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Baryon magnetic moments in large-N, chiral perturbation theory:
Effects of the decuplet-octet mass difference and flavor symmetry breaking
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The magnetic and transition magnetic moments of the ground-state baryons are computed in heavy
baryon chiral perturbation theory in the large-N . limit, where N, is the number of colors. SU(3) symmetry
breaking is systematically studied twofold: On the one hand, one-loop nonanalytic corrections of orders
m!/ 2 and m, In m, are included, with contributions of baryon intermediate states from both flavor octet
and flavor decuplet multiplets, assuming degeneracy between baryon states within a given flavor multiplet
but nondegeneracy between baryons of different multiplets. On the other hand, perturbative SU(3)
symmetry breaking is also analyzed by including all relevant leading-order operators that explicitly break
SU(3) at linear order. The resultant expressions are compared with the available experimental data and with
other determinations in the context of conventional heavy baryon chiral perturbation theory for three

flavors of light quarks and at the physical value N, = 3. The agreement reached is quite impressive.
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I. INTRODUCTION

The SU(3) group theoretical approach to deal with baryon
magnetic moments was first developed by Coleman and
Glashow [1]; their analysis led to the celebrated relations—
named after them—among octet baryons in terms of two
parameters [2], namely,
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along with the isospin relation

u) =24+ ul =0, ©)
where the superscript (0) will denote the SU(3) symmetric
values hereafter. Soon after the discovery of relations (1),
experimental analyses found discrepancies by a few standard
deviations from the SU(3) values. Since then, a number of
methods have been used in order to improve the numerical
predictions of Coleman and Glashow by including SU(3)
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breaking effects. Among these methods, heavy baryon chiral
perturbation theory [3,4] and the 1/N, expansion of QCD
[5,6], where N, is the number of colors, are two schemes to

understand the low-energy consequences of hadrons.

Furthermore, the combined use of chiral perturbation
theory and the 1/N, expansion is another calculational
scheme which constrains the low-energy interactions of
baryons with the meson nonet in a more effective way than
each method alone [7]. Let us recall that in the chiral limit
m, — 0 and mesons become massless Goldstone boson states;
as a result, there is an expansion in powers of m,/A,, where
A, ~ 1 GeV is the scale of chiral symmetry breaking. On the
other hand, in the large-N . limit, decuplet and octet baryons
become degenerate, namely, A=M;—Mzx1/N.—0,
where My and My denote the SU(3) invariant masses of
the decuplet and octet baryon multiplets, respectively. It turns
out that decuplet and octet baryon states constitute a single
irreducible representation of the contracted spin-flavor sym-
metry of baryons in large-N. QCD [5,6]. Corrections about
the large-N . limit then appear in powers of 1/N.. All in all,
the combined expansion in m,/A, and 1/N . requires us to
consider the double limit m, — 0 and N, — oo.

© 2014 American Physical Society
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Caldi and Pagels [8], in the framework of chiral pertur-
bation theory, found that corrections to baryon magnetic

. . 1/2
moments appear in the nonanalytic forms m,~ and
my In m,, which can be obtained from meson-loop graphs.
In heavy baryon chiral perturbation theory [3,4], loop
graphs have a calculable dependence on the ratio my/A,
where my denotes the mass of meson Il = z, K, 7. For the
theory to be valid, the conditions mpy < A, and A < A,
must be met, although the ratio m; /A can take any value [9].

In a previous paper [10], we computed one-loop cor-
rections to baryon magnetic moments within a combined
expansion in m, and 1/N .. We considered contributions of
orders O(m}/*) and O(m, In m,) to relative order 1/N? in
the 1/N, expansion. The best way of approaching this
problem was in the degeneracy limit A — 0. The resultant
theoretical expressions agreed, order by order, with others
obtained within baryon chiral perturbation theory [11-15]
for octet and decuplet baryons and also for octet-octet and
decuplet-octet transitions. Additionally, a comparison with
the current experimental data [16] through a least-squares fit
allowed us to get information about the free parameters of
the theory. Although the predicted values obtained for all 27
possible magnetic moments were according to expectations,
the fit somehow seemed to be not entirely satisfactory in the
sense that the SU(3) invariants of chiral perturbation theory
are not well reproduced through the analysis.

It would be desirable to relax the restriction A — 0 and
consider the more realistic case A # 0. Indeed, in the
present paper, we do so as a second approximation in the
contributions arising from loop graphs of order O(m,‘/ %)
and O(m, In m,). Our motivation here is not really to be
definitive about the determination of baryon magnetic
moments in the combined scheme but rather to explore
the effects A #0 has on the fit to experimental data.
Noticeable improvements should be observed in the
best-fit values of the parameters in the fit and also in
the value of y? itself.

In this paper we will consider two sources of SU(3)
symmetry breaking. The first source, the implicit one,
originates from the loops themselves when using the
physical masses of the mesons. Here the corrections are
of orders O(my’*) and O(m In m,), depending on the
topology of the Feynman diagrams. The second source, the
explicit one, is also related to the light quark masses and
transforms as a flavor octet. We will loosely refer to this
correction as perturbative symmetry breaking (SB).

This paper is organized as follows. In Sec. II, apart from
introducing our notation and conventions, we provide an
overview on the determination of baryon magnetic
moments in large-N, chiral perturbation theory. We start
our discussion by defining the tree-level values, and then, in
Sec. III we continue with computing one-loop corrections.
We first concentrate on corrections of order (’)(m,l/ 2) in
Sec. III A by constructing the baryon operator which
describes such contribution; the dependence on A is
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explicitly included at this level. We proceed further in
order to achieve the reduction of the operators in the two
flavor representations involved. Next, in Sec. III B we
compute corrections of order O(m,, In m,); the analysis is
more challenging than the previous one due to the con-
siderable amount of group theory involved. We comple-
ment the analysis by including SB in Sec. IV. The
theoretical expressions obtained are then compared with
other determinations in the framework of chiral perturba-
tion theory and cross-checked with the very well-known
sum rules found in the literature in Sec. V. In Sec. VI we
carry out several least-squares fits in order to determine the
best-fit parameters of the theory which allow us to predict
numerical values of the unobserved magnetic moments;
we then compare them with other numerical predictions.
Finally, in Sec. VII we discuss our findings. This work is
complemented by three appendices. In Appendices A and
B, we provide the reduction of the baryon operators for
both kinds of one-loop corrections discussed here. In
Appendix C we list the explicit results that make up the
contributions of order O(m, In m,).

II. BARYON MAGNETIC MOMENT IN LARGE-N
CHIRAL PERTURBATION THEORY

The present analysis builds on earlier works, particularly
on Refs. [5-7,17], which established the mathematical
groundwork on large-N, QCD and the 1/N, expansion
for baryons, and also on Ref. [10], where baryon magnetic
moments in large-N,. chiral perturbation theory in the
degeneracy limit were discussed. Thus, we only give an
outline of some relevant issues here.

The chiral Lagrangian for baryons in the 1/N, expansion
was established in Ref. [7]. It takes the form

Ebaryon =D’ — Mhyperfine +Tr (Aklc)AkC

1 2N
+N—CTr<A76>A+ , 3)

with
D = 91 + Tr(WV0A°)Te. 4)

The ellipses in Eq. (3) refer to higher partial wave meson
couplings, showing up at subleading orders in the 1/N.,
expansions for N. > 3. All of these higher partial waves
vanish in the large-N,. limit. Accordingly, the meson
coupling to baryons is purely p wave. In particular, the
ellipses do not mean that we omit terms or make unjustified
approximations. Much like in the analogous study related
to the baryon axial vector current performed in Ref. [18],
the terms shown in Eq. (3) are the only ones relevant to our
analysis.

Meson fields are contained in the vector and axial vector
combinations
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W= J(EPE 8D, A= (VR - £V,
£(0) = expliTI(x)/ ] ®

(o]

Here the matrix II(x) stands for the nonet of Goldstone
boson fields, and f is the pion decay constant which takes
the value f =~ 93 MeV/c>.

Each term in the chiral Lagrangian (3) involves a baryon
operator. The baryon kinetic energy term is proportional
to the spin-flavor identity; the quantity Mpyperfine 1S the
hyperfine baryon mass operator, which takes into account
the spin splittings of the tower of baryon states with spins
1/2,...,N./2 in the flavor representations. Furthermore,
the flavor octet and the flavor singlet meson combinations
couple to the flavor octet V% and flavor singlet V° baryon

charges, respectively, given by
B> (6)

V0 — <B/ <qy0§q>
QCD
B>. @)

1
o= (o (L)
V6 QCD
In a similar fashion, the Z = 1 flavor octet and flavor
singlet axial vector meson combinations couple to the

flavor octet A% and flavor singlet A* axial vector currents,
respectively, which read

and

AC
Ake = <B’ (517"75 —q> B> ®)
27 Jocp
and
Af = <B’ ((_]YkVS Lq) B>. )
V6 QCD

The subscript QCD in Egs. (6)—(9) is used as a reminder
that the quark fields are QCD quark fields.

A baryon operator has a well-defined 1/N_. expansion,
which can be written as

1
Oqcp =) O, (10)

c,—
n arn—1
n NC

where the operator basis O, is conformed by polynomials
in the SU(6) spin-flavor generators [6],

ok

JF=q"—q,
954

k qc

, o)
Gk =q"—"=¢q. (1)

c Tlc
=474 22

2
Here the quantities ¢* and ¢ represent SU(6) operators that
create and annihilate states in the fundamental spin-flavor
representation of SU(6), and ¢* and A¢ are the Pauli and
Gell-Mann matrices, respectively. The commutation
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relations obeyed by the SU(6) spin-flavor generators can
be found in Ref. [6].

Specifically, the 1/N, expansion of the baryon mass
operator M, which transforms as a (0, 1) under
SU(2) x SU(3), can be written as [7]

N.—1
: 1
0.1 0,1 n
M= m(())NC]] + 524171(”) N J, (12)

where the coefficients m®! are a priori unknown param-

eters of order O(A,), and the superscripts attached to
them indicate the spin-flavor representation they belong
to. While the first term in Eq. (12) represents the
overall spin-independent mass of the baryon multiplet,
the spin-dependent terms define My perfine-

On the other hand, the 1/N, expansion of the baryon
axial vector operator AX can be constructed by keeping in
mind that only its space components have nonzero matrix
elements at zero recoil. Thus, it transforms as a (1, 8) under
SU(2) x SU(3), and it is T odd. [6]. At the physical value
N, =3, we have

. I . | 1 .
Akc:alec+b2N—D§L+b3FD§L+C3ﬁO§C, (13)

where the coefficients ay, by, b,, and c5 are of order unity
and the operators that come along with them read

Die = JHT, (14)
Die = {JK {J7. G}, (15)
41 :
0% = {J2.G*} - 5{Jk, {J7.G}}. (16)

Successive higher-order operators are constructed from the
previous ones by anticommuting them with J2. Besides, the
operators DX are diagonal: nonvanishing matrix elements
only occur between states with the same spin. The operators
Ok, in turn, are purely off-diagonal: nonvanishing matrix
elements only occur between states with different spin.

Now, the starting point of the analysis of Ref. [10] relies
on the fact that, in the large-N,. limit, the baryon magnetic
moments possess the same kinematical properties as the
baryon axial-vector couplings, so they are described in
terms of the same operators. The magnetic moment
operator is also a spin-1 object and transforms as an SU(3)
octet. Thus, in a complete analogy to expression (13), the
1/N,. expansion of the operator which yields baryon mag-
netic moments can be written as [10]

1
N,

1

Mkc = mle" + my
N2

1
'Déc + ms DI»EC + on m 013(6,
c

(17
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where the series has also been truncated at N. = 3. By
assuming the SU(3) symmetry limit, the unknown coefficients
m; (also of order unity) are independent of k, so they are
unrelated to the ones of the series (13) at this limit. The
magnetic moments are proportional to the light quark electro-
magnetic charge matrix Q=diag(2/3,—1/3,—1/3) and
can be separated into isovector and isoscalar components,
M"*3 and M*8, respectively. Thus, the baryon magnetic moment
operator can ultimately be defined as

1
MK = M*Q = MR3 +7§M"8. (18)

Hereafter, the spin index k of M k will be set to 3, whereas
the flavor index Q will stand for Q =3 + (1/ \/§)8 SO any
operator of the form X< should be understood as
X3 + (1/+/3)X®. In the same spirit, X© should be understood
as X° — (1/+/3)X3. In particular, 72 = T3 + (1//3)T% is
the SU(3) flavor generator corresponding to Q.

The magnetic moments in conventional heavy baryon
chiral perturbation theory (the effective field theory
with no 1/N_ expansion) are parametrized by four SU(3)
invariants up, prp, pe, and pp [11], while in the present
analysis, they are parametrized in terms of m;, with
i=1,...,4, introduced in Eq. (17). At N. = 3, they are
related by [10]

1 1
Hp =5 +8m3’ (19a)
1 1 1
ﬂF:§m1 +8m2+§m3, (19b)
1 5
po =5my+5my+ ems, (19¢)
Hr = —2m1 — My. (19d)

In a complete parallelism with Ref. [6], the operator analysis
in this work is performed within the quark representation of
the spin-flavor symmetry of large-N . baryons, which uses the
algebraic structure of the nonrelativistic quark model to
classify baryon operators. This statement does not mean,
however, that either the quaks in the baryon are treated as
nonrelativistic or that the validity of the quark model is
implicitly assumed.

We should stress the fact that the present analysis of
baryon magnetic moments is based on large-N, chiral
perturbation theory, i.e., the combination of heavy baryon
chiral perturbation theory with the 1/N, expansion. We
want to point out that either method is fully systematic and,
above all, model independent. Heavy baryon chiral per-
turbation theory corresponds to a consistent and systematic
expansion in powers of momentum and of the light quark
masses. In the 1/N_. expansion, on the other hand, one
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systematically evaluates deviations from the exact spin-
flavor symmetry by computing 1/N, corrections to the
large-N. limit. The (combined) chiral Lagrangian for
baryons in the 1/N, expansion (3) is the most general
expression which respects the symmetries of QCD and is
consistent with the 1/N_ expansion. It is important to note
that, unlike, e.g., the quark model, these expansions in
momentum, quark mass and 1/N ., do not make use of any
model description of the baryons. In particular, the
expressions (17) and (18) are model independent: they
represent the most general expression (up to order 1/N2)
consistent with the N, expansion, while the microscopic
details of QCD only manifest themselves in the specific
values of the coefficients m, ....., my.

The matrix elements of the baryon operators
V0 = 0Te Al M or M between SU(6) symmetric
states can thus be connected to physics in a straightfor-
ward way. V% is a spin-0 and a flavor octet, so it
transforms as (0,8) under SU(2) x SU(3). The operator
V0 at > = 0 is a special (0,8) operator; it is the generator
of SU(3) symmetry transformations, and its matrix ele-
ments correspond to the vector form factors f(¢*> = 0) =
gy as conventionally defined in baryon semileptonic
decays. In a similar manner, A is spin 1 and a flavor
octet. Its matrix elements between baryon octet states at
g> =0 correspond to the axial vector form factors
91(¢*> = 0) = g, also as defined in baryon semileptonic
decays, with a normalization such that g, /gy = F + D for
neutron beta decay.

On the other hand, we have already pointed out that since
the magnetic moment is a spin-1 octet operator, it has a
1/N,. expansion identical in structure to the axial current.
The matrix elements of M', for i = 3, thus yield the actual
values of the baryon magnetic moments upg. To derive a
relation between magnetic moments and form factors, one
needs to look at the baryon matrix elements of the
electromagnetic current j;". Thus, pp corresponds to
F1(0) + F5(0) = Gy(0), where F,(¢*) and F,(q*) are
the Dirac and Pauli form factors, respectively, and G, (¢?)
is the magnetic form factor. In the limit g> — 0, F, and F,
are the charge and the anomalous magnetic moments of the
baryons, respectively. For electromagnetic transitions
analogous form factors can be defined.

At tree level, the baryon magnetic and transition mag-
netic moments uy° can be straightforwardly computed
from Eq. (18). The required matrix elements of the
operators involved in such an expression are listed in
Ref. [10] and will not be repeated here. Let us now proceed
to discuss the one-loop corrections.

III. ONE-LOOP CORRECTIONS TO BARYON
MAGNETIC MOMENTS

The diagrams that contribute to baryon magnetic
moments at one-loop order are displayed in Figs. 1 and 2.
These diagrams are given by the product of a group theoretic
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(@ (b)

FIG. 1. Feynman diagrams which yield nonanalytic m,l/ ?
corrections to the magnetic moments of octet baryons. Dashed
lines denote mesons, and single and double solid lines denote
octet and decuplet baryons, respectively. For decuplet baryons
and decuplet-octet transitions, the diagrams are similar.

structure times a loop integral, which depends nonanalyti-
cally on the light quark masses m,,. The explicit dependence
is O(mtl/z) and O(m, In m,) for Figs. 1 and 2, respectively.
Since m, m% x pqz, in the chiral momentum counting
scheme, these two types of diagrams are of order p? and p*,
respectively. In this counting, the tree-level values are
order p2.

The group theoretical structures that come along with the
integrals over the loops have a rather complex dependence
on N,. It has been argued that baryons with strangeness of
order NY have matrix elements of 7¢ and G*® (¢ = 1,2,3)
of order N, matrix elements of 7¢ and Gk (¢ =4,5,6,7)

(© (d)

(e

FIG. 2. Feynman diagrams which yield nonanalytic m, In m,
corrections to the magnetic moments of octet baryons. Dashed
lines denote mesons, and single and double solid lines denote
octet and decuplet baryons, respectively. The wave function
renormalization graphs are omitted in the figure but are never-
theless considered in the analysis. For decuplet baryons and
decuplet-octet transitions, the diagrams are similar.

PHYSICAL REVIEW D 89, 034012 (2014)

of order /N, and matrix elements of 7% and G*¢
(c =1,2,3) of order N, [6]. To overcome this apparent
complexity, let us use the fact that the pion-baryon vertex is
proportional to g,/ f. Thus, in the large-N . limit, g4 < N,
and f o« /N, so the pion-baryon vertex scales as \/N..
Next, we can assume a naive power counting scheme for
baryons with spins of order 1,

T ~N,, G“~N,, Ji~T; (20)
i.e., factors of J'/N, are 1/N,. suppressed relative to factors
of T%/N, and G*/N,. This N .-counting rule works if we
only consider the lowest-lying baryon states, namely, those
related to the 56 dimensional representation of SU(6).

With these simple tools, we can argue that the one-loop
diagrams of Fig. 1 are of order O(N..). In the limit of small
my, the symmetry breaking part of these diagrams is
O(mi/ 2), so their overall contribution to baryon magnetic
moments is O(ml/ 2NC), whereas the tree-level value is
order N,. As for the one-loop diagrams of Fig. 2, the large-
N, dependence has been discussed in detail in Refs. [9,19]
for the axial vector current. Those conclusions can be
extended to the baryon magnetic moment operator.
Therefore, diagrams of Fig. 2 are at most of order
O(NY), or 1/N, times the tree-level value.

Recent studies that focused on the computation of
baryon magnetic moments within covariant chiral pertur-
bation theory, Refs. [13,14], raise an important issue here.
We need to point out that there is no one-to-one corre-
spondence between the diagrams of covariant baryon chiral
perturbation theory and heavy baryon chiral perturbation
theory. While the total result for any measurable quantity,
of course, must be the same, the contributions from
different diagrams can be rearranged. Indeed, in the present
case of magnetic moments, there are two types of diagrams
that are different from zero in the covariant approach but do
not contribute in the heavy baryon version. In the covariant
approach, the tadpole diagram (b) as well as the diagrams
(f) and (i) in Fig. 1 of Ref. [14] yield nonzero contributions.
The same diagrams in the heavy baryon approach, however,
do not contribute to magnetic moments. This is a conse-
quence of the spin symmetry, which emerges at leading
order in heavy baryon chiral perturbation theory. More
precisely, the tadpole graph (b) corresponds to a vertex
which is spin independent and can thus not contribute to
magnetic moments. On the other hand, in the diagrams (f)
and (i), the momentum p of the external photon only enters
through the combination (k + p) - v in the baryon propa-
gator. So again, it does not have the correct structure to lead
to a magnetic moment because the magnetic moment
depends on the space component of p* rather than on its
p° component. In the covariant approach, there are extra y
matrices that may produce spin dependence and thus lead
to nonzero contributions resulting from the very same
diagrams. Note that all y# matrices can be eliminated in
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heavy baryon approach and reduced to expressions involv-
ing the 4-velocity v# of the heavy baryon field and the
velocity-dependent spin operator S* only [3]. Explicit
expressions for type-1 and type-2 diagrams which do
contribute in heavy baryon chiral perturbation theory
(Figs. 1 and 2 in the present work) can be found in
Ref. [20] [see formulas (22) and (28), respectively].

Coming back to the main goal of the present paper,
the analysis of baryon magnetic moments in the framework
of large-N . chiral perturbation theory presented in Ref. [10]
was carried out in the degeneracy limit A — 0. We now
intend to find out the effects of a nonvanishing A, as well as
flavor symmetry breaking. The calculation introduces a
number of issues not discussed in Ref. [10]. Because both
types of diagrams involve rather different operator reduction
patterns, we proceed to evaluate them separately.

A. Di 1/2
. Diagrams of order O(m, *)

The analysis of one-loop corrections of order (’)(mé/ 2)
in the degeneracy limit has been discussed in detail in
Sec. IV.A of Ref. [10]. Now, for a nonvanishing A, one can
discern that an immediate modification can be found in the
baryon propagator in the loop integral of Fig. 1, which now
has an explicit dependence on A. To deal with this issue, we
can follow the approach implemented in the analysis of
flavor 27 nonanalytic corrections to the baryon masses
presented in Ref. [7]. In this work, is was stated that in the
chiral limit the baryon propagator is diagonal in spin, so it
can be expressed as

2n

where P is a spin projector operator for spin J = j, which
satisfies by definition

P? = P,

] (22a)

PPy =0, j#] (22b)

and A; stands for the difference of the hyperfine mass
splitting for spin J = j and the external baryon, namely,

Aj = Mhyperfine|12=j(j+1) - Mhyperﬁne|12=J’EX‘(J’EX‘+1)- (23)
Thus, for p-wave meson emission, A; reduces to [7]

NLZ]m(ZI)’ jext:j_la
jext = jv (24)

_Nizjmojﬁv jext = ] +1,

o

at leading order 1/N, in the 1/N, expansion.
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A realization of Pj is given by [7]

Ty (/2 — Jf)

P =
J 2 2
My (J2 = J3)

: (25)

i.e., the projection operators for spin J; is given by the
product over all Jy =1/2,3/2,...,N./2 not equal to J;.
The general form of the spin projector (25) for arbitrary N,
can be found in Ref. [7]; however, here we just need the
spin-% and spin—% projectors for N, = 3, which read

1 15
— 2
1 3
s =—(J2=Z 2
'PE 3 <J 4), (26b)
where
07 .ex == l k)
A= { ' ‘ : (27a)
—A, e = 25
Av ]ext % ’
A = { e (27b)
: 0’ Jext = 2
and
3 0,1
A= N—cm(z). (28)

It is straightforward to check that expressions (26) meet
conditions (22).

The diagram in Fig. 1 is thus given by the product of a
baryon operator times a flavor tensor containing informa-
tion about the loop integrals. Using the baryon propagator
(21), the loop graphs of Fig. 1 can be expressed as

oMf

Eopt = O _€RATPAIPTab(A)), (29)
j

where the explicit sum over spin j has been indicated,
whereas the sums over spin and flavor indices are under-
stood. Here A and A/’ are used at the meson-baryon
vertices, and I'*’(A;) is an antisymmetric tensor which
explicitly depends on the difference of the hyperfine mass
splitting A;. This tensor can be decomposed as

rab (A]-) = AO(A]-)FSb + Al(Aj)F?b + A, (Aj)l—gb, (30)
where the tensors ['%? are written as [17]

rgh = fere, (la)
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5 1
Iy = foe, (31b) Ao(8y) = 3 [1me, By, g0) + 21 0mic A (320
ng — faedeeS _fbeQdae8 _ fabedeQS. (310)
1
A(A) =<1 A, p) — I(mg, Ay, p)], 32b
Let us recall that 4> and I'¢” are both SU(3) octets, except (&) 3 [ Ay ) = 1omic. Ay )] (326)
that the former transforms as the electric charge, whereas
the latter also transforms as the electric charge but is
rotated by 7 in isospin space. In turn, 4> breaks SU(3) as 1
10 + 10 [17]. Ao(By) = 2 O, o) = 1mic. Ay ), (320)
On the other hand, the coefficients A;(4j) are linear
combinations of the functions I(m,, Aj, u) and I(mg, A}, p),
which result from doing the loop integrals; they read where the loop integral is [11]
|
872 f2 m 2Vm? — A? [%—tan_1 \/ﬁ}, |A] < m,
i I(m, A p)=—AlIn — + - (33)
N p VAT i [—21‘” +1n A=vElo H] A| > m,
|
where My and m denote the nucleon and meson masses, Mioop1 (P}) = € fePeAPAT, (35)
respectively, and y is the renormalization scale.
Thus, the one-loop correction arising from Fig. 1 can be and
decomposed into the pieces emerging from the flavor 8 and
flavor 10 + 10 representations as . ik / raee The e 1ae
M];0+E,loopl<7)j) - €Jk (‘f db - fb d :
_ fabedeCS)AiaijAjb. (36)

5M{€00p1 = Z[AO(AJ')MISC,?OOI) 1 (P]) + A, (Aj)Mlg,glzoop 1 (P])

J

+ Ay (A)MYC

10-+10.loop 1 (,PJ)} ’ (34)

where the flavor contributions read

: k
The correction 6Mj, |,

For computational purposes, a free flavor index ¢ has been
left in Egs. (35) and (36). This free index can be set to
Q =3+ (1//3)8 [or O =3 —(1/+/3)8 as the case may
be] once the operator reductions on the right-hand sides of
such equations have been performed.

Eq. (34), to the SU(3) symmetric value of the baryon magnetic moment can be organized as

5M{€00p 1= P1/2€ijkAmP1/2Ajb [AO (O)ng + Al (O)Ftllb + A2 (O)ng]Pl/z
+ P 2€ TR AP AP [AG(A)TG 4 A (AT + Ay (A)TSPTPy

for octet baryons,

SMiop1 = P3jp€ APy p AP [Ag (AT 4 Ay (AT + Ay (—A)TSPPs
+ P3p€ R APy 5 AP [AG(0)TG" + Ay (0)TYP + Ay (0)T5] P32

for decuplet baryons, and

034012-7

(37)

(38)



GIOVANNA AHUATZIN et al.
5M{<oop 1= P3/2€ijkAiaPl/2Ajb [Ao(())rgb
+ A (0)I42 + A, (05| Py o
+ P p€U APy AP [Ag (AT

+A (AT + Ay (AT P ) (39

for decuplet-octet transitions.
To proceed further, let us notice that the operator
ek fabe AP AP can be decomposed as ae'/k fabe Al ATb 4
pelik “bCA’“JZAJb where a and f are some coefficients. The
first summand in the expression mentioned previously corre-
sponds to the degeneracy case A — 0 discussed in Ref. [10],
whereas the second one is the new contribution to be dealt
with in the present analysis. Now, in the product operators
such as ek fabe Aia J2Ab - ¢lik fabe gec8 pia J2 Ajb - and so on
found in Egs. (35) and (36), there will appear up to eight-
body operators if we truncate the 1/N,. expansion of A at
|

(1) flavor 8 representation:

PHYSICAL REVIEW D 89, 034012 (2014)

the physical value N, = 3. The leading order in 1/N, is
contained in the product /% f47¢ G J>GJ and similar terms
with two G’s, which will be proportional to the square of a;,
the leading parameter introduced in Eq. (13). To perform the
current analysis on an equal footing as Ref. [10], we work
out terms up to relative order O(1/N3?), which implies
evaluating products up to seven-body operators in Egs. (35)
and (36). The contributions ignored will be proportional to
b2, c%, and b5c3, which we consider small compared to the
ones retained. Because the operator basis is complete [6], the
reduction, although long and tedious, is always possible. In
Appendix A we present the relevant reductions of baryon
operators up to the order in 1/N,_ required here.

Gathering together partial results, the spin-dependent
contributions to be combined with their spin-independent
counterparts given in Egs. (35) and (36) of Ref. [10] are as
follows:

y . . 1 1 3N
A PAT = —2 (Ne + N)alG* + |5 (1 4+ NpJat + = alc3] Dhe
(1 N, N+ Ny 3(N.+Ny) .
+ __g(NC—i_Nf)al_é‘.—]VCal - 2N% a1b3— ZNE (116'3 D1§
1 14+ N 3(N,+N;) N.+N
+ _Z(NC+Nf)a%— NC 'falbz—Tfalb3—Tzfa1C3:|O§C
1, Ny =2 TNy + 12 [ N+ Ny N .
+ _Za% 4—1\,% %— 2N% ay 3"’4—]\,%6116'3 Dﬁ + —TI\IEG1C3—2N3b2b3 Dlg
Tl N.+N N.+N 14+ N
+ __Wcal 2 2N? fal 3T 4N? falc3 N3 szc3} OIS(C
1 :
2N2 Cl]C?,D N3 b2C3OI7“ +O(D3]2D3), (40)
(2) flavor 10 + 10 representation:
p
eijk(faecdbeS _ fbecdaES _ fabedeCS)AiaJZAjb
1 , , 1 , :
= JAUTG Y — (G T b (G (77,6 — (G (77,67
1 .
+ 3z (b + Saies) (DY A7, 67} = (DF. (7.6 )
[ 1 3
+ _—Za% N2a1b3 2N2 al%]({ﬂ’{GkC’Ts}}—{Jz»{GkSvTc}})
[ 1
| g s = s (PGS L G = (PG (7.6 1))
1
+ |- gypants = s (PG TN} ~ (2 2 (65 TH))
1 1
+ |- gypants + s (2 (D .GP) ) — (2 DS 7.6 1))
2Ng byes ({72 A2 AGH AT G} — {2 {2 AGR {7 G} 1) + O(DsPD3): - (4
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where the free flavor index ¢ will be set to Q =3+
(1/4/3)8 or Q = 3 — (1/+/3)8 as required in Eq. (34). The
symbol O(D3J?Ds) in Egs. (40) and (41) means that in the
structures such as ek fabcAia 2 Ajb - giik facc gbe8 pia j2 Ajb.
and so on we have included all terms up to seven-body
operators, such as D,J>D5, but have neglected contribu-
tions which are eight-body operators—like D5J?>D;—or
higher. In addition, the operator [J2,[T®, G*]] and its
anticommutator with J? have been omitted in expression
(41) because they do not contribute to any observed
magnetic moments.

Notice also that Egs. (40) and (41) have been rearranged
to exhibit explicitly leading and subleading terms in 1/N,.
It is simple to realize that the one-loop contribution

My, 1» Eq. (34), is order O(N,.). In the limit of
|
loop 1 7 2
/’l(zoop ) |:18a1 +9alb2 + b% 27
1,1
+ %al—ﬁa1b2+36b2 54 Cllb3 54

1 1
+ [ gt = gancs| m. 2,

which in the limit A — 0 reduces to the value already found
[10]. Theoretical expressions like Eq. (42) are quite useful
when comparing our results with the ones obtained in the
framework of chiral perturbation theory [11,13—15]. It has
been already shown that there is a one-to-one correspondence
between the parameters of the 1 /N . baryon chiral Lagrangian
at N, = 3 [7] and the octet and decuplet chiral Lagrangian
[3.4]. The baryon-meson couplings are related to the coef-
ficients of the 1/N, expansion of A", Eq. (13), at N, = 3 by

1 1

D :Eal +gb3, (433)
1 1 1
F=3a1+ by +gbs (43b)
1
C = —a) — £ C3, (43C)
2
3 3 5
H:—Eal—ibz—ib:;. (43(1)

For octet baryons, the magnetic moments computed in
Ref. [11] can be rewritten as

PHYSICAL REVIEW D 89, 034012 (2014)

small ms, the symmetry breaking part of 5M100 | is
O(ms %), so the overall contribution of Eq. (34) to
baryon magnetic moments is O(my 2NC); this is the
reason why this correction is dominant over the one
of Fig. 2.

At this stage, analytical expressions for all 27 possible
baryon magnetic and transition magnetic moments can
readily be obtained by evaluating the matrix elements of
the baryon operators indicated in Egs. (37)—(39) between
baryon SU(6) symmetric states. Most matrix elements
are listed in Ref. [10], except for a few ones which
result from anticommutators of some of the already
existing operators with J2, for which the matrix elements
can be trivially evaluated. As an example, for ps- one
finds

7
ssaibs +— b2b3} I(m,,0,pu)

1 1
b2b3}1(m1<,0,/1) + {—1—80% _Ealc3j| I(mg, A, p)
(42)
|
Hi=a;+ Z ﬂ,('X)I(mX,Oa,“) + Z ﬁ;(X)I(mX,A,,u)
X=nK X=n K
2
2(X) 2 1. Mx
+ —24;"a;)my In —-, (44)
X;(n32ﬂ2f2 X 'uz

where a; corresponds to the tree-level value of baryon i,

ﬁEX) and ﬂi-(X) are the contributions arising from loop graphs
of Fig. 1, and the remaining coefficients come from loop
graphs of Fig. 2. For uy- the corresponding chiral coef-
ficients listed in Ref. [11] read

p=2ppar = (-,

. 1 1
P =g A = (45)

Under identifications (43), the above chiral coefficients
coincide with their corresponding analogs in Eq. (42). The
same agreement is found in all expressions for octet
baryons. As for decuplet baryons and decuplet-octet tran-
sitions, the comparison is not as simple as in the previous
case, so we prefer to perform a numerical comparison
instead. This will be discussed in the next section.
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On the other hand, corrections of order O(my/*N,) with
a nonvanishing A have some important effects on the
Coleman—Glashow relations referred to in the introduc-
tory section. First, the term that comes along with A,

M]g,?oopl in Eq. (34), yields baryon magnetic moments that

11

PHYSICAL REVIEW D 89, 034012 (2014)

satisfy relations (1), whereas violations to them are due to
the terms that accompany to A; and A,, which are M9

kQ
and M10+10 loop 1’

relation, one has

8.loop 1
respectively. For instance, for the first

1 1 5
Loor) —ufoor Y = | == 1m0, p) = 1m0, )] = T (e o) = H(mg, A, o)
1 1 5
18 [ (mK7 0 lu) (mm 07 :u)}ale + % [I(ml(v 07 ,Lt) - I(mlr’ 0’ ﬂ)]bZ
11 1
[ (mK7 O //l) (mﬂ’ 0 lu)}alb'i N [ (mK’ 0’ ﬂ) - I(miﬂ 07 M)]b2b3
54 54
5
|
Analogous results are obtained for the remaining relations 23(2) D ,ugko"’p N — o, (54)
and will not be listed here.
In addition, we can verify that the sum rules derived by 4
Caldi and Pagels [8] are also satisfied for A # 0 in our
approach, namely, .
ploee ) gpom )y dooe ) — o, (55)

(loopl) + 2’u(loopl) + ’u(zl?opl) =0, a7
plooP V) g Qoo oy yfloont) gy (oo t)y foorl) — g,
(43)

and

Y = VEr Y = p Y — e =0, 49)

In turn, the isospin relation

2P — 2PV et — 0 (50)
also holds to this order, as it should.

Similarly, for decuplet baryons we find that the / = 2
sum rules introduced in Ref. [21] are also satisfied,

B — e e e =0, 1)

ugt )=o) e =0, (52)
whereas for I = 3

H(loopl) _ 3 (loop 1) +3 (loop 1)

ATt

— P =0, (53)

For transition magnetic moments, the isotensor combina-
tions for I = 2 read [21]

In summary, the introduction of a nonvanishing A does
not modify the sum rules between magnetic moments
derived in previous works.

B. Diagrams of order O(m, In m,)

The loop diagrams displayed in Fig. 2 contribute to order
O(m, In m,) to the baryon magnetic moments. To incor-
porate the effects of a nonvanishing A, the same approach
as in the previous case could be followed. This task,
however, is rather involved. We will follow a more
pragmatic approach instead by using a simple argument:
due to the fact that the baryon axial vector current operator
and the baryon magnetic moment operator share the same
kinematical properties in the large-N,. limit, then the
analysis of the former presented in Ref. [18] will help
us save a substantial amount of effort in the present
analysis.

Thus, in a close analogy with Eq. (14) of Ref. [18], the
operator that yields the one-loop correction to the baryon
magnetic moment from diagrams in Fig. 2(a)—~(d) can be
cast into the single expression

1Equation (53) of Ref. [10] is the analog of the first
summand in Eq. (56). However, in that reference’s Eq. (53)
the 1/2 factor was absorbed into the loop integral, where a
minus sign is missing. This will be pointed out in a forth-
coming erratum.
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S Mkc

1 ja ib ke ab
loop 2(a-d) = 5 [A] ’ [A] M HH

1)
| .
-5 LA ke, Mar gy

g (e [0, (ma. 427 )

1 j j ke ab
MR (M4, 00) g

(56)
so, the actual correction 5M{‘00p2(a_ 4) can be obtained as
_ kQ
5M{€00p 2(a-d) 5M100p 2(a-d)" (57)

Let us notice that in Eq. (56), A7 and A/’ represent the
meson-baryon vertices, and M*e denotes an insertion of
the baryon magnetic moment operator. Similarly, M is the
baryon mass operator, and H“}'j represents a symmetric
tensor which decomposes into flavor singlet, flavor 8, and
flavor 27 representations as [7]

= Fo 4
) | sassbs L cab 3 sabs 888
where
n 1
Fy) = S BF O (g, 0.0) + 4F ) (mg. 0. p0)
+ F) (m,, 0, )], (59a)
n_ 2V3[3
R =5 {EF“” (7,0, 1) = F (g, 0, )
L ro)
— 5 F(my, 0.4 (59b)
n l 4
P = S F 0 (g, 0,0) = 5 F (i, 0.0)
+ F (m,, 0, p). (59%)

Here F"(my,0,u) represents the degeneracy limit
A/my — 0 of the general function FU)(mp, A, p),
defined as

O"F(mp, A, )

F(l’l)(ml-hA,ﬂ) = 8A" s

(60)

where p is the scale parameter of dimensional regulariza-
tion. The function F(m, A, u) along with its derivatives
is given explicitly in Appendix A of Ref. [18]. In the
degeneracy limit, one finds

PHYSICAL REVIEW D 89, 034012 (2014)

. 2 m2
F( )(I’}’l,o,//l):—mzf2 In ?, (613)
o 1
FO(m,0,p) = & E™ (61b)
T
®) m
F (m, O, ,Ll) = szz In ”—2 . (610)

Notice that in Eq. (61) we have kept nonanalytic terms in
the quark mass explicitly. Analytic terms are scheme
dependent and have the same form as higher-dimension
terms in the chiral Lagrangian, so they have been omitted.

The computation of the group theoretic structure
involved in the loop graphs of Fig. 2 can be performed
following the lines of Ref. [18]. Our interest here is
computing corrections of relative order O(1/N?) to M*,
which is order O(N,). In other words, we need to retain
terms up to order O(1/N?) in 6M*¢ in Eq. (56). For
vanishing A, we will borrow the expressions listed in
Appendix B of Ref. [10].

For a nonvanishing A, however, the insertion of the
operator M ke which introduces different coefficients in the
expansion compared to A%, does not allow us to straight-
forwardly borrow the expressions listed in Appendix B of
Ref. [18]. We thus have to take a few steps backward and
recalculate some operator reductions. We should stress the
fact that in Refs. [10] and [18], we inadvertently kept the
operator

{_12’ [ch’ {J’, GrS}]} _ {JZ’ [GkS’ {J”, Grc}]}
+ {[]2’ ch]’ {Jr’ GrS}} _ {[]2, Gk8], {Jr’ Grc}}
— [ G T G (62)

which vanishes identically. So its presence does not affect
any of the expressions where it appears.

After a long, tedious, but otherwise standard, calculation,
the one-loop correction to the baryon magnetic moment
operator arising from graphs in Fig. 2(a)—(d) can be
organized as

MY o) = OMYC + SMS + M5, (63)
where
7
sMie = " xxke, (64)
i=1
30
SMyE =y Yk, (65)
i=1
and
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47
oMb =" zzZke. (66)
i=1
The subscript in each summand in Eq. (63) denotes the
SU(3) flavor representation it comes from. The operator
bases X;, Y;, and Z; along with the coefficients that
accompany them, x;, y;, and z;, are listed in Appendix C
for the sake of completeness.
As for the one-loop contribution arising from Fig. 2(e),
following Refs. [10,18] and fixing signs and factors, the
correction can be written as

1

5M{€Qop2(e) - E [Tav [Tbv Mk]]nabv (67)
where T1% is a symmetric tensor similar to the one
introduced in Eq. (58), except that now the integral over
the loop is [19]

i d*k 1 m? m?
Gm,p) =— = In ——1/.

(m. 1) f2/ o) k2 —m? 16722 [n " }
(68)

Following Ref. [10], 5M{‘0 op2(e) €N be decomposed as

_ kQ kQ
5M{€00p2(e) - GlMl,loopZ(e) + G8M8,100p2(e)

+ G27M§7Q.100p 2(e)’ (69)

where the group structures of the double commutator read
as follows:
(1) flavor singlet contribution:

1
Mkc _ [Ta7 [Ta’Mkc]] —

3 ke.
1.loop2(e) — 2 _EM s (70)

(2) flavor octet contribution:

1

Mlsc.cloop 2(e) - E duh8 [Tu’ [Th’ Mkc]]
3
— _ZdCSeMke; (71)

(3) flavor 27 contribution:

1
M§7,100p2(e) = _E [TS’ [TS’ M* H

1
— EfCSefSengg' (72)

Let us notice that in order for M ’2‘; loon2(e) L0 be a truly 27
Joop2(e)

contribution singlet and octet pieces must be subtracted off.

2Equation (63) of Ref. [10] is the analog of Eq. (67). However,
in that reference’s Eq. (63), the 1/2 factor was absorbed into the
loop integral, where a minus sign is missing. This will be pointed
out in a forthcoming erratum.
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Similarly, the functions Gy, Gg, and G,; have the same
structure as their counterparts given by Egs. (59a), (59b),
and (59c¢), respectively, written in terms of G(m, u). Let us
notice that by retaining only the nonanalytic terms in m,, in
the loop integrals F")(myp, 0, ) = —G(my, p).

IV. BARYON MAGNETIC MOMENT WITH
PERTURBATIVE SU3) SYMMETRY BREAKING

In the conventional chiral momentum counting scheme,
tree diagrams involving higher-order vertices will also
contribute to the magnetic moments [12,22] along with
the one-loop contributions already discussed. Some of them
are needed as counterterms for the divergent parts of the
integrals over the loops and are accompanied by low-energy
constants, which introduce more unknowns to the low-
energy expansion. The leading SU(3) breaking effects of the
magnetic moments thus will also have contributions from
the effective Lagrangian of order p* [12,22], which yield
contributions linear in the quark mass. The dependence of
the loop integrals on the renormalization scale y are of the
forms In p? for F®), m? In p? for F') and G, A In y? for
F® and I, and A? In 4?2 also for F()), where the functions
I(m, A, p), F(")(m, A,u), and G(m,pu) are given in
Egs. (33), (60), and (68), respectively. In most of the cases,
the u dependence of the loop integrals can be compensated
by the lowest-order coupling constants, except for the term
m? In p?, which is formally canceled by the counterterms of
order O(m,).

In the combined formalism we work with, a convenient
way of accounting for terms of order O(m,, ) springs from the
fact that flavor SU(3) symmetry breaking transforms as a
flavor octet. Thus, we need to incorporate SB to the baryon
magnetic moment operator to linear order in € « m,/ A)(.3

Before proceeding any further, we would like to com-
ment on the comparison between the heavy baryon
Lagrangian with a 1/N_ expansion and the heavy baryon
Lagrangian without a 1/N, expansion. More precisely, we
want to point out how the different diagrams occurring in
heavy baryon chiral perturbation theory (i.e., without 1/N,
expansion) are related to our combined formalism. In fact,
we have already pointed out that there is a one-to-one
correspondence between the parameters of the octet and
decuplet chiral Lagrangian and the coefficients of the 1/N .,
baryon chiral Lagrangian at the physical value N. = 3. The
relation between the flavor octet baryon-pion couplings D,
F, C, H and the coefficients of the 1/N_. baryon chiral
Lagrangian has been provided by Eq. (43). If one further
includes the SU(3) invariant couplings up, pr, Hc, pr of
heavy baryon chiral perturbation theory [but still neglects
SU(3) breaking effects], then the correspondence is given
by Eq. (19). Finally, if one includes SU(3) symmetry

’¢ is a dimensionless measure of SU(3) symmetry breaking;

we consider € ~ 30% for definiteness.
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breaking effects at linear order in the quark mass matrix,
seven new independent terms arise in the heavy baryon
Lagrangian at order p* [11]. The seven new effective
constants accompanying these terms are related to the
various coefficients of the 1/N, expansion that account for
SB and that we present below. While the exact correspon-
dence is not needed here, we emphasize that these addi-
tional coefficients—-and the additional tree-level diagrams
occurring at order p* in heavy baryon chiral perturbation
theory—are encoded in the SB coefficients in our com-
bined framework and therefore are accounted for in our
numerical analysis.

The issue of SB for a spin-1 object that transforms as a
flavor octet under SU(3) has been analyzed in detail in
Ref. [23]. This study was then used in the construction of
the corrections to the baryon axial vector operator of
Ref. [18]. Thus, the analysis of SB for the baryon magnetic
moment operator is then straightforward if we follow the
lines of the previous analyses.

If we neglect isospin breaking and include first-
order SU(3) symmetry breaking, then M*“ has pieces
transforming according to all SU(3) representations
contained in the tensor product (1,8 ® 8)=(1,1)®
(1,85)(1,8,)(1,10 + 10)(1,27), namely,

OMGy = MGy + OMG g+ OM; | io+ OMSG 7. (73)

The operators in the different representations are given as
follows:

A. (1,1)

The 1/N,. expansion for the (1,1) operator, to relative
order 1/N2, reads

1
My = my 88 myt 62T, (4)

c

where the superscripts attached to the coefficients m,11

indicate the spin-flavor representation. Higher-order terms
can be obtained by anticommuting the operators retained
with J?/N2.

B. (1,8)

The 1/N, expansion for the (1,8) operator is written as

1 1
5M§%8 _ ni,gdceSer + né,s N_dce8D12<e + n;,s WdceSDéce
c c

1
1.8 ce8 yke
+ny N%d O5°. (75)
Time reversal rules out a similar series with the d symbol

replaced by the f symbol. There is another series for the
(1,8) operator, which begins with

PHYSICAL REVIEW D 89, 034012 (2014)

ﬁé,s ﬁfcegel]k{Jl’ G,/e}’ (76)

and higher-order terms can be constructed by anticommut-
ing the leading operator with J%/N2. Let us notice that

fceSeijk{Ji’ Gje} — [_]2’ [TS, GkCH~ (77)

The right-hand side of Eq. (77) shows that the operator only
contributes to processes where both spin and strangeness
are changed. These processes have not been observed, so
the series (76) will be excluded.

C. (1,10 + 10)

To relative order 1/N2, the series for the (1,10 -+ 10)
symmetry breaking term can be written as

o w0 | c c
B, gz = My TS (GR T8 — (G, T))
T
£ (G 6
_ {Gk87 {Jr, Grc}})’ (78)

where the subtractions of the flavor-octet operators off
Eq. (78) are found to be proportional to the operator
[J2,[T®, G*]] and will be ignored [18].

D. (1,27)

To relative order 1/N2, the series for the (1,27) operator
is written as

1 : c
5M]§%.27 = m;’27N7({ch’ T8} + {Gksv T })

c

1 .
£ miT o AT T

vy 1 c r r
b ([GR (. G

+{G", {J",G"}}). (79)

The subtractions of the flavor-singlet and flavor-octet pieces
off Eq. (79) are found to be already contained in Eqgs. (74)
and (75), so Eq. (79) can be considered as final [18].

V. TOTAL CORRECTION TO THE
BARYON MAGNETIC MOMENT
AND CONSISTENCY CHECKS

The total corrections to the baryon magnetic moment
M arise from both one-loop and SB corrections. The one-
loop correction, M’ ’1‘ L» which comes from Figs. 1 and 2, is
obtained by adding up 6M,up 1, given by Eq. (29), and
0Mo0p 2, Which is the resultant of adding up Mi,ep2(a-g) and
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Mipop2(c)» givenby Egs. (63) and (69), respectively. In turn, SB
corrections come from Eq. (73). The overall correction to the
baryon magnetic moment thus amounts to

MK sM* = MFC 1 sMS + sMES. (80)

The matrix elements of operator (80) between SU(6)
symmetric baryon states give the actual values of the
baryon magnetic moments. The rather long expressions
obtained can indeed shed light on the role SU(3)
symmetry breaking plays compared to the SU(3) sym-
metric case. In this regard, we can perform a series
of consistency checks of our expressions using the
Coleman—Glashow relations (1), the Caldi—Pagels
sum rules (47)-(49), and the isotensor combinations
among baryon magnetic moments (50)—(55).

The Coleman—Glashow relations, valid in the limit of
exact SU(3) symmetry, thus get corrections from both one-
loop and SB. The former contributes with the 8 and 27
components, whereas the singlet component respects these
relations. On the other hand, all the components of SB are
present in these relations.

The Caldi—Pagels sum rules are valid up to one-loop
corrections of order O(m(l/ 2), so corrections to them must
arise from one-loop corrections of order O(m, In m,) and
SB. Explicitly, we find that only the 8 and 27 components
of Fig. 2(a—d) correct these sum rules, whereas Fig. 2(e)
does not play any role here. Similarly, SB corrects these
sum rules with the 1 and 27 components, whereas the 8 and
10 + 10 respect them. This is in agreement with the 1/N,
power counting presented in Table VIII of Ref. [23], where
it is pointed out that the 8 and 10 + 10 components of SB
contribute at order (’)(m,]/ %), whereas the 1 and 27
contribute at order O(m, In m,).

Finally, the isotensor combinations are respected both by
one-loop and SB corrections, as expected.

We are now in a position of performing a detailed
comparison of our theoretical expressions with the exper-
imental data [16] through various fits. This is now
discussed in the next section.

VI. FITS TO THE EXPERIMENTAL DATA

We now proceed to perform a numerical comparison of
the theoretical expressions obtained here with the available
experimental data through a least-squares fit. Nowadays,
only 10 out of 27 possible magnetic moments are reported
in the Review of Particle Physics [16]. They correspond to
the magnetic moments of the octet baryons (excluding g0,
which has not been measured) and the transition magnetic
moment ,xo, along with pug- and p+,. To diversify the
data, we use pp++ reported in Ref. [24], which was obtained
from radiative z" p scattering with a dynamical model. We
also use two more data, yso, and ps«+y+, measured recently
by the CLAS Collaboration [25,26]. We thus have 13 data
points about magnetic moments at our disposal. All this
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information is displayed in the third column (from left to
right) of Table I.

We can perform a number of fits to compare theory and
experiment. However, we consider it pertinent to perform
those fits which somehow display information on the
departure from exact SU(3) symmetry. In doing this, we
find some limitations about the number of magnetic
moments measured and the number of unknown parameters
we need to determine: at tree level, there are four param-
eters, namely, m, ..., my. One-loop corrections introduce
four more parameters, the ones which come along the axial
vector current operator, namely, a;, b,, b3, and c3. SB

introduces 11 more parameters, m}’l, mil n}’s, ...,ni’s,

my 1010 g W10 5 127 227 and i We thus need to
implement some criteria which allows us to reduce the
number of parameters compared to the number of measured
quantities. Let us discuss briefly what can be done.

At tree level, the operators that accompany the coefficients
my, m,, msy, and my are of orders O(N.), O(1/N,),
O(1/N.), and O(1/N.), respectively, and so are the

operators that come along the coefficients n}’s, né’s, né’s,

and n}“s [23]. Similarly, m%’l and mé‘l are accompanied by
operators which are of orders O(1) and O(1/N?), respec-

tively. In turn, mé'wﬂo and mé’loﬂo come along with

operators of orders O(1) and O(1/N.), respectively.
Finally, mé’”, mé’” and ﬁzé’” go with operators of orders
O(1), O(1/N?) and O(1/N,), respectively [23]. This
apparent complexity suggests some patterns about the terms
one needs to retain for a consistent numerical analysis.

A. SU(3) symmetric fit

The simplest fit we can perform is an SU(3) symmetric
fit. For this task we keep only the terms that come along
with M* at tree level, namely, m,, m,, ms, and my. This is
identical to a fit using the SU(3) invariant couplings yp, pr,
Uc, ur of heavy baryon chiral perturbation theory [11],
neglecting all SU(3) breaking effects.

Without further ado, the fit yields

m; = 5.03 £0.51,
my = —0.30 £ 0.98,

my = 0.72 + 1.54,
my = 4.06 + 1.49, 81)

or equivalently, up =247+1.17, pup=176=+1.11,
Ue = 2.63 +0.81, and py = —14.12 £ 5.04. Here a theo-
retical error of duy, = 0.362u, has been added in quadrature
in order to achieve y> = 1/degrees of freedom. The best-fit
parameters listed in Eq. (81) depart noticeably from the
expected order O(N(C)) values; needless to say, the
numerical values of the SU(3) invariant couplings do
not match the ones found in the original paper [11]. This
is not a withdrawal of our approach. Actually, we could
have scaled all the theoretical expressions by dividing
them by a factor, let us say, ay = 24, ', in the same way
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TABLE L
included. The entries are given in nuclear magnetons.
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Numerical values of baryon magnetic moments found in this work. Comparisons with other determinations are also

Baryon Experimental data ~ Fit A FitB  FitC  Fit D Ref. [12] Ref. [14] Ref. [21] Ref. [23]° Ref. [27]
1 n —19134£0.000 —1.644 —1.931 —1.936 —1.929  —1.91 ~1.93
2 p 2793 +£0000 2587 2793 2793 2793 2.79 2.70
303 ~1.160 £0.025 —0.943 —1.155 —1.154 —1.155 —1.16 ~1.15
4 0 0822 0.654 0655 0.653 0.65 0.77(10) 0.65
5 %t 2458 £0.010  2.587 2463 2464 2462 2.46 2.46
6 = —0.651 £0.003 —0.943 —0.651 —0.651 —0.651  —0.65 ~0.65
7 E 1250 £0.014 —1.644 —1269 —1273 —1267 —1.25 —1.27
g8 A —0.6134+0.004 —0.822 —0.58 —0.579 —0.589  —0.61 ~0.59
9 AX 161 £0.08 1424 1529 1526 1530 1.40 ~1.53
10 A+ 6.144£051° 5252 6140 6140 6.140 6.04(13) 6.14
11 At 2.626  2.857 2252  3.058 2.84(2) 3.04(13) 2.79
12 A 0.000 —0.427 —1.636 —0.023 ~0.36(9) 0.00(10)  —0.56
13 A~ —2.626 —3.710 —5.523 —3.105 —3.56(20) —3.04(13)  —3.91
14z 2626 3350 3.896  2.520 3.07(12)  3.35(13) 3.49
15 ¥ 0.000 0.102 —0.268 —0.159 0 0.32(11) 0.10
16 = —2.626 —3.147 —4.433 —2.838 —3.07(12) -2.70(13)  —3.28
17 =0 0.000 0.630 1.195 —0.117 0.36(9) 0.64(11) 0.77
18 = —2.626 —2.583 —3.265 —2.476 —2.56(6) —236(14)  —2.65
19 Q —20240.05 —2.626 —2.020 —2.020 —2.020 —2.02 —2.02
20 Atp 3514009 3329 3510 3510 3510 3.51
21 A% 3329 3510 3510 3510 3.51(11) 351
22 ¥OA 2734025 2883 2730 2732 2731 2.93(11) 274 2.68(04)
23 3030 1.665 1919 2380 1592 1.39(11) 201 1.61(07)
24 ¥y 3.17+036° 3329 3170 3.166  3.168 2.97(11) 322 3.22(05)
25 TE- 0.000 0.667 1611 0.016 —0.19(11) 0.79  0.0(20)
26 =020 3329 3.137 3.533 2787 2.96(12) 325 3.21(15)
27 =E- 0.000 0.667 1568 0.033 —0.19(11) 0.79

Fit F of this reference.

®Value reported in Ref. [24].
“Value extracted from Ref. [25].
4Value extracted from Ref. [26].

we did in Ref. [10]. We prefer not to do so in order to
compare our outputs with the ones of Ref. [23]. Indeed,
Fit A in the present case is equivalent to Fit A of this
reference, and our best-fit parameters (81) are comparable
to those obtained there.

The predicted magnetic moments are listed in the
column labeled Fit A in Table I. A quick glance at
these results shows that the magnetic moments are
poorly determined in the limit of exact SU(3)
symmetry.

B. Perturbative SU(3) symmetry breaking

The next fit consists of taking into account only the SB
effects. Strictly speaking, there are 15 free parameters,
which exceed the available data. We can perform a kind of a
restricted fit if we ignore factors of order 1/N? in the 1/N,
expansion, which is equivalent to rule out the terms that
come along with m;’l and m;’”. We can reduce by one
more parameter if we neglect the 1/N, contribution of the
27 and leave only the order O(1) term, namely, m)*’. We
are thus left with 12 parameters. The fit yields

my; =448 +0.14,
my = 0.08 +0.32,
mpt =0.124+0.12,
n® =1.1840.27,
m® =0.54+0.71,

m, = 0.83 & 0.33,
my, =5.86 £ 2.14,

ny® = —0.26 +0.55,
ny® = —4.89 +5.37,

mi 0 — 042 40.14,  m}1T0 = 166 +2.40,

my* = 0.06 + 0.26. (82)
The theoretical error added in quadrature to get y> =
1/degrees of freedom this time is Spy, = 0.062py, which
is considerably smaller than the one added in the previous
case. This output is equivalent to fit F of Ref. [23], and our
best-fit parameters are fairly comparable to the ones
obtained there. We notice some rearrangements in the
leading-order parameters compared to the symmetric case,
except for my, which remains ill determined (even its value
worsens in this case). The parameters arising from SB are
roughly speaking according to the expected O(¢) ~30%
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measure of SB, except for ni‘s, which turns larger than
expected. With these best-fit parameters, the predicted
magnetic moments are listed in Table I, labeled as fit B.
In this case, the agreement between theory and experiment
is good.

C. Total correction

The next relevant fit we can perform consists of adding
one-loop corrections to the previous cases. We split this
analysis into two parts. In a first stage, we consider the
degenerate case, namely, A = 0. In a second stage, we
consider a nonvanishing A, which we set to A=
0.231 GeV/c? for definiteness. This will allow us to
quantify the effects of A. Let us recall that one-loop
corrections depend also on the quantities that parametrize
the baryon axial vector current. In other words, we need the
values of a;, b,, bz, and c3. The impossibility of extracting
them from the current data forces us to use them from other
sources. For this purpose we use the best-fit values reported
in Ref. [18], where the renormalization of the baryon axial
vector current was computed at the very same order of
approximation in 1/N, as we have done for the baryon
magnetic moment in the present analysis. The values
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obtained there are a; = 0.64, b, = 0.21, b3 = 1.35, and
c3 = 1.90. For definiteness, we use the physical masses of
the pseudoscalar mesons listed in Ref. [16].

Thus, for A = 0 we find

my =727+0.11,
my = 0.76 £+ 0.24,
mpt =0.3140.15,
m®=-0534+031, n®=150+0.64,
¥ =162+084,  ny®=-1239+539,

m, = —1.92 £0.19,
my = 9.44 + 1.32,

w0 — 1394017, w0 — 1514271,
my? = —0.44 +0.32. (83)

The theoretical error added in quadrature to get y> =
1/degrees of freedom is Suy, = 0.075uy. The predicted
magnetic moments are listed in Table I labeled as fit C, and
the corresponding tree level and SU(3) breaking compo-
nents are listed in Table II for the sake of completeness.

TABLE II. SU(3) flavor contributions to the baryon magnetic moments obtained for fit C.
Fig. 2(a-d) Fig. 2(e)
Total Tree SB Fig. 1 8 27 1 8 27

n —1.936 —2.508 0.294 1.020 —0.359 —0.018 0.001 —0.678 0.310 0.002
p 2.793 3.443 —0.345 —1.407 0.347 0.042 —0.006 0.930 —0.226 0.014
x- —1.154 —0.934 —0.241 —0.142 0.012 0.082 —0.005 —0.252 0.310 0.018
=0 0.655 1.254 0.089 —1.359 0.180 0.016 0.001 0.339 0.113 0.022
=t 2.464 3.443 0.418 —2.575 0.347 —0.050 0.008 0.930 —0.084 0.027
=" —0.651 —0.934 0.190 0.639 0.012 —0.058 0.008 —0.252 —0.226 —0.029
=0 —1.273 —2.508 —0.117 2.466 —0.359 0.050 —0.011 —0.678 —0.084 —0.032
A —0.579 —1.254 0.090 1.359 —0.180 —0.124 0.004 —0.339 —0.113 —0.022
A0 1.526 2.172 0.001 —1.228 0.311 —0.121 —0.005 0.587 —0.195 0.004
ATF 6.140 6.615 0.823 —5.329 3.408 —0.838 —0.068 1.787 —0.298 0.039
AT 2.252 3.308 0.016 —3.161 1.704 —0.499 —0.041 0.893 0.000 0.033
A° —1.636 0.000 —0.791 —0.993 0.000 —0.161 —0.014 0.000 0.298 0.026
A~ —5.523 —3.308 —1.598 1.175 —1.704 0.177 0.013 —0.893 0.595 0.020
et 3.896 3.308 1.327 —2.168 1.704 —0.873 —0.003 0.893 —0.298 0.007
0 —0.268 0.000 0.268 0.000 0.000 —0.517 —0.019 0.000 0.000 0.000
Dl —4.433 —3.308 —0.791 2.168 —1.704 —0.161 —0.035 —0.893 0.298 —0.007
=0 1.195 0.000 1.327 0.993 0.000 —0.873 0.072 0.000 —0.298 —0.026
= —3.265 —3.308 0.016 3.161 —1.704 —0.499 —0.005 —0.893 0.000 —0.033
Q- —2.020 —3.308 0.823 4.155 —1.704 —0.838 0.101 —0.893 —0.298 —0.059
Atp 3.510 5.654 —2.121 —3.064 2.530 —0.478 —0.040 1.527 —0.509 0.011
A% 3.510 5.654 —-2.121 —3.064 2.530 —0.478 —0.040 1.527 0.011 —0.509
ZOA 2.732 4.896 —1.585 —3.464 2.191 —0.230 0.033 1.323 —0.441 0.010
z0x0 2.389 2.827 0.915 —3.833 1.265 0.133 0.014 0.764 0.254 0.050
Syt 3.166 5.654 0.053 —6.770 2.530 0.085 0.031 1.527 0.000 0.056
Xy 1.611 0.000 1.777 —0.896 0.000 0.180 —0.003 0.000 0.509 0.045
=00 3.533 5.654 0.291 —6.770 2.530 0.213 0.033 1.527 0.000 0.056
=27E" 1.568 0.000 1.777 —0.896 0.000 0.180 —0.047 0.000 0.509 0.045
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TABLE II.  SU(3) flavor contributions to the baryon magnetic moments obtained for fit D.

L1-C10¥¢€0

Fig. 1 Fig. 2(a-d), O(A?) Fig. 2(a-d), O(A) Fig. 2(a-d), O(A?) Fig. 2(e)
Total  Tree SB O(A%  04) 1 8 27 1 8 27 1 8 27 1 8 27
n —1.929 —2.755 0313 0418  0.568 —0.743 0.140 0.001 0.597 —0.355 —0.004 0248 0.113 0.001 —0.744 0.276 —0.003
p 2,793  3.073 0527 —1382 —0.095 0.311 —0.047 —0.011 0.680 —0.491 —0.015 —0.233 —0.114 —0.001 0.830 —0.248  0.009
po —1.155 —0.318 0236 0.297 —0.379 0.431 0.051 0.000 —1277 —0411 0.015 —0.015 0.001 0.001 —0.086 0276 0.021
%0 0.653 1378 0.120 —0.781 —0473 0371 0.064 0.010 —0.298 —0.198 0.010 —0.124 0.050 0.006 0372 0.124  0.024
ot 2462 3.073 0.005 —1.860 —0.568 0.311 0.076 0.020 0.680 0.015 0.005 —0.233 0.099 0.010 0.830 —0.029 0.028

—0.651 —0.318  0.604 0940 —-0.284 0431 0042 0.006 —1.277 —-0435 0.013 —0.015 —0.002 0.001 -0.086 —-0.248 —0.025
—1.267 —2.755 —0.073 1.587 0.757 -0.743 -0.013 -0.020 0597 -0.042 0.007 0.248 -0.013 -0.002 -0.744 -0.029 -0.030

(=}

= [l 1]

—0.589 —1.378 0.453 0.781 0473 -0.371 -0.159 —-0.007 0.298 —-0.300 —0.009 0.124 0.027 -0.002 —0.372 —-0.124 -0.024
AX 1.530 2386 0288 —-0.706 —0.492 0.643 —-0.193 —-0.002 —0.517 —0.088 0.006 —-0.215 —-0.020 0.004 0.645 —-0.215 0.005
At 6.140 8521 —-0.236  —-3.107 —1.073 0.029 -0.132 —-0.067 —0.041 0.006 —0.066 0.295 0.049 —0.006 2302 —0.383  0.051
AT 3.058 4260 0.779 —-1.843 —-0905 0.014 —-0.243 —-0.049 -0.020 —-0.255 -0.015 0.147 —-0.001 —-0.005 1.151  0.000  0.042
Al —-0.023 0.000 1795 -0.579 -0.736 0.000 —-0.354 -0.031 0.000 —0.516 0.036 0.000 —0.051 —0.004 0.000 0.383  0.034
A~ —3.105 —4.260  2.810 0.685 —0.568 —0.014 —-0464 —0.013 0.020 —-0.777 0.087 —0.147 —0.101 —0.003 —-1.151 0.767  0.025
Pt 2520 4260 -0.076 —-1.264 —-0.168 0.014 —0.601 —-0.025 -0.020 —0.464 —-0.035 0.147 —-0.025 0.001 1.151 —-0.383  0.008
=0 —0.159  0.000  0.859 0.000 0.000  0.000 —-0.477 -—0.017 0.000 —-0.490 0.003 0.000 —-0.038 0.001 0.000 0.000 0.000
DI —2.838 —4.260  1.795 1.264 0.168 —0.014 —0.354 —-0.009 0.020 —0.516 0.042 —0.147 —-0.051  0.000 —1.151  0.383 —0.008
=0 —0.117  0.000 —-0.076 0.579 0.736  0.000 —-0.601  0.082 0.000 —-0.464 0.082 0.000 -0.025 -0.013 0.000 —-0.383 —0.034
= —2476 —4.260 0.779 1.843 0905 —-0.014 -0.243 0.029 0.020 —-0.255 0.057 —0.147 —-0.001  0.004 —1.151 0.000 —0.042
Q- —2.020 —4.260 —0.236 2.423 1.641 -0.014 —0.132  0.100 0.020 0.006  0.132 —-0.147 0.049 0.009 —-1.151 —-0.383 —0.076
Atp 3510 5335 -0908 —-0.244 2874 2952 -0.761 —-0.043 -—-1.272 0.735 0.043 -0.308 —0.117 —0.001 1.441 -0.480 0.011
An 3510 5335 —-0908 —0.244 2874 2952 —-0.761 —-0.043 —-1.272 0.735 0.043 —-0.308 —0.117 —0.001 1.441 0.011 -0.480

TOA 27731 4.620 —0.433 —-0.296 2987 2556 —-0.405 0.034 —1.102 0.255 —-0.024 —-0.267 —-0.065 0.002 1.248 —0.416  0.009
»: 050 1.592 2667 0250 —-0.328 2875 1476 0.234 0.035 —-0.636 —-0.147 0.020 —-0.154 0.038 0.004 0.721 0.240  0.047
>yt 3168 5335 0333 —0.597 —5.174 2952 0384 0.069 —1.272 —0.120 —0.001 —0.308 0.065 0.009 1.441  0.000 0.053
=¥~ 0016 0000 0.167 -0.058 -0.575 0.000 0.084 0.001 0.000 -0.175 0.041 0.000 0.010 -0.002 0.000 0.480 0.042
=0=0 2787 5335 0408 0597 5174 2952 0293 0.065 —-1.272 —-0.440 -—-0.015 -0.308 0.042 0.006 1441 0.000 0.053
== 0033 0.000 0167 -0.058 —-0.575 0.000 0.084 —-0.026 0.000 —0.175 0.080 0.000 0.010 0.004 0.000 0.480 0.042
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On the other hand, for A = 0.231 GeV/c?, we find

my = 6.61+0.13,

my = 4.96 +0.27,
mit =0.99 4 0.12,
n® =1.7740.27,
¥ = —0.14+0.72,

m, = —6.36 % 0.19,
my =9.41 + 1.63,

ny® = —4.78 + 047,
ny® = —7.2245.19,
mi 10 — 233 4239,
(84)

mb 1010 — _021 40,14,
my? = —0.14 4+ 0.24.

The theoretical error added in quadrature to get y> =
1/degrees of freedom is Suy = 0.058uy. The predicted
magnetic moments are listed in Table I labeled as fit D, and
the corresponding tree level and SU(3) breaking components
are listed in Table III, also for the sake of completeness.
The numerical values of the baryon magnetic moments
obtained with the inclusion of one-loop corrections
(fits C and D) are in good agreement with the experimental
ones. However, the predicted values for the unmeasured
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ones differ between them in some cases rather remarkably.
For instance, the most important differences are observed in
the magnetic moments fpo, fa-, s, P=wo, and in the
transition magnetic moments py«-y- and p=~—z-, for which
the values are radically different with the inclusion of A.

We can summarize our findings displayed in Tables II
and III, into the combined Table IV by adding up the
different flavor contributions from the loops. In all these
cases, SB represents an important contribution to the total
value. Besides, although individual contributions from
Figs. 1 and 2 might be large compared to the tree-level
values, in general there are numerical cancellations
between these two contributions, so the one-loop net
result is consistent with being a quantum correction. This
observation is not apparent in the previous Tables II
and III.

Some other interesting features extracted from the fits
can be better seen by plotting the deviations Aup =
pix —mng(g’), where ufitX is the magnetic moment of
baryon B predicted by fit X (X = B, C, D) and zi5° is
the magnetic moment given by the SU(3) symmetric fit,
namely, fit A. We plot Ay in Figs. 3, 4, and 5 for X = B,

TABLE IV. SU(3) flavor contributions to the baryon magnetic moments.

Fit B Fit C Fit D
Tree SB Total Tree SB Loop 1 Loop 2 Total Tree SB Loop 1 Loop 2 Total
n —1.503 —-0.428 —-1.931 —-2.508 0.294 1.020 —0.741 —-1.936 —-2.755 0313 0986 —-0.473 —1.929
p 2392 0401 2793 3443 —-0.345 —-1.407 1.102 2.793 3.073 0.527 —-1476 0.670  2.793
- —0.889 —0.266 —1.155 —0.934 —-0.241 —-0.142 0.164 —-1.154 —-0.318 0.236 —0.082 —-0.991 -—1.155
>0 0.751 -0.097 0.654 1254 0.089 —-1359 0.671 0.655 1378 0.120 —1.255 0410 0.653
poag 2392 0.071 2463 3443 0418 —-2.575 1.178 2464 3.073 0.005 —2.428 1.812 2462
=" —0.889  0.238 —0.651 —0.934 0.190 0.639 —0.545 -0.651 —0.318 0.604 0.656 —1.593 —0.651
=0 —1.503 0234 —-1.269 -2.508 —0.117 2466 -—-1.114 —1.273 —-2.755 —-0.073  2.345 —-0.783 —1.267
A —0.751  0.165 —0.586 —1.254 0.090 1359 —-0.774 —-0.579 —1.378 0453 1255 —-0.919 —-0.589
A0 1.301  0.227 1529 2.172 0.001 —-1.228 0.580 1.526 2386 0.288 —1.198 0.054 1.530
AT 5440 0.700 6.140 6.615 0.823 —-5.329 4.031 6.140 8521 -0.236 —4.181 2.036  6.140
AT 2720 0137 2.857 3308 0.016 -3.161 2.090 2252 4260 0.779 -—-2.748 0.766  3.058
A° 0.000 —-0.427 —0.427 0.000 —0.791 —-0.993  0.148 —-1.636 0.000 1.795 —-1.316 —0.503 —-0.023
A~ —2.720 —-0.990 -3.710 —-3.308 —1.598 1.175 —-1.793 —-5.523 —4.260 2.810 0.117 —-1.772 -3.105
= 2720 0.630 3350 3308 1.327 —-2.168 1430 3.896 4.260 —-0.076 —1.433 —-0.232  2.520
0 0.000 0.102 0.102 0.000 0.268 0.000 —0.536 —0.268 0.000 0.859 0.000 —1.018 —0.159
DI —2.720 —-0.427 -3.147 -3.308 —0.791 2.168 —2.502 —4.433 —4260 1.795 1433 —1.805 —2.838
=0 0.000 0.630 0.630 0.000 1.327 0993 -—-1.125 1.195 0.000 —0.076 1316 —1.357 —0.117
= —2.720  0.137 —-2.583 —-3.308 0.016 3.161 -—3.135 —-3.265 —4.260 0.779 2748 —1.744 —-2.476
Q- —2.720  0.700 —2.020 —-3.308 0.823 4.155 —-3.690 —-2.020 —4.260 —-0.236 4.064 —1.587 —-2.020
ATp 3495 0.015 3510 5.654 —-2.121 -3.064 3.041 3510 5335 —0908 —-3.117 2200 3.510
AR 3495 0.015 3510 5.654 —-2.121 -3.064 3.041 3510 5335 —-0908 -3.117 2200 3.510
0N 3.027 —0.297 2730 4.896 —1.585 —-3.464 2886 2.732 4.620 —0433 -—-3.283 1.827 2.731
z0x0 1.747 0171 1919 2827 0915 -3.833 2480 2389 2667 0.250 —-3.202 1.877 1592
SPET 3495 —0.325 3170 5.654  0.053 —6.770 4229 3.166 5335 0333 —-5771 3271 3.168
=X~ 0.000 0.667 0.667 0.000 1.777 —-0.896 0.731 1.611 0.000 0.167 —0.633 0.482 0.016
=0=0 3495 —-0.358 3.137 5.654 0291 —-6.770 4358 3.533 5335 0408 -5.771 2816  2.787
== 0.000 0.667 0.667 0.000 1.777 —0.896 0.687 1.568 0.000 0.167 —0.633 0.499 0.033
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FIG. 3 (color online). Deviation of baryon magnetic moments
(in units of uy) relative to the SU(3) symmetric fit. The open
circles are from fit B. The open diamonds are from the
experimental values. The baryon labels are indicated in the
horizontal axis, cf. Table 1.
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FIG. 4 (color online). Deviation of baryon magnetic moments
(in units of uy) relative to the SU(3) symmetric fit. The open
circles are from fit C. The open diamonds are from the
experimental values. The baryon labels are indicated in the
horizontal axis, cf. Table I.

exp

C, and D, respectively; in these graphs we also plot Ay,
defined on the same footing as its theoretical counterpart.
On general grounds, large deviations from the SU(3)
estimates are found in the decuplet baryons, and in
particular pa++ and p,- exhibit the largest ones in
Fig. 3. One-loop corrections in the degenerate limit plus
SB, Fig. 4, do not improve the situation but even worsen it
for pp-, pswo, ps—s-, and p=—=-. The inclusion of A seems
to correct the situation for the whole sector, as can be seen
in Fig. 5. If we plotted the relative deviation® Aug/ ﬂZUG),
we would realize that corrections to the SU(3) sym-
metric case fall in the +40%, +60% (except for o,

4Although plotting the relative deviation could be more
enlightening, important pieces of information would be lost
for those magnetic moments which are zero at the SU(3)
symmetry limit. We prefer to plot the absolute values of the
deviations instead.
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FIG. 5 (color online). Deviation of baryon magnetic moments
(in units of uy) relative to the SU(3) symmetric fit. The open
circles are from fit D. The open diamonds are from the
experimental values. The baryon labels are indicated in the
horizontal axis, cf. Table 1.

which acquires a sizable correction greater than 100%)
and +30% ranges for fits B, C, and D, respectively.
Definitely, one-loop corrections of orders (’)(m,l/ 2) and
O(m, In m,) with a nonvanishing A taken into account
simultaneously with SB yield SU(3) breaking corrections
consistent with expectations: we naively assume that
order O(my) and order O(1/N,.) corrections are both
order O(e) ~ 30%.

In Ref. [10] one-loop corrections in the degenerate case
were analyzed without the inclusion of SB corrections. It
was found that the fit was quite unstable in the sense
that slight departures from the initial values of the param-
eters would yield rather different results. In the present
analysis, a stable fit is obtained by adding SB corrections.
Even better, taking also into account a nonvanishing A
provides the fit with stability and robustness hardly
attainable otherwise.

To close this section, we can numerically compare our
results with others in the literature. This comparison is
displayed in the last five columns (from left to right) in
Table I. For instance, Refs. [12,14] compute one-loop
corrections in baryon chiral perturbation theory to orders
p* and p3, respectively. Except for the lowest-order terms,
the analytical comparison is not possible term by term, so
we content ourselves with performing a numerical com-
parison instead. In this respect, the numerical findings of
Ref. [12] are in remarkable agreement to our fit D (which
includes terms of order p* and contributions from a
nonvanishing A) for all the octet baryons. Similarly,
Refs. [21] and [23] perform their analyses in the context
of the 1/N. expansion. Their results are comparable to fit
B in our case. Finally, Ref. [27] provides calculations of
some decuplet-octet transition magnetic moments from
the CLAS experimental results. If we compare our
predictions from fit D with these ones, the agreement is
very good. Unfortunately, we cannot compare the
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complete set of predictions of our fit D because there are
no other analyses available in the literature computed
under the same order of approximation.

VII. CONCLUDING REMARKS

In this paper we evaluated the magnetic moments of
baryons within large-N . chiral perturbation theorly includ-
ing one-loop corrections of orders O(m and
O(m, In m,) by following the lines of Ref [10] The
present analysis complements the previous one in the sense
that here we considered the effects of a nonvanishing
baryon decuplet-octet mass difference A and also the
effects of SB corrections. In the large-N,. limit,
A « 1/N,, so the degeneracy case constitutes a very good
first approximation. However, a more realistic situation
should consider A # 0.

In a complete parallelism to Ref. [10], we constructed the

baryon operator that describes the order O(m;/ 2) correction
to baryon magnetic moments. This correction arises from
the Feynman diagrams depicted in Fig. 1. The explicit
dependence on A is contained in the definition of the
baryon propagator (21). After a long, tedious, but otherwise
standard calculation, we obtained the spin-dependent
terms, Egs. (40) and (41), which have to be combined
with the spin-independent ones already computed in
Ref. [10]. Expressions like Eq. (42) are thus obtained

for ,u(lOOp D for all 27 possible magnetic moments.

On the other hand, corrections of order O(m, In m,)
were computed following the lines of Ref. [18], where
corrections to the baryon axial vector current within large-
N, chiral perturbation theory were presented. We took
advantage of the fact that the baryon axial vector current
and the baryon magnetic moment operators share the same
kinematical properties in the large-N. limit; one might
think that the only change is to replace the A% operator
by the M* operator in the corresponding expressions for
the one-loop corrections. However, the matter was not
quite that simple. We had to take a few steps back in
order to recalculate some operator structures, taking as a
starting point the operator structures already presented
in Ref. [18].

The final analytical expressions were compared with
the experimental data [16] through a least-squares fit
and also cross-checked with other calculations within the
1/N, expansion [21,23] and chiral perturbation theory
[11,14]. Although the fit is good and seemingly stable,
somehow we still consider it rather unsatisfactory from a
theoretical point of view. In particular, we cannot explain
why the parameters m, and n}"s are rather large. On the
other hand, we should stress that for octet baryons the
comparison between analytical expressions was possible,
whereas for the other cases, it was performed through
numerical estimates. The overall comparison has been a
successful one.

PHYSICAL REVIEW D 89, 034012 (2014)

A very clear result emerges from the present analysis: in
order to have a complete understanding of SU(3) flavor
symmetry breaking in the magnetic moments of baryons
in the context of baryon chiral perturbation theory 1n the
large-N . limit, one-loop corrections of orders C’)( ) and
O(m, In m,), together with SB, must be taken into
account.
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APPENDIX A: REDUCTION OF BARYON
OPERATORS—STRUCTURES FROM FIG. 1

In this section we present the reduction of the spin-
dependent operator structures contained in Egs. (35) and
(36). The spin-independent contributions can be found in
Appendix A of Ref. [10]. The analysis, although long
and tedious, is otherwise straightforward. We find the
following:

(1) flavor 8 representation:

€ijkfachiaJ2Gjb
1 1 .
) (No+ Ny)G* + 3 (N + 1)Dk

1 1
— g(NC + N;)D5 — 1 (N.+ Nj)Ok

1
+ D5, (A1)
€ijkfabc(GiaJ2D12'h + DéaJZGjh)
1 _ e
= _ZNfD{;L — (Ny+1)0k — 5(9’5“, (A2)
. . ; 1
€ljkfabCD12aJ2Djzh _ _ZNkaC’ (A3)
€ijkfabc (GiaJZDéb + Déa.lszb>
1
E(N + Np)D5 —3(N,. + N;) O
1 1
3 (Ny—2)Df - 3 (No+Np)Os, (A4
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N . . . , 3 1 1
ek fabe(Gie 2 Of + OPJ2GI) = 3N Di — > (N.+ N;)Dk — 3 (N.+ N0k + 1 (7N, +12)Dk¢

1 1 S
— (Ve t N;)Dke — 7 (Ne+ N )OOk + 3 Die, (A5)

g , ; . ; 1
el (D PDY + DYPDY) = =5 N

A6
5 (A6)
. ) ; ) ; 1

el fere (DY PO + OF DY) = —(Ny + 1O§ =5 OF; (A7)
(2) flavor 10 4 10 representation:
eijk(faecdbeS _ fbecdaeiﬂ _ fabedecg)GiaJQGjb
{ch T8} +— {GkS TL} + [JZ [TS ch]]
——{JZ, {Gl.T%}} +—{Jz» {G"S, T} +—{J2, /2,15, G*]]}, (AB)
4 4 2N,
eijk(faecdbeS _fbecdaeS _fabedeCS)(GiaJZDé'b + Déaszjb)
N + N N, —|—N
Nf f[JZ [TS ch“ {ch {Jr Gr8}} +{Gk8 {Jr Grc}}+ f{]Z []2 [TS ch]]}
1 1
— 5 2 AG I 6P+ S {2 G AT G (A9)
eijk(faecdbe8 _ fbecdaeS _ fabedeCS)'DéaJZIDéb — O, (AIO)
€ijk(faecdb98 _fbecdaeS _fabedeCS)(GiaJZD:/;b +'DéaJ2Gjb)
:—3{]2 {ch TS}}+3{J2 {GkS Tc}} 2{ch {Jr GrS}}+2{Dk8 {Jr Grc}}+ {JZ [J2 [TS ch”}
1 1
PRGN + MG ) L (0 6P o)
1
oy AT GE (A1)
f

eijk(faecdbeS _ fbecdae8 _ fabedeCS)(GiaJZOjb + Oia]ZGjb)

=~ UG} 1P G T 43 (D 07,6} =S (PE .G+ g L7 1.6V
PG TN 4 (P PG TN + 3 (DY 07 G} — 3 (2 (D 07,6

L 2 (72 (712 78 (ke
+2Nf{J AR TR G (A12)
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eijk(faecdbeS _ fhecdaeS _ fabedec'S)(DéaJZDéb + 'DéaJZDéb) =0, (A]3)

€ijk<faecdbe8 _ fhecdaeS _ fabedec8>(DéaJZOéh + 0?]2%’7)

= BT G + S TSGR — (G 7 6
f Y

FLRAGR NG~ (2 (G (.G + 5 (2 (2GR 9.6 (Al

APPENDIX B: REDUCTION OF BARYON OPERATORS—STRUCTURES FROM FIG. 2
The evaluation of the commutator-anticommutator structure
{ase,[a%, M. A7)},
which represents the leading contribution to the renormalized baryon axial vector current for finite decuplet-octet mass
difference, has been computed in Ref. [18]. To use those results for baryon magnetic moments, we need to replace the A*¢
operator with M*¢. This indeed introduces some changes in the original expressions, so that only partial results can be used

in the present case. Those which require computation are the following:
(1) flavor 1 contribution:

A . 1 1
{Gie, [Dke, [J*, G )]} = (N, + N;)G* + 3 [N.(N.+2N;) — TN;]Dk + 5 (N. + N;)Dk — 2Dk, (B1)

{D¥.[G*,[J2.G"“]]} = (N. + N;)G* — (N, + 1)Di, (B2)

. . 1
{Ge,[Dke, [J%,G™]]} = [N.(N. + 2N;) + 2Nf]GkC + 11(N, + Nf)Dlz‘C + 3 2N (N.+2N;) — 15N, — 2Dk
—(Ny— 2)0% + (N, + Nf)Dﬁ" — 3Dk, (B3)

{Dg, [G*, [J2.G“]]} = [N.(N. +2Ny) + 2N;|G* — (N, + N;)D5* — N, D5 — (N, —2) 0%, (B4)

: . 3 3 1
{Gie, [0k, [J*,G"]} :ENC (N.+2N;)G* —E(NC +N;) DA —ENfDé“ +[N.(N.+2N;)—8N,;—3]0% —30%,
(B5)

. . 3 o NN D
{G.[GF. [12, OF]]} = 5 (Ne + N)D = SNy = (N = 2)05 +3 (N + Nj)D =S Dk — O, (B6)

| W

. . 1
{O%,[G*, [J2,G"]]} = —ZN.(N.+2N;)G* + 3(N. + N;)D5 — ZNfD’;C + (2N +3) 0%

N | — N W

ool ke :
+5 (Ne + Np)Di = 5 D5 = OF; (B7)
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(2) flavor 8 contribution:
U is U ke 78
T8GR + 5 {GR T

1
(Ne+ Ny)dSeG — (SN, + 2)d*Dff — -

l\)l'—‘

dabS{Gia’ [’DIZCC, [‘]2’ sz]]}

1 1 1
——(N; = D{G®, T} + - 7 (Ne + N;)deeDke + 7 (Ve + N){J* AT, T8} }

1 . e N + C r T r re

—5d¥Df - ff {Dke {J7,G"8}} + {D"S {67}y
N
sz {Jz {G*8, T}, (B8)

1 1
(N + N )dCSeer _E(Nf + l)dCSEDlzce +§{ch’ TS} _E{Gkg’ Tc}

— %Nf[]Z’ [TS, ch“ _ (NC + I\;G\)]f‘Nf — 2) {Gks’ {Jr7 Grc}}

l\.)l'—‘

dabS{Déa’ [ch’ [12’ th“}

(Nc + Nf)(Nf B 2) {]k, {Grc, GrS}}’ (B9)

2N

dabfi{Gia7 [Dlgc’ [12’ th”}
1IN (N, + 2N 11 ,
— NdeSeer + ( f) 5e8 Jk +_(Nc + Nf)dcfiefDlée

1 1 N;+2
+ (N. 4+ Np){G*, T8} — 5 (N + N2, [T8, G*]) — i (5N —2)dSeDke + ’}v—j dcseOke

N2 2N, +4 3N2—2N,—4 11
S / kc r r8 S / k8 r re k c 8
-t 7 — T¢, T

T CARCR N, GG+ U T T
N, (N, +2N;) — 12N, +2 1
— (BN +5){J5.{G", G} } + ( fo ! 508{JZ,J’<}+§(NC+Nf)d086D{;e

-2 1
AP AGS AT Gy 4 (P AT T

+ 2<Nc + Nf){Dkg, {Jr’ Grc}} _ 5che*D’gé _

_ {J2’ {Jk, {Grc’ GrS}}} _ 31\;];\;]’: 2{Jk {{Jr Grc} {Jm GmS}}} 508{]2 {J2 Jk}} (BlO)

d“bS{Déa, [ch’ [JZ’ Gih”}
N.(N,+2N 1
= NydseG — Ne(Ne +2N;) 2; 1) ges i 5 (Ne 4 Np)d 5D + (N + Np){GH, T%}
f

1 N2—2N, +4 3N2—2N, —4
_ 2 T8 kel / f ke r r8 _ S Y k8 r re
SN+ N2 [T, G 7% (G4 7.G"}} —2Nf {64776}
ldCSeDke Nf+2d(,'8eok€ Jk Tc T8 N 1 Jk Grc Gr8 5c8 12 Jk
-5 VN AR 4 Wy =D{EA }}+ {720
Nf 2 k8 Nf 2 7k 8
N {J {G® .G} +—— {J {7546, G, (B11)
f f
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dabfi{Gia7 [Ol?fc’ []2’ th]]}

3NN, +2Ny) o 3 3
_ 3NeWe £2Np) s pe 3y N;)d¥Die + = (N, + N){G*, T8}
AN, 4 - 2 -

+2(N. + Ny)[J2 [T, G*]] —%(11Nf+6){GkC {J, Grg}}+ (5Nf+6){G’<8 {J7,G"}}

2N%+ N N,—4
S I {Jk {Grc GVS}} cheDke _ (SNf + 6)d686013<e
2Ny Ny 4

—%{Jk,{TC,TS}}—i-
— (Ne + N{D5 {7, G"}} + (N + Np){J?, {G*, TS}}+ (Ne +Np){J2, 2, [T, G*]]}

EdCSe(r)lsce_ {J2 {ch {Jr Gr8}}}+ {J2 {GkS {Jr Gra}}}_’_Nf {J2 {Jk {Grc GrS}}}

N2 —N;+4 3N, +2
S 2N2f 5c8{]2 Jk} f {Jk {{Jr Grc} {]’" GmS}}} (B12)
f
dabS{Gia’ [ch’ [_]2’ Oéb“}
3N.(N.+2Ny) 3 ) 3N7 —2N,;—8 N;—4
— ¢ ¢ 568]/( Z(N. N dLSEDke _ p cheDke _ f cheOke
Ny N.N;(N,+2N;)—6N2+2N;+8
+ = {]k {Tc TS}} {Jk {Grc Gr8}} f( f) 5 S f 6(‘8{]2"]](}
4Nf
1 1 1 1 1
+Z(NC -‘r-Nf)dcgele +Z(NL + Nf){.]z, [JZ’ [TS, ch“} __dCSeDke __dCSeOke __{J2’ {ch’ {Jr’ GrS}}}
1 1
+ o AP2AGE AT G 4 {2 AT T - {J2 {eAe . 6" -5 5‘8{12 {2051},
f

(B13)

dabS{Oga’ {ch’ [12’ Gib“}
3N, (N, + 2N 3 3
~ B0 S 0, DY SN, + NG T
1 1
_ E (NC + Nf)[]2’ [TS, ch” _ g (3Nf _ 4)d08e'Dl§e _ 1 (Nf 6)d08e0ke +— (5Nf + 6){ch {Jr GrS}}

3V, = 6){GH {7, Y 4 S LU AT TS} — (N, + DI {6, 67))

No(N.+2N;) =8N, + 4
+
4N,

! N+ Np){J% [J2, [T8,G*]]}

1
O} + 7 (N + N)d8eDke + 2

_ %dCSeDke _ ldCSEOke _1{12’ {ch, {J"’ GrS}}} _’_%{12’ {GkS’ {‘]” Grc}}} —|—%{J2’ {Jk’ {TC, TS}}}
PG O = gy B ®14)
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(3) flavor 27 contribution:

1 : 1 1 i f£cde e r T 1 c3e £3e c T T
{G*. [D5. 172 G¥|} = =38 foDy? - S if S[GH {J7, G Y] — S f D) + {Dx . {G. G"*}}

ST GG T} + i A (.61 . G, ®15)

{D?, [ch’ [12, GtSH} — _%chefSegDIZCQ _ l'che[Gk8’ {Jr’ Gre}] + {DIZCS’ {Grc’ GrS}} _%{{JV’ Grc}, {GkS’ TS}}’
(B16)

(@™ [0y [, G}
3 1 1 1 L L
— _fc8ef8egGkg _ _dCSedSegGkg _ _dCSSJk 4 _chef8e9D3!I _ 2d€8€d8€gp39
2 2 2N, 4
4 15681)13&3 _ ié‘%pgc 4 1fc8ef8€g0§g _ ldCSedSegOé‘g 4 LéCSOlgS _ i 58801;0 4 2{ch {GrS Gr8}}
N, N, 2 2 N, N,

1
— 2{Gk8, {Grc’ Gr8}} + 7dC8€{Jk’ {Gre’ Gr8}} _ 3d88€{‘]k’ {Grc’ Gre}} + zdc‘Se{er’ {J"’ GrS}}
1 1 4
+ che{GkS’ {Jr’ Gre}} _ EdSSe{GkC’ {Jr’ Gre}} _ EdSSe{er’ {Jr’ Grc}} _ N—dCSS{JZ,Jk}
f
1. . S o
_'_Eeklmche{Te’ {J’, GmS}} _ {{Jr7Grc}’ {Gk87 {Jl’Glg}}} + Z{Jk, {{Jl’Glcjr7 {Gr87Gr8}}}

_ {Jk’ {{Ji,GiS}’ {GrC,Grg}}} _%dc8e{'Dk8’ {Jr’ Gre}} + dCSe{JZ’ {_]k’ {Gre7 GrS}}}’ (B17)

(P3[4 2.6}
_ échefSegGkg . lchefiiegD/;g + 1fc8ef8eg0§g _ ldCSedSegogg + L5c8013<8
2 4 2 2 Nf

1
_N_588013<C + 2{ch’ {GrS’ GrS}} _ 2{Gk8, {GrC,GrS}} _ che{Jk’ {Gre’GrS}} 4 d88e{]k’ {Grc’Gre}}
f

1 1 1 . .
+ che{GkS’ {‘]” Gre}} _ EdSBE{GkC’ {j” Gre}} _ EdSSE{er’ {Jr’ Grc}} + EeklmeSe{Te’ {Jl’ GmB}}
— {7 G AGK LGB + U {{V, GG, G ) (B18)
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(G [0k 17%.6M])
- _ échefSeng(g _ Nif 6087)/3(8 _ %chefSegOlgg _ %dciiedSegogg _ 21]\Zf 6680/3{8

7 7
_ W(SSSO];C + 2{ch’ {GrS’ GrS}} _ che{Jk’ {Gre, GrS}} + dSSe{Jk’ {Grc’ Gre}} + EdCSe{er, {Jr’ GrS}}
f

7 7 3 1 . )
_ EdCSe{GkS’ {‘]” Gre}} _ ZdSSe{ch’ {Jr’ Gre}} + Zd8Se{er’ {]” Grc}} _ Z€k1mfc8e{]2’ {Te’ {Jl’ GmS}}}

_%ekimeSe{Te’ {J", GmS}} —NL(SCSO];S _ {ch’ {{Ji’GiS}’ {Jr’ GrS}}} +%{{J’", Grc}’ {GkS’ {Ji’GiS}}}
f
5 LGN AGR G 4 4 U4 (. GR) (G, G 4 2(2.(GR. (G, G ))

1 1
4 chge{pks’ {Jr, Gre}} _chge{‘lz’ {(;kS7 {Jr, Gre}}}’ (B19)

. . 1 1 1
{GIS’ [ch’ [JZ’ O%SH} — _chgedSegGkg _ 4—]\/fd088‘]k _ 5dc’fiedgenggy + che{Jk’ {Gre’ GrS}}

1 1 1 . .
+ ch8e{er, {Jr, GrS}} _ N_dCSS{JZ’Jk} _ Zeklmfdie{JQ’ {Te’ {Jl, GmS}}}
¥

1 . 1 1
_ N_écSOIScS + 5che{JZ’ {Jk’ {Gre’ GrS}}} _ chse{‘lz’ {GkS’ {Jr’ Gre}}}7 (B20)
f
(O3 [6*. [7%.6M])
1 1 1 1 1
[ chedSegGkg o chSJk — rc8e Seng!l - chedSeng.(l _668Dk8
4 4Ny HEAE A SN
1 1 3 5
_ _chefSegOI;!J + _dCSedSegO];g + _5c80§8 + _5880/3(0 _ Z{ch, {GrS’ GrS}} + chge{fk, {Gre, GrS}}
4 4 2N, 2N,

; 1 roe e r X 1 coe r re 5 e C r re

_dSSE{Jk,{GrC,Gre}}_chg {Gk,{J,GS}}+§d8{Gk8,{J,G }}+Zd88 {Gk,{J,G }}

1 1 1 . . 1
_ _d88@ er’ Jr’ G’ _ _d088 ]2, Jk — Lkim £c8e Te’ Jz’ GmS _ _5C80k8

T G e e T A UL B

1 o 1 1
4 E{{‘]r’ Grc}’ {GkS’ {]l’ ng}}} 4 EdCSe{JZ’ {Jk’ {Gre’ Gr8}}} _ chge{‘lz’ {GkS’ {]” Gre}}}

1 . . 1 o
_ ZektmeSe{JZ’ {Te’ {]l, GmS}}} _ E{Jk’ {{Jt7 G’S}, {Grc’ GrS}}} (B21)

The next-to-leading order contribution to the baryon magnetic moment for finite decuplet-octet mass difference involves
the two operator structures,

(AT, WML ML AP MAT), and (LML AT, [[M, A7), ],

with two mass insertions. For the latter the results listed in Appendix B of Ref. [18] can be directly used. For the former the
expressions not listed in this reference read as follows:
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(1) flavor 1 contribution:

: . 3 5
(G, 42,172, G}, D)) = = [N(N. + 2N) = 4N}IDE" = (N + NJDK = (N + N,)OK + 3(N; + 2)D,

(B22)

[Die [[J%,[J%, G']], Gk¢]] = 3NfD§C —(N.+ Nf)D§C —(N.+ Nf)O§C + 2Dke; (B23)
(2) flavor 8 contribution:

. . 5 1
dabS {qu7 [[]2’ []2’ sz]]’ fDlzccH — 3NdeSe'D15e _ Z (Nc + Nf)dCSe'Déce _ E (Nc + Nf)dc‘iieolge

3 1
- Z (Nc + Nf){Jka {Tcy TS}} + 5 (Nf + 5>d686D§e
N2+ 6N, +4 1
+ LDk (.G} —2{DE {0, G} — S {2 (G T
2N 2
N:+N,—4 1
+ L PG Ty + - (PP T8GR (B24)
2N, Ny

] ] 3 1 NC +N c8e ke NC +N c8e e
dabS{szza’ [[12’ UZ’ th“’ ch“ — 5I\If.dd%efplzce 4 5(]\7]0 _ 2)[]2’ [TS, ch]] _ ; S d 8 Dlg _ ; fd 8 Ol3<
(N, +N;)(N; —2)

2N,

(N, +N;)(N; —2)
Nj

(N, +N;)(N;—2) PP
- 2fo / {Gke {J7,G"8}} +

_ (NC +Nf)(Nf_z) {Jk,{Grc’GrS}} +
Ny

{GkS’ {Jr’ Grc}}

568{.]2, _]k}
1 1 1
+ dc8eD{4ce +§{D12<c’ {Jr’ GrS}} _ E{Dég’ {Jr’ Grc}} _ 5{]2, {ch’ TS}}

1 1
+§{12, {GB,T}} +§{J2, [J2,[T8, G*]]}s (B25)
(3) flavor 27 contribution:

. ) 7 2
[GZS, [[JZ’ [JZ’ G18H’ Dlzcc]] _ 6f08ef8egD12<§ + EchefSeg«D/;g + N_f688D§C _ Z{Déc, {GrS’ GrS}}

1 1
+ 561886{]2, {er’ Tc}} + EdSSe{'Dlzcc’ {Jr’ Gre}}’ (B26)
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. . 3 1 1 2
['D128’ [[]2’ [J2’ Gl8“’ ch]] — Efc??»efSeg’Z)gg + 5 l'che [GkS7 {Jr’ Gre}] + E‘](‘L'Sef'é%egz)ﬁ!} + N_508D§8
f
1 1
_ 2{D§8, {Grc, GrS}} + EdCSe{JZ, {er, TS}} + Edcge{DSS’ {Jr’ Gre}}
1 1
+§{{Jr,Grc},{Gk8,T8}} —5{{JV,GV8},{G]€C,T8}}
_ 3l‘f68€{Jk’ [{ji, Gie}’ {j’, GrS}]} _ ijt‘ci%e{{.]r7 Gre}’ [_]2’ Gk8]}

+ % ifeSe{{Jr,G"8}, [J?, Gke]}. (B27)

APPENDIX C: FLAVOR CONTRIBUTIONS FROM FIG. 1

Here we discuss the different flavor contributions that make up the one-loop correction to the baryon magnetic moment
operator from Fig. 2(a)-(d), Eq. (63).
For the flavor 1 representation, the operators that occur at this order are

ke _ (ke ke _ ke ke _ ke ke _ (ke ke _ ke ke _ ke ke _ (ke
Xke = Gke,  xke— ke xke_phke  xke ke xke _pke  xke _ ke xke — Ok,

The matrix elements are listed in Tables I—III of Ref. [10]. The corresponding coefficients are

23 2 N.+3 N.+3 , 3 N2+6N.—18 , 1
X1 = 24 my+—— 6N Cl]bzml —W 1my — N2a1b2m2 +Tb m +N2 a1b3ml
N2+ 6N, + 4 N2+6N,—3 2(N.+3) 2(N. +3) 2(N.+3 1
—Ta%m3—Ta%m4—Tb2b3ml (Nga1b3m2 —%a1b2m3 Fg)
N lazm _Nc+3a b —NC+3a2m _N§+6NC+6a bom _N%+6NC+6a2m +3(NC+6)a oo
41 1 2Nc 12178 2Nc 17702 ZN% 13778 ZN% 1173 4Nc 16377
3(N.+6) A 1 A% 3
—Tca%m4]N—cF§)+ 5 (N 46N, —3)aim, N%Fg), (C1)
5 71 N.+3 N.+3 2(N.+3 3(N.+3
Xy = [Walbzm] +24N almz—f—%albzmz‘F 2N2 Cl]b3m| —%a% 3—%6116'3”’1]
N.+3 N2+ 6N, —18 1 N2+ 6N, +6
N2 ajmy Tb%mz - ﬁb2b3ml Tall%mz - mfhbzmz T35 byczmy
3(N2+ 6N, — 12 9 |
3 s )alc3m2+2N3a1b2m4}F§)
1 2 N2+ 6N, —21 N.+3 11(N.+3
+ l:_Z(NC + 3)0%”’!1 + N—a1b2m1 —Td%mz +Wa1b3m1 —%a%m3
9(N.+3 3(N.+3 A
e+ 2 |
11 3 3(N2+ 6N, —12) A?
+[ 5 Ve +3)ad s+ - dibam S alm, N3F§>, (C2)
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3 5 11 1 1 7(N, +3) N.+3
X3 = |:4N2 Cl]bzmz +-— 8N2 b% 12N2 Cllbgml +— 24N2 a1m3 +— N2 apc3mg +67]vgb2b3m] —1-2—Ngalb3m2
7(N.+3 N.+3 5(N, +3 N.+3 |
(Tg)albzm3 —2—]V2b2C3m1 —(T%)(IIC3I’I12— 2N:: a1b2m4} Fg)
1 N,.+3 3 2N% + 12N, — 47 3 3 A
+ [Za%ml - 4—1\/,6‘61%1’”2 +— N 2 a1b3m1 4N% a%m3 +—— 2N2 ajcym; +-— 4N2 azm4] NC Fg )
1 N.+3 5(N, +3) A2 5
+ |:§Cl%m1 — 6Nc a1b2m1 —Tca%mz N—%F; >, (C3)
1 7 3 31 11(N, +3 N.+3
Xyq [—malbzmQ +4N2 b%ml +6N2 a1b3m1 +2N2 apcyn +24N2 a%m4 (3N3 )b2b3m1 — 3 b3m2
N, +3 N.+3 N.+3 2(N, +3
— N3 a1b2m3 2N3 b2c3m1 — 2N3 611C3m2+ ( 3N3 )a1b2m4 Fl)
1 5 1 7 (N.—3)(N. +9) .
+ |:§Cl%m1 2—N%alb2m2 + 2N% (11b3m1 -+ 2—1\]30%7}13 4N% ajcsmg ZN% a%m4 —ch )
2 N.+3 N, +3 A 5
+ [ga% 1~ 6N aybym; — 6N, i 2] mFﬁ), (C4)
5 5 1 1 15 1 1
X5 = |:4N3 b%mz + — 2N3 b2b3m1 +— 6N3 albgmz + — 2N3 a1b2m3 +—= N,; b203m1 + — 2N3 ajcsmy + — N alb2m4:| Fg )
N.+3 N.+3 A 1 15 A2
+ {Nca%mz —WG%WQ 2N2 61103m1:| N—LFS ) + |:3N a1b2m1 +4N %m :| N2 F( ) (CS)
3 1 A
Xg = [2N2a m3+2N%alc3m1] N F;), (C6)
1 3 A
X7 = [Nz ajczmy; +—= N2 a2m4] N F; ), (ChH

For the flavor 8 representation, the relevant operators are listed in Sec. IV.A of Ref. [10]. A nonvanishing A requires that
the list be complemented with the following operators:

Vi =d®D, Yy =d*0y, vy ={l AT T} Y = {2 UM {G. G
lecg — {Jk, {{Jr’Grc}7 {Jm’GmB}}}, YI3<8 — 508{]2’ {J2,Jk}},

The matrix elements of these operators are listed in Tables VII, VI, and VII for the magnetic moments of octet and decuplet
baryons and the transition magnetic moment of decuplet-octet baryons, respectively. These tables are to be considered as
continuations of Tables IV, V, and VI, respectively, of Ref. [10].
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TABLE V. Nontrivial matrix elements of the operators involved in the magnetic moments of octet baryons: flavor 8 and 10 + 10
representations. The entries correspond to 481/3(Y37) and 48(Y3%).

n p ¥ ¥0 o+ = =0 A AXO
(r3) —90 90 ~72 0 72 18 —18 0 36v/3
(r3) 0 0 0 0 0 0 0 0 0
(r3) —108 108 0 0 0 108 —108 0 0
(Y3d) —45 45 —144 0 144 —99 99 0 —36V/3
(Y33) -90 90 —144 0 144 —54 54 0 0
(Y3) 0 0 0 0 0 0 0 0 0
(3% —18 —18 -36 -36 -36 54 54 36 0
(Y3 0 0 0 0 0 0 0 0 0
(r33) 108 108 0 0 0 108 108 0 0
(Y38 9 9 108 108 108 153 153 36 0
(Y38) 18 18 72 72 72 162 162 72 0
(Y38 54 54 54 54 54 54 54 54 0
The coefficients that accompany the operator basis read
11 N.+3 N.+3 3 3 1 2 3
2 c c 2 2 2
Y1 1= aybym my — ——sabymy ———=bym; — —ajbsm; ——aymy +—aymy
{48 ! 12N, 4N, ! 2N2 4N2 72 2N2 N2t 4N2 71
N, +3 N,+3 N.+3 ]
— c]v:; b2b3m1 ——< 3 a1b3m2 3 a1b2m3 Fé )
c c c
1 N.+3 N.+3 3 3 @) 1 A? 3)
+ |—=a?m; — =< aibym; ——= 2y — ——a,bym, — a?m F + |—=d?m| = Fy”’,
[811 4N, PTETL g TR g2 I N2 TR y T8 g1 N278

(C8)

TABLE VI. Nontrivial matrix elements of the operators involved in the magnetic moments of decuplet baryons: flavor 8 and 10 + 10
representations. The entries correspond to 16/3(Y3) and 16(Y38).

A+ A+ A” A~ T 0 T =0 = Q-
(¥33) 1350 450 —450  —1350 900 0 —900 450 —450 0
(r3) 0 0 0 0 0 0 0 0 0 0
(r3) 1620 540 —540  —1620 0 0 0 —540 540 0
(Y3) 675 225 —225 —675 180 0 ~180 —45 45 0
(r3) 1350 450 —450  —1350 0 0 0 —450 450 0
(r8) 0 0 0 0 0 0 0 0 0 0
(r33) —450 —450 —450 —450 0 0 0 450 450 900
(v38) 0 0 0 0 0 0 0 0 0 0
(v38) 540 540 540 540 0 0 0 540 540 2160
(¥3%) 225 225 225 225 180 180 180 405 405 900
(v3s) 450 450 450 450 0 0 0 450 450 1800
(r3o) 1350 1350 1350 1350 1350 1350 1350 1350 1350 1350
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TABLE VIL.  Nontrivial matrix elements of the operators involved in the decuplet to octet transition magnetic moments: flavor 8 and
10 + 10 representations. The entries correspond to 12v/6(Y3?) and 12v/2(Y3%).

Atp An 0N 0%0 T xR =0=0 =2ET
(r3) 0 0 0 0 0 0 0 0
(r3) 162 162 8113 0 81 —81 81 —81
(¥33) 0 0 0 0 0 0 0 0
(%) 0 0 0 0 0 0 0 0
(%) 0 0 0 0 0 0 0 0
(¥3) 0 0 0 0 0 0 0 0
(v33) 0 0 0 0 0 0 0 0
(Y;g) 0 0 0 —81 —81 —81 —81 —81
(¥35) 0 0 0 0 0 0 0 0
(v33) 0 0 0 0 0 0 0 0
(v38) 0 0 0 0 0 0 0 0
(Y3 0 0 0 0 0 0 0 0
5, N.+3 N2+ 6N, + 4 N24+6N.—1 , N.+6 N.+6 , )
Yy = %alml +718N a1b2m1 +712N2 a1b3m1 —731\[2 ayms — SN apcsmg + 12N 1My FS
1 N.+6 11(N, +6 3(N,+6 N.+6 A
+ [—ﬁ(Nz +6N —2)61 ml + 12 a1b3m1 —%a%m3 —%016‘3”’!1 + SN a%m;;] N_Fé)
11 A2
+ [ T2q NeNe +6)aim, ngg% (C9)
5 13 2 N, +3 N.+3 , 3(N.+3) N.+3 , 3,
y3 = SN b2m1+16N 1m2+4—N201b3m1— N2 alm3_Walc3ml+4—Nv2alm4_4—]V3b2m2
1 1 1 9 9 9 1
2N3 b2b3m1 2 3 a1b3m2 2N3 a1b2m3 + 4 3 b2C3m1 + 2N3 acsny + 4 3 alb2m4] Fé )
1 1 17 N.+3 11(N, +3) 9(N, +3)
+ |:_§(NL + 3)61%"11 + N_L.albzml +Wca%m2 + W%albynl - Tga%m3 — 87]\]3016'31’”1
3(N.+3 A 11 3 9 A% 3
1 1 N.+3 N.+3 N.+3 1
Y4 [ 1N, “bm =gy a, “ima — g b = aims = N aima - w3 2bam
1 1 1 1 N.+3
N3 a1b3m2 N3 a1b2m3} Fé) + [—4N‘a1b2m1 —md%mz _—2N2 a1b3m1
N.+3 3(N,+3 3(N.+3 A 5 [N.+3 A 3
—2—Nza%m3 %(116’37)11—%(1%}%4] N—F( ) |: 2 a%ml} mFé), (Cll)
1 2 N, +3 2 1 1
V5 = |:4N a1b2m1 +— 3N a2m2 +—— 6N2 albzmz + N—b2b3m1 +—= N a1b3m2 +— N a1b2m3:| F2(3 )
1 1 A o
+ LNC abym, T a’m, N—CF{(;), (C12)
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N.+3
4N3 byb3m,

GIOVANNA AHUATZIN et al.
3 o 3 7 17 1 Lo Net3
a m aim
Y6 = [gn2 117 TN 24N? 16N2 3N2 o2 1M
N, +3 N, +3 N, +3 5(N, +3 N, +3
et ¢t ¢t ( T ) _ ¢t alb2m4:|F(l)

Ne T2 00b Ne ¥ bymy — e 2p -
AN aybzmy + AN aybyms 6N? 2C3M 6N? P

b%ml +— Cl]b3m1 +— a1m3 +— a;cymy —

+

1 13 7 A
_alml — a1m2+ zdlbgml + 2(1%7’}13 +—201C3m1 ——za%m4:| _F§2>
8 8N, 4N? N2 12N2 24N? N.

7 N.+3 5(N,.+3 A?
+{ 5 ¢t _5(N:.+3) , A% L) (C13)

23 N, +3 N, +3 A2
+[—2 Retd —Lz} Fy), (C14)

AZ
] FY, (C15)

1 13 N.+3
2 —3b2b3m1

2
aimy ————-ad1Cx3 My ———= ANy —
T en2 1T 2 T N3

1 1 5 3
Y9 = [W%a'bﬂnz_r]vg 6]\,2611573’”1 +2N2

N.+3 N.+3 N.+3 | N.+3 |
—a1b2m3 +szc3m1 12N 3 a1b2m4] F( )+ l:_ga my +—— 12N a1b2m1 +2 2a1b2m2

b%m] +

17 3 21 A 13 N.+3 A?
Walb3ml +TNza2m3 +— 8N2 8N2 a%m4] N—F(2) + [—7—2a%m1 +Wa1b2m1 WFS), (C16)

1 1 1 3 1
_ 2 2
Yio = [12N2a1b2m2+8N2 aybym; — 2N2 ayms — 16N2 a;cym +8 2a1m4

NL.+3 N.+3 3Wet3) e
24N} C4NT gNi RS

3 A
ajcsmy; +—— a%m4 —Fg)

b
@i 162 N,

1 9
8N, 8N2 g2 1" T eN2

1 3(N, +3 A?
+[ i (16N Laim, N2F§‘>’ i

1 N.+3 1
+ [—a%ml ————aimy +—— atm
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11 5 N,.+3 _NC+3 :|Ft(;l)

amg—l— aim
! 128271

1 5 7
yn = [ 2N2 aybzm +2N2 12N2 ayc3my —
1,  N.+3 1
+ galm] _—12NC Cllbzm] N2

N.+3 A? 3)
_—18NC a1b2m1 N_ng

amy+ ——

7
a1b3m1 +— N2

4
+ {ga%ml s (CIS)

17 1 N.+3 N.+3
a1b3m1 + 2 < * ¢ i :|Fé])

5

6N%a% 36N2a1c3m1 9N%alm4+TN§b2c3ml+—
1 _NIFON. =34 ,  3NZHI8N. =50 5, 1A g

12 TNz 12N? 1 36N2 T8N

[55 , N, +3 ]A2

_|_ - - -

NZ

[ 18N2

aybym; —

FY, (C19)

1 1 2
b2b3m1 + —3611b3I’I12 + —301b2m3 + b263m1 + —alC3I’I12 + alb2m4] Fél)

1
8N 4N3 4N3 4N3 2N3 N3 2N3
1 N.+3 N.+3 A o 1 A?
oo e 2, _ e 2 gl . 2
+{ } 5 e, N2

1
a1b2m1 + Fa%mz] Fg?’), (C20)

5 1 1 31 1 |
Vig = [Wb%mz 2N% a1b3m2 N3 a1b2m3 + — 4N3 sz'z,ml +— 12N3 a;czmy + — 2N3 a1b2m4] Fé )
c

3N, 1" T N2

2, N.+3
+ aj
N, 3 12N, 72N, N2

A 1 101 A2
albzmz} Rl O [ a\bymy + ——a’m ] FY, (C21)

1
Yis = bybymy — bymy — ——=a,bymz — byczmy — c3Mmy + ——= a1b2m4} Fé)

7 1 1 1 1
a a
6N? N3 ! 2N3 4N? 4N3 ™! 6N3

N.+3 A 1 1 A2
+ [—Wa§m4] N—F§2> + [——a1b2m1 ———dm } ¥ FY, (C22)

2 A
—a,bym, + wa%mz} WF},”, (C23)

1 1 4 1 1 2 1
yi7 = {—ngzb:’,ml +V3a1b3m2 +Wga1b2m3 _4N§ b2c3m1 —N—galc3m2 —ma1b2m4] Fg)

1 N.+3 N.+3 A 1 13 A2
+ l:_ma%mz — Ta%m3 Wa%mét] N_F§2) + |: 12N d]bz my — 24N d%m2:| N2 F( ) (C24)
Y18 = Y19 = Y20 = Y21 =y =0, (C25)
1 5 A o
Vo3 = |:2N2 ajcsmg + — 4NC a2m4:| NC F8 y (C26)
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1 1 5
Yoq = [6N2a1b3m1 +6N2 aimy — 12]\7261103’711

1 A
“ a’f‘m4] N_F;>, (C27)
i 1 1A

yas = gz i+ gpaicsm| R (€28)
M1 1 1A

Vg = 2]\/2016’3’"1 +4N aimy N_Fé)7 (C29)

1 1 A
Yo = {——a%m;— ayesm, | —FY,  (C30)

g2 1M T g2 N.
1 1 5
yag Walbﬂ”l +Wal 3t 5 1272 aczm
1 A
e a%nu} EFg ), (C31)
11 1 TA 4
Y29 = N2 T T g2 41 N_Fg)’ (€32)
[ 1A
V3g = Wa%m3+6N2alc3ml FF() (C33)

Finally, for the flavor 27 representation, the operator
basis is listed in Sec. IV.B of Ref. [10]. This operator basis
also has to be complemented with the following operators:

2t = 508

7t = {G* {7, G} {7, G,
7l = (D AT (7. G }}).

Zly = {{77.G}.{GH. (7. G},
7l = {1 A1, G7) (G, G,
Zis = (P (6B AT T},

Zls = {1%.4G (GG},

Zls = a8 (1.6},

Zis = a1 (A (67, GP))).
Zjs = a1 {GR (1.6 ))).
Zls = (1 {.G"). (GG ).

The matrix elements are listed in Tables VIII, IX, and X for
the magnetic moments of octet and decuplet baryons and
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the transition magnetic moment of decuplet-octet baryons,
respectively.
The accompanying coefficients are

1 1 1 2
1 = [Za%ml}F;; + [4—]\7361%1’}13 +Walc3m1} N—CF;7),
(C34)
1, (1
Q2= (gdim Fyy, (C35)
3 = [ua%ml}F;y
[ 1 @)
+ 12N%a1m3 + 12N%a1c3m1 N. F5/, (C36)
4 = |:3 Cllbzml:|F27 y (C37)
1
25 = { 6N a%mz] FY. (C38)
26 a,bym, | FYY, (C39)
ZNL 27
z = ! a@m, |FLY, (C40)
4Nc 1 27
1
73 = {4N3a1m3 +4N%a163m1}F27
1 1 A o
+ N—%a1m3+2—N%a1c3m1 N_CF27
1 20
+ [ﬁa%ml} N2 F27 s (C41)
1 1 1 1)
9 = 2N2a1b3m1 +4N2alc3m1 —|—4N2a1m4 F27
1 [, 1
-+ 4N2 a1b3m1 +4N261 m3 —8N2611C3m1
3 1 3
ST m4] v —F3 + [lza ml] 7 0 (c42)
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TABLE VIII. Nontrivial matrix elements of the operators involved in the magnetic moments of octet baryons: 27 representation.
The entries correspond to 144(Z33) 144+/3(Z3).

n p = =0 st =- =0 A AS0
(73) 0 0 0 0 0 0 0 0 0
(Z%) —45 45 —144 0 144 81 —81 0 723
(733) —54 54 0 0 0 ~162 162 0 0
(Z3) —45 45 —144 0 144 81 —81 0 72v/3
(Z33) —45 45 —432 0 432 153 ~153 0 1441/3
(z33) —54 54 0 0 0 -162 162 0 0
(Z3) -5 L -216 0 216 153 — 13 0 72V3
(Z33) -90 90 —144 0 144 —54 54 0 0
(Z3) —45 45 —144 0 144 —99 99 0 -36V/3
(Z3) —45 45 72 0 72 -27 27 0 0
(733) —45 45 —288 0 288 297 —297 0 0
(738) 0 0 0 0 0 0 0 0 0
(Z3) 27 27 216 216 216 —729 —729 -216 0
(Z35) 162 162 0 0 0 —486 —486 0 0
(Z3) 27 27 216 216 216 —729 —729 —216 0
(Z3) 27 27 648 648 648 —1377 ~1377 -216 0
(Z33) 162 162 0 0 0 —486 —486 0 0
(Z38) z z 324 324 324 - - —108 0
(Z33) —54 —54 -216 —216 -216 —486 —486 -216 0
(738) -27 -27 —324 —324 —324 —459 —459 —108 0
(738 -27 —27 ~108 ~108 ~108 —243 —243 ~108 0
(Z5) 27 27 648 648 648 —1377 —1377 -216 0
1 1 1 ! S R P ()
Z10= {3N2a1b3m1 6N2a2m3—|—6N2a%m4} F(27) 213 = [SN% a]m4] Fy
c
1 1 5
2 1 1 A 2
2 2 (2) — a1bym +—=aymy ———a;c3m
+[ N2 TNz e T g m“] N ! [6N% AT g2 T T gz
7 A
c c
1 1
2 (1) 1 (1)
aycsm aimy | F S
7 = [3N2 163 +2N§ 1 4} 27 214 {6N% aj 6N2 a1C3m1:| Fyy
1 1 1 2 1 A
2 2 2
+ |:8alml 6N2a1b3m1 6N%a 1M3 + [Wa% 3N2a1C';m]:| N F§’7)
c
1 17 A 2
2 (2) 1 A
- a,cym aymy| —F i) 2 70
4N% 163my + -5 12N2 4] N, + [18a]m1} N2 Fy, (C47)
1 A? 3
+ [gam | 578 (ca4)
c
21 [ ! bzml] FY) (C48)
4N?2
1 2 A ! (1
= [Wa§m3]F§‘7> + {—3N2 a%m3} v Fr. (C43) 216 = L 2a1bzmz} Fy, (C49)
c c c
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TABLEIX. Nontrivial matrix elements of the operators involved in the magnetic moments of decuplet baryons: 27 representation. The
entries correspond to 48(Z3) and 48+/3(Z3%).

A+ At AY A~ T 0 T =40 e Q
(z3) 0 0 0 0 0 0 0 0 0 0
(Z%) 675 225 —225 —675 0 0 0 225 —225 0
(Z%) 810 270 —270 —810 0 0 0 270 —270 0
(Z3) 675 225 —225 —675 0 0 0 225 —225 0
(zi) 675 225 —225 —675 360 0 —360 405 —405 0
(Z3) 810 270 —270 —810 0 0 0 270 —270 0
) T ®m e g 0 -8 4 @
(Z3) 1350 450 —450  —1350 0 0 0 —450 450 0
(z33) 675 225 —225 —675 180 0 —180 —45 45 0
(Z3%) 675 225 —225 —675 0 0 0 ~225 225 0
(z3) 675 225 -225 —675 0 0 0 45 —45 0
(z38) 0 0 0 0 0 0 0 0 0 0
(Z3%) 675 675 675 675 0 0 0 —675 —675 —5400
(Z%) 810 810 810 810 0 0 0 —810 —810  —6480
(Z3) 675 675 675 675 0 0 0 —675 —675 —5400
(z3) 675 675 675 675 0 0 0 1215 —1215  —5400
(z3) 810 810 810 810 0 0 0 —810 —810 —6480
@) 9@ @@ g o - o
(Z3) —1350  —1350  —1350  —1350 0 0 0 —1350  —1350  —5400
(733 —675 —675 —675 —675  —540 540  —540  —I1215  —1215  —2700
(Z3%) —675 —675 —675 —675 0 0 0 —675 —675 —2700
(z3) 675 675 675 675 0 0 0 1215 —1215  —5400
1 1 1
_ 2 2 (1) 2 (1)
217 = |: N2 a1m3 2N2 Cllm4:| F27 220 |:2N% 1m3 4N%alm4} F27
1 I, 3, 1
4+ —Walb3ml ——2a1m3 +—2a1c3m1 + —2N2a1b3m1 +Wa1m3 +2N2 a|csny
c c c c c c
1 A 1 A o
i) (C50) i 78 (€53
c c c
1 1 1 1 1
2 2 (1) _ 2 (1)
= F o1 = arbsm; +—=aycsmy +—=aymy | F
218 |:N261 my — 2N2 a m4:| 27 21 [ 2N2 1031 4N% 163710 ZN% 4:| 27
1 1 A o 1, 1 I,
[Nz aybym +Ncazm3] NL.F27’ (Cs1) Tz = 2N2a1b3ml —W%aﬂ%
1 7 A o
ajcsmy +— azm —F
3 ) 1 5 (1) 4N2 163170 4N2 4:| Nc 27
219 = _—2N2 ajms —2N201C3 +4—N2 ayny F27 1 AZ
‘ ‘ ‘ + | =a2m | =FY), (C54)
+ —lazm + ! a;bym —Lazm N
47T T N2 T TNz T
3 1 A @) 1 1 1
2N2 apcimy +— 2N2 a%m;;} N—CF27 272 2—Nza%m4 F;7) =+ N2 a1b3m1 + — 4N2 a2m3
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TABLE X. Nontrivial matrix elements of the operators involved in the decuplet to octet transition magnetic moments: 27
representation. The entries correspond to 36v/2(Z3) and 361/6(Z%).

(C62)

Atp A% A 3030 Tt TR Z10=0 A
(Z3) 0 0 0 0 0 0 0 0
73 234 234 18V3 0 18 —18 153 ~153
38
(Z%) 0 0 0 0 0 0 0 0
(Zio) 0 0 —9v3 0 63 —63 -72 72
(z3) 0 0 0 0 0 0 0 0
(Z3) 0 0 0 0 0 0 —162 162
(Z33) 81 81 54V/3 0 108 —108 3l 4
(73) 0 0 0 0 0 0 0 0
(Z33) 0 0 0 0 0 0 0 0
(Z3) 162 162 —27\/3 0 27 —27 —108 108
(z33) 0 0 0 0 0 0 0 0
(Z3) 0 0 0 729 729 729 729 729
738 0 0 0 54 54 54 459 459
38
(738) 0 0 0 0 0 0 0 0
(738 0 0 0 27 27 27 432 432
(z3) 0 0 0 0 0 0 0 0
(z3) 0 0 0 0 0 0 486 486
(Z3%) 0 0 0 324 324 324 1053 1053
(738 0 0 0 0 0 0 0 0
(238 0 0 0 0 0 0 0 0
(238 0 0 0 —81 —81 —81 324 324
(735 0 0 0 0 0 0 0 0
3 1 1
3 = 2N2 dlbgml +2N2 ayms 4N2 ajcymg 226 3N3 a;czmy F27
c c
1 1 1 A2
2 (1) ) 3)
— atmy | F +[ abym; +— ] F,7, (C59)
AN2T ] 7 on, 17 TN, M| N2t
1 7 A
2 (2)
+ |:—4—Ngalm3 4—]\[%CZII?14:| N_CF27 1 .
2 1
1 A 3 27 = |: 3 b m2:| F27 s (C60)
+ [—Ea% 1] 7 F. (C56) AN
1 (1) 1 Ao
1 1 228 = |:——01C3m2:|F + |— 2 e
204 [2 N2 M~ s @) m4] F §7) N; 7 2N, N, 7
c c
1 1 A2 3
1 1 1 + |—=——abym azm} FY. (el
+ |:4N2 a]b3m| +4N2 almg +8N2 a|csm; |: 3Nc 172 2N 172 N% 2
c
3 A
~ oW a2m4] 5 —Fy), (C57)
1 1 1
229 = |:_—3b26'3m1 ——3a1b2m4] Fg7)
1 1 ) Ne NG
325 = 3N3 b2c3m1 +— 3N3 a1b2m4 F27 1 A 1 A2
2 ¢ + |: 2N alb2m1:| N F;27) + |:ga%m1:| WF(Z?,
+ { a%ml} A ) (C58) ‘ ‘
18 N2 2T
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1 1
30 = |: 2N3 b2b3m1 2N3 albzm’; +-— 4N3 b2C3m1

1 1 A?
— a1b2m4] Fg;) + {—ﬁa%ml} —F£37>,

TN N2
(C63)
1 1
231 = [ W aybzmy +4N3 61103’"2] F;17)
1 1 A?
+ [12N aybym +6N azmz} N FS), (Co64)
1 1
3 = N3 bybymy + —— N aybymy + —— AN byczm

1 | 1 A2
4N3 alb2m4] Fg7) + [—ﬁazml] N2 F;7),

(C65)

333 = |:2N% alb?m2+4N% alc3m2:| F27

1 1 A?
+ {TN.albzml +Wa%m2] N2 F<237)7 (C66)

1 3
334 = |: b2b3m] +—= a|b2m3+

2N3 2N? 4N3

1 1 A
— a1b2m4:| Fg7) + |:—alb2m1:| —F;7)

4N3 4NC NC
1 A? 3
+ [ 52 ml] N%ng, (C67)
3 1 1
i35 = 2N3 bybymy — N3 aybyms — N3 bycsm,

1 1 A2
+ 4N3a1b2m4] Fy) + L . 2m1] oy (c6®)
1 1 A
Z36 = {malmmz} Fi) + [4N 2 ]N_ngy, (C69)
1 1 A
237 = {3N2, aycsmy + — 6N a%m4] N_Fg7>’ (C70)
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A

1 2
238 = { T a2m4} N —F), (C71)
1 A
739 = |:— 4N% alb2m2:| NC F;7), (C72)
1 1 1
240 — 2N2 Cllbgml + — 2N2 a m3 4N% ajcymg
1 A o
— m] N o (C73)
1 1 A
41 = [— A aym; +— 2N2 a2m4] N F;27>, (C74)
1 A o
242 [m a1b2m2:| N—CF27 s (C75)
1 A o
243 [— N—%alm4] N—CF;), (C76)
1 1 A
244 [W tm, Wﬂ%m} FF%) (CT7)
1 1 A
245 [_W fmy — 2N2a|c3m1] N F;27>, (C78)

2
246 = [4N2a1c3m1 + o 2a1m4] 5 FY.  (C79)
1 1, 1
47 2N3 aybsm; +— N2 ajmz +— AN? a,c3m
1 A o
o a%méi N—CF(”). (C80)

Of course, flavor singlet and octet pieces must be
subtracted off Eqs. (C34)—-(C80) in order to have a truly
27 contribution.
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