼

�
1þQ2

1

20

��
1þQ2

2

20

�
: (B4)

Computing the angular integrals accounting for aHLBLμ

with Eq. (11) or Eq. (B3) yields a difference around 3% for
the η case and around 5% for the η0 (larger due to the larger
normalization of the TFF). We suggested in the main text to
ascribe 5% of systematic error for both η and η0 TFFs
differences, which should account for any possible model-
dependent extraction of such error.
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