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We study transition form factors for decays of D mesons. That is, we consider matrix elements of
the weak left-handed quark current for the transitions D → P and D → V, where P and, V are light
pseudoscalar or vector mesons, respectively. Our motivation to perform the present study of these form
factors is future calculations of nonleptonic decay amplitudes. We consider the transition form factors
within a class of chiral quark models. Especially, we study how the large energy effective theory limit
works for D-meson decays. In this paper, we extend previous work on the case B → π to the case
D → P ¼ π, K. Further, we extend our previous model based on the large energy effective theory to the
entirely new case D → V ¼ ρ; K�;… To determine some of the parameters in our model, we use existing
data and results based on some other methods like lattice calculations, light-cone sum rules, and heavy-light
chiral perturbation theory. We also obtain some new predictions for relations between form factors.
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I. INTRODUCTION

In the present paper, we study transition form factors
of D-meson decays, i.e., the D → P ¼ π; K;… and
D → V ¼ ρ; K�;… transition form factors within extended
chiral quark models. Knowledge of the semileptonic form
factors is, of course, necessary to calculate factorizable
contributions to the nonleptonic decays of mesons. Further,
knowledge about these form factors might determine or at
least restrict some parameters of our models and thereby
indirectly be of importance for our (model dependent)
calculations for nonleptonic decays. We are, of course,
aware of the technical challenges when calculating non-
leptonic decays of D mesons [1], and we will come back to
this in a future publication.
The D → P and D → V transition form factors have

been calculated by various methods. These have their
strength in different regions of the momentum transfer q
squared, from q2 near zero for light-cone sum rules (LCSR)
[2–7] to q2 ¼ q2max for the heavy-light chiral perturbation
theory (HLχPT) [8]. For earlier work, see, for instance,
Refs. [9,10]. In the region q2 → 0 where the momentum of
the outgoing meson is high, one might study form factors
within the large energy effective theory (LEET), invented in
Ref. [11] and further elaborated in Ref. [12]. This theory
was later developed into the soft collinear effective theory
(SCET) [13].
In the region of large momentum transfer (q2 → q2max),

lattice QCD has been used [14–17]. Form factors have been
calculated [8,18–20] within HLχPT, which is based on the
heavy quark effective theory (HQEFT). Calculations within
HLχPT have also been supplemented [21] by calculations
within the heavy-light chiral quark model (HLχQM)
[21–25]. Within the heavy quark symmetry, there are
corrections of the order Oð1=mcÞ, which will be larger
in the D sector than in the B sector. In any case, the form

factors are influenced by nearby meson poles. Heavy
(H ¼ B, D) to light (P ¼ π, K, η) transitions have also
been treated in a mesonic picture [26] and in relativistic
quark models [27–29].
Our intention is to find how well chiral quark models

describe the form factors. Namely, in the next step, we want
to calculate nonfactorizable contributions to nonleptonic
decays of D mesons. Then we ought to know how well the
chiral quark models work in various energy regions, and
specifically we need to know the various form factors
within the LEET. Some form factors are relatively well
known. But for some cases, we perform additional model-
dependent studies. Therefore, these models will be briefly
presented. Compared to previous work, we will, in this
paper, also include light vectors V ¼ ðρ;ω; K�Þ. The
transitions H → P and H → V are illustrated in Fig. 1.

II. DECOMPOSITION OF SEMILEPTONIC
FORM FACTORS

For an heavy pseudoscalar meson H ¼ B, D decaying
into a light pseudoscalar meson P, the vector current
JμVðH → PÞ depends on the involved momenta pH and
p. This current can be decomposed into two form factors.
There are two commonly used decompositions,

JμVðH → PÞ ¼ Fþðq2ÞðpH þ pÞμ þ F−ðq2ÞðpH − pÞμ
(1)

FIG. 1. Diagrams for H → P and H → V transitions at the
mesonic level. The vertical line denotes a virtual electroweak
boson ðW;Z; γÞ.
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and

JμVðH → PÞ ¼ F1ðq2Þ
�
ðpH þ pÞμ − ðM2

H −m2
PÞ

q2
qμ
�

þM2
H −m2

P

q2
F0ðq2Þqμ; (2)

where q ¼ pH − p is the momentum transfer and MH and
mP are the masses of the heavy and light mesons,
respectively. The relations between the form factors in
Eqs. (1) and (2) are

F1 ¼ Fþ; F0 ¼ Fþ þ q2

M2
H −m2

P
F−: (3)

The heavy to light transitions H → V, where H ¼
ðB;DÞ and V ¼ ðρ; K�;ω;ϕÞ, with mass mV , can proceed

through both vector and axial currents. These can be
decomposed into (in total) four form factors. The vector
current depends on only one form factor Vðq2Þ, and is
commonly parametrized as

JμVðH → VÞ ¼ hVðp; εÞjq̄γμQjHðpHÞi

¼ 2Vðq2Þ
MH þmV

εμνρσðε�VÞνpρðpHÞσ; (4)

where ε�V is the polarization vector for the outgoing vector
meson V. The axial current includes three form factors, A0,
A1, and A2, and is written as

JμAðH → VÞ ¼ hVðp; εÞjq̄γμγ5QjHi ¼ ðMH þmVÞ
�
ε�μV − ðε�V · qÞ

q2
qμ
�
A1ðq2Þ

−
�
ðpþ pHÞμ −M2

H −m2
V

q2
qμ
� ðε�V · qÞ
MH þmV

A2ðq2Þ þ
2mVðε�V · qÞ

q2
qμA0ðq2Þ: (5)

For the light leptons (l ¼ μ, e), the amplitudes for
D → Vlν are dominated by the form factors Vðq2Þ,
A1ðq2Þ, and A2ðq2Þ. The vector form factor Vðq2Þ is
dominated by vector resonances, while the A1ðq2Þ and
A2ðq2Þ are dominated by axial resonances, and the A0ðq2Þ
form factor is dominated by the pseudoscalar resonances.
Bećirević and Kaidalov [30] proposed a double pole

form for the Fþðq2Þ function. This includes the pole at a
heavy vector meson H� for the first pole and a term that
includes contributions for higher mass resonances in an
effective pole. The form factors, F ¼ Fþ, V, A0, etc., can
be written in the generic form

Fðq2Þ ¼ Fð0Þ
½1 − q2

m2
pole
�½1 − αq2

m2
pole
�
; (6)

where the parameter α parametrizes the contribution of the
higher mass resonances into an effective pole.

III. ASYMPTOTIC BEHAVIOR
OF FORM FACTORS

The HQET and LEET give constraints on the structure
of the form factors. From the HQET one can estimate
the behavior of the form factors in the limit of zero recoil
(see Ref. [21] and references therein):

Fþ ∼
ffiffiffiffiffiffiffiffi
MH

p
; F− ∼

1ffiffiffiffiffiffiffiffi
MH

p : (7)

The form factors in the LEET limit, with pμ
H ¼ MHvμ

and p ¼ Enμ, can be parametrized as [12]

hPjq̄γμQvjHi ¼ 2Eðζnμ þ ζ1vμÞ: (8)

The 4-vectors v, n are given by v ¼ ð1; 0⃗Þ and n ¼
ð1; 0; 0; 1Þ in the rest frame of the decaying heavy meson.
Here, the ζ should scale with energy E as [12]

ζ≡ ζðMH;EÞ ¼ C
ffiffiffiffiffiffiffiffi
MH

p
E2

; C∼ ðΛQCDÞ3=2;
ζ1
ζ
∼
1

E
:

(9)

In the limit MH → ∞ and E → ∞, the ratio ζ1=ζ → 0. An
explicit relation between ζ1 and ζ will be given later in
Sec. VI. The LEET may be used to estimate form factors at
large recoil, where the momentum carried by the electro-
weak bosons ðW;Z; γÞ is at a minimum, that is, for q2 → 0.
Using Eq. (9) for small q2, i.e., for E≃MH=2, one obtains
the behavior [31]

Fþ ∼ F0 ∼
1

M3=2
H

: (10)

We will need the following relations between the various
form factors and the quantities ζi of the LEET formalism:
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F1 ¼ Fþ ¼ ζ þ E
MH

ζ1; F− ¼ −ζ þ E
MH

ζ1: (11)

It should be noted that in Ref. [12] ζ1 is neglected because
it is suppressed by 1=E, as seen in Eq. (9) and later
in Eq. (64).
For transitions Hð0−Þ → Vð1−Þ, one obtains in the

LEET limit (MH → ∞ and E → ∞) for the vector current:

hVjq̄γμQvjHi ¼ 2iEζ⊥εμνρσvνnρðε�VÞσ: (12)

Here, the form factor ζ⊥ scales in the same way as ζ in
Eq. (9) but with a different factor C:

ζ⊥ ¼ C⊥
ffiffiffiffiffiffiffiffi
MH

p
E2

: (13)

For the axial current, the corresponding matrix element
should have the form

hVjq̄γμγ5QvjHi ¼ 2EζðaÞ⊥ ½ε�μV − ðε�V · vÞnμ�
þ 2mVζ∥ðε�V · vÞnμ: (14)

Here, the form factor ζðaÞ⊥ is equal to ζ⊥ to leading order,
and ζðaÞ⊥ and ζ∥ scale in the same manner as ζ⊥ and ζ.
We will need the relations between the various form

factors V, A0, A1, and A2 and the quantities ζi in the LEET
case [12],

V¼
�
1þmV

MH

�
ζ⊥; A0¼

mV

MH
ζðaÞ⊥ þ

�
1− m2

V

MHE

�
ζ∥;

A1¼
�

2E
MHþmV

�
ζðaÞ⊥ ; A2¼

�
1þmV

MH

��
ζðaÞ⊥ −mV

E
ζ∥

�
;

(15)

which should be valid in the q2 → 0 limit. These form
factors are plotted in Sec. VII.

IV. HEAVY-LIGHT CHIRAL
PERTURBATION THEORY

The HLχPT is based on the HQEFT, where, to lowest
(zero) order in 1=mQ, the 0− and the 1− heavy mesons are
degenerate and described by a field Hv,

Hv ¼ PþðvÞðγ · P� − iγ5P5Þ; (16)

where PþðvÞ ¼ ð1þ γ · vÞ=2 is a projection operator and v
is the velocity of the heavy quark. Further, P�

μ is the 1−
field, and P5 is the 0− part of the heavy meson field. These
mesonic fields enter the Lagrangian of the HLχPT,

LHLχPT ¼ −TrðH̄vivμ∂μHvÞ þ TrðH̄v
aHb

vvμV
μ
baÞ

− gATrðH̄v
aHb

vγμγ5A
μ
baÞ; (17)

where a, b are SUð3Þ flavor indices and gA ¼ 0.59 is the
axial coupling. Further, Vμ and Aμ are vector and axial
vector fields, for pseudoscalar mesons given by

Vμ ≡ i
2
ðξ†∂μξþ ξ∂μξ

†Þ; Aμ ≡− i
2
ðξ†∂μξ − ξ∂μξ

†Þ;
(18)

where

ξ ¼ expfiΠ=fg;

Π ¼

0
BB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ηffiffi
6

p

1
CCA; (19)

where η≡ η8. To calculate the form factors for the η and η0,
we use the η8, η0 basis,

�
η
η0
�

¼
�
cos θ − sin θ
sin θ cos θ

��
η8
η1

�
: (20)

Here, we use the value of θ ¼ 13:7° from Ref. [32].
Based on the symmetry of the HQEFT, the bosonized

current for decay of a system with one heavy quark and one
light quark (Qvq̄) forming Hv is [8,33]

q̄LγμQv ⟶
αH
2

Tr½ξ†γμLHv�; (21)

whereQv is a reduced heavy quark field that is described in
Sec. V, v is its velocity, and Hv is the corresponding heavy
meson field. This bosonized current is compared with the
matrix elements defining the meson decay constants fH
(whereH ¼ B,D). These currents are the same when QCD
corrections below mQ are neglected (see Refs. [25,34]).
The H → P form factors obtained from HLχPT are
illustrated in Fig. 2. Using the double pole parametrization,
form factors were calculated in Ref. [19]:

Fþðq2maxÞ ¼
αH

2
ffiffiffiffiffiffiffiffi
MH

p
f
gA

MH

mP þ ΔH�

þ ~α

2
ffiffiffiffiffiffiffiffi
MH

p
f
~g

MH

mP þ ΔH0� : (22)

Here, αH is defined,

αH ¼ fH
ffiffiffiffiffiffiffiffi
MH

p
: (23)

The term involving ~α and ~g is the contribution from the
higher resonances. (In Ref. [21], the higher resonance term
was not included. Instead, some nonpole terms were
included). One can also include light vectors with an
effective coupling to heavy mesons, given by Ref. [20],
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LHHV ¼ i
gVffiffiffi
2

p λTrðH̄vHvσμνF
μν
V Þ; (24)

where the coupling gV ≃ 5.9 and

Fμν
V ¼ ∂μVν − ∂νVμ þ ½Vμ; Vν�: (25)

This term will give a dominating pole term in the D → V
form factor similar to the one for D → P above. From
Eq. (24), one obtains [20]

Vðq2maxÞ ¼ − αH
2

ffiffiffiffiffiffiffiffi
MH

p
f
gVλffiffiffi
2

p MH

mV þ ΔH�

þ ~α

2
ffiffiffiffiffiffiffiffi
MH

p
f
~λ

MH

mV þ ΔH0� ; (26)

where the second term is coming from higher resonances. It
might also be calculated in the HLχQM following closely
the calculation for D� → Dγ [35]. The coupling ~λ is a
corresponding term for higher resonances.

V. VARIOUS CHIRAL QUARK MODELS

Calculating the matrix elements of quark currents, we
have used chiral quark models. Within such models, one
splits the various quark fields into different categories
according to their relevant energy and mass scale.
In Sec. VA, we consider the ordinary soft quark fields q

and the related soft flavor rotated fields χ (representing
soft constituent light quarks) at energies ranging from the
constituent quark mass m ∼ 220 MeV up to the chiral
symmetry breaking scale Λχ of order 1 GeV. These are the
quarks of the chiral quark model (χQM) [25,36–39]. where
light quarks couple to light mesons.
In Sec. V B, we also indicate how the quark fields chiral

quark model of Sec. V A might be connected to light
vectors V ¼ ρ; K�;…, in a model we call VχQM to be
described in Sec. V B. In Sec. V C, we describe the
HLχQM [21–25] based on the HQEFT [34]. Here, the
motion of the heavy quark with mass mQ (¼ mb or mc)
with momentum pQ is split in the leading termmQv, where
v is the velocity of the heavy quark, and the motion for the
reduced quark field Qv is corresponding to momenta k of
order a few hundred MeV such that pQ ¼ mQvþ k. The
reduced heavy quark field Qv (also called hv in the

literature) is together with a quark field of χQM coupled
to heavy meson fields Hv.
In Sec. V D we describe the large energy chiral quark

model (LEχQM) based on the LEET [11,12] and invented
in Ref. [40], and later used in Ref. [41]. Here, the motion of
the energetic light quark with energy E and 4-momentum
pq ¼ Enþ k (where n is a lightlike vector) is split off,
and the reduced energetic quark fields qn have momenta k
analogous to the reduced heavy quark fields. Here, the
reduced energetic quark fields qn combine with the
ordinary χQM to make energetic light pseudoscalar meson
fieldsMn. In the second part of Sec. V D, we describe how
this LEχQM can be extended to light energetic vectors Vμ

n.
This is an invention that is new in this paper.

A. χQM for low-energy light quarks

For the pure light sector, the chiral quark model gives the
interactions between light quarks and light pseudoscalar
mesons. The χQM Lagrangian can be written as

LχQM ¼ q̄ðiγμDμ −MqÞq −mðq̄RΣ†qL þ q̄LΣqRÞ; (27)

where q is the light quark flavor triplet, Mq is the current
mass matrix, and Σ ¼ ξ · ξ contains the light pseudoscalar
mesons. (The current mass term Mq will often be
neglected). The covariant derivative Dμ contains soft
gluons, which might form gluon condensates within the
model. The quantitym is interpreted as the constituent light
quark mass appearing after the spontaneous symmetry
breaking SUð3ÞL × SUð3ÞR → SUð3ÞV . The Lagrangian
(27) can be transformed into a useful version in terms of
the flavor-rotated fields χL;R:

χL ¼ ξ†qL; χR ¼ ξqR: (28)

The Lagrangian in Eq. (27) is then rewritten in the form

LχQM ¼ χ̄½γ · ðiDþ VÞ þ γ ·Aγ5 −m�χ − χ̄ ~Mq χ; (29)

where the fields V and A are given in Eq. (18) and where
the term including the current mass matrix Mq is given by

~Mq ¼ ~MV
q þ ~MA

qγ5; (30)

where

~MV
q ¼ 1

2
ðξMqξþ ξ†M†

qξ†Þ and

~MA
q ¼ 1

2
ðξMqξ − ξ†M†

qξ†Þ: (31)

This term has to be taken into account when calculating
SUð3Þ-breaking effects.

FIG. 2. Contributions to Fþ within the HLχPT. The single pole
term is shown on the right.
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B. χQM including light vector mesons (VχQM)

The VχQM adds light vector mesons to the χQM.
The vector meson fields Vμ are given as Π in Eq. (19)
with pseudoscalars P ¼ ðπ; K; ηÞ replaced by vectors
V ¼ ðρ;ω; K�;ϕÞ:

Vμ ¼

0
BB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 −ϕ

1
CCA: (32)

These fields are coupled to the light quark fields by the
interaction Lagrangian,

LIV ¼ hV χ̄γμVμχ: (33)

The coupling constant hV can be determined from the
left-handed current for vac → V, and we find the SUð3Þ
octet current

Jaμðvac → VÞ ¼ 1

2
mVfVTr½ΛaVμ�; (34)

where the quantity Λa is given by Λa ¼ ξλaξ†, and λa is the
relevant SUð3Þ flavor matrix. For the currents, we obtain

mVfV ¼ 1

2
hV

�
− hq̄qi

m
þ f2π − 1

8m2

�
αs
π
G2

��
; (35)

which can be used to determine hV . We find, by using
fρ ≃ 216 MeV, that hV ≃ 7 for standard values of m,
hq̄qi, and hαsπ G2i [21,25,35].

C. HLχQM

The HLχQM adds heavy meson and heavy quark fields
to the χQM. The (reduced) heavy quark field Qv is related
to the full-field QðxÞ as

QvðxÞ ¼ Pþe−imQv·xQðxÞ; (36)

where P� are projection operators P� ¼ ð1� γ · vÞ=2. The
heavy quark propagator (corresponding the reduced field
Qv) is SvðpÞ ¼ Pþ=ðv · pÞ. The Lagrangian for the
reduced heavy quark fields is

LHQEFT ¼ Q̄viv ·DQv þOðm−1
Q Þ; (37)

where Dμ is the covariant derivative containing the gluon
fields.
To couple the heavy quarks to light pseudoscalar

mesons, there are additional meson-quark couplings within
the HLχQM [21],

Lint ¼ −GH½χ̄aH̄a
vQv þ Q̄vHa

vχa�; (38)

where a is an SUð3Þ flavor index and Qv is the reduced
heavy quark field in Eq. (36). The quark-meson coupling
GH is determined within the HLχQM to be [21]

G2
H ¼ 2m

f2π
ρ; (39)

where ρ is a hadronic quantity of order 1 [21].
The VχQM can be combined with the HLχQM to give a

reasonable description of the weak current for D-meson
decays D → V [20]. A coupling of Vμ to heavy mesons
might be given by Eq. (17) with Vμ → hVVμ or by the
tensor coupling in Eq. (24). In Ref. [20] the factor λ is
found to be λ ¼ −0.53 GeV−1. It might also be calculated
in the HLχQM following closely the calculation for
D� → Dγ [35]. Using the results of Ref. [35], we obtain

λ ¼ −
ffiffiffi
2

p
hVβ

4gV
; (40)

where β is defined in Ref. [35]. The value of β obtained
there gives λ≃−0.4 GeV−1, in agreement with the value
λ≃−0.41 GeV−1 in Ref. [8].
The current JμðH → VÞ, obtained from a quark loop

diagram such as in Fig. 4, has the form

JμtotðHv → VÞ ¼ Trfξ†γμLHv½Aγ · V þ Bv · V�g; (41)

where A and B are hadronic parameters containing the
couplings GH and hV , gluon condensates, and the con-
stituent quark mass. This expression is analogous to
Eq. (28) in Ref. [21] for the case H → P. However, the
D → V form factor will be dominated by the pole term
shown on the right in Fig. 3, and we will not go further into
the detailed structure of the nonleading terms A and B.

D. LEχQM

The LEχQM adds high-energy light mesons and quarks
to the χQM. Unfortunately, the combination of the standard
version of the LEET [11,12] with the χQM will lead to
infrared-divergent loop integrals for n2 ¼ 0. Therefore, the
following formalism is modified and instead of n2 ¼ 0:
we use n2 ¼ δ2, with δ ¼ ν=E, where ν ∼ ΛQCD, such that
δ ≪ 1. In the following, we derive a modified LEET in
which we keep δ ≠ 0 with δ ≪ 1. We call this construction
LEETδ [40] and define the almost lightlike vectors

FIG. 3. Contributions to H → V form factors within the
HLχPT. The single pole term is shown on the right.
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n ¼ ð1; 0; 0;þηÞ; ~n ¼ ð1; 0; 0;−ηÞ; (42)

where η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
. This gives

nμ þ ~nμ ¼ 2vμ; n2 ¼ ~n2 ¼ δ2;

v · n ¼ v · ~n ¼ 1; n · ~n ¼ 2 − δ2: (43)

For the LEET, the reduced quark field is defined by

qnðxÞ ¼ e−iEn·xPþqðxÞ; (44)

corresponding to Eq. (36) and where the projection
operators are

Pþ ¼ 1

N2
γ · nðγ · ~nþ δÞ; P− ¼ 1

N2
ðγ · ~n − δÞγ · n;

(45)

where N2 ¼ n · ~n. The LEETδ Lagrangian corresponding
to the HQEFT Lagrangian in Eq. (37) is [40]

LLEETδ ¼ q̄n

�
γ · ~nþ δ

N

�
ðin ·DÞqn þOðE−1Þ: (46)

For δ → 0, this is the first part of the SCET Lagrangian.
The quark propagator is

SnðkÞ ¼
γ · n

Nðn · kÞ ; (47)

which reduces to the LEET propagator in the limit δ → 0
(which also means N → 2). For further details, we refer
to Ref. [40].
The term OðE−1Þ in Eq. (46) contains a term originating

from the current mass mq for the light energetic quark(s).
We have found that a further development beyond Ref. [40]
gives the SUð3Þ-breaking current mass term mq:

ΔLLEETδðmqÞ ¼
mq

E
q̄n

�
i ~n ·D −mq

2
γ · ~n

�
qn: (48)

For hard light quarks and chiral quarks coupling to a hard
light meson multiplet field M, the χQM and HLχQM were
extended [40], and it was assumed that the energetic light
mesons couple to light quarks with a derivative coupling to
an axial current,

Lintq ∼ q̄γμγ5ði∂μMÞq: (49)

The outgoing light energetic mesons are described by an
octet 3 × 3matrix fieldM ¼ exp ðþiEn · xÞMn, whereMn
has the same form as Π in Eq. (19):

Mn ¼

0
BBB@

π0nffiffi
2

p þ ηnffiffi
6

p πþn Kþ
n

π−n − π0nffiffi
2

p þ ηnffiffi
6

p K0
n

K−
n K̄0

n − 2ηnffiffi
6

p

1
CCCA; (50)

where π0n, πþn , Kþ
n , etc., are the fields for the hard mesons.

Furthermore, qn is related to Mn in the same manner as Qv
is related to Hv.
Combining the interaction (49) with the rotated soft

quark fields in Eq. (28), and using ∂μ → iEnμ, yields the
LEχQM interaction Lagrangian [40]

LLEχQM ¼ GAEχ̄ðγ · nÞZnqn þ H:c: (51)

Here, qn is the reduced field corresponding to an energetic
light quark having a momentum fraction close to 1 [see
Eq. (46)], and χ represents a soft quark [see Eq. (28)].
Further, GA is an unknown coupling to be determined by
relating a current calculation to measured data. Further,

Zn ¼ ξMRR − ξ†MLL: (52)

Here, ML and MR are both equal to Mn, but they have
formally different transformation properties. This is in
analogy with chiral perturbation theory, in which the quark
mass matrices Mq and its Hermitian conjugate M†

q are
equal but have formally different transformation properties
under SUð3ÞL × SUð3ÞR). Equation (51) for the LEχQM is
the analog of Eq. (38) in the HLχQM case.
Calculating the matrix elements of quark currents for the

Hv → Mn transition in the LEχQM, we obtain an expres-
sion for the form factor ζ in terms of model parameters [40],

ζ ¼ 1

4
m2GHGAF

ffiffiffiffiffiffiffiffi
MH

E

r
; (53)

where the quantity F coming from loop integration in Fig. 4
(with soft gluons forming gluon condensates added) is [40]

FIG. 4. Current matrix element in the LEχQM. The double
dashed line is the (external) heavy meson Hv, and the dashed line
with two arrows is the external energetic light meson. The
internal lines are double for heavy quark Qv, single with two
arrows for the energetic light quark qn, and with one arrow for the
soft light quark χ.
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F ¼ Nc

16π
þ 3f2π
8m2ρ

ð1 − gAÞ − ð24 − 7πÞ
768m4

�
αs
π
G2

�
; (54)

which is numerically F≃ 0.08. In Fig. 5, the quantity F is
plotted as function of the quark condensate for typical
values of the constituent quark mass. We obtain the
expression for the coupling constant

GA ¼ 4ζ

m2GHF

ffiffiffiffiffiffiffiffi
E
MH

s
; (55)

where ζ is numerically known [2,7,42] to be ≃0.3 for the
transition B → π but is larger, ζ ≃ 0.6 for D → π [6]. We
can use the data for ζ in the D → π and D → K transitions
to determine the value of the coupling GA. We then use this
to calculate the ζ form factors for the transitions D → η
and D → η0.
Within our model, the constituent light quark mass m is

the analog of ΛQCD. To see the behavior of GA in terms of
the energy E, we therefore write C in Eq. (9) as C≡ ĉm

3
2

and obtain

GA ¼
�

4ĉfπ
mF

ffiffiffiffiffi
2ρ

p
�

1

E
3
2

; (56)

which explicitly displays the behaviorGA ∼ E−3=2. In terms
of the number Nc of colors, fπ ∼

ffiffiffiffiffiffi
Nc

p
and F ∼ Nc, which

gives the behavior GA ∼ 1=
ffiffiffiffiffiffi
Nc

p
, i.e., the same behavior as

for the coupling GH in Eq. (38). The coupling GA is an
auxiliary quantity that can be used in place of the quantity ζ.
In this paper, we will extend the LEχQM further to

include energetic vector mesons, Vμ
n in analogy with Mn in

Eq. (50). In this model, we will use a derivative coupling, as
was used for the coupling of light energetic mesons to
quarks through an axial vector field in Eq. (49). This is in

analogy with light mesons coupling to quarks in Eq. (29).
We will therefore begin from the ansatz with the tensor
field Fμν

V in Eq. (25) [49]:

LLEχV ∼ χ̄σ · FVχ: (57)

It was found in Ref. [40] that derivative coupling gave the
best description of the H → P high-energy current. Using
V → exp ðiEn · xÞVn, we obtain the interaction (remember
that ∂μVμ ¼ 0 implies n · Vn ¼ 0)

LLEχV ¼ EGV χ̄ðγ · nγ · ZnÞqn þ H:c:; (58)

where

Zμ
n ¼ Vμ

nðξRþ ξ†LÞ (59)

and

Vμ
n ¼

0
BBB@

ρ0nffiffi
2

p þ ωnffiffi
2

p ρþn K�þ
n

ρ−n − ρ0nffiffi
2

p þ ωnffiffi
2

p K�0
n

K�−
n K̄�0

n −Φn

1
CCCA.

μ

(60)

Here, ρ0n, ρþn , K�þ
n , etc., are the (reduced) vector meson

fields corresponding to energetic light vector mesons. The
coupling GV is determined by the experimental value for
the form factors for B → ρ (for B decays) or theD → ρ (for
D decays) at q2 ¼ 0, obtained by considering experiment
and lattice calculations when available or LCSR
calculations.
In our case, where no extra soft pions are going out,

we set ξ → 1, and for the momentum space, we set
Vμ
n → kM

ffiffiffiffi
E

p ðε�VÞμ. The isospin factor is kM ¼ 1=
ffiffiffi
2

p
for

ρ0 and kM ¼ 1 for charged ρ’s. For the D meson with
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FIG. 5. F and F∥ as a function of hαsπ G2i1=4 for values of the constituent quark mass from m ¼ 0.210 to m ¼ 0.230 GeV.
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spin parity 0−, we have HðþÞ
v → PþðvÞð−iγ5Þ ffiffiffiffiffiffiffiffi

MH
p

.
Then, the involved traces are calculated, and we obtain
JμtotðHv → VnÞ for the Hv → Vn transition.
From the current calculation, we obtain a relation

between the coupling GV and the form factor ζ⊥. The
formula relating ζ⊥ and GV will be similar to that relating ζ
and GA,

ζ⊥ ¼ 1

4
m2GHGVF

ffiffiffiffiffiffiffiffi
MH

E

r
; (61)

that is obtained by the replacing ζ → ζ⊥ and GA → GV in
Eqs. (55) and (56). The loop integration is the same for both
cases; therefore, the loop factor will also be F in this case as
in Ref. [40]. Here, ζ⊥ is numerically known for B → ρ,
where it is ζ⊥ ≃ 0.3 [3,7], and for D → ρ, it is ζ⊥ ≃ 0.59
from CLEO data [46].

VI. RESULTS FROM THE LEχQM

Within the LEχQM, and in the limit ζ1=ζ ∼ δ → 0, the
bosonized current for the Hv → Mn transition can be
written as

JμtotðHv → MnÞ ¼ −2iζ
ffiffiffiffiffiffiffiffi
E
MH

s
TrfγμLHv½γ · n�ξ†MLg: (62)

Simlarly, in the LEχQM, the bosonized current for the
vector case Hv → Vn can be written as

JμtotðHv→VnÞ

¼−2i
ffiffiffiffiffiffiffiffi
E
MH

s
Tr
�
γμLHv

�
ζ⊥γ ·n−mV

m
ζ∥

�
σ ·Fnξ

†½γ ·n�
	
;

(63)
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FIG. 6 (color online). D → P form factors Fþ comparing frameworks used: the HLχPT is from Ref. [19], LCSR 2000 is from Ref. [4],
LCSR 2009 is from Ref. [43], the LEET is from Ref. [12], the LFQM from Ref. [44], and the “Data” are from Ref. [45].
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where the tensor Fn is given by Eq. (25) with Vn given as in
Eq. (60). Here, we assume that δ ¼ m=E ≪ 1, which
implies that ζðaÞ⊥ → ζ⊥.
We find the following new predictions within the

LEχQM:

ζ1 ¼
mF∥

EF
ζ; ζðaÞ⊥ ¼ ζ⊥ þm

E
ζ∥; ζ∥ ¼

mF∥

mVF
ζ⊥;

(64)

where

F∥ ¼
Nc

16π
þ 3f2π
8m2ρ

ð1 − gAÞ þ
f2π
2m2

l

þ 1

48m4

�
αs
π
G2

��
7π

16
− 2

�
(65)

is a loop function analogous to F in Eq. (54), which arises
from the loop integrals of the current in Eq. (63), and
plotted in Fig. 5, right. Here, the appearance of l ¼ lnð2=δÞ
is due to the infrared behavior of some of the loop integrals.
With the model parameters, we find F∥ ≃ 0.24≃ 3F.
The values for F and F∥ are obtained with the simplified

LEET propagator in Eq. (47). For the B → D case, an extra
Δ of order 20 MeV was used in the heavy quark propagator
[50]. A similar assumption (which is closer to the SCET
propagator) might be used here, leading to modified values
of F and F∥. However, as we are already considering
model-dependent predictions, we do not go into further
details here. We observe that, although ζ1=ζ ∼ m

E as it
should, the numerical suppression is not strong because
F∥ ≃ 3F, and δ ¼ m

E ≃ 0.24 is not as small for D-meson
decays as it is for B decays (where δ≃ 0.08).

So far, we have considered the SUð3Þ limitmq → 0. One
may also calculate SUð3Þ corrections from the mass
correction Lagrangian in Eq. (48), for hard outgoing s
quarks. We find that the first-order term does not contribute
within the LEχQM. The second-order term in Eq. (48)
contributes and gives terms suppressed by m2

s=ðmEÞ
compared to terms already calculated. These will therefore
be discarded in this work. For decaying Bs and Ds, there
will be first-order ms corrections from the ordinary light
sector χQM, through mass terms in Eq. (31). However,
these corrections must be considered together with meson
loops. Some of these loops might be calculated as in chiral
perturbation theory, while others are formally suppressed
and problematic to handle within our formalism. Therefore,
we do not go further into these details.

VII. PLOTTING THE FORM FACTORS

In this section, we plot transition form factors forD → P
in Fig. 6 and D → V in Figs. 7 and 8 as a function of the
squared momentum transfer q2. We have plotted the curves
from experimental data [45,46], lattice gauge calculations
[14,15], LCSRs [2–7], and the light front quark model
(LFQM) [44]. The plots do not include error bars because
these would make them difficult to read. For plots based on
the LEET, q2 ¼ 0 is the reference point that is determined
by data, and the shape is determined by a single pole.
To obtain the curves for our LEχQM for a generic form

factor Fðq2Þ ðFþ; V; AiÞ, we use data (CLEO) for D → π
and D → ρ for the Fð0Þ’s. We then combine these Fð0Þ’s
with the theoretical relations in Eqs. (11), (15), and (64) to
find the best numerical fit for the ζi’s (see Tables I and II).
Using the relations (15) and (64), we will obtain a
reasonable overall fit for the following ζ’s:

ζ≃0.6; ζ1≃0.4; ζ⊥≃0.6; ζ∥≃0.5; ζðaÞ⊥ ≃0.7:

(66)

We have then plugged these values for the ζi’s back in
Eqs. (11) and (15) to produce values Fð0Þχ for our model.
We then use the single pole assumption in Eq. (13) to
produce the curves for Fðq2Þχ. As a biproduct, we predict
the curves for other cases with no data (say with K or K� in
the final state) in the SUð3Þ limit.
For the HLχPT, the no-recoil point [q2 ¼ ðq2Þmax] is the

reference point for plots that is determined by Eqs. (22) and

TABLE I. Form factors for D → P at q2 ¼ 0. The values for
Fþð0Þ are taken from data when available and from sum rules for
D → η, η0. The values for Fþð0Þχ are determined using the
LEχQM.

Decay Fþð0Þ Fþð0Þχ ζ ζ1

D → π 0.67 0.96 0.65 0.46
D → K 0.74 1.06 0.65 0.44
D → η 0.55 0.66 0.65 0.34
D → η0 0.45 0.55 0.60 0.37

TABLE II. Form factors for D → V at q2 ¼ 0. The values for Vð0Þ and A0ð0Þ are taken from LCSRs for Ds → K� and lattice
calculations for D → ρ, K�. The fitted values for Vð0Þχ, A0ð0Þχ , A1ð0Þχ , and A2ð0Þχ are determined from the ζ’s, which are calculated
using the LEχQM. Vð0Þχ for D → ρ is the input value from CLEO data.

Decay Vð0Þ Vð0Þχ A0ð0Þ A0ð0Þχ ζ⊥ ζðaÞ⊥ ζ∥ A1ð0Þ A1ð0Þχ A2ð0Þ A2ð0Þχ
D → ρ 0.84 0.84 0.65 0.64 0.59 0.69 0.50 0.56 0.58 0.47 0.48
D → K� 0.91 0.87 0.76 0.64 0.58 0.68 0.50 0.62 0.57 0.37 0.43
Ds → K� 0.77 0.86 0.76 0.64 0.58 0.67 0.43 0.59 0.55 0.32 0.44
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(26). The plots for D → P with P ¼ π, K, η are different
because of the different masses. However, we have not
explicitly calculated SUð3Þ-breaking effects, and Eq. (66)
should be valid in the SUð3Þ limit ms → 0. This means the
plots forD → π andD → ρ are the most relevant. The other
plots are included for comparison. According to our model
[see Eq. (48)], SUð3Þ corrections due to hard s quarks (as in
D → K and D → K� transitions) should be small, while
SUð3Þ corrections due to soft s quarks (as in decays of Ds)
should be larger, as pointed out at the end of Sec. VI.

VIII. CONCLUSIONS

We have collected present information on various form
factors for the transitions D → P and D → V
(P ¼ pseudoscalar, V ¼ vector) obtained from various
methods and sources such as data, lattice gauge theory,
LCSRs, etc. From the plots, we have as far as possible
determined the values of relevant form factors at q2 ¼ 0
and then extracted values for the LEET form factors ζi.
The LEχQM gives relations between the ζi’s. We have
previously found [40] ζ1=ζ ∼m=E. Here, we have in
addition found relations between the ζ’s and have shown
that ζðaÞ⊥ → ζ⊥ for m=E → 0 as it should.
We observe that the curves for the form factor Fþ for the

case D → π show a remarkable agreement for q2 → 0 (for
the LEET, this is done by construction). This is in contrast
to the values of Vð0Þ for which the plots show a large
variation among the various methods used. This makes ζ⊥
uncertain. However, ζ⊥ is also related to A0ð0Þ such that we

obtain a reasonable fit using Eqs. (13) and (66). We observe
what we expected, namely, that the LEET and LEχQM
work best for q2 close to zero, while the HLχQM
(eventually supplemented by the HLχPM) works best close
to the no-recoil point.
The LEχQMgives a good fit to the V and A0 form factors

for the D → ρ and Ds → K� transitions. However, for the
D → K� transition, theV andA0 curves lie below the curves
for the lattice data. For theD → K� transition calculation, the
hard quark in the loop is an s quark. We did not include the
correction, which is on the order of the mass of the s quark,
ms. This is a source of small error for this transition. We
observe that the LEχQMvalues for the axial form factor A1,
being transverse to themomentum [seeEqs. (5) and (15)], do
not match well for any of the transitions.
The LEET form factors ζ and ζ⊥, together with data for

the D → π and D → ρ transitions, will determine the
coupling constants GA and GV , which may be used in
the calculation of nonfactorizable (color suppressed) non-
leptonic D-meson decays, in the same manner as has
previously been done for K → ππ [39,51], D → K0K̄0

[52], B → DD̄ [53,54], B → Dπ [40], and B → π0π0 [41].
Then nonleptonic decay amplitudes can be written in terms
of the LEET form factors ζi, both for the factorized and the
color-suppressed cases. We are, of course, aware that the
LEET expansion might have relatively large corrections
beyond the order considered here. Still, we think that our
results will be helpful for further studies of nonfactorizable
nonleptonic decay amplitudes for D mesons.
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