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The magnetic and transition magnetic moments of the ground-state baryons are computed in heavy
baryon chiral perturbation theory in the large-Nc limit, where Nc is the number of colors. SU(3) symmetry
breaking is systematically studied twofold: On the one hand, one-loop nonanalytic corrections of orders
m1=2

q and mq ln mq are included, with contributions of baryon intermediate states from both flavor octet
and flavor decuplet multiplets, assuming degeneracy between baryon states within a given flavor multiplet
but nondegeneracy between baryons of different multiplets. On the other hand, perturbative SU(3)
symmetry breaking is also analyzed by including all relevant leading-order operators that explicitly break
SU(3) at linear order. The resultant expressions are compared with the available experimental data and with
other determinations in the context of conventional heavy baryon chiral perturbation theory for three
flavors of light quarks and at the physical value Nc ¼ 3. The agreement reached is quite impressive.
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I. INTRODUCTION

The SU(3) group theoretical approach to deal with baryon
magnetic moments was first developed by Coleman and
Glashow [1]; their analysis led to the celebrated relations—
named after them—among octet baryons in terms of two
parameters [2], namely,

μð0ÞΣþ ¼ μð0Þp ; μð0ÞΣ− þ μð0Þn ¼ −μð0Þp ; 2μð0ÞΛ ¼ μð0Þn ;

μð0ÞΞ− ¼ μð0ÞΣ− ; μð0Þ
Ξ0 ¼ μð0Þn ; 2μð0Þ

ΛΣ0 ¼ − ffiffiffi
3

p
μð0Þn ; (1)

along with the isospin relation

μð0ÞΣþ − 2μð0ÞΣ0 þ μð0ÞΣ− ¼ 0; (2)

where the superscript (0) will denote the SU(3) symmetric
values hereafter. Soon after the discovery of relations (1),
experimental analyses found discrepancies by a few standard
deviations from the SU(3) values. Since then, a number of
methods have been used in order to improve the numerical
predictions of Coleman and Glashow by including SU(3)

breaking effects. Among these methods, heavy baryon chiral
perturbation theory [3,4] and the 1=Nc expansion of QCD
[5,6], where Nc is the number of colors, are two schemes to
understand the low-energy consequences of hadrons.
Furthermore, the combined use of chiral perturbation

theory and the 1=Nc expansion is another calculational
scheme which constrains the low-energy interactions of
baryons with the meson nonet in a more effective way than
each method alone [7]. Let us recall that in the chiral limit
mq→0 andmesons becomemassless Goldstone boson states;
as a result, there is an expansion in powers of mq=Λχ , where
Λχ ∼ 1 GeV is the scale of chiral symmetry breaking. On the
other hand, in the large-Nc limit, decuplet and octet baryons
become degenerate, namely, Δ≡MT−MB∝1=Nc→0,
where MT and MB denote the SU(3) invariant masses of
the decuplet and octet baryon multiplets, respectively. It turns
out that decuplet and octet baryon states constitute a single
irreducible representation of the contracted spin-flavor sym-
metry of baryons in large-Nc QCD [5,6]. Corrections about
the large-Nc limit then appear in powers of 1=Nc. All in all,
the combined expansion in mq=Λχ and 1=Nc requires us to
consider the double limit mq → 0 and Nc → ∞.

*On sabbatical leave from Instituto de Física, Universidad
Autónoma de San Luis Potosí, San Luis Potosí, México.

PHYSICAL REVIEW D 89, 034012 (2014)

1550-7998=2014=89(3)=034012(39) 034012-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.034012
http://dx.doi.org/10.1103/PhysRevD.89.034012
http://dx.doi.org/10.1103/PhysRevD.89.034012
http://dx.doi.org/10.1103/PhysRevD.89.034012


Caldi and Pagels [8], in the framework of chiral pertur-
bation theory, found that corrections to baryon magnetic
moments appear in the nonanalytic forms m1=2

q and
mq ln mq, which can be obtained from meson-loop graphs.
In heavy baryon chiral perturbation theory [3,4], loop
graphs have a calculable dependence on the ratio mΠ=Δ,
where mΠ denotes the mass of meson Π ¼ π, K, η. For the
theory to be valid, the conditions mΠ ≪ Λχ and Δ ≪ Λχ

must bemet, although the ratiomΠ=Δ can take any value [9].
In a previous paper [10], we computed one-loop cor-

rections to baryon magnetic moments within a combined
expansion in mq and 1=Nc. We considered contributions of
orders Oðm1=2

q Þ and Oðmq ln mqÞ to relative order 1=N3
c in

the 1=Nc expansion. The best way of approaching this
problem was in the degeneracy limit Δ → 0. The resultant
theoretical expressions agreed, order by order, with others
obtained within baryon chiral perturbation theory [11–15]
for octet and decuplet baryons and also for octet-octet and
decuplet-octet transitions. Additionally, a comparison with
the current experimental data [16] through a least-squares fit
allowed us to get information about the free parameters of
the theory. Although the predicted values obtained for all 27
possible magnetic moments were according to expectations,
the fit somehow seemed to be not entirely satisfactory in the
sense that the SU(3) invariants of chiral perturbation theory
are not well reproduced through the analysis.
It would be desirable to relax the restriction Δ → 0 and

consider the more realistic case Δ ≠ 0. Indeed, in the
present paper, we do so as a second approximation in the
contributions arising from loop graphs of order Oðm1=2

q Þ
and Oðmq ln mqÞ. Our motivation here is not really to be
definitive about the determination of baryon magnetic
moments in the combined scheme but rather to explore
the effects Δ ≠ 0 has on the fit to experimental data.
Noticeable improvements should be observed in the
best-fit values of the parameters in the fit and also in
the value of χ2 itself.
In this paper we will consider two sources of SU(3)

symmetry breaking. The first source, the implicit one,
originates from the loops themselves when using the
physical masses of the mesons. Here the corrections are
of orders Oðm1=2

s Þ and Oðms ln msÞ, depending on the
topology of the Feynman diagrams. The second source, the
explicit one, is also related to the light quark masses and
transforms as a flavor octet. We will loosely refer to this
correction as perturbative symmetry breaking (SB).
This paper is organized as follows. In Sec. II, apart from

introducing our notation and conventions, we provide an
overview on the determination of baryon magnetic
moments in large-Nc chiral perturbation theory. We start
our discussion by defining the tree-level values, and then, in
Sec. III we continue with computing one-loop corrections.
We first concentrate on corrections of order Oðm1=2

q Þ in
Sec. III A by constructing the baryon operator which
describes such contribution; the dependence on Δ is

explicitly included at this level. We proceed further in
order to achieve the reduction of the operators in the two
flavor representations involved. Next, in Sec. III B we
compute corrections of order Oðmq ln mqÞ; the analysis is
more challenging than the previous one due to the con-
siderable amount of group theory involved. We comple-
ment the analysis by including SB in Sec. IV. The
theoretical expressions obtained are then compared with
other determinations in the framework of chiral perturba-
tion theory and cross-checked with the very well-known
sum rules found in the literature in Sec. V. In Sec. VI we
carry out several least-squares fits in order to determine the
best-fit parameters of the theory which allow us to predict
numerical values of the unobserved magnetic moments;
we then compare them with other numerical predictions.
Finally, in Sec. VII we discuss our findings. This work is
complemented by three appendices. In Appendices A and
B, we provide the reduction of the baryon operators for
both kinds of one-loop corrections discussed here. In
Appendix C we list the explicit results that make up the
contributions of order Oðmq ln mqÞ.

II. BARYONMAGNETIC MOMENT IN LARGE-NC
CHIRAL PERTURBATION THEORY

The present analysis builds on earlier works, particularly
on Refs. [5–7,17], which established the mathematical
groundwork on large-Nc QCD and the 1=Nc expansion
for baryons, and also on Ref. [10], where baryon magnetic
moments in large-Nc chiral perturbation theory in the
degeneracy limit were discussed. Thus, we only give an
outline of some relevant issues here.
The chiral Lagrangian for baryons in the 1=Nc expansion

was established in Ref. [7]. It takes the form

Lbaryon ¼ iD0 −Mhyperfine þ TrðAkλcÞAkc

þ 1

Nc
Tr

�
Ak 2Iffiffiffi

6
p

�
Ak þ � � � ; (3)

with

D0 ¼ ∂01þ TrðV0λcÞTc: (4)

The ellipses in Eq. (3) refer to higher partial wave meson
couplings, showing up at subleading orders in the 1=Nc
expansions for Nc > 3. All of these higher partial waves
vanish in the large-Nc limit. Accordingly, the meson
coupling to baryons is purely p wave. In particular, the
ellipses do not mean that we omit terms or make unjustified
approximations. Much like in the analogous study related
to the baryon axial vector current performed in Ref. [18],
the terms shown in Eq. (3) are the only ones relevant to our
analysis.
Meson fields are contained in the vector and axial vector

combinations
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V0 ¼ 1

2
ðξ∂0ξ† þ ξ†∂0ξÞ; Ak ¼ i

2
ðξ∇kξ† − ξ†∇kξÞ;

ξðxÞ ¼ exp½iΠðxÞ=f�: (5)

Here the matrix ΠðxÞ stands for the nonet of Goldstone
boson fields, and f is the pion decay constant which takes
the value f ≈ 93 MeV=c2.
Each term in the chiral Lagrangian (3) involves a baryon

operator. The baryon kinetic energy term is proportional
to the spin-flavor identity; the quantity Mhyperfine is the
hyperfine baryon mass operator, which takes into account
the spin splittings of the tower of baryon states with spins
1=2;…; Nc=2 in the flavor representations. Furthermore,
the flavor octet and the flavor singlet meson combinations
couple to the flavor octet V0a and flavor singlet V0 baryon
charges, respectively, given by

V0c ¼
�
B0
����
�
q̄γ0

λc

2
q

�
QCD

����B
�

(6)

and

V0 ¼
�
B0
����
�
q̄γ0

Iffiffiffi
6

p q

�
QCD

����B
�
: (7)

In a similar fashion, the l ¼ 1 flavor octet and flavor
singlet axial vector meson combinations couple to the
flavor octet Akc and flavor singlet Ak axial vector currents,
respectively, which read

Akc ¼
�
B0
����
�
q̄γkγ5

λc

2
q

�
QCD

����B
�

(8)

and

Ak ¼
�
B0
����
�
q̄γkγ5

Iffiffiffi
6

p q

�
QCD

����B
�
: (9)

The subscript QCD in Eqs. (6)–(9) is used as a reminder
that the quark fields are QCD quark fields.
A baryon operator has a well-defined 1=Nc expansion,

which can be written as

OQCD ¼
X
n

cn
1

Nn−1
c

On; (10)

where the operator basis On is conformed by polynomials
in the SU(6) spin-flavor generators [6],

Jk ¼ q†
σk

2
q; Tc ¼ q†

λc

2
q; Gkc ¼ q†

σk

2

λc

2
q: (11)

Here the quantities q† and q represent SU(6) operators that
create and annihilate states in the fundamental spin-flavor
representation of SU(6), and σk and λc are the Pauli and
Gell-Mann matrices, respectively. The commutation

relations obeyed by the SU(6) spin-flavor generators can
be found in Ref. [6].
Specifically, the 1=Nc expansion of the baryon mass

operator M, which transforms as a (0, 1) under
SUð2Þ × SUð3Þ, can be written as [7]

M ¼ m0;1
ð0ÞNc1þ

XNc−1

n¼2;4

m0;1
ðnÞ

1

Nn−1
c

Jn; (12)

where the coefficients m0;1
ðnÞ are a priori unknown param-

eters of order OðΛχÞ, and the superscripts attached to
them indicate the spin-flavor representation they belong
to. While the first term in Eq. (12) represents the
overall spin-independent mass of the baryon multiplet,
the spin-dependent terms define Mhyperfine.
On the other hand, the 1=Nc expansion of the baryon

axial vector operator Akc can be constructed by keeping in
mind that only its space components have nonzero matrix
elements at zero recoil. Thus, it transforms as a (1, 8) under
SUð2Þ × SUð3Þ, and it is T odd. [6]. At the physical value
Nc ¼ 3, we have

Akc ¼ a1Gkc þ b2
1

Nc
Dkc

2 þ b3
1

N2
c
Dkc

3 þ c3
1

N2
c
Okc

3 ; (13)

where the coefficients a1, b1, b2, and c3 are of order unity
and the operators that come along with them read

Dkc
2 ¼ JkTc; (14)

Dkc
3 ¼ fJk; fJr; Grcgg; (15)

Okc
3 ¼ fJ2; Gkcg − 1

2
fJk; fJr; Grcgg: (16)

Successive higher-order operators are constructed from the
previous ones by anticommuting them with J2. Besides, the
operators Dkc

n are diagonal: nonvanishing matrix elements
only occur between states with the same spin. The operators
Okc

n , in turn, are purely off-diagonal: nonvanishing matrix
elements only occur between states with different spin.
Now, the starting point of the analysis of Ref. [10] relies

on the fact that, in the large-Nc limit, the baryon magnetic
moments possess the same kinematical properties as the
baryon axial-vector couplings, so they are described in
terms of the same operators. The magnetic moment
operator is also a spin-1 object and transforms as an SU(3)
octet. Thus, in a complete analogy to expression (13), the
1=Nc expansion of the operator which yields baryon mag-
netic moments can be written as [10]

Mkc ¼ m1Gkc þm2

1

Nc
Dkc

2 þm3

1

N2
c
Dkc

3 þm4

1

N2
c
Okc

3 ;

(17)
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where the series has also been truncated at Nc ¼ 3. By
assuming theSU(3) symmetry limit, theunknowncoefficients
mi (also of order unity) are independent of k, so they are
unrelated to the ones of the series (13) at this limit. The
magnetic moments are proportional to the light quark electro-
magnetic charge matrix Q¼diagð2=3;−1=3;−1=3Þ and
can be separated into isovector and isoscalar components,
Mk3 andMk8, respectively.Thus,thebaryonmagneticmoment
operator can ultimately be defined as

Mk ¼ MkQ ≡Mk3 þ 1ffiffiffi
3

p Mk8: (18)

Hereafter, the spin index k of Mk will be set to 3, whereas
the flavor index Q will stand for Q ¼ 3þ ð1= ffiffiffi

3
p Þ8, so any

operator of the form XQ should be understood as
X3 þ ð1= ffiffiffi

3
p ÞX8. In the same spirit,XQ̄ should be understood

as X3 − ð1= ffiffiffi
3

p ÞX8. In particular, TQ ¼ T3 þ ð1= ffiffiffi
3

p ÞT8 is
the SU(3) flavor generator corresponding toQ.
The magnetic moments in conventional heavy baryon

chiral perturbation theory (the effective field theory
with no 1=Nc expansion) are parametrized by four SU(3)
invariants μD, μF, μC, and μT [11], while in the present
analysis, they are parametrized in terms of mi, with
i ¼ 1;…; 4, introduced in Eq. (17). At Nc ¼ 3, they are
related by [10]

μD ¼ 1

2
m1 þ

1

6
m3; (19a)

μF ¼ 1

3
m1 þ

1

6
m2 þ

1

9
m3; (19b)

μC ¼ 1

2
m1 þ

1

2
m2 þ

5

6
m3; (19c)

μT ¼ −2m1 −m4: (19d)

In a complete parallelismwith Ref. [6], the operator analysis
in this work is performed within the quark representation of
thespin-flavorsymmetryof large-Nc baryons,whichuses the
algebraic structure of the nonrelativistic quark model to
classify baryon operators. This statement does not mean,
however, that either the quaks in the baryon are treated as
nonrelativistic or that the validity of the quark model is
implicitly assumed.
We should stress the fact that the present analysis of

baryon magnetic moments is based on large-Nc chiral
perturbation theory, i.e., the combination of heavy baryon
chiral perturbation theory with the 1=Nc expansion. We
want to point out that either method is fully systematic and,
above all, model independent. Heavy baryon chiral per-
turbation theory corresponds to a consistent and systematic
expansion in powers of momentum and of the light quark
masses. In the 1=Nc expansion, on the other hand, one

systematically evaluates deviations from the exact spin-
flavor symmetry by computing 1=Nc corrections to the
large-Nc limit. The (combined) chiral Lagrangian for
baryons in the 1=Nc expansion (3) is the most general
expression which respects the symmetries of QCD and is
consistent with the 1=Nc expansion. It is important to note
that, unlike, e.g., the quark model, these expansions in
momentum, quark mass and 1=Nc, do not make use of any
model description of the baryons. In particular, the
expressions (17) and (18) are model independent: they
represent the most general expression (up to order 1=N2

c)
consistent with the Nc expansion, while the microscopic
details of QCD only manifest themselves in the specific
values of the coefficients m1; :::::; m4.
The matrix elements of the baryon operators

V0a ¼ v0Ta, Aia, Mi, or M between SU(6) symmetric
states can thus be connected to physics in a straightfor-
ward way. V0a is a spin-0 and a flavor octet, so it
transforms as (0,8) under SUð2Þ × SUð3Þ. The operator
V0a at q2 ¼ 0 is a special (0,8) operator; it is the generator
of SU(3) symmetry transformations, and its matrix ele-
ments correspond to the vector form factors f1ðq2 ¼ 0Þ≡
gV as conventionally defined in baryon semileptonic
decays. In a similar manner, Aia is spin 1 and a flavor
octet. Its matrix elements between baryon octet states at
q2 ¼ 0 correspond to the axial vector form factors
g1ðq2 ¼ 0Þ≡ gA also as defined in baryon semileptonic
decays, with a normalization such that gA=gV ¼ F þD for
neutron beta decay.
On the other hand, we have already pointed out that since

the magnetic moment is a spin-1 octet operator, it has a
1=Nc expansion identical in structure to the axial current.
The matrix elements of Mi, for i ¼ 3, thus yield the actual
values of the baryon magnetic moments μB. To derive a
relation between magnetic moments and form factors, one
needs to look at the baryon matrix elements of the
electromagnetic current jemμ . Thus, μB corresponds to
F1ð0Þ þ F2ð0Þ≡GMð0Þ, where F1ðq2Þ and F2ðq2Þ are
the Dirac and Pauli form factors, respectively, and GMðq2Þ
is the magnetic form factor. In the limit q2 → 0, F1 and F2

are the charge and the anomalous magnetic moments of the
baryons, respectively. For electromagnetic transitions
analogous form factors can be defined.
At tree level, the baryon magnetic and transition mag-

netic moments μð0ÞB can be straightforwardly computed
from Eq. (18). The required matrix elements of the
operators involved in such an expression are listed in
Ref. [10] and will not be repeated here. Let us now proceed
to discuss the one-loop corrections.

III. ONE-LOOP CORRECTIONS TO BARYON
MAGNETIC MOMENTS

The diagrams that contribute to baryon magnetic
moments at one-loop order are displayed in Figs. 1 and 2.
These diagrams are given by the product of a group theoretic
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structure times a loop integral, which depends nonanalyti-
cally on the light quark massesmq. The explicit dependence
isOðm1=2

q Þ andOðmq ln mqÞ for Figs. 1 and 2, respectively.
Since mq ∝ m2

Π ∝ p2, in the chiral momentum counting
scheme, these two types of diagrams are of order p3 and p4,
respectively. In this counting, the tree-level values are
order p2.
The group theoretical structures that come along with the

integrals over the loops have a rather complex dependence
on Nc. It has been argued that baryons with strangeness of
order N0

c have matrix elements of Tc and Gk8 (c ¼ 1; 2; 3)
of order N0

c, matrix elements of Tc and Gkc (c ¼ 4; 5; 6; 7)

of order
ffiffiffiffiffiffi
Nc

p
, and matrix elements of T8 and Gkc

(c ¼ 1; 2; 3) of order Nc [6]. To overcome this apparent
complexity, let us use the fact that the pion-baryon vertex is
proportional to gA=f. Thus, in the large-Nc limit, gA ∝ Nc
and f ∝

ffiffiffiffiffiffi
Nc

p
, so the pion-baryon vertex scales as

ffiffiffiffiffiffi
Nc

p
.

Next, we can assume a naive power counting scheme for
baryons with spins of order 1,

Ta ∼ Nc; Gia ∼ Nc; Ji ∼ 1; (20)

i.e., factors of Ji=Nc are 1=Nc suppressed relative to factors
of Ta=Nc and Gia=Nc. This Nc-counting rule works if we
only consider the lowest-lying baryon states, namely, those
related to the 56 dimensional representation of SU(6).
With these simple tools, we can argue that the one-loop

diagrams of Fig. 1 are of order OðNcÞ. In the limit of small
ms, the symmetry breaking part of these diagrams is
Oðm1=2

s Þ, so their overall contribution to baryon magnetic
moments is Oðm1=2

s NcÞ, whereas the tree-level value is
order Nc. As for the one-loop diagrams of Fig. 2, the large-
Nc dependence has been discussed in detail in Refs. [9,19]
for the axial vector current. Those conclusions can be
extended to the baryon magnetic moment operator.
Therefore, diagrams of Fig. 2 are at most of order
OðN0

cÞ, or 1=Nc times the tree-level value.
Recent studies that focused on the computation of

baryon magnetic moments within covariant chiral pertur-
bation theory, Refs. [13,14], raise an important issue here.
We need to point out that there is no one-to-one corre-
spondence between the diagrams of covariant baryon chiral
perturbation theory and heavy baryon chiral perturbation
theory. While the total result for any measurable quantity,
of course, must be the same, the contributions from
different diagrams can be rearranged. Indeed, in the present
case of magnetic moments, there are two types of diagrams
that are different from zero in the covariant approach but do
not contribute in the heavy baryon version. In the covariant
approach, the tadpole diagram (b) as well as the diagrams
(f) and (i) in Fig. 1 of Ref. [14] yield nonzero contributions.
The same diagrams in the heavy baryon approach, however,
do not contribute to magnetic moments. This is a conse-
quence of the spin symmetry, which emerges at leading
order in heavy baryon chiral perturbation theory. More
precisely, the tadpole graph (b) corresponds to a vertex
which is spin independent and can thus not contribute to
magnetic moments. On the other hand, in the diagrams (f)
and (i), the momentum p of the external photon only enters
through the combination ðkþ pÞ · v in the baryon propa-
gator. So again, it does not have the correct structure to lead
to a magnetic moment because the magnetic moment
depends on the space component of pμ rather than on its
p0 component. In the covariant approach, there are extra γ
matrices that may produce spin dependence and thus lead
to nonzero contributions resulting from the very same
diagrams. Note that all γμ matrices can be eliminated in

)b()a(

FIG. 1. Feynman diagrams which yield nonanalytic m1=2
q

corrections to the magnetic moments of octet baryons. Dashed
lines denote mesons, and single and double solid lines denote
octet and decuplet baryons, respectively. For decuplet baryons
and decuplet-octet transitions, the diagrams are similar.

(c)

(a) (b)

(d)

(e)

FIG. 2. Feynman diagrams which yield nonanalytic mq ln mq
corrections to the magnetic moments of octet baryons. Dashed
lines denote mesons, and single and double solid lines denote
octet and decuplet baryons, respectively. The wave function
renormalization graphs are omitted in the figure but are never-
theless considered in the analysis. For decuplet baryons and
decuplet-octet transitions, the diagrams are similar.
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heavy baryon approach and reduced to expressions involv-
ing the 4-velocity vμ of the heavy baryon field and the
velocity-dependent spin operator Sμ only [3]. Explicit
expressions for type-1 and type-2 diagrams which do
contribute in heavy baryon chiral perturbation theory
(Figs. 1 and 2 in the present work) can be found in
Ref. [20] [see formulas (22) and (28), respectively].
Coming back to the main goal of the present paper,

the analysis of baryon magnetic moments in the framework
of large-Nc chiral perturbation theory presented in Ref. [10]
was carried out in the degeneracy limit Δ → 0. We now
intend to find out the effects of a nonvanishingΔ, as well as
flavor symmetry breaking. The calculation introduces a
number of issues not discussed in Ref. [10]. Because both
types of diagrams involve rather different operator reduction
patterns, we proceed to evaluate them separately.

A. Diagrams of order Oðm1=2
q Þ

The analysis of one-loop corrections of order Oðm1=2
q Þ

in the degeneracy limit has been discussed in detail in
Sec. IV.A of Ref. [10]. Now, for a nonvanishing Δ, one can
discern that an immediate modification can be found in the
baryon propagator in the loop integral of Fig. 1, which now
has an explicit dependence onΔ. To deal with this issue, we
can follow the approach implemented in the analysis of
flavor 27 nonanalytic corrections to the baryon masses
presented in Ref. [7]. In this work, is was stated that in the
chiral limit the baryon propagator is diagonal in spin, so it
can be expressed as

iP j

k0 − Δj
; (21)

where P j is a spin projector operator for spin J ¼ j, which
satisfies by definition

P2
j ¼ P j; (22a)

P jP j0 ¼ 0; j ≠ j0 (22b)

and Δj stands for the difference of the hyperfine mass
splitting for spin J ¼ j and the external baryon, namely,

Δj ¼ MhyperfinejJ2¼jðjþ1Þ −MhyperfinejJ2¼jextðjextþ1Þ: (23)

Thus, for p-wave meson emission, Δj reduces to [7]

Δj ¼

8>><
>>:

1
Nc
2jm0;1

ð2Þ; jext ¼ j − 1;

0; jext ¼ j;

− 1
Nc
2jm0;1

ð2Þ; jext ¼ jþ 1;

(24)

at leading order 1=Nc in the 1=Nc expansion.

A realization of P j is given by [7]

P j ¼
Πj≠j0 ðJ2 − J2j0 Þ
Πj≠j0 ðJ2j − J2j0 Þ

; (25)

i.e., the projection operators for spin Jj is given by the
product over all Jj0 ¼ 1=2; 3=2;…; Nc=2 not equal to Jj.
The general form of the spin projector (25) for arbitrary Nc
can be found in Ref. [7]; however, here we just need the
spin-1

2
and spin-3

2
projectors for Nc ¼ 3, which read

P1
2
¼ − 1

3

�
J2 − 15

4

�
; (26a)

P3
2
¼ 1

3

�
J2 − 3

4

�
; (26b)

where

Δ1
2
¼

�
0; jext ¼ 1

2
;

−Δ; jext ¼ 3
2
;

(27a)

Δ3
2
¼

�Δ; jext ¼ 1
2
;

0; jext ¼ 3
2
;

(27b)

and

Δ ¼ 3

Nc
m0;1

ð2Þ: (28)

It is straightforward to check that expressions (26) meet
conditions (22).
The diagram in Fig. 1 is thus given by the product of a

baryon operator times a flavor tensor containing informa-
tion about the loop integrals. Using the baryon propagator
(21), the loop graphs of Fig. 1 can be expressed as

δMk
loop1 ¼

X
j

ϵijkAiaP jAjbΓabðΔjÞ; (29)

where the explicit sum over spin j has been indicated,
whereas the sums over spin and flavor indices are under-
stood. Here Aia and Ajb are used at the meson-baryon
vertices, and ΓabðΔjÞ is an antisymmetric tensor which
explicitly depends on the difference of the hyperfine mass
splitting Δj. This tensor can be decomposed as

ΓabðΔjÞ ¼ A0ðΔjÞΓab
0 þ A1ðΔjÞΓab

1 þ A2ðΔjÞΓab
2 ; (30)

where the tensors Γab
i are written as [17]

Γab
0 ¼ fabQ; (31a)
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Γab
1 ¼ fabQ̄; (31b)

Γab
2 ¼ faeQdbe8 − fbeQdae8 − fabedeQ8: (31c)

Let us recall that Γab
0 and Γab

1 are both SU(3) octets, except
that the former transforms as the electric charge, whereas
the latter also transforms as the electric charge but is
rotated by π in isospin space. In turn, Γab

2 breaks SU(3) as
10þ 10 [17].
On the other hand, the coefficients AiðΔjÞ are linear

combinations of the functions Iðmπ;Δj; μÞ and IðmK;Δj; μÞ,
which result from doing the loop integrals; they read

A0ðΔjÞ ¼
1

3
½Iðmπ;Δj; μÞ þ 2IðmK;Δj; μÞ�; (32a)

A1ðΔjÞ ¼
1

3
½Iðmπ;Δj; μÞ − IðmK;Δj; μÞ�; (32b)

A2ðΔjÞ ¼
1ffiffiffi
3

p ½Iðmπ;Δj; μÞ − IðmK;Δj; μÞ�; (32c)

where the loop integral is [11]

�
8π2f2

MN

�
Iðm;Δ; μÞ ¼ −Δ ln

m2

μ2
þ
8<
:

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − Δ2

p h
π
2
− tan−1 Δffiffiffiffiffiffiffiffiffiffiffi

m2−Δ2
p

i
; jΔj ≤ m;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 −m2

p h
−2iπ þ ln Δ− ffiffiffiffiffiffiffiffiffiffiffi

Δ2−m2
p

Δþ
ffiffiffiffiffiffiffiffiffiffiffi
Δ2−m2

p
i
; jΔj > m;

(33)

where MN and m denote the nucleon and meson masses,
respectively, and μ is the renormalization scale.
Thus, the one-loop correction arising from Fig. 1 can be

decomposed into the pieces emerging from the flavor 8 and
flavor 10þ 10 representations as

δMk
loop 1 ¼

X
j

½A0ðΔjÞMkQ
8;loop 1ðP jÞ þ A1ðΔjÞMkQ̄

8;loop 1ðP jÞ

þ A2ðΔjÞMkQ
10þ10;loop 1

ðP jÞ�; (34)

where the flavor contributions read

Mkc
8;loop 1ðP jÞ ¼ ϵijkfabcAiaP jAjb; (35)

and

Mkc
10þ10;loop 1

ðP jÞ ¼ ϵijkðfaecdbe8 − fbecdae8

− fabedec8ÞAiaP jAjb: (36)

For computational purposes, a free flavor index c has been
left in Eqs. (35) and (36). This free index can be set to
Q ¼ 3þ ð1= ffiffiffi

3
p Þ8 [or Q̄ ¼ 3 − ð1= ffiffiffi

3
p Þ8 as the case may

be] once the operator reductions on the right-hand sides of
such equations have been performed.

The correction δMk
loop 1, Eq. (34), to the SU(3) symmetric value of the baryon magnetic moment can be organized as

δMk
loop 1 ¼ P1=2ϵ

ijkAiaP1=2Ajb½A0ð0ÞΓab
0 þ A1ð0ÞΓab

1 þ A2ð0ÞΓab
2 �P1=2

þ P1=2ϵ
ijkAiaP3=2Ajb½A0ðΔÞΓab

0 þ A1ðΔÞΓab
1 þ A2ðΔÞΓab

2 �P1=2 (37)

for octet baryons,

δMk
loop 1 ¼ P3=2ϵ

ijkAiaP1=2Ajb½A0ð−ΔÞΓab
0 þ A1ð−ΔÞΓab

1 þ A2ð−ΔÞΓab
2 �P3=2

þ P3=2ϵ
ijkAiaP3=2Ajb½A0ð0ÞΓab

0 þ A1ð0ÞΓab
1 þ A2ð0ÞΓab

2 �P3=2 (38)

for decuplet baryons, and
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δMk
loop 1 ¼ P3=2ϵ

ijkAiaP1=2Ajb½A0ð0ÞΓab
0

þ A1ð0ÞΓab
1 þ A2ð0ÞΓab

2 �P1=2

þ P3=2ϵ
ijkAiaP3=2Ajb½A0ðΔÞΓab

0

þA1ðΔÞΓab
1 þ A2ðΔÞΓab

2 �P1=2 (39)

for decuplet-octet transitions.
To proceed further, let us notice that the operator

ϵijkfabcAiaP jAjb can be decomposed as αϵijkfabcAiaAjbþ
βϵijkfabcAiaJ2Ajb, where α and β are some coefficients. The
first summand in the expression mentioned previously corre-
sponds to the degeneracy case Δ → 0 discussed in Ref. [10],
whereas the second one is the new contribution to be dealt
with in the present analysis. Now, in the product operators
such as ϵijkfabcAiaJ2Ajb, ϵijkfabedec8AiaJ2Ajb, and so on
found in Eqs. (35) and (36), there will appear up to eight-
body operators if we truncate the 1=Nc expansion of Akc at

the physical value Nc ¼ 3. The leading order in 1=Nc is
contained in the product ϵijkfabcGiaJ2Gjb and similar terms
with two G’s, which will be proportional to the square of a1,
the leading parameter introduced in Eq. (13). To perform the
current analysis on an equal footing as Ref. [10], we work
out terms up to relative order Oð1=N3

cÞ, which implies
evaluating products up to seven-body operators in Eqs. (35)
and (36). The contributions ignored will be proportional to
b23, c

2
3, and b3c3, which we consider small compared to the

ones retained. Because the operator basis is complete [6], the
reduction, although long and tedious, is always possible. In
Appendix A we present the relevant reductions of baryon
operators up to the order in 1=Nc required here.
Gathering together partial results, the spin-dependent

contributions to be combined with their spin-independent
counterparts given in Eqs. (35) and (36) of Ref. [10] are as
follows:

(1) flavor 8 representation:

ϵijkfabcAiaJ2Ajb ¼ − 1

2
ðNc þ NfÞa21Gkc þ

�
1

2
ð1þ NfÞa21 þ

3Nf

N2
c
a1c3

	
Dkc

2

þ
�
− 1

8
ðNc þ NfÞa21 −

Nf

4Nc
a1b2 − Nc þ Nf

2N2
c

a1b3 − 3ðNc þ NfÞ
2N2

c
a1c3

	
Dkc

3

þ
�
− 1

4
ðNc þ NfÞa21 − 1þ Nf

Nc
a1b2 − 3ðNc þ NfÞ

N2
c

a1b3 − Nc þ Nf

2N2
c

a1c3

	
Okc

3

þ
�
1

4
a21 −

Nf

4N2
c
b22 −

Nf − 2

2N2
c

a1b3 þ
7Nf þ 12

4N2
c

a1c3

	
Dkc

4 þ
�
−Nc þ Nf

4N2
c

a1c3 − Nf

2N3
c
b2b3

	
Dkc

5

þ
�
− 1

2Nc
a1b2 − Nc þ Nf

2N2
c

a1b3 − Nc þ Nf

4N2
c

a1c3 − 1þ Nf

N3
c

b2c3

	
Okc

5

þ 1

2N2
c
a1c3Dkc

6 − 1

2N3
c
b2c3Okc

7 þOðD3J2D3Þ; (40)

(2) flavor 10þ 10 representation:

ϵijkðfaecdbe8 − fbecdae8 − fabedec8ÞAiaJ2Ajb

¼ 1

2
a21ðfTc; Gk8g − fGkc; T8gÞ − 1

Nc
a1b2ðfGkc; fJr; Gr8gg − fGk8; fJr; GrcggÞ

þ 1

2N2
c
ð−4a1b3 þ 5a1c3ÞðfDkc

2 ; fJr; Gr8gg − fDk8
2 ; fJr; GrcggÞ

þ
�
− 1

4
a21 − 3

N2
c
a1b3 − 1

2N2
c
a1c3

	
ðfJ2; fGkc; T8gg − fJ2; fGk8; TcggÞ

þ
�
− 1

2Nc
a1b2 − 1

N3
c
b2c3

	
ðfJ2; fGkc; fJr; Gr8ggg − fJ2; fGk8; fJr; GrcgggÞ

þ
�
− 1

2N2
c
a1b3 − 1

4N2
c
a1c3

	
ðfJ2; fJ2; fGkc; T8ggg − fJ2; fJ2; fGk8; TcgggÞ

þ
�
− 1

2N2
c
a1b3 þ

1

4N2
c
a1c3

	
ðfJ2; fDkc

2 ; fJr; Gr8ggg − fJ2; fDk8
2 ; fJr; GrcgggÞ

− 1

2N3
c
b2c3ðfJ2; fJ2; fGkc; fJr; Gr8gggg − fJ2; fJ2; fGk8; fJr; GrcggggÞ þOðD3J2D3Þ; (41)
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where the free flavor index c will be set to Q ¼ 3þ
ð1= ffiffiffi

3
p Þ8 or Q̄ ¼ 3 − ð1= ffiffiffi

3
p Þ8 as required in Eq. (34). The

symbolOðD3J2D3Þ in Eqs. (40) and (41) means that in the
structures such as ϵijkfabcAiaJ2Ajb, ϵijkfaecdbe8AiaJ2Ajb,
and so on we have included all terms up to seven-body
operators, such as D2J2D3, but have neglected contribu-
tions which are eight-body operators—like D3J2D3—or
higher. In addition, the operator ½J2; ½T8; Gkc�� and its
anticommutator with J2 have been omitted in expression
(41) because they do not contribute to any observed
magnetic moments.
Notice also that Eqs. (40) and (41) have been rearranged

to exhibit explicitly leading and subleading terms in 1=Nc.
It is simple to realize that the one-loop contribution
δMk

loop 1, Eq. (34), is order OðNcÞ. In the limit of

small ms, the symmetry breaking part of δMk
loop 1 is

Oðm1=2
s Þ, so the overall contribution of Eq. (34) to

baryon magnetic moments is Oðm1=2
s NcÞ; this is the

reason why this correction is dominant over the one
of Fig. 2.
At this stage, analytical expressions for all 27 possible

baryon magnetic and transition magnetic moments can
readily be obtained by evaluating the matrix elements of
the baryon operators indicated in Eqs. (37)–(39) between
baryon SU(6) symmetric states. Most matrix elements
are listed in Ref. [10], except for a few ones which
result from anticommutators of some of the already
existing operators with J2, for which the matrix elements
can be trivially evaluated. As an example, for μΣ− one
finds

μðloop 1ÞΣ− ¼
�
7

18
a21 þ

2

9
a1b2 þ

1

18
b22 þ

7

27
a1b3 þ

2

27
b2b3

	
Iðmπ; 0; μÞ

þ
�
1

36
a21 − 1

18
a1b2 þ

1

36
b22 þ

1

54
a1b3 − 1

54
b2b3

	
IðmK; 0; μÞ þ

�
− 1

18
a21 − 1

18
a1c3

	
Iðmπ;Δ; μÞ

þ
�
− 1

9
a21 − 1

9
a1c3

	
IðmK;Δ; μÞ; (42)

which in the limit Δ → 0 reduces to the value already found
[10]. Theoretical expressions like Eq. (42) are quite useful
when comparing our results with the ones obtained in the
framework of chiral perturbation theory [11,13–15]. It has
been already shown that there is a one-to-one correspondence
between the parameters of the 1=Nc baryon chiral Lagrangian
at Nc ¼ 3 [7] and the octet and decuplet chiral Lagrangian
[3,4]. The baryon-meson couplings are related to the coef-
ficients of the 1=Nc expansion of Aia, Eq. (13), atNc ¼ 3 by

D ¼ 1

2
a1 þ

1

6
b3; (43a)

F ¼ 1

3
a1 þ

1

6
b2 þ

1

9
b3; (43b)

C ¼ −a1 − 1

2
c3; (43c)

H ¼ − 3

2
a1 − 3

2
b2 − 5

2
b3: (43d)

For octet baryons, the magnetic moments computed in
Ref. [11] can be rewritten as

μi ¼ αiþ
X
X¼π;K

βðXÞi IðmX;0;μÞþ
X
X¼π;K

β0ðXÞi IðmX;Δ;μÞ

þ
X

X¼π;K;η

1

32π2f2
ðγ̄ðXÞi − 2λ̄ðXÞi αiÞm2

X ln
m2

X

μ2
; (44)

where αi corresponds to the tree-level value of baryon i,

βðXÞi and β0ðXÞi are the contributions arising from loop graphs
of Fig. 1, and the remaining coefficients come from loop
graphs of Fig. 2. For μΣ− the corresponding chiral coef-
ficients listed in Ref. [11] read

βðπÞΣ− ¼ 2

3
D2 þ 2F2; βðKÞΣ− ¼ ðD − FÞ2;

β0ðπÞΣ− ¼ − 1

18
C2; β0ðKÞΣ− ¼ − 1

9
C2: (45)

Under identifications (43), the above chiral coefficients
coincide with their corresponding analogs in Eq. (42). The
same agreement is found in all expressions for octet
baryons. As for decuplet baryons and decuplet-octet tran-
sitions, the comparison is not as simple as in the previous
case, so we prefer to perform a numerical comparison
instead. This will be discussed in the next section.
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On the other hand, corrections of order Oðm1=2
q NcÞ with

a nonvanishing Δ have some important effects on the
Coleman—Glashow relations referred to in the introduc-
tory section. First, the term that comes along with A0,
MkQ

8;loop 1 in Eq. (34), yields baryon magnetic moments that

satisfy relations (1), whereas violations to them are due to

the terms that accompany to A1 and A2, which are MkQ̄
8;loop 1

and MkQ
10þ10;loop 1

, respectively. For instance, for the first

relation, one has

μðloop 1ÞΣþ − μðloop 1Þp ¼
�
− 11

36
½IðmK; 0; μÞ − Iðmπ; 0; μÞ� − 5

18
½IðmK;Δ; μÞ − Iðmπ;Δ; μÞ�

	
a21

− 1

18
½IðmK; 0; μÞ − Iðmπ; 0; μÞ�a1b2 þ

1

36
½IðmK; 0; μÞ − Iðmπ; 0; μÞ�b22

− 11

54
½IðmK; 0; μÞ − Iðmπ; 0; μÞ�a1b3 − 1

54
½IðmK; 0; μÞ − Iðmπ; 0; μÞ�b2b3

− 5

18
½IðmK;Δ; μÞ − Iðmπ;Δ; μÞ�a1c3: (46)

Analogous results are obtained for the remaining relations
and will not be listed here.
In addition, we can verify that the sum rules derived by

Caldi and Pagels [8] are also satisfied for Δ ≠ 0 in our
approach, namely,

μðloop 1ÞΣþ þ 2μðloop 1ÞΛ þ μðloop 1ÞΣ− ¼ 0; (47)

μðloop 1Þ
Ξ0 þ μðloop 1ÞΞ− þ μðloop 1Þn − 2μðloop 1ÞΛ þ μðloop 1Þp ¼ 0;

(48)

and

μðloop 1ÞΛ − ffiffiffi
3

p
μðloop 1Þ
ΛΣ0 − μðloop 1Þ

Ξ0 − μðloop 1Þn ¼ 0. (49)

In turn, the isospin relation

μðloop 1ÞΣþ − 2μðloop 1ÞΣ0 þ μðloop 1ÞΣ− ¼ 0 (50)

also holds to this order, as it should.
Similarly, for decuplet baryons we find that the I ¼ 2

sum rules introduced in Ref. [21] are also satisfied,

μðloop 1ÞΔþþ − μðloop 1ÞΔþ − μðloop 1ÞΔ0 þ μðloop 1ÞΔ− ¼ 0; (51)

μðloop 1ÞΣ�þ − 2μðloop 1ÞΣ�0 þ μðloop 1ÞΣ�− ¼ 0; (52)

whereas for I ¼ 3

μðloop 1ÞΔþþ − 3μðloop 1ÞΔþ þ 3μðloop 1ÞΔ0 − μðloop 1ÞΔ− ¼ 0. (53)

For transition magnetic moments, the isotensor combina-
tions for I ¼ 2 read [21]

μðloop 1ÞΔþp − μðloop 1ÞΔ0n
¼ 0; (54)

and

μðloop 1ÞΣ�þΣþ − 2μðloop 1ÞΣ�0Σ0 þ μðloop 1ÞΣ�−Σ− ¼ 0. (55)

In summary, the introduction of a nonvanishing Δ does
not modify the sum rules between magnetic moments
derived in previous works.

B. Diagrams of order Oðmq ln mqÞ
The loop diagrams displayed in Fig. 2 contribute to order

Oðmq ln mqÞ to the baryon magnetic moments. To incor-
porate the effects of a nonvanishing Δ, the same approach
as in the previous case could be followed. This task,
however, is rather involved. We will follow a more
pragmatic approach instead by using a simple argument:
due to the fact that the baryon axial vector current operator
and the baryon magnetic moment operator share the same
kinematical properties in the large-Nc limit, then the
analysis of the former presented in Ref. [18] will help
us save a substantial amount of effort in the present
analysis.
Thus, in a close analogy with Eq. (14) of Ref. [18], the

operator that yields the one-loop correction to the baryon
magnetic moment from diagrams in Fig. 2(a)–(d) can be
cast into the single expression1

1Equation (53) of Ref. [10] is the analog of the first
summand in Eq. (56). However, in that reference’s Eq. (53)
the 1=2 factor was absorbed into the loop integral, where a
minus sign is missing. This will be pointed out in a forth-
coming erratum.
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δMkc
loop 2ða-dÞ ¼

1

2
½Aja; ½Ajb;Mkc��Πab

ð1Þ

− 1

2
fAja; ½Mkc; ½M; Ajb��gΠab

ð2Þ

þ 1

6

�
½Aja; ½½M; ½M; Ajb��;Mkc��

− 1

2
½½M; Aja�; ½½M; Ajb�;Mkc��

�
Πab

ð3Þ þ � � � ;

(56)

so, the actual correction δMk
loop 2ða-dÞ can be obtained as

δMk
loop 2ða-dÞ ¼ δMkQ

loop 2ða-dÞ: (57)

Let us notice that in Eq. (56), Aja and Ajb represent the
meson-baryon vertices, and Mkc denotes an insertion of
the baryon magnetic moment operator. Similarly, M is the
baryon mass operator, and Πab

ðnÞ represents a symmetric
tensor which decomposes into flavor singlet, flavor 8, and
flavor 27 representations as [7]

Πab
ðnÞ ¼ FðnÞ

1 δab þ FðnÞ
8 dab8

þ FðnÞ
27

�
δa8δb8 − 1

8
δab − 3

5
dab8d888

	
; (58)

where

FðnÞ
1 ¼ 1

8
½3FðnÞðmπ; 0; μÞ þ 4FðnÞðmK; 0; μÞ

þ FðnÞðmη; 0; μÞ�; (59a)

FðnÞ
8 ¼ 2

ffiffiffi
3

p

5

�
3

2
FðnÞðmπ; 0; μÞ − FðnÞðmK; 0; μÞ

− 1

2
FðnÞðmη; 0; μÞ

	
; (59b)

FðnÞ
27 ¼ 1

3
FðnÞðmπ; 0; μÞ − 4

3
FðnÞðmK; 0; μÞ

þ FðnÞðmη; 0; μÞ: (59c)

Here FðnÞðmΠ; 0; μÞ represents the degeneracy limit
Δ=mΠ → 0 of the general function FðnÞðmΠ;Δ; μÞ,
defined as

FðnÞðmΠ;Δ; μÞ≡ ∂nFðmΠ;Δ; μÞ
∂Δn ; (60)

where μ is the scale parameter of dimensional regulariza-
tion. The function Fðm;Δ; μÞ along with its derivatives
is given explicitly in Appendix A of Ref. [18]. In the
degeneracy limit, one finds

Fð1Þðm; 0; μÞ ¼ − m2

16π2f2
ln

m2

μ2
; (61a)

Fð2Þðm; 0; μÞ ¼ − 1

8πf2
m; (61b)

Fð3Þðm; 0; μÞ ¼ 1

4π2f2
ln

m2

μ2
: (61c)

Notice that in Eq. (61) we have kept nonanalytic terms in
the quark mass explicitly. Analytic terms are scheme
dependent and have the same form as higher-dimension
terms in the chiral Lagrangian, so they have been omitted.
The computation of the group theoretic structure

involved in the loop graphs of Fig. 2 can be performed
following the lines of Ref. [18]. Our interest here is
computing corrections of relative order Oð1=N2

cÞ to Mkc,
which is order OðNcÞ. In other words, we need to retain
terms up to order Oð1=N3

cÞ in δMkc in Eq. (56). For
vanishing Δ, we will borrow the expressions listed in
Appendix B of Ref. [10].
For a nonvanishing Δ, however, the insertion of the

operatorMkc, which introduces different coefficients in the
expansion compared to Akc, does not allow us to straight-
forwardly borrow the expressions listed in Appendix B of
Ref. [18]. We thus have to take a few steps backward and
recalculate some operator reductions. We should stress the
fact that in Refs. [10] and [18], we inadvertently kept the
operator

fJ2; ½Gkc; fJr; Gr8g�g − fJ2; ½Gk8; fJr; Grcg�g
þ f½J2; Gkc�; fJr; Gr8gg − f½J2; Gk8�; fJr; Grcgg
− fJk; ½fJm;Gmcg; fJr; Gr8g�g; (62)

which vanishes identically. So its presence does not affect
any of the expressions where it appears.
After a long, tedious, but otherwise standard, calculation,

the one-loop correction to the baryon magnetic moment
operator arising from graphs in Fig. 2(a)–(d) can be
organized as

δMkc
loop 2ða-dÞ ¼ δMkc

1 þ δMkc
8 þ δMkc

27; (63)

where

δMkc
1 ¼

X7
i¼1

xiXkc
i ; (64)

δMkc
8 ¼

X30
i¼1

yiYkc
i ; (65)

and
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δMkc
27 ¼

X47
i¼1

ziZkc
i : (66)

The subscript in each summand in Eq. (63) denotes the
SU(3) flavor representation it comes from. The operator
bases Xi, Yi, and Zi along with the coefficients that
accompany them, xi, yi, and zi, are listed in Appendix C
for the sake of completeness.
As for the one-loop contribution arising from Fig. 2(e),

following Refs. [10,18] and fixing signs and factors, the
correction can be written as2

δMk
loop 2ðeÞ ¼ − 1

2
½Ta; ½Tb;Mk��Πab; (67)

where Πab is a symmetric tensor similar to the one
introduced in Eq. (58), except that now the integral over
the loop is [19]

Gðm; μÞ ¼ i
f2

Z
d4k
ð2πÞ4

1

k2 −m2
¼ m2

16π2f2

�
ln

m2

μ2
− 1

	
:

(68)

Following Ref. [10], δMk
loop 2ðeÞ can be decomposed as

δMk
loop 2ðeÞ ¼ G1M

kQ
1;loop 2ðeÞ þ G8M

kQ
8;loop 2ðeÞ

þ G27M
kQ
27;loop 2ðeÞ; (69)

where the group structures of the double commutator read
as follows:
(1) flavor singlet contribution:

Mkc
1;loop 2ðeÞ ¼ − 1

2
½Ta; ½Ta;Mkc�� ¼ − 3

2
Mkc; (70)

(2) flavor octet contribution:

Mkc
8;loop 2ðeÞ ¼ − 1

2
dab8½Ta; ½Tb;Mkc��

¼ − 3

4
dc8eMke; (71)

(3) flavor 27 contribution:

Mkc
27;loop 2ðeÞ ¼ − 1

2
½T8; ½T8;Mkc��

¼ − 1

2
fc8ef8egMkg: (72)

Let us notice that in order forMkc
27;loop 2ðeÞ to be a truly 27

contribution singlet and octet pieces must be subtracted off.

Similarly, the functions G1, G8, and G27 have the same
structure as their counterparts given by Eqs. (59a), (59b),
and (59c), respectively, written in terms of Gðm; μÞ. Let us
notice that by retaining only the nonanalytic terms in mq in
the loop integrals Fð1ÞðmΠ; 0; μÞ ¼ −GðmΠ; μÞ.

IV. BARYON MAGNETIC MOMENT WITH
PERTURBATIVE SU(3) SYMMETRY BREAKING

In the conventional chiral momentum counting scheme,
tree diagrams involving higher-order vertices will also
contribute to the magnetic moments [12,22] along with
the one-loop contributions already discussed. Some of them
are needed as counterterms for the divergent parts of the
integrals over the loops and are accompanied by low-energy
constants, which introduce more unknowns to the low-
energy expansion. The leading SU(3) breaking effects of the
magnetic moments thus will also have contributions from
the effective Lagrangian of order p4 [12,22], which yield
contributions linear in the quark mass. The dependence of
the loop integrals on the renormalization scale μ are of the
forms ln μ2 for Fð3Þ, m2 ln μ2 for Fð1Þ and G, Δ ln μ2 for
Fð2Þ and I, and Δ2 ln μ2 also for Fð1Þ, where the functions
Iðm;Δ; μÞ, FðnÞðm;Δ; μÞ, and Gðm; μÞ are given in
Eqs. (33), (60), and (68), respectively. In most of the cases,
the μ dependence of the loop integrals can be compensated
by the lowest-order coupling constants, except for the term
m2 ln μ2, which is formally canceled by the counterterms of
order OðmqÞ.
In the combined formalism we work with, a convenient

way of accounting for terms of orderOðmqÞ springs from the
fact that flavor SU(3) symmetry breaking transforms as a
flavor octet. Thus, we need to incorporate SB to the baryon
magnetic moment operator to linear order in ϵ ∝ ms=Λχ .

3

Before proceeding any further, we would like to com-
ment on the comparison between the heavy baryon
Lagrangian with a 1=Nc expansion and the heavy baryon
Lagrangian without a 1=Nc expansion. More precisely, we
want to point out how the different diagrams occurring in
heavy baryon chiral perturbation theory (i.e., without 1=Nc
expansion) are related to our combined formalism. In fact,
we have already pointed out that there is a one-to-one
correspondence between the parameters of the octet and
decuplet chiral Lagrangian and the coefficients of the 1=Nc
baryon chiral Lagrangian at the physical value Nc ¼ 3. The
relation between the flavor octet baryon-pion couplings D,
F, C, H and the coefficients of the 1=Nc baryon chiral
Lagrangian has been provided by Eq. (43). If one further
includes the SU(3) invariant couplings μD, μF, μC, μT of
heavy baryon chiral perturbation theory [but still neglects
SU(3) breaking effects], then the correspondence is given
by Eq. (19). Finally, if one includes SU(3) symmetry2Equation (63) of Ref. [10] is the analog of Eq. (67). However,

in that reference’s Eq. (63), the 1=2 factor was absorbed into the
loop integral, where a minus sign is missing. This will be pointed
out in a forthcoming erratum.

3ϵ is a dimensionless measure of SU(3) symmetry breaking;
we consider ϵ ∼ 30% for definiteness.
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breaking effects at linear order in the quark mass matrix,
seven new independent terms arise in the heavy baryon
Lagrangian at order p4 [11]. The seven new effective
constants accompanying these terms are related to the
various coefficients of the 1=Nc expansion that account for
SB and that we present below. While the exact correspon-
dence is not needed here, we emphasize that these addi-
tional coefficients—-and the additional tree-level diagrams
occurring at order p4 in heavy baryon chiral perturbation
theory—are encoded in the SB coefficients in our com-
bined framework and therefore are accounted for in our
numerical analysis.
The issue of SB for a spin-1 object that transforms as a

flavor octet under SU(3) has been analyzed in detail in
Ref. [23]. This study was then used in the construction of
the corrections to the baryon axial vector operator of
Ref. [18]. Thus, the analysis of SB for the baryon magnetic
moment operator is then straightforward if we follow the
lines of the previous analyses.
If we neglect isospin breaking and include first-

order SU(3) symmetry breaking, then Mkc has pieces
transforming according to all SU(3) representations
contained in the tensor product ð1; 8 ⊗ 8Þ ¼ ð1; 1Þ⊕
ð1; 8SÞ⊕ð1; 8AÞ⊕ð1; 10þ 10Þ⊕ð1; 27Þ, namely,

δMkc
SB ¼ δMkc

SB;1 þ δMkc
SB;8 þ δMkc

SB;10þ10
þ δMkc

SB;27: (73)

The operators in the different representations are given as
follows:

A. (1,1)

The 1=Nc expansion for the (1,1) operator, to relative
order 1=N2

c, reads

δMkc
SB;1 ¼ m1;1

1 δc8Jk þm1;1
3

1

N2
c
δc8fJ2; Jkg; (74)

where the superscripts attached to the coefficients m1;1
i

indicate the spin-flavor representation. Higher-order terms
can be obtained by anticommuting the operators retained
with J2=N2

c.

B. (1,8)

The 1=Nc expansion for the ð1; 8Þ operator is written as

δMkc
SB;8 ¼ n1;81 dce8Gke þ n1;82

1

Nc
dce8Dke

2 þ n1;83

1

N2
c
dce8Dke

3

þ n1;84

1

N2
c
dce8Oke

3 : (75)

Time reversal rules out a similar series with the d symbol
replaced by the f symbol. There is another series for the
(1,8) operator, which begins with

n̄1;82

1

Nc
fce8ϵijkfJi; Gjeg; (76)

and higher-order terms can be constructed by anticommut-
ing the leading operator with J2=N2

c. Let us notice that

fce8ϵijkfJi; Gjeg ¼ ½J2; ½T8; Gkc��: (77)

The right-hand side of Eq. (77) shows that the operator only
contributes to processes where both spin and strangeness
are changed. These processes have not been observed, so
the series (76) will be excluded.

C. ð1;10þ 10Þ
To relative order 1=N2

c, the series for the ð1; 10þ 10Þ
symmetry breaking term can be written as

δMkc
SB;10þ10

¼ m1;10þ10
2

1

Nc
ðfGkc; T8g − fGk8; TcgÞ

þm1;10þ10
3

1

N2
c
ðfGkc; fJr; Gr8gg

− fGk8; fJr; GrcggÞ; (78)

where the subtractions of the flavor-octet operators off
Eq. (78) are found to be proportional to the operator
½J2; ½T8; Gkc�� and will be ignored [18].

D. (1,27)

To relative order 1=N2
c, the series for the (1,27) operator

is written as

δMkc
SB;27 ¼ m1;27

2

1

Nc
ðfGkc; T8g þ fGk8; TcgÞ

þm1;27
3

1

N2
c
fJk; fTc; T8gg

þ m̄1;27
3

1

N2
c
ðfGkc; fJr; Gr8gg

þ fGk8; fJr; GrcggÞ: (79)

The subtractions of the flavor-singlet and flavor-octet pieces
off Eq. (79) are found to be already contained in Eqs. (74)
and (75), so Eq. (79) can be considered as final [18].

V. TOTAL CORRECTION TO THE
BARYON MAGNETIC MOMENT
AND CONSISTENCY CHECKS

The total corrections to the baryon magnetic moment
Mk arise from both one-loop and SB corrections. The one-
loop correction, δMk

1L, which comes from Figs. 1 and 2, is
obtained by adding up δMloop 1, given by Eq. (29), and
δMloop 2, which is the resultant of adding up Mloop 2ða-dÞ and
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Mloop 2ðeÞ, givenbyEqs. (63) and(69), respectively. In turn,SB
corrections come from Eq. (73). The overall correction to the
baryon magnetic moment thus amounts to

Mk þ δMk ¼ MkQ þ δMkQ
1L þ δMkQ

SB : (80)

The matrix elements of operator (80) between SU(6)
symmetric baryon states give the actual values of the
baryon magnetic moments. The rather long expressions
obtained can indeed shed light on the role SU(3)
symmetry breaking plays compared to the SU(3) sym-
metric case. In this regard, we can perform a series
of consistency checks of our expressions using the
Coleman—Glashow relations (1), the Caldi—Pagels
sum rules (47)–(49), and the isotensor combinations
among baryon magnetic moments (50)–(55).
The Coleman—Glashow relations, valid in the limit of

exact SU(3) symmetry, thus get corrections from both one-
loop and SB. The former contributes with the 8 and 27
components, whereas the singlet component respects these
relations. On the other hand, all the components of SB are
present in these relations.
The Caldi—Pagels sum rules are valid up to one-loop

corrections of order Oðm1=2
q Þ, so corrections to them must

arise from one-loop corrections of order Oðmq ln mqÞ and
SB. Explicitly, we find that only the 8 and 27 components
of Fig. 2(a–d) correct these sum rules, whereas Fig. 2(e)
does not play any role here. Similarly, SB corrects these
sum rules with the 1 and 27 components, whereas the 8 and
10þ 10 respect them. This is in agreement with the 1=Nc
power counting presented in Table VIII of Ref. [23], where
it is pointed out that the 8 and 10þ 10 components of SB
contribute at order Oðm1=2

q Þ, whereas the 1 and 27
contribute at order Oðmq ln mqÞ.
Finally, the isotensor combinations are respected both by

one-loop and SB corrections, as expected.
We are now in a position of performing a detailed

comparison of our theoretical expressions with the exper-
imental data [16] through various fits. This is now
discussed in the next section.

VI. FITS TO THE EXPERIMENTAL DATA

We now proceed to perform a numerical comparison of
the theoretical expressions obtained here with the available
experimental data through a least-squares fit. Nowadays,
only 10 out of 27 possible magnetic moments are reported
in the Review of Particle Physics [16]. They correspond to
the magnetic moments of the octet baryons (excluding μΣ0 ,
which has not been measured) and the transition magnetic
moment μΛΣ0 , along with μΩ− and μΔþp. To diversify the
data, we use μΔþþ reported in Ref. [24], which was obtained
from radiative πþp scattering with a dynamical model. We
also use two more data, μΣ�0Λ and μΣ�þΣþ , measured recently
by the CLAS Collaboration [25,26]. We thus have 13 data
points about magnetic moments at our disposal. All this

information is displayed in the third column (from left to
right) of Table I.
We can perform a number of fits to compare theory and

experiment. However, we consider it pertinent to perform
those fits which somehow display information on the
departure from exact SU(3) symmetry. In doing this, we
find some limitations about the number of magnetic
moments measured and the number of unknown parameters
we need to determine: at tree level, there are four param-
eters, namely, m1;…; m4. One-loop corrections introduce
four more parameters, the ones which come along the axial
vector current operator, namely, a1, b2, b3, and c3. SB
introduces 11 more parameters, m1;1

1 , m1;1
3 , n1;81 ;…; n1;84 ,

m1;10þ10
2 , m1;10þ10

3 , m1;27
2 , m1;27

3 , and m̄1;27
3 . We thus need to

implement some criteria which allows us to reduce the
number of parameters compared to the number of measured
quantities. Let us discuss briefly what can be done.
At tree level, the operators that accompany the coefficients

m1, m2, m3, and m4 are of orders OðNcÞ, Oð1=NcÞ,
Oð1=NcÞ, and Oð1=NcÞ, respectively, and so are the
operators that come along the coefficients n1;81 , n1;82 , n1;83 ,
and n1;84 [23]. Similarly, m1;1

1 and m1;1
3 are accompanied by

operators which are of orders Oð1Þ and Oð1=N2
cÞ, respec-

tively. In turn, m1;10þ10
2 and m1;10þ10

3 come along with
operators of orders Oð1Þ and Oð1=NcÞ, respectively.
Finally, m1;27

2 , m1;27
3 and m̄1;27

3 go with operators of orders
Oð1Þ, Oð1=N2

cÞ and Oð1=NcÞ, respectively [23]. This
apparent complexity suggests some patterns about the terms
one needs to retain for a consistent numerical analysis.

A. SU(3) symmetric fit

The simplest fit we can perform is an SU(3) symmetric
fit. For this task we keep only the terms that come along
with Mk at tree level, namely, m1, m2, m3, and m4. This is
identical to a fit using the SU(3) invariant couplings μD, μF,
μC, μT of heavy baryon chiral perturbation theory [11],
neglecting all SU(3) breaking effects.
Without further ado, the fit yields

m1 ¼ 5.03� 0.51; m2 ¼ 0.72� 1.54;

m3 ¼ −0.30� 0.98; m4 ¼ 4.06� 1.49; (81)

or equivalently, μD ¼ 2.47� 1.17, μF ¼ 1.76� 1.11,
μC ¼ 2.63� 0.81, and μT ¼ −14.12� 5.04. Here a theo-
retical error of δμth ¼ 0.362μN has been added in quadrature
in order to achieve χ2 ¼ 1=degrees of freedom. The best-fit
parameters listed in Eq. (81) depart noticeably from the
expected order OðN0

cÞ values; needless to say, the
numerical values of the SU(3) invariant couplings do
not match the ones found in the original paper [11]. This
is not a withdrawal of our approach. Actually, we could
have scaled all the theoretical expressions by dividing
them by a factor, let us say, α0 ¼ 2μexpp , in the same way

GIOVANNA AHUATZIN et al. PHYSICAL REVIEW D 89, 034012 (2014)

034012-14



we did in Ref. [10]. We prefer not to do so in order to
compare our outputs with the ones of Ref. [23]. Indeed,
Fit A in the present case is equivalent to Fit A of this
reference, and our best-fit parameters (81) are comparable
to those obtained there.
The predicted magnetic moments are listed in the

column labeled Fit A in Table I. A quick glance at
these results shows that the magnetic moments are
poorly determined in the limit of exact SU(3)
symmetry.

B. Perturbative SU(3) symmetry breaking

The next fit consists of taking into account only the SB
effects. Strictly speaking, there are 15 free parameters,
which exceed the available data. We can perform a kind of a
restricted fit if we ignore factors of order 1=N2

c in the 1=Nc
expansion, which is equivalent to rule out the terms that
come along with m1;1

3 and m1;27
3 . We can reduce by one

more parameter if we neglect the 1=Nc contribution of the
27 and leave only the order Oð1Þ term, namely, m1;27

2 . We
are thus left with 12 parameters. The fit yields

m1 ¼ 4.48� 0.14; m2 ¼ 0.83� 0.33;

m3 ¼ 0.08� 0.32; m4 ¼ 5.86� 2.14;

m1;1
1 ¼ 0.12� 0.12;

n1;81 ¼ 1.18� 0.27; n1;82 ¼ −0.26� 0.55;

n1;83 ¼ 0.54� 0.71; n1;84 ¼ −4.89� 5.37;

m1;10þ10
2 ¼ 0.42� 0.14; m1;10þ10

3 ¼ 1.66� 2.40;

m1;27
2 ¼ 0.06� 0.26: (82)

The theoretical error added in quadrature to get χ2 ¼
1=degrees of freedom this time is δμth ¼ 0.062μN , which
is considerably smaller than the one added in the previous
case. This output is equivalent to fit F of Ref. [23], and our
best-fit parameters are fairly comparable to the ones
obtained there. We notice some rearrangements in the
leading-order parameters compared to the symmetric case,
except for m4, which remains ill determined (even its value
worsens in this case). The parameters arising from SB are
roughly speaking according to the expected OðϵÞ ∼ 30%

TABLE I. Numerical values of baryon magnetic moments found in this work. Comparisons with other determinations are also
included. The entries are given in nuclear magnetons.

Baryon Experimental data Fit A Fit B Fit C Fit D Ref. [12] Ref. [14] Ref. [21] Ref. [23]a Ref. [27]

1 n −1.913� 0.000 −1.644 −1.931 −1.936 −1.929 −1.91 −1.93
2 p 2.793� 0.000 2.587 2.793 2.793 2.793 2.79 2.70
3 Σ− −1.160� 0.025 −0.943 −1.155 −1.154 −1.155 −1.16 −1.15
4 Σ0 0.822 0.654 0.655 0.653 0.65 0.77(10) 0.65
5 Σþ 2.458� 0.010 2.587 2.463 2.464 2.462 2.46 2.46
6 Ξ− −0.651� 0.003 −0.943 −0.651 −0.651 −0.651 −0.65 −0.65
7 Ξ0 −1.250� 0.014 −1.644 −1.269 −1.273 −1.267 −1.25 −1.27
8 Λ −0.613� 0.004 −0.822 −0.586 −0.579 −0.589 −0.61 −0.59
9 ΛΣ0 1.61� 0.08 1.424 1.529 1.526 1.530 1.40 −1.53
10 Δþþ 6.14� 0.51b 5.252 6.140 6.140 6.140 6.04ð13Þ 6.14
11 Δþ 2.626 2.857 2.252 3.058 2.84(2) 3.04(13) 2.79
12 Δ0 0.000 −0.427 −1.636 −0.023 −0.36ð9Þ 0.00(10) −0.56
13 Δ− −2.626 −3.710 −5.523 −3.105 −3.56ð20Þ −3.04ð13Þ −3.91
14 Σ�þ 2.626 3.350 3.896 2.520 3.07(12) 3.35(13) 3.49
15 Σ�0 0.000 0.102 −0.268 −0.159 0 0.32(11) 0.10
16 Σ�− −2.626 −3.147 −4.433 −2.838 −3.07ð12Þ −2.70ð13Þ −3.28
17 Ξ�0 0.000 0.630 1.195 −0.117 0.36(9) 0.64(11) 0.77
18 Ξ�− −2.626 −2.583 −3.265 −2.476 −2.56ð6Þ −2.36ð14Þ −2.65
19 Ω− −2.02� 0.05 −2.626 −2.020 −2.020 −2.020 −2.02 −2.02
20 Δþp 3.51� 0.09 3.329 3.510 3.510 3.510 3.51
21 Δ0n 3.329 3.510 3.510 3.510 3.51(11) 3.51
22 Σ�0Λ 2.73� 0.25c 2.883 2.730 2.732 2.731 2.93(11) 2.74 2.68(04)
23 Σ�0Σ0 1.665 1.919 2.389 1.592 1.39(11) 2.01 1.61(07)
24 Σ�þΣþ 3.17� 0.36d 3.329 3.170 3.166 3.168 2.97(11) 3.22 3.22(05)
25 Σ�−Σ− 0.000 0.667 1.611 0.016 −0.19ð11Þ 0.79 0.0(20)
26 Ξ�0Ξ0 3.329 3.137 3.533 2.787 2.96(12) 3.25 3.21(15)
27 Ξ�−Ξ− 0.000 0.667 1.568 0.033 −0.19ð11Þ 0.79

aFit F of this reference.
bValue reported in Ref. [24].
cValue extracted from Ref. [25].
dValue extracted from Ref. [26].
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measure of SB, except for n1;84 , which turns larger than
expected. With these best-fit parameters, the predicted
magnetic moments are listed in Table I, labeled as fit B.
In this case, the agreement between theory and experiment
is good.

C. Total correction

The next relevant fit we can perform consists of adding
one-loop corrections to the previous cases. We split this
analysis into two parts. In a first stage, we consider the
degenerate case, namely, Δ ¼ 0. In a second stage, we
consider a nonvanishing Δ, which we set to Δ ¼
0.231 GeV=c2 for definiteness. This will allow us to
quantify the effects of Δ. Let us recall that one-loop
corrections depend also on the quantities that parametrize
the baryon axial vector current. In other words, we need the
values of a1, b2, b3, and c3. The impossibility of extracting
them from the current data forces us to use them from other
sources. For this purpose we use the best-fit values reported
in Ref. [18], where the renormalization of the baryon axial
vector current was computed at the very same order of
approximation in 1=Nc as we have done for the baryon
magnetic moment in the present analysis. The values

obtained there are a1 ¼ 0.64, b2 ¼ 0.21, b3 ¼ 1.35, and
c3 ¼ 1.90. For definiteness, we use the physical masses of
the pseudoscalar mesons listed in Ref. [16].
Thus, for Δ ¼ 0 we find

m1 ¼ 7.27� 0.11; m2 ¼ −1.92� 0.19;

m3 ¼ 0.76� 0.24; m4 ¼ 9.44� 1.32;

m1;1
1 ¼ 0.31� 0.15;

n1;81 ¼ −0.53� 0.31; n1;82 ¼ 1.50� 0.64;

n1;83 ¼ 1.62� 0.84; n1;84 ¼ −12.39� 5.39;

m1;10þ10
2 ¼ −1.39� 0.17; m1;10þ10

3 ¼ 1.51� 2.71;

m1;27
2 ¼ −0.44� 0.32: (83)

The theoretical error added in quadrature to get χ2 ¼
1=degrees of freedom is δμth ¼ 0.075μN . The predicted
magnetic moments are listed in Table I labeled as fit C, and
the corresponding tree level and SU(3) breaking compo-
nents are listed in Table II for the sake of completeness.

TABLE II. SU(3) flavor contributions to the baryon magnetic moments obtained for fit C.

Fig. 2(a-d) Fig. 2(e)
Total Tree SB Fig. 1 1 8 27 1 8 27

n −1.936 −2.508 0.294 1.020 −0.359 −0.018 0.001 −0.678 0.310 0.002
p 2.793 3.443 −0.345 −1.407 0.347 0.042 −0.006 0.930 −0.226 0.014
Σ− −1.154 −0.934 −0.241 −0.142 0.012 0.082 −0.005 −0.252 0.310 0.018
Σ0 0.655 1.254 0.089 −1.359 0.180 0.016 0.001 0.339 0.113 0.022
Σþ 2.464 3.443 0.418 −2.575 0.347 −0.050 0.008 0.930 −0.084 0.027
Ξ− −0.651 −0.934 0.190 0.639 0.012 −0.058 0.008 −0.252 −0.226 −0.029
Ξ0 −1.273 −2.508 −0.117 2.466 −0.359 0.050 −0.011 −0.678 −0.084 −0.032
Λ −0.579 −1.254 0.090 1.359 −0.180 −0.124 0.004 −0.339 −0.113 −0.022
ΛΣ0 1.526 2.172 0.001 −1.228 0.311 −0.121 −0.005 0.587 −0.195 0.004
Δþþ 6.140 6.615 0.823 −5.329 3.408 −0.838 −0.068 1.787 −0.298 0.039
Δþ 2.252 3.308 0.016 −3.161 1.704 −0.499 −0.041 0.893 0.000 0.033
Δ0 −1.636 0.000 −0.791 −0.993 0.000 −0.161 −0.014 0.000 0.298 0.026
Δ− −5.523 −3.308 −1.598 1.175 −1.704 0.177 0.013 −0.893 0.595 0.020
Σ�þ 3.896 3.308 1.327 −2.168 1.704 −0.873 −0.003 0.893 −0.298 0.007
Σ�0 −0.268 0.000 0.268 0.000 0.000 −0.517 −0.019 0.000 0.000 0.000
Σ�− −4.433 −3.308 −0.791 2.168 −1.704 −0.161 −0.035 −0.893 0.298 −0.007
Ξ�0 1.195 0.000 1.327 0.993 0.000 −0.873 0.072 0.000 −0.298 −0.026
Ξ�− −3.265 −3.308 0.016 3.161 −1.704 −0.499 −0.005 −0.893 0.000 −0.033
Ω− −2.020 −3.308 0.823 4.155 −1.704 −0.838 0.101 −0.893 −0.298 −0.059
Δþp 3.510 5.654 −2.121 −3.064 2.530 −0.478 −0.040 1.527 −0.509 0.011
Δ0n 3.510 5.654 −2.121 −3.064 2.530 −0.478 −0.040 1.527 0.011 −0.509
Σ�0Λ 2.732 4.896 −1.585 −3.464 2.191 −0.230 0.033 1.323 −0.441 0.010
Σ�0Σ0 2.389 2.827 0.915 −3.833 1.265 0.133 0.014 0.764 0.254 0.050
Σ�þΣþ 3.166 5.654 0.053 −6.770 2.530 0.085 0.031 1.527 0.000 0.056
Σ�−Σ− 1.611 0.000 1.777 −0.896 0.000 0.180 −0.003 0.000 0.509 0.045
Ξ�0Ξ0 3.533 5.654 0.291 −6.770 2.530 0.213 0.033 1.527 0.000 0.056
Ξ�−Ξ− 1.568 0.000 1.777 −0.896 0.000 0.180 −0.047 0.000 0.509 0.045
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TABLE III. SU(3) flavor contributions to the baryon magnetic moments obtained for fit D.

Fig. 1 Fig. 2(a-d), OðΔ0Þ Fig. 2(a-d), OðΔÞ Fig. 2(a-d), OðΔ2Þ Fig. 2(e)
Total Tree SB OðΔ0Þ OðΔÞ 1 8 27 1 8 27 1 8 27 1 8 27

n −1.929 −2.755 0.313 0.418 0.568 −0.743 0.140 0.001 0.597 −0.355 −0.004 0.248 0.113 0.001 −0.744 0.276 −0.003
p 2.793 3.073 0.527 −1.382 −0.095 0.311 −0.047 −0.011 0.680 −0.491 −0.015 −0.233 −0.114 −0.001 0.830 −0.248 0.009

Σ− −1.155 −0.318 0.236 0.297 −0.379 0.431 0.051 0.000 −1.277 −0.411 0.015 −0.015 0.001 0.001 −0.086 0.276 0.021

Σ0 0.653 1.378 0.120 −0.781 −0.473 0.371 0.064 0.010 −0.298 −0.198 0.010 −0.124 0.050 0.006 0.372 0.124 0.024

Σþ 2.462 3.073 0.005 −1.860 −0.568 0.311 0.076 0.020 0.680 0.015 0.005 −0.233 0.099 0.010 0.830 −0.029 0.028

Ξ− −0.651 −0.318 0.604 0.940 −0.284 0.431 0.042 0.006 −1.277 −0.435 0.013 −0.015 −0.002 0.001 −0.086 −0.248 −0.025
Ξ0 −1.267 −2.755 −0.073 1.587 0.757 −0.743 −0.013 −0.020 0.597 −0.042 0.007 0.248 −0.013 −0.002 −0.744 −0.029 −0.030
Λ −0.589 −1.378 0.453 0.781 0.473 −0.371 −0.159 −0.007 0.298 −0.300 −0.009 0.124 0.027 −0.002 −0.372 −0.124 −0.024
ΛΣ0 1.530 2.386 0.288 −0.706 −0.492 0.643 −0.193 −0.002 −0.517 −0.088 0.006 −0.215 −0.020 0.004 0.645 −0.215 0.005

Δþþ 6.140 8.521 −0.236 −3.107 −1.073 0.029 −0.132 −0.067 −0.041 0.006 −0.066 0.295 0.049 −0.006 2.302 −0.383 0.051

Δþ 3.058 4.260 0.779 −1.843 −0.905 0.014 −0.243 −0.049 −0.020 −0.255 −0.015 0.147 −0.001 −0.005 1.151 0.000 0.042

Δ0 −0.023 0.000 1.795 −0.579 −0.736 0.000 −0.354 −0.031 0.000 −0.516 0.036 0.000 −0.051 −0.004 0.000 0.383 0.034

Δ− −3.105 −4.260 2.810 0.685 −0.568 −0.014 −0.464 −0.013 0.020 −0.777 0.087 −0.147 −0.101 −0.003 −1.151 0.767 0.025

Σ�þ 2.520 4.260 −0.076 −1.264 −0.168 0.014 −0.601 −0.025 −0.020 −0.464 −0.035 0.147 −0.025 0.001 1.151 −0.383 0.008

Σ�0 −0.159 0.000 0.859 0.000 0.000 0.000 −0.477 −0.017 0.000 −0.490 0.003 0.000 −0.038 0.001 0.000 0.000 0.000

Σ�− −2.838 −4.260 1.795 1.264 0.168 −0.014 −0.354 −0.009 0.020 −0.516 0.042 −0.147 −0.051 0.000 −1.151 0.383 −0.008
Ξ�0 −0.117 0.000 −0.076 0.579 0.736 0.000 −0.601 0.082 0.000 −0.464 0.082 0.000 −0.025 −0.013 0.000 −0.383 −0.034
Ξ�− −2.476 −4.260 0.779 1.843 0.905 −0.014 −0.243 0.029 0.020 −0.255 0.057 −0.147 −0.001 0.004 −1.151 0.000 −0.042
Ω− −2.020 −4.260 −0.236 2.423 1.641 −0.014 −0.132 0.100 0.020 0.006 0.132 −0.147 0.049 0.009 −1.151 −0.383 −0.076
Δþp 3.510 5.335 −0.908 −0.244 −2.874 2.952 −0.761 −0.043 −1.272 0.735 0.043 −0.308 −0.117 −0.001 1.441 −0.480 0.011

Δ0n 3.510 5.335 −0.908 −0.244 −2.874 2.952 −0.761 −0.043 −1.272 0.735 0.043 −0.308 −0.117 −0.001 1.441 0.011 −0.480
Σ�0Λ 2.731 4.620 −0.433 −0.296 −2.987 2.556 −0.405 0.034 −1.102 0.255 −0.024 −0.267 −0.065 0.002 1.248 −0.416 0.009

Σ�0Σ0 1.592 2.667 0.250 −0.328 −2.875 1.476 0.234 0.035 −0.636 −0.147 0.020 −0.154 0.038 0.004 0.721 0.240 0.047

Σ�þΣþ 3.168 5.335 0.333 −0.597 −5.174 2.952 0.384 0.069 −1.272 −0.120 −0.001 −0.308 0.065 0.009 1.441 0.000 0.053

Σ�−Σ− 0.016 0.000 0.167 −0.058 −0.575 0.000 0.084 0.001 0.000 −0.175 0.041 0.000 0.010 −0.002 0.000 0.480 0.042

Ξ�0Ξ0 2.787 5.335 0.408 −0.597 −5.174 2.952 0.293 0.065 −1.272 −0.440 −0.015 −0.308 0.042 0.006 1.441 0.000 0.053

Ξ�−Ξ− 0.033 0.000 0.167 −0.058 −0.575 0.000 0.084 −0.026 0.000 −0.175 0.080 0.000 0.010 0.004 0.000 0.480 0.042
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On the other hand, for Δ ¼ 0.231 GeV=c2, we find

m1 ¼ 6.61� 0.13; m2 ¼ −6.36� 0.19;

m3 ¼ 4.96� 0.27; m4 ¼ 9.41� 1.63;

m1;1
1 ¼ 0.99� 0.12;

n1;81 ¼ 1.77� 0.27; n1;82 ¼ −4.78� 0.47;

n1;83 ¼ −0.14� 0.72; n1;84 ¼ −7.22� 5.19;

m1;10þ10
2 ¼ −0.21� 0.14; m1;10þ10

3 ¼ −2.32� 2.39;

m1;27
2 ¼ −0.14� 0.24: (84)

The theoretical error added in quadrature to get χ2 ¼
1=degrees of freedom is δμth ¼ 0.058μN . The predicted
magnetic moments are listed in Table I labeled as fit D, and
the corresponding tree level and SU(3) breaking components
are listed in Table III, also for the sake of completeness.
The numerical values of the baryon magnetic moments

obtained with the inclusion of one-loop corrections
(fits C and D) are in good agreement with the experimental
ones. However, the predicted values for the unmeasured

ones differ between them in some cases rather remarkably.
For instance, the most important differences are observed in
the magnetic moments μΔ0 , μΔ− , μΣ�− , μΞ�0 , and in the
transition magnetic moments μΣ�−Σ− and μΞ�−Ξ− , for which
the values are radically different with the inclusion of Δ.
We can summarize our findings displayed in Tables II

and III, into the combined Table IV by adding up the
different flavor contributions from the loops. In all these
cases, SB represents an important contribution to the total
value. Besides, although individual contributions from
Figs. 1 and 2 might be large compared to the tree-level
values, in general there are numerical cancellations
between these two contributions, so the one-loop net
result is consistent with being a quantum correction. This
observation is not apparent in the previous Tables II
and III.
Some other interesting features extracted from the fits

can be better seen by plotting the deviations ΔμB ¼
μfit XB − μSUð3ÞB , where μfit XB is the magnetic moment of
baryon B predicted by fit X (X ¼ B, C, D) and μSUð3ÞB is
the magnetic moment given by the SU(3) symmetric fit,
namely, fit A. We plot ΔμB in Figs. 3, 4, and 5 for X ¼ B,

TABLE IV. SU(3) flavor contributions to the baryon magnetic moments.

Fit B Fit C Fit D
Tree SB Total Tree SB Loop 1 Loop 2 Total Tree SB Loop 1 Loop 2 Total

n −1.503 −0.428 −1.931 −2.508 0.294 1.020 −0.741 −1.936 −2.755 0.313 0.986 −0.473 −1.929
p 2.392 0.401 2.793 3.443 −0.345 −1.407 1.102 2.793 3.073 0.527 −1.476 0.670 2.793
Σ− −0.889 −0.266 −1.155 −0.934 −0.241 −0.142 0.164 −1.154 −0.318 0.236 −0.082 −0.991 −1.155
Σ0 0.751 −0.097 0.654 1.254 0.089 −1.359 0.671 0.655 1.378 0.120 −1.255 0.410 0.653
Σþ 2.392 0.071 2.463 3.443 0.418 −2.575 1.178 2.464 3.073 0.005 −2.428 1.812 2.462
Ξ− −0.889 0.238 −0.651 −0.934 0.190 0.639 −0.545 −0.651 −0.318 0.604 0.656 −1.593 −0.651
Ξ0 −1.503 0.234 −1.269 −2.508 −0.117 2.466 −1.114 −1.273 −2.755 −0.073 2.345 −0.783 −1.267
Λ −0.751 0.165 −0.586 −1.254 0.090 1.359 −0.774 −0.579 −1.378 0.453 1.255 −0.919 −0.589
ΛΣ0 1.301 0.227 1.529 2.172 0.001 −1.228 0.580 1.526 2.386 0.288 −1.198 0.054 1.530
Δþþ 5.440 0.700 6.140 6.615 0.823 −5.329 4.031 6.140 8.521 −0.236 −4.181 2.036 6.140
Δþ 2.720 0.137 2.857 3.308 0.016 −3.161 2.090 2.252 4.260 0.779 −2.748 0.766 3.058
Δ0 0.000 −0.427 −0.427 0.000 −0.791 −0.993 0.148 −1.636 0.000 1.795 −1.316 −0.503 −0.023
Δ− −2.720 −0.990 −3.710 −3.308 −1.598 1.175 −1.793 −5.523 −4.260 2.810 0.117 −1.772 −3.105
Σ�þ 2.720 0.630 3.350 3.308 1.327 −2.168 1.430 3.896 4.260 −0.076 −1.433 −0.232 2.520
Σ�0 0.000 0.102 0.102 0.000 0.268 0.000 −0.536 −0.268 0.000 0.859 0.000 −1.018 −0.159
Σ�− −2.720 −0.427 −3.147 −3.308 −0.791 2.168 −2.502 −4.433 −4.260 1.795 1.433 −1.805 −2.838
Ξ�0 0.000 0.630 0.630 0.000 1.327 0.993 −1.125 1.195 0.000 −0.076 1.316 −1.357 −0.117
Ξ�− −2.720 0.137 −2.583 −3.308 0.016 3.161 −3.135 −3.265 −4.260 0.779 2.748 −1.744 −2.476
Ω− −2.720 0.700 −2.020 −3.308 0.823 4.155 −3.690 −2.020 −4.260 −0.236 4.064 −1.587 −2.020
Δþp 3.495 0.015 3.510 5.654 −2.121 −3.064 3.041 3.510 5.335 −0.908 −3.117 2.200 3.510
Δ0n 3.495 0.015 3.510 5.654 −2.121 −3.064 3.041 3.510 5.335 −0.908 −3.117 2.200 3.510
Σ�0Λ 3.027 −0.297 2.730 4.896 −1.585 −3.464 2.886 2.732 4.620 −0.433 −3.283 1.827 2.731
Σ�0Σ0 1.747 0.171 1.919 2.827 0.915 −3.833 2.480 2.389 2.667 0.250 −3.202 1.877 1.592
Σ�þΣþ 3.495 −0.325 3.170 5.654 0.053 −6.770 4.229 3.166 5.335 0.333 −5.771 3.271 3.168
Σ�−Σ− 0.000 0.667 0.667 0.000 1.777 −0.896 0.731 1.611 0.000 0.167 −0.633 0.482 0.016
Ξ�0Ξ0 3.495 −0.358 3.137 5.654 0.291 −6.770 4.358 3.533 5.335 0.408 −5.771 2.816 2.787
Ξ�−Ξ− 0.000 0.667 0.667 0.000 1.777 −0.896 0.687 1.568 0.000 0.167 −0.633 0.499 0.033
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C, and D, respectively; in these graphs we also plot ΔμexpB ,
defined on the same footing as its theoretical counterpart.
On general grounds, large deviations from the SU(3)
estimates are found in the decuplet baryons, and in
particular μΔþþ and μΔ− exhibit the largest ones in
Fig. 3. One-loop corrections in the degenerate limit plus
SB, Fig. 4, do not improve the situation but even worsen it
for μΔ−, μΣ�0 , μΣ�−Σ− , and μΞ�−Ξ− . The inclusion of Δ seems
to correct the situation for the whole sector, as can be seen
in Fig. 5. If we plotted the relative deviation4 ΔμB=μ

SUð3Þ
B ,

we would realize that corrections to the SU(3) sym-
metric case fall in the �40%, �60% (except for μΔ0,

which acquires a sizable correction greater than 100%)
and �30% ranges for fits B, C, and D, respectively.
Definitely, one-loop corrections of orders Oðm1=2

q Þ and
Oðmq ln mqÞ with a nonvanishing Δ taken into account
simultaneously with SB yield SU(3) breaking corrections
consistent with expectations: we naively assume that
order OðmsÞ and order Oð1=NcÞ corrections are both
order OðϵÞ ∼ 30%.
In Ref. [10] one-loop corrections in the degenerate case

were analyzed without the inclusion of SB corrections. It
was found that the fit was quite unstable in the sense
that slight departures from the initial values of the param-
eters would yield rather different results. In the present
analysis, a stable fit is obtained by adding SB corrections.
Even better, taking also into account a nonvanishing Δ
provides the fit with stability and robustness hardly
attainable otherwise.
To close this section, we can numerically compare our

results with others in the literature. This comparison is
displayed in the last five columns (from left to right) in
Table I. For instance, Refs. [12,14] compute one-loop
corrections in baryon chiral perturbation theory to orders
p4 and p3, respectively. Except for the lowest-order terms,
the analytical comparison is not possible term by term, so
we content ourselves with performing a numerical com-
parison instead. In this respect, the numerical findings of
Ref. [12] are in remarkable agreement to our fit D (which
includes terms of order p4 and contributions from a
nonvanishing Δ) for all the octet baryons. Similarly,
Refs. [21] and [23] perform their analyses in the context
of the 1=Nc expansion. Their results are comparable to fit
B in our case. Finally, Ref. [27] provides calculations of
some decuplet-octet transition magnetic moments from
the CLAS experimental results. If we compare our
predictions from fit D with these ones, the agreement is
very good. Unfortunately, we cannot compare the
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FIG. 3 (color online). Deviation of baryon magnetic moments
(in units of μN) relative to the SU(3) symmetric fit. The open
circles are from fit B. The open diamonds are from the
experimental values. The baryon labels are indicated in the
horizontal axis, cf. Table I.
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FIG. 4 (color online). Deviation of baryon magnetic moments
(in units of μN) relative to the SU(3) symmetric fit. The open
circles are from fit C. The open diamonds are from the
experimental values. The baryon labels are indicated in the
horizontal axis, cf. Table I.
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FIG. 5 (color online). Deviation of baryon magnetic moments
(in units of μN) relative to the SU(3) symmetric fit. The open
circles are from fit D. The open diamonds are from the
experimental values. The baryon labels are indicated in the
horizontal axis, cf. Table I.

4Although plotting the relative deviation could be more
enlightening, important pieces of information would be lost
for those magnetic moments which are zero at the SU(3)
symmetry limit. We prefer to plot the absolute values of the
deviations instead.
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complete set of predictions of our fit D because there are
no other analyses available in the literature computed
under the same order of approximation.

VII. CONCLUDING REMARKS

In this paper we evaluated the magnetic moments of
baryons within large-Nc chiral perturbation theory, includ-
ing one-loop corrections of orders Oðm1=2

q Þ and
Oðmq ln mqÞ by following the lines of Ref. [10]. The
present analysis complements the previous one in the sense
that here we considered the effects of a nonvanishing
baryon decuplet-octet mass difference Δ and also the
effects of SB corrections. In the large-Nc limit,
Δ ∝ 1=Nc, so the degeneracy case constitutes a very good
first approximation. However, a more realistic situation
should consider Δ ≠ 0.
In a complete parallelism to Ref. [10], we constructed the

baryon operator that describes the orderOðm1=2
q Þ correction

to baryon magnetic moments. This correction arises from
the Feynman diagrams depicted in Fig. 1. The explicit
dependence on Δ is contained in the definition of the
baryon propagator (21). After a long, tedious, but otherwise
standard calculation, we obtained the spin-dependent
terms, Eqs. (40) and (41), which have to be combined
with the spin-independent ones already computed in
Ref. [10]. Expressions like Eq. (42) are thus obtained

for μðloop 1ÞB for all 27 possible magnetic moments.
On the other hand, corrections of order Oðmq ln mqÞ

were computed following the lines of Ref. [18], where
corrections to the baryon axial vector current within large-
Nc chiral perturbation theory were presented. We took
advantage of the fact that the baryon axial vector current
and the baryon magnetic moment operators share the same
kinematical properties in the large-Nc limit; one might
think that the only change is to replace the Akc operator
by the Mk operator in the corresponding expressions for
the one-loop corrections. However, the matter was not
quite that simple. We had to take a few steps back in
order to recalculate some operator structures, taking as a
starting point the operator structures already presented
in Ref. [18].
The final analytical expressions were compared with

the experimental data [16] through a least-squares fit
and also cross-checked with other calculations within the
1=Nc expansion [21,23] and chiral perturbation theory
[11,14]. Although the fit is good and seemingly stable,
somehow we still consider it rather unsatisfactory from a
theoretical point of view. In particular, we cannot explain
why the parameters m4 and n1;84 are rather large. On the
other hand, we should stress that for octet baryons the
comparison between analytical expressions was possible,
whereas for the other cases, it was performed through
numerical estimates. The overall comparison has been a
successful one.

A very clear result emerges from the present analysis: in
order to have a complete understanding of SU(3) flavor
symmetry breaking in the magnetic moments of baryons
in the context of baryon chiral perturbation theory in the
large-Nc limit, one-loop corrections of orders Oðm1=2

q Þ and
Oðmq ln mqÞ, together with SB, must be taken into
account.
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APPENDIX A: REDUCTION OF BARYON
OPERATORS—STRUCTURES FROM FIG. 1

In this section we present the reduction of the spin-
dependent operator structures contained in Eqs. (35) and
(36). The spin-independent contributions can be found in
Appendix A of Ref. [10]. The analysis, although long
and tedious, is otherwise straightforward. We find the
following:
(1) flavor 8 representation:

ϵijkfabcGiaJ2Gjb

¼ − 1

2
ðNc þ NfÞGkc þ 1

2
ðNf þ 1ÞDkc

2

− 1

8
ðNc þ NfÞDkc

3 − 1

4
ðNc þ NfÞOkc

3

þ 1

4
Dkc

4 ; (A1)

ϵijkfabcðGiaJ2Djb
2 þDia

2 J
2GjbÞ

¼ − 1

4
NfDkc

3 − ðNf þ 1ÞOkc
3 − 1

2
Okc

5 ; (A2)

ϵijkfabcDia
2 J

2Djb
2 ¼ − 1

4
NfDkc

4 ; (A3)

ϵijkfabcðGiaJ2Djb
3 þDia

3 J
2GjbÞ

¼ − 1

2
ðNc þ NfÞDkc

3 − 3ðNc þ NfÞOkc
3

− 1

2
ðNf − 2ÞDkc

4 − 1

2
ðNc þ NfÞOkc

5 ; (A4)
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ϵijkfabcðGiaJ2Ojb
3 þOia

3 J
2GjbÞ ¼ 3NfDkc

2 − 3

2
ðNc þ NfÞDkc

3 − 1

2
ðNc þ NfÞOkc

3 þ 1

4
ð7Nf þ 12ÞDkc

4

− 1

4
ðNc þ NfÞDkc

5 − 1

4
ðNc þ NfÞOkc

5 þ 1

2
Dkc

6 ; (A5)

ϵijkfabcðDia
2 J

2Djb
3 þDia

3 J
2Djb

2 Þ ¼ − 1

2
NfDkc

5 ; (A6)

ϵijkfabcðDia
2 J

2Ojb
3 þOia

3 J
2Djb

2 Þ ¼ −ðNf þ 1ÞOkc
5 − 1

2
Okc

7 ; (A7)

(2) flavor 10þ 10 representation:

ϵijkðfaecdbe8 − fbecdae8 − fabedec8ÞGiaJ2Gjb

¼ − 1

2
fGkc; T8g þ 1

2
fGk8; Tcg þ 1

Nf
½J2; ½T8; Gkc��

− 1

4
fJ2; fGkc; T8gg þ 1

4
fJ2; fGk8; Tcgg þ 1

2Nf
fJ2; ½J2; ½T8; Gkc��g; (A8)

ϵijkðfaecdbe8 − fbecdae8 − fabedec8ÞðGiaJ2Djb
2 þDia

2 J
2GjbÞ

¼ Nc þ Nf

Nf
½J2; ½T8; Gkc�� − fGkc; fJr; Gr8gg þ fGk8; fJr; Grcgg þ Nc þ Nf

2Nf
fJ2; ½J2; ½T8; Gkc��g

− 1

2
fJ2; fGkc; fJr; Gr8ggg þ 1

2
fJ2; fGk8; fJr; Grcggg; (A9)

ϵijkðfaecdbe8 − fbecdae8 − fabedec8ÞDia
2 J

2Djb
2 ¼ 0; (A10)

ϵijkðfaecdbe8−fbecdae8−fabedec8ÞðGiaJ2Djb
3 þDia

3 J
2GjbÞ

¼−3fJ2;fGkc;T8ggþ3fJ2;fGk8;Tcgg −2fDkc
2 ;fJr;Gr8ggþ2fDk8

2 ;fJr;Grcggþ 6

Nf
fJ2; ½J2; ½T8;Gkc��g

−1

2
fJ2;fJ2;fGkc;T8ggg þ1

2
fJ2;fJ2;fGk8;Tcggg−1

2
fJ2;fDkc

2 ;fJr;Gr8gggþ1

2
fJ2;fDk8

2 ;fJr;Grcggg

þ 1

Nf
fJ2;fJ2; ½J2; ½T8;Gkc��gg; (A11)

ϵijkðfaecdbe8 − fbecdae8 − fabedec8ÞðGiaJ2Ojb
3 þOia

3 J
2GjbÞ

¼ − 1

2
fJ2; fGkc; T8gg þ 1

2
fJ2; fGk8; Tcgg þ 5

2
fDkc

2 ; fJr; Gr8gg − 5

2
fDk8

2 ; fJr; Grcgg þ 1

Nf
fJ2; ½J2; ½T8; Gkc��g

− 1

4
fJ2; fJ2; fGkc; T8ggg þ 1

4
fJ2; fJ2; fGk8; Tcggg þ 1

4
fJ2; fDkc

2 ; fJr; Gr8ggg − 1

4
fJ2; fDk8

2 ; fJr; Grcggg

þ 1

2Nf
fJ2; fJ2; ½J2; ½T8; Gkc��gg; (A12)
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ϵijkðfaecdbe8 − fbecdae8 − fabedec8ÞðDia
2 J

2Djb
3 þDia

3 J
2Djb

2 Þ ¼ 0; (A13)

ϵijkðfaecdbe8 − fbecdae8 − fabedec8ÞðDia
2 J

2Ojb
3 þOia

3 J
2Djb

2 Þ

¼ Nc þ Nf

Nf
fJ2; ½J2; ½T8; Gkc��g þ Nc þ Nf

2Nf
fJ2; fJ2; ½J2; ½T8; Gkc��gg − fJ2; fGkc; fJr; Gr8ggg

þ fJ2; fGk8; fJr; Grcggg − 1

2
fJ2; fJ2; fGkc; fJr; Gr8gggg þ 1

2
fJ2; fJ2; fGk8; fJr; Grcgggg: (A14)

APPENDIX B: REDUCTION OF BARYON OPERATORS—STRUCTURES FROM FIG. 2

The evaluation of the commutator-anticommutator structure

fAja; ½Akc; ½M; Ajb��g;

which represents the leading contribution to the renormalized baryon axial vector current for finite decuplet-octet mass
difference, has been computed in Ref. [18]. To use those results for baryon magnetic moments, we need to replace the Akc

operator withMkc. This indeed introduces some changes in the original expressions, so that only partial results can be used
in the present case. Those which require computation are the following:
(1) flavor 1 contribution:

fGia; ½Dkc
2 ; ½J2; Gia��g ¼ ðNc þ NfÞGkc þ 1

2
½NcðNc þ 2NfÞ − 7Nf�Dkc

2 þ 1

2
ðNc þ NfÞDkc

3 − 2Dkc
4 ; (B1)

fDia
2 ; ½Gkc; ½J2; Gia��g ¼ ðNc þ NfÞGkc − ðNf þ 1ÞDkc

2 ; (B2)

fGia; ½Dkc
3 ; ½J2; Gia��g ¼ ½NcðNc þ 2NfÞ þ 2Nf�Gkc þ 11ðNc þ NfÞDkc

2 þ 1

2
½2NcðNc þ 2NfÞ − 15Nf − 2�Dkc

3

− ðNf − 2ÞOkc
3 þ ðNc þ NfÞDkc

4 − 3Dkc
5 ; (B3)

fDia
3 ; ½Gkc; ½J2; Gia��g ¼ ½NcðNc þ 2NfÞ þ 2Nf�Gkc − ðNc þ NfÞDkc

2 − NfDkc
3 − ðNf − 2ÞOkc

3 ; (B4)

fGia; ½Okc
3 ; ½J2;Gia��g¼3

2
NcðNcþ2NfÞGkc−3

2
ðNcþNfÞDkc

2 −1

2
NfDkc

3 þ½NcðNcþ2NfÞ−8Nf−3�Okc
3 −3Okc

5 ;

(B5)

fGia; ½Gkc; ½J2;Oia
3 ��g ¼ 3

2
ðNc þ NfÞDkc

2 − 3

4
NfDkc

3 − 1

2
ðNf − 2ÞOkc

3 þ 1

2
ðNc þ NfÞDkc

4 − 1

2
Dkc

5 −Okc
5 ; (B6)

fOia
3 ; ½Gkc; ½J2; Gia��g ¼ − 3

2
NcðNc þ 2NfÞGkc þ 3ðNc þ NfÞDkc

2 − 1

4
NfDkc

3 þ ð2Nf þ 3ÞOkc
3

þ 1

2
ðNc þ NfÞDkc

4 − 1

2
Dkc

5 −Okc
5 ; (B7)
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(2) flavor 8 contribution:

dab8fGia; ½Dkc
2 ; ½J2; Gib��g ¼ 1

2
ðNc þ NfÞdc8eGke − 1

4
ð5Nf þ 2Þdc8eDke

2 − 1

Nf
½J2; ½T8; Gkc�� þ 1

2
fGkc; T8g

− 1

2
ðNf − 1ÞfGk8; Tcg þ 1

4
ðNc þ NfÞdc8eDke

3 þ 1

4
ðNc þ NfÞfJk; fTc; T8gg

− 1

2
dc8eDke

4 − Nf þ 1

Nf
fDkc

2 ; fJr; Gr8gg þ 1

2
fDk8

2 ; fJr; Grcgg

− Nf − 2

2Nf
fJ2; fGk8; Tcgg; (B8)

dab8fDia
2 ; ½Gkc; ½J2; Gib��g ¼ 1

2
ðNc þ NfÞdc8eGke − 1

2
ðNf þ 1Þdc8eDke

2 þ 1

2
fGkc; T8g − 1

2
fGk8; Tcg

− 1

4
Nf½J2; ½T8; Gkc�� − ðNc þ NfÞðNf − 2Þ

2Nf
fGk8; fJr; Grcgg

þ ðNc þ NfÞðNf − 2Þ
2Nf

fJk; fGrc; Gr8gg; (B9)

dab8fGia; ½Dkc
3 ; ½J2; Gib��g

¼ Nfdc8eGke þ 11NcðNc þ 2NfÞ
2Nf

δc8Jk þ 11

2
ðNc þ NfÞdc8eDke

2

þ ðNc þ NfÞfGkc; T8g − 1

2
ðNc þ NfÞ½J2; ½T8; Gkc�� − 1

4
ð5Nf − 2Þdc8eDke

3 þ Nf þ 2

Nf
dc8eOke

3

− N2
f − 2Nf þ 4

2Nf
fGkc; fJr; Gr8gg − 3N2

f − 2Nf − 4

2Nf
fGk8; fJr; Grcgg þ 11

4
fJk; fTc; T8gg

− ð3Nf þ 5ÞfJk; fGrc; Gr8gg þ NcðNc þ 2NfÞ − 12Nf þ 2

2Nf
δc8fJ2; Jkg þ 1

2
ðNc þ NfÞdc8eDke

4

þ 2ðNc þ NfÞfDk8
2 ; fJr; Grcgg − 1

2
dc8eDke

5 − Nf − 2

Nf
fJ2; fGk8; fJr; Grcggg þ 1

4
fJ2; fJk; fTc; T8ggg

− fJ2; fJk; fGrc; Gr8ggg − 3Nf þ 2

2Nf
fJk; ffJr; Grcg; fJm;Gm8ggg − 1

Nf
δc8fJ2; fJ2; Jkgg; (B10)

dab8fDia
3 ; ½Gkc; ½J2; Gib��g

¼ Nfdc8eGke − NcðNc þ 2NfÞ
2Nf

δc8Jk − 1

2
ðNc þ NfÞdc8eDke

2 þ ðNc þ NfÞfGkc; T8g

− 1

2
ðNc þ NfÞ½J2; ½T8; Gkc�� − N2

f − 2Nf þ 4

2Nf
fGkc; fJr; Gr8gg − 3N2

f − 2Nf − 4

2Nf
fGk8; fJr; Grcgg

− 1

2
dc8eDke

3 þ Nf þ 2

Nf
dc8eOke

3 − 1

4
fJk; fTc; T8gg þ ðNf − 1ÞfJk; fGrc; Gr8gg þ Nf − 1

Nf
δc8fJ2; Jkg

− Nf − 2

Nf
fJ2; fGk8; fJr; Grcggg þ Nf − 2

Nf
fJ2; fJk; fGrc; Gr8ggg; (B11)

BARYON MAGNETIC MOMENTS IN LARGE-Nc CHIRAL … PHYSICAL REVIEW D 89, 034012 (2014)

034012-23



dab8fGia; ½Okc
3 ; ½J2; Gib��g

¼ − 3NcðNc þ 2NfÞ
4Nf

δc8Jk − 3

4
ðNc þ NfÞdc8eDke

2 þ 3

2
ðNc þ NfÞfGkc; T8g

þ 2ðNc þ NfÞ½J2; ½T8; Gkc�� − 1

4
ð11Nf þ 6ÞfGkc; fJr; Gr8gg þ 1

4
ð5Nf þ 6ÞfGk8; fJr; Grcgg

− 3

8
fJk; fTc; T8gg þ 2N2

f þ Nf − 4

2Nf
fJk; fGrc; Gr8gg − Nf − 4

4Nf
dc8eDke

3 − 1

4
ð5Nf þ 6Þdc8eOke

3

− ðNc þ NfÞfDk8
2 ; fJr; Grcgg þ ðNc þ NfÞfJ2; fGkc; T8gg þ 1

4
ðNc þ NfÞfJ2; ½J2; ½T8; Gkc��g

− 1

2
dc8eOke

5 − 5

2
fJ2; fGkc; fJr; Gr8ggg þ 1

2
fJ2; fGk8; fJr; Grcggg þ Nf − 2

2Nf
fJ2; fJk; fGrc; Gr8ggg

þ N2
f − Nf þ 4

2N2
f

δc8fJ2; Jkg þ 3Nf þ 2

4Nf
fJk; ffJr; Grcg; fJm;Gm8ggg; (B12)

dab8fGia; ½Gkc; ½J2;Oib
3 ��g

¼ 3NcðNc þ 2NfÞ
4Nf

δc8Jk þ 3

4
ðNc þNfÞdc8eDke

2 − 3N2
f − 2Nf − 8

8Nf
dc8eDke

3 −Nf − 4

4
dc8eOke

3

þ 3

8
fJk; fTc; T8gg−Nf þ 4

2Nf
fJk; fGrc;Gr8gg þNcNfðNc þ 2NfÞ− 6N2

f þ 2Nf þ 8

4N2
f

δc8fJ2; Jkg

þ 1

4
ðNc þNfÞdc8eDke

4 þ 1

4
ðNc þNfÞfJ2; ½J2; ½T8;Gkc��g− 1

4
dc8eDke

5 − 1

2
dc8eOke

5 − 1

2
fJ2; fGkc; fJr;Gr8ggg

þ 1

Nf
fJ2; fGk8; fJr;Grcggg þ 1

8
fJ2; fJk; fTc; T8ggg− 1

Nf
fJ2; fJk; fGrc;Gr8ggg− 1

2Nf
δc8fJ2;fJ2; Jkgg;

(B13)

dab8fOia
3 ; ½Gkc; ½J2; Gib��g

¼ 3NcðNc þ 2NfÞ
2Nf

δc8Jk þ 3

2
ðNc þ NfÞdc8eDke

2 − 3

2
ðNc þ NfÞfGkc; T8g

− 1

2
ðNc þ NfÞ½J2; ½T8; Gkc�� − 1

8
ð3Nf − 4Þdc8eDke

3 − 1

4
ðNf − 6Þdc8eOke

3 þ 1

4
ð5Nf þ 6ÞfGkc; fJr; Gr8gg

þ 1

4
ðNf − 6ÞfGk8; fJr; Grcgg þ 3

4
fJk; fTc; T8gg − ðNf þ 1ÞfJk; fGrc; Gr8gg

þ NcðNc þ 2NfÞ − 8Nf þ 4

4Nf
δc8fJ2; Jkg þ 1

4
ðNc þ NfÞdc8eDke

4 þ 1

4
ðNc þ NfÞfJ2; ½J2; ½T8; Gkc��g

− 1

4
dc8eDke

5 − 1

2
dc8eOke

5 − 1

2
fJ2; fGkc; fJr; Gr8ggg þ 1

2
fJ2; fGk8; fJr; Grcggg þ 1

8
fJ2; fJk; fTc; T8ggg

− 1

2
fJ2; fJk; fGrc; Gr8ggg − 1

2Nf
δc8fJ2; fJ2; Jkgg; (B14)
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(3) flavor 27 contribution:

fGi8; ½Dkc
2 ; ½J2; Gi8��g ¼ −3fc8ef8egDkg

2 þ 1

2
ifc8e½Gke; fJr; Gr8g� − 1

2
fc8ef8egDkg

4 þ fDkc
2 ; fGr8; Gr8gg

− 1

2
ffJr; Gr8g; fGk8; Tcgg þ 1

2
ifc8efJk; ½fJi; Gieg; fJr; Gr8g�g; (B15)

fDi8
2 ; ½Gkc; ½J2; Gi8��g ¼ − 3

4
fc8ef8egDkg

2 − ifc8e½Gk8; fJr; Greg� þ fDk8
2 ; fGrc; Gr8gg − 1

2
ffJr; Grcg; fGk8; T8gg;

(B16)

fGi8; ½Dkc
3 ; ½J2; Gi8��g

¼ 3

2
fc8ef8egGkg − 1

2
dc8ed8egGkg − 1

2Nf
dc88Jk þ 1

4
fc8ef8egDkg

3 − 2dc8ed8egDkg
3

þ 4

Nf
δc8Dk8

3 − 4

Nf
δ88Dkc

3 þ 1

2
fc8ef8egOkg

3 − 1

2
dc8ed8egOkg

3 þ 1

Nf
δc8Ok8

3 − 1

Nf
δ88Okc

3 þ 2fGkc; fGr8; Gr8gg

− 2fGk8; fGrc; Gr8gg þ 7dc8efJk; fGre;Gr8gg − 3d88efJk; fGrc; Gregg þ 1

2
dc8efGke; fJr; Gr8gg

þ dc8efGk8; fJr; Gregg − 1

2
d88efGkc; fJr; Gregg − 1

2
d88efGke; fJr; Grcgg − 4

Nf
dc88fJ2; Jkg

þ 1

2
ϵkimfc8efTe; fJi; Gm8gg − ffJr; Grcg; fGk8; fJi; Gi8ggg þ 2fJk; ffJi; Gicg; fGr8; Gr8ggg

− fJk; ffJi; Gi8g; fGrc; Gr8ggg − 1

2
dc8efDk8

3 ; fJr; Gregg þ dc8efJ2; fJk; fGre; Gr8ggg; (B17)

fDi8
3 ; ½Gkc; ½J2; Gi8��g

¼ 3

2
fc8ef8egGkg − 1

4
fc8ef8egDkg

3 þ 1

2
fc8ef8egOkg

3 − 1

2
dc8ed8egOkg

3 þ 1

Nf
δc8Ok8

3

− 1

Nf
δ88Okc

3 þ 2fGkc; fGr8; Gr8gg − 2fGk8; fGrc; Gr8gg − dc8efJk; fGre; Gr8gg þ d88efJk; fGrc; Gregg

þ dc8efGk8; fJr; Gregg − 1

2
d88efGkc; fJr; Gregg − 1

2
d88efGke; fJr; Grcgg þ 1

2
ϵkimfc8efTe; fJi; Gm8gg

− ffJr; Grcg; fGk8; fJi; Gi8ggg þ fJk; ffJi; Gi8g; fGrc; Gr8ggg; (B18)
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fGi8; ½Okc
3 ; ½J2; Gi8��g

¼ − 1

8
fc8ef8egDkg

3 − 1

Nf
δc8Dk8

3 − 5

4
fc8ef8egOkg

3 − 3

4
dc8ed8egOkg

3 − 17

2Nf
δc8Ok8

3

− 7

2Nf
δ88Okc

3 þ 2fGkc; fGr8; Gr8gg − dc8efJk; fGre; Gr8gg þ d88efJk; fGrc; Gregg þ 7

2
dc8efGke; fJr; Gr8gg

− 7

2
dc8efGk8; fJr; Gregg − 7

4
d88efGkc; fJr; Gregg þ 3

4
d88efGke; fJr; Grcgg − 1

4
ϵkimfc8efJ2; fTe; fJi; Gm8ggg

− 3

2
ϵkimfc8efTe; fJi; Gm8gg − 1

Nf
δc8Ok8

5 − fGkc; ffJi; Gi8g; fJr; Gr8ggg þ 1

2
ffJr; Grcg; fGk8; fJi; Gi8ggg

− fJk; ffJi; Gicg; fGr8; Gr8ggg þ 1

2
fJk; ffJi; Gi8g; fGrc; Gr8ggg þ 2fJ2; fGkc; fGr8; Gr8ggg

þ 1

4
dc8efDk8

3 ; fJr; Gregg − 1

4
dc8efJ2; fGk8; fJr; Greggg; (B19)

fGi8; ½Gkc; ½J2;Oi8
3 ��g ¼ − 1

4
dc8ed8egGkg − 1

4Nf
dc88Jk − 1

2
dc8ed8egDkg

3 þ dc8efJk; fGre; Gr8gg

þ 1

4
dc8efGke; fJr; Gr8gg − 1

Nf
dc88fJ2; Jkg − 1

4
ϵkimfc8efJ2; fTe; fJi; Gm8ggg

− 1

Nf
δc8Ok8

5 þ 1

2
dc8efJ2; fJk; fGre; Gr8ggg − 1

4
dc8efJ2; fGk8; fJr; Greggg; (B20)

fOi8
3 ; ½Gkc; ½J2; Gi8��g

¼ − 1

4
dc8ed8egGkg − 1

4Nf
dc88Jk þ 1

8
fc8ef8egDkg

3 − 1

2
dc8ed8egDkg

3 þ 1

Nf
δc8Dk8

3

− 1

4
fc8ef8egOkg

3 þ 1

4
dc8ed8egOkg

3 þ 3

2Nf
δc8Ok8

3 þ 5

2Nf
δ88Okc

3 − 2fGkc; fGr8; Gr8gg þ 2dc8efJk; fGre; Gr8gg

− d88efJk; fGrc; Gregg − 1

4
dc8efGke; fJr; Gr8gg þ 1

2
dc8efGk8; fJr; Gregg þ 5

4
d88efGkc; fJr; Gregg

− 1

4
d88efGke; fJr; Grcgg − 1

Nf
dc88fJ2; Jkg þ 1

2
ϵkimfc8efTe; fJi; Gm8gg − 1

Nf
δc8Ok8

5

þ 1

2
ffJr; Grcg; fGk8; fJi; Gi8ggg þ 1

2
dc8efJ2; fJk; fGre; Gr8ggg − 1

4
dc8efJ2; fGk8; fJr; Greggg

− 1

4
ϵkimfc8efJ2; fTe; fJi; Gm8ggg − 1

2
fJk; ffJi; Gi8g; fGrc; Gr8ggg: (B21)

The next-to-leading order contribution to the baryon magnetic moment for finite decuplet-octet mass difference involves
the two operator structures,

½Aja; ½½M; ½M; Ajb��;Mkc��; and ½½M; Aja�; ½½M; Ajb�;Mkc��;

with two mass insertions. For the latter the results listed in Appendix B of Ref. [18] can be directly used. For the former the
expressions not listed in this reference read as follows:
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(1) flavor 1 contribution:

½Gia; ½½J2; ½J2; Gia��;Dkc
2 �� ¼ − 3

2
½NcðNc þ 2NfÞ − 4Nf�Dkc

2 − 5

2
ðNc þ NfÞDkc

3 − ðNc þ NfÞOkc
3 þ 3ðNf þ 2ÞDkc

4 ;

(B22)

½Dia
2 ; ½½J2; ½J2; Gia��; Gkc�� ¼ 3NfDkc

2 − ðNc þ NfÞDkc
3 − ðNc þ NfÞOkc

3 þ 2Dkc
4 ; (B23)

(2) flavor 8 contribution:

dab8½Gia; ½½J2; ½J2; Gib��;Dkc
2 �� ¼ 3Nfdc8eDke

2 − 5

4
ðNc þ NfÞdc8eDke

3 − 1

2
ðNc þ NfÞdc8eOke

3

− 3

4
ðNc þ NfÞfJk; fTc; T8gg þ 1

2
ðNf þ 5Þdc8eDke

4

þ N2
f þ 6Nf þ 4

2Nf
fDkc

2 ; fJr; Gr8gg − 2fDk8
2 ; fJr; Grcgg − 1

2
fJ2; fGkc; T8gg

þ N2
f þ Nf − 4

2Nf
fJ2; fGk8; Tcgg þ 1

Nf
fJ2; ½J2; ½T8; Gkc��g; (B24)

dab8½Dia
2 ; ½½J2; ½J2; Gib��; Gkc�� ¼ 3

2
Nfdc8eDke

2 þ 1

2
ðNf − 2Þ½J2; ½T8; Gkc�� − Nc þ Nf

Nf
dc8eDke

3 − Nc þ Nf

Nf
dc8eOke

3

− ðNc þ NfÞðNf − 2Þ
2Nf

fGkc; fJr; Gr8gg þ ðNc þ NfÞðNf − 2Þ
2Nf

fGk8; fJr; Grcgg

− ðNc þ NfÞðNf − 2Þ
Nf

fJk; fGrc; Gr8gg þ ðNc þ NfÞðNf − 2Þ
N2

f

δc8fJ2; Jkg

þ dc8eDke
4 þ 1

2
fDkc

2 ; fJr; Gr8gg − 1

2
fDk8

2 ; fJr; Grcgg − 1

2
fJ2; fGkc; T8gg

þ 1

2
fJ2; fGk8; Tcgg þ 1

2
fJ2; ½J2; ½T8; Gkc��g; (B25)

(3) flavor 27 contribution:

½Gi8; ½½J2; ½J2; Gi8��;Dkc
2 �� ¼ 6fc8ef8egDkg

2 þ 7

2
fc8ef8egDkg

4 þ 2

Nf
δ88Dkc

4 − 2fDkc
2 ; fGr8; Gr8gg

þ 1

2
d88efJ2; fGke; Tcgg þ 1

2
d88efDkc

2 ; fJr; Gregg; (B26)
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½Di8
2 ; ½½J2; ½J2; Gi8��; Gkc�� ¼ 3

2
fc8ef8egDkg

2 þ 1

2
ifc8e½Gk8; fJr; Greg� þ 1

2
fc8ef8egDkg

4 þ 2

Nf
δc8Dk8

4

− 2fDk8
2 ; fGrc; Gr8gg þ 1

2
dc8efJ2; fGke; T8gg þ 1

2
dc8efDk8

2 ; fJr; Gregg

þ 1

2
ffJr; Grcg; fGk8; T8gg − 1

2
ffJr; Gr8g; fGkc; T8gg

− 3ifc8efJk; ½fJi; Gieg; fJr; Gr8g�g − ifc8effJr; Greg; ½J2; Gk8�g

þ 1

2
ifc8effJr; Gr8g; ½J2; Gke�g: (B27)

APPENDIX C: FLAVOR CONTRIBUTIONS FROM FIG. 1

Here we discuss the different flavor contributions that make up the one-loop correction to the baryon magnetic moment
operator from Fig. 2(a)–(d), Eq. (63).
For the flavor 1 representation, the operators that occur at this order are

Xkc
1 ¼ Gkc; Xkc

2 ¼ Dkc
2 ; Xkc

3 ¼ Dkc
3 ; Xkc

4 ¼ Okc
3 ; Xkc

5 ¼ Dkc
4 ; Xkc

6 ¼ Dkc
5 ; Xkc

7 ¼ Okc
5 :

The matrix elements are listed in Tables I—III of Ref. [10]. The corresponding coefficients are

x1 ¼
�
23

24
a21m1 þ

Nc þ 3

6Nc
a1b2m1 − Nc þ 3

2Nc
a21m2 − 3

N2
c
a1b2m2 þ

N2
c þ 6Nc − 18

12N2
c

b22m1 þ
1

N2
c
a1b3m1

− N2
c þ 6Nc þ 4

2N2
c

a21m3 − N2
c þ 6Nc − 3

2N2
c

a21m4 − 2ðNc þ 3Þ
N3

c
b2b3m1 − 2ðNc þ 3Þ

N3
c

a1b3m2 − 2ðNc þ 3Þ
N3

c
a1b2m3

	
Fð1Þ
1

þ
�
1

4
a21m1 − Nc þ 3

2Nc
a1b2m1 − Nc þ 3

2Nc
a21m2 − N2

c þ 6Nc þ 6

2N2
c

a1b3m1 − N2
c þ 6Nc þ 6

2N2
c

a21m3 þ
3ðNc þ 6Þ

4Nc
a1c3m1

− 3ðNc þ 6Þ
4Nc

a21m4

	
Δ
Nc

Fð2Þ
1 þ

�
1

12
ðN2

c þ 6Nc − 3Þa21m1

	
Δ2

N2
c
Fð3Þ
1 ; (C1)

x2 ¼
�

5

4Nc
a1b2m1 þ

71

24Nc
a21m2 þ

2ðNc þ 3Þ
3N2

c
a1b2m2 þ

Nc þ 3

2N2
c

a1b3m1 − 2ðNc þ 3Þ
N2

c
a21m3 − 3ðNc þ 3Þ

4N2
c

a1c3m1

þ Nc þ 3

2N2
c

a21m4 þ
N2

c þ 6Nc − 18

12N3
c

b22m2 − 1

N3
c
b2b3m1 þ

N2
c þ 6Nc þ 6

2N3
c

a1b3m2 − 1

N3
c
a1b2m3 þ

9

2N3
c
b2c3m1

− 3ðN2
c þ 6Nc − 12Þ

4N3
c

a1c3m2 þ
9

2N3
c
a1b2m4

	
Fð1Þ
1

þ
�
− 1

4
ðNc þ 3Þa21m1 þ

2

Nc
a1b2m1 − N2

c þ 6Nc − 21

4Nc
a21m2 þ Nc þ 3

2N2
c

a1b3m1 − 11ðNc þ 3Þ
2N2

c
a21m3

− 9ðNc þ 3Þ
4N2

c
a1c3m1 þ

3ðNc þ 3Þ
4N2

c
a21m4

	
Δ
Nc

Fð2Þ
1

þ
�
− 11

24
ðNc þ 3Þa21m1 þ

3

2Nc
a1b2m1 − 3ðN2

c þ 6Nc − 12Þ
8Nc

a21m2

	
Δ2

N2
c
Fð3Þ
1 ; (C2)
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x3 ¼
�

3

4N2
c
a1b2m2 þ

5

8N2
c
b22m1 þ

11

12N2
c
a1b3m1 þ

131

24N2
c
a21m3 þ

1

N2
c
a1c3m1 þ

7ðNc þ 3Þ
6N3

c
b2b3m1 þ Nc þ 3

2N3
c

a1b3m2

þ 7ðNc þ 3Þ
6N3

c
a1b2m3 − Nc þ 3

2N3
c

b2c3m1 − 5ðNc þ 3Þ
4N3

c
a1c3m2 − Nc þ 3

2N3
c

a1b2m4

	
Fð1Þ
1

þ
�
1

4
a21m1 − Nc þ 3

4Nc
a21m2 þ

3

2N2
c
a1b3m1 − 2N2

c þ 12Nc − 47

4N2
c

a21m3 þ
3

2N2
c
a1c3m1 þ

3

4N2
c
a21m4

	
Δ
Nc

Fð2Þ
1

þ
�
1

2
a21m1 − Nc þ 3

6Nc
a1b2m1 − 5ðNc þ 3Þ

8Nc
a21m2

	
Δ2

N2
c
Fð3Þ
1 ; (C3)

x4 ¼
�
− 1

N2
c
a1b2m2 þ

7

4N2
c
b22m1 þ

7

6N2
c
a1b3m1 þ

3

2N2
c
a1c3m1 þ

131

24N2
c
a21m4 þ

11ðNc þ 3Þ
3N3

c
b2b3m1 − Nc þ 3

N3
c

a1b3m2

− Nc þ 3

N3
c

a1b2m3 − Nc þ 3

2N3
c

b2c3m1 − Nc þ 3

2N3
c

a1c3m2 þ
2ðNc þ 3Þ

3N3
c

a1b2m4

	
Fð1Þ
1

þ
�
1

2
a21m1 − 5

2N2
c
a1b2m2 þ

1

2N2
c
a1b3m1 þ

1

2N2
c
a21m3 − 17

4N2
c
a1c3m1 − ðNc − 3ÞðNc þ 9Þ

2N2
c

a21m4

	
Δ
Nc

Fð2Þ
1

þ
�
2

3
a21m1 − Nc þ 3

6Nc
a1b2m1 − Nc þ 3

6Nc
a21m2

	
Δ2

N2
c
Fð3Þ
1 ; (C4)

x5 ¼
�

5

4N3
c
b22m2 þ

1

2N3
c
b2b3m1 þ

5

6N3
c
a1b3m2 þ

1

2N3
c
a1b2m3 þ

1

N3
c
b2c3m1 þ

15

2N3
c
a1c3m2 þ

1

N3
c
a1b2m4

	
Fð1Þ
1

þ
�
1

Nc
a21m2 − Nc þ 3

2N2
c

a21m3 − Nc þ 3

2N2
c

a1c3m1

	
Δ
Nc

Fð2Þ
1 þ

�
1

3Nc
a1b2m1 þ

15

4Nc
a21m2

	
Δ2

N2
c
Fð3Þ
1 ; (C5)

x6 ¼
�

3

2N2
c
a21m3 þ

1

2N2
c
a1c3m1

	
Δ
Nc

Fð2Þ
1 ; (C6)

x7 ¼
�
1

N2
c
a1c3m1 þ

3

2N2
c
a21m4

	
Δ
Nc

Fð2Þ
1 : (C7)

For the flavor 8 representation, the relevant operators are listed in Sec. IV.A of Ref. [10]. A nonvanishing Δ requires that
the list be complemented with the following operators:

Ykc
25 ¼ dc8eDke

5 ; Ykc
26 ¼ dc8eOke

5 ; Ykc
27 ¼ fJ2; fJk; fTc; T8ggg; Ykc

28 ¼ fJ2; fJk; fGrc; Gr8ggg;
Ykc
29 ¼ fJk; ffJr; Grcg; fJm;Gm8ggg; Ykc

30 ¼ δc8fJ2; fJ2; Jkgg:

The matrix elements of these operators are listed in Tables VII, VI, and VII for the magnetic moments of octet and decuplet
baryons and the transition magnetic moment of decuplet-octet baryons, respectively. These tables are to be considered as
continuations of Tables IV, V, and VI, respectively, of Ref. [10].
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The coefficients that accompany the operator basis read

y1 ¼
�
11

48
a21m1 − Nc þ 3

12Nc
a1b2m1 − Nc þ 3

4Nc
a21m2 − 3

2N2
c
a1b2m2 − 3

4N2
c
b22m1 − 1

2N2
c
a1b3m1 − 2

N2
c
a21m3 þ

3

4N2
c
a21m4

− Nc þ 3

N3
c

b2b3m1 − Nc þ 3

N3
c

a1b3m2 − Nc þ 3

N3
c

a1b2m3

	
Fð1Þ
8

þ
�
− 1

8
a21m1 − Nc þ 3

4Nc
a1b2m1 − Nc þ 3

4Nc
a21m2 − 3

2N2
c
a1b3m1 − 3

2N2
c
a21m3

	
Δ
Nc

Fð2Þ
8 þ

�
− 1

8
a21m1

	
Δ2

N2
c
Fð3Þ
8 ;

(C8)

TABLE V. Nontrivial matrix elements of the operators involved in the magnetic moments of octet baryons: flavor 8 and 10þ 10
representations. The entries correspond to 48

ffiffiffi
3

p hY33
m i and 48hY38

m i.
n p Σ− Σ0 Σþ Ξ− Ξ0 Λ ΛΣ0

hY33
25i −90 90 −72 0 72 18 −18 0 36

ffiffiffi
3

p

hY33
26i 0 0 0 0 0 0 0 0 0

hY33
27i −108 108 0 0 0 108 −108 0 0

hY33
28i −45 45 −144 0 144 −99 99 0 −36 ffiffiffi

3
p

hY33
29i −90 90 −144 0 144 −54 54 0 0

hY33
30i 0 0 0 0 0 0 0 0 0

hY38
25i −18 −18 −36 −36 −36 54 54 36 0

hY38
26i 0 0 0 0 0 0 0 0 0

hY38
27i 108 108 0 0 0 108 108 0 0

hY38
28i 9 9 108 108 108 153 153 36 0

hY38
29i 18 18 72 72 72 162 162 72 0

hY38
30i 54 54 54 54 54 54 54 54 0

TABLE VI. Nontrivial matrix elements of the operators involved in the magnetic moments of decuplet baryons: flavor 8 and 10þ 10
representations. The entries correspond to 16

ffiffiffi
3

p hY33
m i and 16hY38

m i.
Δþþ Δþ Δ0 Δ− Σ�þ Σ�0 Σ�− Ξ�0 Ξ�− Ω−

hY33
25i 1350 450 −450 −1350 900 0 −900 450 −450 0

hY33
26i 0 0 0 0 0 0 0 0 0 0

hY33
27i 1620 540 −540 −1620 0 0 0 −540 540 0

hY33
28i 675 225 −225 −675 180 0 −180 −45 45 0

hY33
29i 1350 450 −450 −1350 0 0 0 −450 450 0

hY33
30i 0 0 0 0 0 0 0 0 0 0

hY38
25i −450 −450 −450 −450 0 0 0 450 450 900

hY38
26i 0 0 0 0 0 0 0 0 0 0

hY38
27i 540 540 540 540 0 0 0 540 540 2160

hY38
28i 225 225 225 225 180 180 180 405 405 900

hY38
29i 450 450 450 450 0 0 0 450 450 1800

hY38
30i 1350 1350 1350 1350 1350 1350 1350 1350 1350 1350
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y2 ¼
�
5

36
a21m1 þ

Nc þ 3

18Nc
a1b2m1 þ

N2
c þ 6Nc þ 4

12N2
c

a1b3m1 − N2
c þ 6Nc − 1

3N2
c

a21m3 − Nc þ 6

8Nc
a1c3m1 þ

Nc þ 6

12Nc
a21m4

	
Fð1Þ
8

þ
�
− 1

24
ðN2

c þ 6Nc − 2Þa21m1 þ
Nc þ 6

12Nc
a1b3m1 − 11ðNc þ 6Þ

12Nc
a21m3 − 3ðNc þ 6Þ

8Nc
a1c3m1 þ

Nc þ 6

8Nc
a21m4

	
Δ
Nc

Fð2Þ
8

þ
�
− 11

144
NcðNc þ 6Þa21m1

	
Δ2

N2
c
Fð3Þ
8 ; (C9)

y3 ¼
�

5

8Nc
a1b2m1 þ

13

16Nc
a21m2 þ

Nc þ 3

4N2
c

a1b3m1 − Nc þ 3

N2
c

a21m3 − 3ðNc þ 3Þ
8N2

c
a1c3m1 þ

Nc þ 3

4N2
c

a21m4 − 3

4N3
c
b22m2

− 1

2N3
c
b2b3m1 − 1

2N3
c
a1b3m2 − 1

2N3
c
a1b2m3 þ

9

4N3
c
b2c3m1 þ

9

2N3
c
a1c3m2 þ

9

4N3
c
a1b2m4

	
Fð1Þ
8

þ
�
− 1

8
ðNc þ 3Þa21m1 þ

1

Nc
a1b2m1 þ

17

8Nc
a21m2 þ

Nc þ 3

4N2
c

a1b3m1 − 11ðNc þ 3Þ
4N2

c
a21m3 − 9ðNc þ 3Þ

8N2
c

a1c3m1

þ 3ðNc þ 3Þ
8N2

c
a21m4

	
Δ
Nc

Fð2Þ
8 þ

�
− 11

48
ðNc þ 3Þa21m1 þ

3

4Nc
a1b2m1 þ

9

4Nc
a21m2

	
Δ2

N2
c
Fð3Þ
8 ; (C10)

y4 ¼
�
− 1

12Nc
a1b2m1 − 1

4Nc
a21m2 − Nc þ 3

12N2
c
b22m1 − Nc þ 3

2N2
c

a21m3 − Nc þ 3

2N2
c

a21m4 − 1

N3
c
b2b3m1

− 1

N3
c
a1b3m2 − 1

N3
c
a1b2m3

	
Fð1Þ
8 þ

�
− 1

4Nc
a1b2m1 − 1

4Nc
a21m2 − Nc þ 3

2N2
c

a1b3m1

− Nc þ 3

2N2
c

a21m3 þ
3ðNc þ 3Þ

4N2
c

a1c3m1 − 3ðNc þ 3Þ
4N2

c
a21m4

	
Δ
Nc

Fð2Þ
8 þ

�
Nc þ 3

12
a21m1

	
Δ2

N2
c
Fð3Þ
8 ; (C11)

y5 ¼
�

1

4Nc
a1b2m1 þ

2

3Nc
a21m2 þ

Nc þ 3

6N2
c

a1b2m2 þ
1

N3
c
b2b3m1 þ

2

N3
c
a1b3m2 þ

1

N3
c
a1b2m3

	
Fð1Þ
8

þ
�

1

4Nc
a1b2m1 þ

1

2Nc
a21m2

	
Δ
Nc

Fð2Þ
8 ; (C12)

TABLE VII. Nontrivial matrix elements of the operators involved in the decuplet to octet transition magnetic moments: flavor 8 and
10þ 10 representations. The entries correspond to 12

ffiffiffi
6

p hY33
m i and 12

ffiffiffi
2

p hY38
m i.

Δþp Δ0n Σ�0Λ Σ�0Σ0 Σ�þΣþ Σ�−Σ− Ξ�0Ξ0 Ξ�−Ξ−

hY33
25i 0 0 0 0 0 0 0 0

hY33
26i 162 162 81

ffiffiffi
3

p
0 81 −81 81 −81

hY33
27i 0 0 0 0 0 0 0 0

hY33
28i 0 0 0 0 0 0 0 0

hY33
29i 0 0 0 0 0 0 0 0

hY33
30i 0 0 0 0 0 0 0 0

hY38
25i 0 0 0 0 0 0 0 0

hY38
26i 0 0 0 −81 −81 −81 −81 −81

hY38
27i 0 0 0 0 0 0 0 0

hY38
28i 0 0 0 0 0 0 0 0

hY38
29i 0 0 0 0 0 0 0 0

hY38
30i 0 0 0 0 0 0 0 0
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y6 ¼
�

3

8N2
c
a1b2m2 þ

3

16N2
c
b22m1 þ

7

24N2
c
a1b3m1 þ

17

16N2
c
a21m3 þ

1

3N2
c
a1c3m1 − 1

6N2
c
a21m4 þ Nc þ 3

4N3
c

b2b3m1

þ Nc þ 3

4N3
c

a1b3m2 þ
Nc þ 3

4N3
c

a1b2m3 − Nc þ 3

6N3
c

b2c3m1 − 5ðNc þ 3Þ
8N3

c
a1c3m2 − Nc þ 3

6N3
c

a1b2m4

	
Fð1Þ
8

þ
�
1

8
a21m1 − Nc þ 3

8Nc
a21m2 þ

1

4N2
c
a1b3m1 þ 13

8N2
c
a21m3 þ

7

12N2
c
a1c3m1 − 1

24N2
c
a21m4

	
Δ
Nc

Fð2Þ
8

þ
�
7

36
a21m1 − Nc þ 3

18Nc
a1b2m1 − 5ðNc þ 3Þ

16Nc
a21m2

	
Δ2

N2
c
Fð3Þ
8 ; (C13)

y7 ¼
�
− 1

2N2
c
a1b2m2þ

5

8N2
c
b22m1− 5

12N2
c
a1b3m1− 1

3N2
c
a21m3þ

7

12N2
c
a1c3m1þ

43

48N2
c
a21m4

þ 2ðNc þ 3Þ
3N3

c
b2b3m1−Nc þ 3

2N3
c

a1b3m2−Nc þ 3

3N3
c

a1b2m3−Nc þ 3

6N3
c

b2c3m1−Nc þ 3

4N3
c

a1c3m2 þNc þ 3

12N3
c
a1b2m4

	
Fð1Þ
8

þ
�
1

4
a21m1− 5

4N2
c
a1b2m2− 5

6N2
c
a1b3m1− 5

6N2
c
a21m3− 1

2N2
c
a1c3m1 þ 21

8N2
c
a21m4

	
Δ
Nc

Fð2Þ
8

þ
�
23

72
a21m1−Nc þ 3

18Nc
a1b2m1−Nc þ 3

12Nc
a21m2

	
Δ2

N2
c
Fð3Þ
8 ; (C14)

y8 ¼
�
− 1

2N2
c
a1b2m2 þ

3

4N2
c
b22m1 − 1

2N2
c
a1b3m1 þ

1

3N2
c
a21m3 þ

1

6N2
c
a1c3m1 þ

7

3N2
c
a21m4 þ Nc þ 3

2N3
c

b2b3m1

− Nc þ 3

6N3
c

a1b2m3 − Nc þ 3

12N3
c
b2c3m1 þ

Nc þ 3

12N3
c
a1b2m4

	
Fð1Þ
8

þ
�
1

4
a21m1 − 1

2N2
c
a1b2m2 þ

7

12N2
c
a1b3m1 þ

7

12N2
c
a21m3 − 21

8N2
c
a1c3m1 þ

39

8N2
c
a21m4

	
Δ
Nc

Fð2Þ
8

þ
�
− 1

36
a21m1 − Nc þ 3

36Nc
a1b2m1

	
Δ2

N2
c
Fð3Þ
8 ; (C15)

y9 ¼
�

1

2N2
c
a1b2m2− 1

4N2
c
b22m1 þ

5

6N2
c
a1b3m1þ

3

2N2
c
a21m3 − 1

6N2
c
a1c3m1− 13

12N2
c
a21m4−Nc þ 3

6N3
c

b2b3m1

þNc þ 3

2N3
c

a1b2m3þ
Nc þ 3

12N3
c
b2c3m1−Nc þ 3

12N3
c
a1b2m4

	
Fð1Þ
8 þ

�
−1

6
a21m1þ

Nc þ 3

12Nc
a1b2m1þ

1

2N2
c
a1b2m2

þ 17

12N2
c
a1b3m1þ

17

12N2
c
a21m3 þ

3

8N2
c
a1c3m1 − 21

8N2
c
a21m4

	
Δ
Nc

Fð2Þ
8 þ

�
−13

72
a21m1 þ

Nc þ 3

36Nc
a1b2m1

	
Δ2

N2
c
Fð3Þ
8 ; (C16)

y10 ¼
�

1

12N2
c
a1b2m2 þ

1

8N2
c
a1b3m1 − 1

2N2
c
a21m3 − 3

16N2
c
a1c3m1 þ

1

8N2
c
a21m4

− Nc þ 3

24N3
c
b22m2 þ

Nc þ 3

4N3
c

a1b3m2 − 3ðNc þ 3Þ
8N3

c
a1c3m2

	
Fð1Þ
8

þ
�
− 1

16
a21m1 − Nc þ 3

8Nc
a21m2 þ

1

8N2
c
a1b3m1 − 11

8N2
c
a21m3 − 9

16N2
c
a1c3m1 þ 3

16N2
c
a21m4

	
Δ
Nc

Fð2Þ
8

þ
�
− 11

96
a21m1 − 3ðNc þ 3Þ

16Nc
a21m2

	
Δ2

N2
c
Fð3Þ
8 ; (C17)
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y11 ¼
�
− 1

2N2
c
a1b3m1 þ

5

2N2
c
a21m3 þ

7

12N2
c
a1c3m1 − 11

12N2
c
a21m4 − Nc þ 3

6N3
c

b2c3m1 − Nc þ 3

6N3
c

a1b2m4

	
Fð1Þ
8

þ
�
1

6
a21m1 − Nc þ 3

12Nc
a1b2m1 − 1

N2
c
a1b3m1 þ

7

N2
c
a21m3 þ

31

12N2
c
a1c3m1 − 17

12N2
c
a21m4

	
Δ
Nc

Fð2Þ
8

þ
�
4

9
a21m1 − Nc þ 3

18Nc
a1b2m1

	
Δ2

N2
c
Fð3Þ
8 ; (C18)

y12 ¼
�
− 1

18N2
c
a1b3m1 þ

5

6N2
c
a21m3 þ

17

36N2
c
a1c3m1 − 1

9N2
c
a21m4 þ

Nc þ 3

18N3
c
b2c3m1 þ

Nc þ 3

18N3
c
a1b2m4

	
Fð1Þ
8

þ
�
1

12
a21m1 − 1

3N2
c
a1b3m1 − N2

c þ 6Nc − 34

12N2
c

a21m3 − 3N2
c þ 18Nc − 50

36N2
c

a1c3m1 − 5

18N2
c
a21m4

	
Δ
Nc

Fð2Þ
8

þ
�
55

216
a21m1 þ

Nc þ 3

54Nc
a1b2m1

	
Δ2

N2
c
Fð3Þ
8 ; (C19)

y13 ¼
�

3

8N3
c
b22m2 þ

1

4N3
c
b2b3m1 þ

1

4N3
c
a1b3m2 þ

1

4N3
c
a1b2m3 þ

1

2N3
c
b2c3m1 þ

2

N3
c
a1c3m2 þ

1

2N3
c
a1b2m4

	
Fð1Þ
8

þ
�

1

4Nc
a21m2 − Nc þ 3

4N2
c

a21m3 − Nc þ 3

4N2
c

a1c3m1

	
Δ
Nc

Fð2Þ
8 þ

�
1

6Nc
a1b2m1 þ

1

Nc
a21m2

	
Δ2

N2
c
Fð3Þ
8 ; (C20)

y14 ¼
�

1

2N3
c
b22m2 − 5

2N3
c
a1b3m2 − 1

N3
c
a1b2m3 þ

1

4N3
c
b2c3m1 þ

31

12N3
c
a1c3m2 þ

1

2N3
c
a1b2m4

	
Fð1Þ
8

þ
�

2

3Nc
a21m2 − Nc þ 3

12N2
c
a1b2m2

	
Δ
Nc

Fð2Þ
8 þ

�
1

12Nc
a1b2m1 þ

101

72Nc
a21m2

	
Δ2

N2
c
Fð3Þ
8 ; (C21)

y15 ¼
�

7

6N3
c
b2b3m1 − 1

2N3
c
a1b3m2 − 1

2N3
c
a1b2m3 − 1

4N3
c
b2c3m1 − 1

4N3
c
a1c3m2 þ

1

6N3
c
a1b2m4

	
Fð1Þ
8

þ
�
−Nc þ 3

2N2
c

a21m4

	
Δ
Nc

Fð2Þ
8 þ

�
− 1

12Nc
a1b2m1 − 1

12Nc
a21m2

	
Δ2

N2
c
Fð3Þ
8 ; (C22)

y16 ¼
�
− 1

2N3
c
b2b3m1 þ

5

3N3
c
a1b3m2 þ

1

2N3
c
a1b2m3 þ

1

4N3
c
b2c3m1 þ

2

3N3
c
a1c3m2

	
Fð1Þ
8

þ
�

1

12Nc
a21m2 þ

Nc þ 3

12N2
c
a1b2m2

	
Δ
Nc

Fð2Þ
8 þ

�
1

12Nc
a1b2m1 þ

2

9Nc
a21m2

	
Δ2

N2
c
Fð3Þ
8 ; (C23)

y17 ¼
�
− 1

3N3
c
b2b3m1 þ

1

N3
c
a1b3m2 þ

4

3N3
c
a1b2m3 − 1

4N3
c
b2c3m1 − 1

N3
c
a1c3m2 − 2

3N3
c
a1b2m4

	
Fð1Þ
8

þ
�
− 1

4Nc
a21m2 − Nc þ 3

N2
c

a21m3 þ
Nc þ 3

2N2
c

a21m4

	
Δ
Nc

Fð2Þ
8 þ

�
− 1

12Nc
a1b2m1 − 13

24Nc
a21m2

	
Δ2

N2
c
Fð3Þ
8 ; (C24)

y18 ¼ y19 ¼ y20 ¼ y21 ¼ y22 ¼ 0; (C25)

y23 ¼
�

1

2N2
c
a1c3m1 þ

5

4N2
c
a21m4

	
Δ
Nc

Fð2Þ
8 ; (C26)
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y24 ¼
�

1

6N2
c
a1b3m1 þ

1

6N2
c
a21m3 − 5

12N2
c
a1c3m1

− 1

4N2
c
a21m4

	
Δ
Nc

Fð2Þ
8 ; (C27)

y25 ¼
�

1

4N2
c
a21m3 þ

1

4N2
c
a1c3m1

	
Δ
Nc

Fð2Þ
8 ; (C28)

y26 ¼
�

1

2N2
c
a1c3m1 þ

1

4N2
c
a21m4

	
Δ
Nc

Fð2Þ
8 ; (C29)

y27 ¼
�
− 1

8N2
c
a21m3 − 1

8N2
c
a1c3m1

	
Δ
Nc

Fð2Þ
8 ; (C30)

y28 ¼
�
− 1

6N2
c
a1b3m1 þ

1

2N2
c
a21m3 þ

5

12N2
c
a1c3m1

− 1

12N2
c
a21m4

	
Δ
Nc

Fð2Þ
8 ; (C31)

y29 ¼
�

11

12N2
c
a21m3 − 11

24N2
c
a21m4

	
Δ
Nc

Fð2Þ
8 ; (C32)

y30 ¼
�

1

6N2
c
a21m3 þ

1

6N2
c
a1c3m1

	
Δ
Nc

Fð2Þ
8 : (C33)

Finally, for the flavor 27 representation, the operator
basis is listed in Sec. IV.B of Ref. [10]. This operator basis
also has to be complemented with the following operators:

Zkc
37 ¼ δc8Ok8

5 ;

Zkc
38 ¼ fGkc; ffJi; Gi8g; fJr; Gr8ggg;

Zkc
39 ¼ fDkc

2 ; fT8; fJr; Gr8ggg;
Zkc
40 ¼ ffJr; Grcg; fGk8; fJi; Gi8ggg;

Zkc
41 ¼ fJk; ffJi; Gicg; fGr8; Gr8ggg;

Zkc
42 ¼ fJ2; fGk8; fTc; T8ggg;

Zkc
43 ¼ fJ2; fGkc; fGr8; Gr8ggg;

Zkc
44 ¼ dc8efDk8

3 ; fJr; Gregg;
Zkc
45 ¼ dc8efJ2; fJk; fGre; Gr8ggg;

Zkc
46 ¼ dc8efJ2; fGk8; fJr; Greggg;

Zkc
47 ¼ fJk; ffJi; Gi8g; fGrc; Gr8ggg:

The matrix elements are listed in Tables VIII, IX, and X for
the magnetic moments of octet and decuplet baryons and

the transition magnetic moment of decuplet-octet baryons,
respectively.
The accompanying coefficients are

z1 ¼
�
1

4
a21m1

	
Fð1Þ
27 þ

�
1

4N2
c
a21m3 þ

1

4N2
c
a1c3m1

	
Δ
Nc

Fð2Þ
27 ;

(C34)

z2 ¼
�
1

6
a21m1

	
Fð1Þ
27 ; (C35)

z3 ¼
�
1

12
a21m1

	
Fð1Þ
27

þ
�

1

12N2
c
a21m3 þ

1

12N2
c
a1c3m1

	
Δ
Nc

Fð2Þ
27 ; (C36)

z4 ¼
�

1

3Nc
a1b2m1

	
Fð1Þ
27 ; (C37)

z5 ¼
�

1

6Nc
a21m2

	
Fð1Þ
27 ; (C38)

z6 ¼
�

1

2Nc
a1b2m1

	
Fð1Þ
27 ; (C39)

z7 ¼
�

1

4Nc
a21m2

	
Fð1Þ
27 ; (C40)

z8 ¼
�

1

4N2
c
a21m3 þ

1

4N2
c
a1c3m1

	
Fð1Þ
27

þ
�
1

N2
c
a21m3 þ

1

2N2
c
a1c3m1

	
Δ
Nc

Fð2Þ
27

þ
�
1

12
a21m1

	
Δ2

N2
c
Fð3Þ
27 ; (C41)

z9 ¼
�

1

2N2
c
a1b3m1 þ

1

4N2
c
a1c3m1 þ

1

4N2
c
a21m4

	
Fð1Þ
27

þ
�

1

4N2
c
a1b3m1 þ

1

4N2
c
a21m3 − 1

8N2
c
a1c3m1

þ 3

8N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 þ

�
1

12
a21m1

	
Δ2

N2
c
Fð3Þ
27 ; (C42)
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z10¼
�

1

3N2
c
a1b3m1− 1

6N2
c
a21m3þ

1

6N2
c
a21m4

	
Fð1Þ
27

þ
�
− 2

3N2
c
a21m3− 1

6N2
c
a1c3m1þ

1

6N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ;

(C43)

z11 ¼
�

1

3N2
c
a1c3m1 þ

1

2N2
c
a21m4

	
Fð1Þ
27

þ
�
1

6
a21m1 − 1

6N2
c
a1b3m1 − 1

6N2
c
a21m3

− 1

4N2
c
a1c3m1 þ

17

12N2
c
a21m4

	
Δ
Nc

Fð2Þ
27

þ
�
1

9
a21m1

	
Δ2

N2
c
Fð3Þ
27 ; (C44)

z12 ¼
�

1

3N2
c
a21m3

	
Fð1Þ
27 þ

�
2

3N2
c
a21m3

	
Δ
Nc

Fð2Þ
27 ; (C45)

z13 ¼
�

1

3N2
c
a21m4

	
Fð1Þ
27

þ
�

1

6N2
c
a1b3m1 þ

1

6N2
c
a21m3 − 5

12N2
c
a1c3m1

þ 7

12N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C46)

z14 ¼
�

1

6N2
c
a21m3 þ

1

6N2
c
a1c3m1

	
Fð1Þ
27

þ
�

2

3N2
c
a21m3 þ

1

3N2
c
a1c3m1

	
Δ
Nc

Fð2Þ
27

þ
�
1

18
a21m1

	
Δ2

N2
c
Fð3Þ
27 ; (C47)

z15 ¼
�

1

4N2
c
b22m1

	
Fð1Þ
27 ; (C48)

z16 ¼
�

1

2N2
c
a1b2m2

	
Fð1Þ
27 ; (C49)

TABLE VIII. Nontrivial matrix elements of the operators involved in the magnetic moments of octet baryons: 27 representation.
The entries correspond to 144hZ33

m i 144 ffiffiffi
3

p hZ38
m i.

n p Σ− Σ0 Σþ Ξ− Ξ0 Λ ΛΣ0

hZ33
37i 0 0 0 0 0 0 0 0 0

hZ33
38i −45 45 −144 0 144 81 −81 0 72

ffiffiffi
3

p

hZ33
39i −54 54 0 0 0 −162 162 0 0

hZ33
40i −45 45 −144 0 144 81 −81 0 72

ffiffiffi
3

p

hZ33
41i −45 45 −432 0 432 153 −153 0 144

ffiffiffi
3

p

hZ33
42i −54 54 0 0 0 −162 162 0 0

hZ33
43i − 45

2
45
2

−216 0 216 153
2

− 153
2

0 72
ffiffiffi
3

p

hZ33
44i −90 90 −144 0 144 −54 54 0 0

hZ33
45i −45 45 −144 0 144 −99 99 0 −36 ffiffiffi

3
p

hZ33
46i −45 45 −72 0 72 −27 27 0 0

hZ33
47i −45 45 −288 0 288 297 −297 0 0

hZ38
37i 0 0 0 0 0 0 0 0 0

hZ38
38i 27 27 216 216 216 −729 −729 −216 0

hZ38
39i 162 162 0 0 0 −486 −486 0 0

hZ38
40i 27 27 216 216 216 −729 −729 −216 0

hZ38
41i 27 27 648 648 648 −1377 −1377 −216 0

hZ38
42i 162 162 0 0 0 −486 −486 0 0

hZ38
43i 27

2
27
2

324 324 324 − 1377
2

− 1377
2

−108 0
hZ38

44i −54 −54 −216 −216 −216 −486 −486 −216 0
hZ38

45i −27 −27 −324 −324 −324 −459 −459 −108 0
hZ38

46i −27 −27 −108 −108 −108 −243 −243 −108 0
hZ38

47i 27 27 648 648 648 −1377 −1377 −216 0
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z17 ¼
�
− 1

N2
c
a21m3 − 1

2N2
c
a21m4

	
Fð1Þ
27

þ
�
− 1

N2
c
a1b3m1 − 1

N2
c
a21m3 þ

1

N2
c
a1c3m1

− 1

N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C50)

z18 ¼
�
1

N2
c
a21m3 − 1

2N2
c
a21m4

	
Fð1Þ
27

þ
�
1

N2
c
a1b3m1 þ

1

N2
c
a21m3

	
Δ
Nc

Fð2Þ
27 ; (C51)

z19 ¼
�
− 3

2N2
c
a21m3 − 1

2N2
c
a1c3m1 þ

1

4N2
c
a21m4

	
Fð1Þ
27

þ
�
− 1

4
a21m1 þ

1

2N2
c
a1b3m1 − 7

2N2
c
a21m3

− 3

2N2
c
a1c3m1 þ

1

2N2
c
a21m4

	
Δ
Nc

Fð2Þ
27

þ
�
− 1

6
a21m1

	
Δ2

N2
c
Fð3Þ
27 ; (C52)

z20 ¼
�

1

2N2
c
a21m3 − 1

4N2
c
a21m4

	
Fð1Þ
27

þ
�
− 1

2N2
c
a1b3m1 þ

3

2N2
c
a21m3 þ

1

2N2
c
a1c3m1

− 1

2N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C53)

z21 ¼
�
− 1

2N2
c
a1b3m1 þ

1

4N2
c
a1c3m1 þ

1

2N2
c
a21m4

	
Fð1Þ
27

þ
�
1

4
a21m1 − 1

2N2
c
a1b3m1 − 1

2N2
c
a21m3

− 1

4N2
c
a1c3m1 þ

7

4N2
c
a21m4

	
Δ
Nc

Fð2Þ
27

þ
�
1

12
a21m1

	
Δ2

N2
c
Fð3Þ
27 ; (C54)

z22 ¼
�

1

2N2
c
a21m4

	
Fð1Þ
27 þ

�
1

4N2
c
a1b3m1 þ

1

4N2
c
a21m3

− 5

8N2
c
a1c3m1 þ

7

8N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C55)

TABLE IX. Nontrivial matrix elements of the operators involved in the magnetic moments of decuplet baryons: 27 representation. The
entries correspond to 48hZ33

m i and 48
ffiffiffi
3

p hZ38
m i.

Δþþ Δþ Δ0 Δ− Σ�þ Σ�0 Σ�− Ξ�0 Ξ�− Ω−

hZ33
37i 0 0 0 0 0 0 0 0 0 0

hZ33
38i 675 225 −225 −675 0 0 0 225 −225 0

hZ33
39i 810 270 −270 −810 0 0 0 270 −270 0

hZ33
40i 675 225 −225 −675 0 0 0 225 −225 0

hZ33
41i 675 225 −225 −675 360 0 −360 405 −405 0

hZ33
42i 810 270 −270 −810 0 0 0 270 −270 0

hZ33
43i 675

2
225
2

− 225
2

− 675
2

180 0 −180 405
2

− 405
2

0
hZ33

44i 1350 450 −450 −1350 0 0 0 −450 450 0
hZ33

45i 675 225 −225 −675 180 0 −180 −45 45 0
hZ33

46i 675 225 −225 −675 0 0 0 −225 225 0
hZ33

47i 675 225 −225 −675 0 0 0 45 −45 0
hZ38

37i 0 0 0 0 0 0 0 0 0 0
hZ38

38i 675 675 675 675 0 0 0 −675 −675 −5400
hZ38

39i 810 810 810 810 0 0 0 −810 −810 −6480
hZ38

40i 675 675 675 675 0 0 0 −675 −675 −5400
hZ38

41i 675 675 675 675 0 0 0 −1215 −1215 −5400
hZ38

42i 810 810 810 810 0 0 0 −810 −810 −6480
hZ38

43i 675
2

675
2

675
2

675
2

0 0 0 − 1215
2

− 1215
2

−2700
hZ38

44i −1350 −1350 −1350 −1350 0 0 0 −1350 −1350 −5400
hZ38

45i −675 −675 −675 −675 −540 −540 −540 −1215 −1215 −2700
hZ38

46i −675 −675 −675 −675 0 0 0 −675 −675 −2700
hZ38

47i 675 675 675 675 0 0 0 −1215 −1215 −5400
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z23 ¼
�

3

2N2
c
a1b3m1 þ

1

2N2
c
a21m3 − 1

4N2
c
a1c3m1

− 1

4N2
c
a21m4

	
Fð1Þ
27

þ
�
− 1

4N2
c
a21m3 − 7

4N2
c
a21m4

	
Δ
Nc

Fð2Þ
27

þ
�
− 1

12
a21m1

	
Δ2

N2
c
Fð3Þ
27 ; (C56)

z24 ¼
�

1

2N2
c
a21m3 − 1

4N2
c
a21m4

	
Fð1Þ
27

þ
�

1

4N2
c
a1b3m1 þ

1

4N2
c
a21m3 þ

1

8N2
c
a1c3m1

− 3

8N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C57)

z25 ¼
�

1

3N3
c
b2c3m1 þ

1

3N3
c
a1b2m4

	
Fð1Þ
27

þ
�
− 1

18
a21m1

	
Δ2

N2
c
Fð3Þ
27 ; (C58)

z26 ¼
�

1

3N3
c
a1c3m2

	
Fð1Þ
27

þ
�

1

9Nc
a1b2m1 þ

1

6Nc
a21m2

	
Δ2

N2
c
Fð3Þ
27 ; (C59)

z27 ¼
�

1

4N3
c
b22m2

	
Fð1Þ
27 ; (C60)

z28 ¼
�
− 1

N3
c
a1c3m2

	
Fð1Þ
27 þ

�
− 1

2Nc
a21m2

	
Δ
Nc

Fð2Þ
27

þ
�
− 1

3Nc
a1b2m1 − 1

2Nc
a21m2

	
Δ2

N2
c
Fð3Þ
27 ; (C61)

z29 ¼
�
− 1

N3
c
b2c3m1 − 1

N3
c
a1b2m4

	
Fð1Þ
27

þ
�
− 1

2Nc
a1b2m1

	
Δ
Nc

Fð2Þ
27 þ

�
1

6
a21m1

	
Δ2

N2
c
Fð3Þ
27 ;

(C62)

TABLE X. Nontrivial matrix elements of the operators involved in the decuplet to octet transition magnetic moments: 27
representation. The entries correspond to 36

ffiffiffi
2

p hZ33
m i and 36

ffiffiffi
6

p hZ38
m i.

Δþp Δ0n Σ�0Λ Σ�0Σ0 Σ�þΣþ Σ�−Σ− Ξ�0Ξ0 Ξ�−Ξ−

hZ33
37i 0 0 0 0 0 0 0 0

hZ33
38i 234 234 18

ffiffiffi
3

p
0 18 −18 153 −153

hZ33
39i 0 0 0 0 0 0 0 0

hZ33
40i 0 0 −9 ffiffiffi

3
p

0 63 −63 −72 72
hZ33

41i 0 0 0 0 0 0 0 0
hZ33

42i 0 0 0 0 0 0 −162 162
hZ33

43i 81 81 54
ffiffiffi
3

p
0 108 −108 351

2
− 351

2

hZ33
44i 0 0 0 0 0 0 0 0

hZ33
45i 0 0 0 0 0 0 0 0

hZ33
46i 162 162 −27 ffiffiffi

3
p

0 27 −27 −108 108
hZ33

47i 0 0 0 0 0 0 0 0
hZ38

37i 0 0 0 729 729 729 729 729
hZ38

38i 0 0 0 54 54 54 459 459
hZ38

39i 0 0 0 0 0 0 0 0
hZ38

40i 0 0 0 27 27 27 432 432
hZ38

41i 0 0 0 0 0 0 0 0
hZ38

42i 0 0 0 0 0 0 486 486
hZ38

43i 0 0 0 324 324 324 1053
2

1053
2

hZ38
44i 0 0 0 0 0 0 0 0

hZ38
45i 0 0 0 0 0 0 0 0

hZ38
46i 0 0 0 −81 −81 −81 324 324

hZ38
47i 0 0 0 0 0 0 0 0
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z30 ¼
�
− 1

2N3
c
b2b3m1 − 1

2N3
c
a1b2m3 þ

1

4N3
c
b2c3m1

þ 1

4N3
c
a1b2m4

	
Fð1Þ
27 þ

�
− 1

24
a21m1

	
Δ2

N2
c
Fð3Þ
27 ;

(C63)

z31 ¼
�
− 1

2N3
c
a1b3m2 þ

1

4N3
c
a1c3m2

	
Fð1Þ
27

þ
�

1

12Nc
a1b2m1 þ

1

6Nc
a21m2

	
Δ2

N2
c
Fð3Þ
27 ; (C64)

z32 ¼
�

1

2N3
c
b2b3m1 þ

1

2N3
c
a1b2m3 þ

1

4N3
c
b2c3m1

þ 1

4N3
c
a1b2m4

	
Fð1Þ
27 þ

�
− 1

24
a21m1

	
Δ2

N2
c
Fð3Þ
27 ;

(C65)

z33 ¼
�

1

2N3
c
a1b3m2 þ

1

4N3
c
a1c3m2

	
Fð1Þ
27

þ
�

1

12Nc
a1b2m1 þ

1

12Nc
a21m2

	
Δ2

N2
c
Fð3Þ
27 ; (C66)

z34¼
�
− 1

2N3
c
b2b3m1þ

3

2N3
c
a1b2m3þ

1

4N3
c
b2c3m1

− 1

4N3
c
a1b2m4

	
Fð1Þ
27 þ

�
1

4Nc
a1b2m1

	
Δ
Nc

Fð2Þ
27

þ
�
− 1

24
a21m1

	
Δ2

N2
c
Fð3Þ
27 ; (C67)

z35 ¼
�

3

2N3
c
b2b3m1 − 1

2N3
c
a1b2m3 − 1

4N3
c
b2c3m1

þ 1

4N3
c
a1b2m4

	
Fð1Þ
27 þ

�
1

24
a21m1

	
Δ2

N2
c
Fð3Þ
27 ; (C68)

z36 ¼
�
1

N3
c
a1b3m2

	
Fð1Þ
27 þ

�
1

4Nc
a21m2

	
Δ
Nc

Fð2Þ
27 ; (C69)

z37 ¼
�

1

3N2
c
a1c3m1 þ

1

6N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C70)

z38 ¼
�

1

2N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C71)

z39 ¼
�
− 1

4N2
c
a1b2m2

	
Δ
Nc

Fð2Þ
27 ; (C72)

z40 ¼
�

1

2N2
c
a1b3m1 þ

1

2N2
c
a21m3 − 1

4N2
c
a1c3m1

− 1

4N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C73)

z41 ¼
�
− 1

N2
c
a21m3 þ

1

2N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C74)

z42 ¼
�

1

4N2
c
a1b2m2

	
Δ
Nc

Fð2Þ
27 ; (C75)

z43 ¼
�
− 1

N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C76)

z44 ¼
�

1

4N2
c
a21m3 − 1

8N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C77)

z45 ¼
�
− 1

2N2
c
a21m3 − 1

2N2
c
a1c3m1

	
Δ
Nc

Fð2Þ
27 ; (C78)

z46 ¼
�

1

4N2
c
a1c3m1 þ

1

8N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 ; (C79)

z47 ¼
�
− 1

2N2
c
a1b3m1 þ

1

2N2
c
a21m3 þ

1

4N2
c
a1c3m1

− 1

4N2
c
a21m4

	
Δ
Nc

Fð2Þ
27 : (C80)

Of course, flavor singlet and octet pieces must be
subtracted off Eqs. (C34)–(C80) in order to have a truly
27 contribution.
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