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We derive some exact bounds on the free energy WðJÞ in an SUðNÞ gauge theory, where Jbμ is a source
for the gluon field Ab

μ in the minimal Landau gauge, and WðJÞ is the generating functional of connected
correlators, exp WðJÞ ¼ hexpðJ; AÞi. We also provide asymptotic expressions for the free energy WðJÞ at
large J and for the quantum effective action ΓðAÞ at large A. We specialize to a source JðxÞ ¼ h cosðk · xÞ
of definite momentum k and source strength h, and study the gluon propagator Dðk; hÞ in the presence of
this source. Among other relations, we prove

R
∞
0 dhDðk; hÞ ≤ ffiffiffi

2
p

k, which implies limk→0Dðk; hÞ ¼ 0, for
all positive h > 0. Thus the system does not respond to a static color probe, no matter how strong. Recent
lattice data in minimal Landau gauge in d ¼ 3 and 4 dimensions at h ¼ 0 indicate that the gluon propagator
in the minimum Landau gauge is finite, limk→0Dðk; 0Þ > 0. Thus these lattice data imply a jump in the
value of Dðk; hÞ at h ¼ 0 and k ¼ 0, and the value of Dðk; hÞ at this point depends on the order of limits.
We also present numerical evaluations of the free energyWðk; hÞ and the gluon propagator Dðk; hÞ for the
case of SUð2Þ Yang-Mills theory in various dimensions which support all of these findings.
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I. INTRODUCTION

The free energy, and its Legendre transform, the quan-
tum effective action, play a central role in quantum field
theories. As the generating functionals of correlation
functions, their knowledge, in principle, grants access to
all there is to know about a theory. It is often assumed that
these functionals are analytic in their external sources, at
least away from phase transitions, and thus their derivatives
yield, in a well-defined manner, the correlation functions.
However, recently this assumption yielded colliding

results: Assuming this analyticity, the minimal Landau
gauge gluon propagator has necessarily to vanish at zero
(Euclidean) momentum [1,2]. At the same time, lattice
calculations, which do not need external sources, found
this propagator to be finite, at least in three and four
dimensions,1 see [3–8] for a review. At the same time,
continuum calculations using functional methods, where
the functional equations were derived under this
assumption, found both solutions [9–13]. See [14] for a
review of the situation.
The logical starting point to resolve this discrepancy is

therefore to check the analyticity of the free energy. This is
the aim in this work.

To this end, we shall be concerned with the Euclidean
correlators of gluons in QCD with an arbitrary gauge
group, here chosen to be SUðNÞ, for the local gauge
symmetry that are fixed to the minimal Landau
gauge. These are the fundamental quantities in quantum
field theory.
The minimal Landau gauge [14] is obtained by

minimizing the Hilbert square norm

∥A∥2 ¼
Z

jAb
μðxÞj2d4x; (1)

to some local minimum (in general not an absolute
minimum) with respect to local gauge transformations
gðxÞ. These act according to gAμ ¼ g−1Aμgþ g−1∂μg.
At a local minimum, the functional FAðgÞ≡ ∥gA∥2 is
stationary and its second variation is positive. It is well
known that these two properties imply respectively that
the Landau gauge (transversality) condition is satisfied,
∂ · A ¼ 0, and that the Faddeev-Popov operator is positive
i.e. ðω;MðAÞωÞ ≥ 0 for all ω. Here the Faddeev-Popov
operator acts according to

MacðAÞωc ¼ −Dac
μ ðAÞ∂μω

c; (2)

where the gauge covariant derivative is defined by
Dac

μ ðAÞωc ¼ ∂μω
a þ fabcAb

μω
c, and the coupling constant

has been absorbed into A. Configurations A that satisfy
these two conditions are said to be in the (first) Gribov
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1The situation in two dimensions is [15,16] because of

kinematic reasons, different, and there the propagator always
vanishes [2,17,18].
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region [19] which we designate by Ω. It is known [14]
that in general there is more than one local minimum of
FAðgÞ, and we do not specify which local minimum is
achieved. This gauge is realized numerically by mini-
mizing a lattice analog of FAðgÞ by some algorithm, and
the local minimum achieved is in general algorithm
dependent. However, for all commonly employed algo-
rithms this does not yield different expectation values, as
they all are equivalent to an averaging over the first
Gribov region [14,20].
The analytic bounds which we shall obtain in Sec. II

follow from the restriction of the gauge-fixed configura-
tions to the Gribov region Ω, and are the same whether the
gluons are coupled to quarks as in full QCD, or not, as in
pure gluodynamics. In fact the same bounds hold for other
gauge bosons with SUðNÞ gauge symmetry, for example,
in the Higgs sector, provided only that the gauge fixing is
done to the minimal Landau gauge. The impact of these
results on the aforementioned discrepancy on the gluon
propagator from different methods is then discussed in
Sec. III. Finally, the numerical results we shall present in
Sec. IV will be for pure gluodynamics in SUð2Þ gauge
theory.
Some preliminary results on this topic were presented

in [21,22].

II. BOUNDS AND OTHER PROPERTIES
OF FREE ENERGY AND QUANTUM

EFFECTIVE ACTION

A. Optimum bound on free energy

In the minimal Landau gauge, the free energy WðJÞ is
defined by

exp WðJÞ≡
Z
Ω
dAρðAÞ expðJ; AÞ: (3)

Here any matter degrees of freedom (if present) are
integrated out. The Euclidean probability ρðAÞ includes
the Yang-Mills action, the gauge-fixing factor δð∂ · AÞ,
the Faddeev-Popov determinant, and possibly the matter
determinant. We shall use only the properties ρðAÞ ≥ 0
and

R
Ω dAρðAÞ ¼ 1, and that the region of integration is

bounded in every direction [23]. The source term JaμðxÞ
is real and is taken to be transverse ∂ · J ¼ 0 without
loss of generality because A is identically transverse.
The free energy per unit Euclidean volume wðJÞ ¼
WðJÞ=V is the generating functional of connected
correlators,

hAðxÞAðyÞ…iconn ¼
∂
∂Jx

∂
∂Jy …wðJÞ: (4)

The general bound is immediate. From the inequality
ðJ; AÞ ≤ maxA∈ΩðJ; AÞ ¼ ðJ; A�Þ, where A�ðJÞ is that con-
figuration in Ω that maximizes ðJ; AÞ for fixed J, we obtain

exp WðJÞ ≤
Z
Ω
dAρðAÞ expðJ; A�Þ

¼ expðJ; A�Þ; (5)

which gives the bound

WðJÞ ≤ ðJ; A�ðJÞÞ: (6)

Because Ω is bounded in every direction [23], this bound
is finite.2 Moreover the maximum configuration A�
must lie on the boundary ∂Ω. Indeed let A ∈ Ω be an
interior point of Ω, then for some parameter λ sufficiently
close to 1, the configuration A0 ¼ λA is also in Ω and
ðJ; A0Þ ¼ λðJ; AÞ > ðJ; AÞ, so A ≠ A�. This gives the more
precise bound on the free energy,

WðJÞ ≤ maxA∈∂ΩðJ; AÞ ¼ ðJ; A�ðJÞÞ; (7)

where A�ðJÞ maximizes ðJ; AÞ for all A� ∈ ∂Ω. This is the
optimum bound, if all that is known is that ρðAÞ vanishes
outside Ω. The right-hand side is linear in J,

maxA∈∂ΩðhJ; AÞ ¼ hmaxA∈∂ΩðJ; AÞ (8)

for h > 0. This is in stark contrast to a free theory which is
quadratic in J,

WfreeðJÞ ¼ ð1=2ÞðJ; K−1JÞ; (9)

where K ¼ −∂2 þm2, which strongly violates the linear
bound (7) at large J. The linear bound on the free energy is
a direct consequence of the existence of the Gribov horizon
in gauge theories.3

B. Asymptotic free energy

If we add the information that ρðAÞ is strictly positive,
ρðAÞ > 0 for all A ∈ Ω, then the optimum bound is
saturated,

limh→þ∞WðhJÞ ¼ hmaxA∈∂ΩðJ; AÞ þ oðhÞ; (10)

where the remainder is subdominant, limh→∞ oðhÞ=h ¼ 0.
Indeed this follows from

limh→þ∞ exp WðhJÞ ¼ limh→þ∞

Z
Ω
dAρðAÞ exp½hðJ; AÞ�;

(11)

2“Bounded in every direction” means that for any configura-
tion Ab

x;μ ≠ 0 in Ω, there exists a positive number σ such that
the, not necessarily gauge-equivalent, configuration σAb

x;μ lies
outside Ω.

3Note that the argument so far is actually not specific to gauge
theories; it is sufficient that the relevant field fluctuations are
bounded. It thus also applies, e.g., to nonlinear σ models with a
positive metric target space.

AXEL MAAS AND DANIEL ZWANZIGER PHYSICAL REVIEW D 89, 034011 (2014)

034011-2



upon taking the limit h → þ∞ at fixed J. Thus the
asymptotic free energy defined by

WasðJÞ ¼ ðJ; A�ðJÞÞ (12)

is finite and linear WasðhJÞ ¼ hWasðJÞ for h > 0, and we
may express the inequality (7) at finite J as

WðJÞ ≤ WasðJÞ: (13)

Here we have assumed that ρðAÞ is strictly positive
ρðAÞ > 0 for all A in Ω. Suppose now that this is not the
case, and that the numerical gauge fixing is such that ρðAÞ
is strictly positive only on a proper subset Λ ⊂ Ω. Each set
has its own free energy WΛðJÞ, its asymptotic free energy,

limh→þ∞WΛðhJÞ ¼ hWΛ;asðJÞ; (14)

which is linear in J, and given by

WΛ;asðJÞ ¼ maxA∈ΛðJ; AÞ ≤ maxA∈ΩðJ; AÞ ¼ WΩ;asðJÞ:
(15)

Thus the inequalities

WΛðJÞ ≤ WΛ;asðJÞ ≤ WΩ;asðJÞ for Λ ⊂ Ω (16)

hold, for each J.
This situation is illustrated in Fig. 1, where it is shown

that the free energy, always saturated by the bound, will
ultimately approach the asymptotic form from below.

C. Bound on the approximate free energy WnumðJÞ
obtained from a finite Monte Carlo process

We shall report below on a numerical determination of
the free energy exp ¼ hexpðJ; AÞi, but let us first discuss
what kind of limitations we expect in this case.

In the numerical determination, a finite number of
configurations An, n ¼ 1;…N is generated by a Monte
Carlo process, and the approximate free energy WnumðJÞ
obtained from the Monte Carlo process is given by the
average over the sample set Σ ¼ fAng,

exp½WnumðJÞ� ¼ N−1X
n

expðJ; AnÞ: (17)

Each gauge-fixed configuration An is obtained as described
in the Introduction, so each configuration An lies inside the
Gribov region Ω, and the sample set Σ≡ fAng is a subset
of the Gribov region Σ ⊂ Ω. Consequently Eqs. (14)–(16)
hold, with Λ → Σ. Thus the asymptotic limit of the
approximate free energy

limh→þ∞WnumðhJÞ ¼ hWnum;asðJÞ (18)

is given by

Wnum;asðJÞ ¼ maxnðJ; AnÞ: (19)

It is linear in J. Moreover the inequalities

WnumðJÞ ≤ Wnum;asðJÞ ≤ WΩ;asðJÞ (20)

hold, for each J.
This implies the following observations:
1. The asymptotic form Wnum;asðJÞ of the approxi-

mate free energy obtained from the Monte Carlo
process is linear in J, no matter how inaccurate the
numerical determination may be. In the extreme case
of only one sample configuration A1, thenWnumðJÞ ¼
Wnum;asðJÞ ¼ ðJ; A1Þ, which is indeed linear in J.

2. According to the inequality, Wnum;asðJÞ ≤ WΩ;asðJÞ,
any inadequacy of the sample set fAng can only
result in an undersaturation of the optimal bound,
WΩ;asðJÞ. This accords with the intuition that if there
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FIG. 1 (color online). An illustration of how the true free energy could approach the asymptotic limit (14).

ANALYTIC AND NUMERICAL STUDY OF THE FREE … PHYSICAL REVIEW D 89, 034011 (2014)

034011-3



is no configuration An in the numerical sample that
is sufficiently close to A�ðJÞ, which lies on the
Gribov horizon ∂Ω, this could result in significant
undersaturation of the optimal bound.

3. The asymptotic form of the approximate free energy
WnumðJÞ may be calculated directly from Eq. (19).

We now discuss the (possible) undersaturation further,
according to which the sample configurations are not
close to the Gribov horizon. This might seem surprising
since it is often considered that the probability distribution
is concentrated close to the Gribov horizon. To address
this question, we consider a toy model. Suppose that the
configurations are parametrized by coordinates ai for
i ¼ 1;…N, where N is a large number. In a lattice theory
N would be of order of the lattice volume V. Suppose that
the Gribov region is the sphere

P
ia

2
i ≤ N. We ignore other

effects, and take the measure to be

Z YN
i¼1

daiθ

�
N −XN

i¼1

a2i

�
; (21)

where θ is the step function. This model shares with the
exact theory the property that (1) it is convex [23], (2) it is
contained within an ellipsoid, Appendix B of [1] (so after
the coordinates are rescaled it is contained within a sphere),
and (3) the horizon function is a bulk quantity, proportional
to the volume V. We introduce the radial coordinate

r ¼
�XN

i¼1

a2i

�1=2

; (22)

whose probability distribution is given by

Z
N1=2

0

drrN−1: (23)

Here and below we ignore an overall normalization con-
stant. For large N the probability gets concentrated at the
upper limit, r ¼ N1=2, and the measure approaches

Z
∞

0

drδðr − N1=2Þ; (24)

which is entirely concentrated on the Gribov horizon.
[This shows that at large N, δðN − r2Þ and θðN − r2Þ
are statistically equivalent.]
Consider now the probability distribution of a single

variable a1, and integrate out all other variables ai for
i ¼ 2;…N. This is the quantity of interest when we
consider a source term ðJ; AÞ ¼ Nj1a1. We introduce a
radial coordinate for the remaining variables,

ρ ¼
�XN

i¼2

a2i

�1=2

: (25)

The measure is now

Z
N1=2

−N1=2
da1

Z ðN−a2
1
Þ1=2

0

dρρN−2

¼ ðN − 1Þ−1
Z

N1=2

−N1=2
da1ðN − a21ÞðN−1Þ=2; (26)

which, for large N, is concentrated near the origin, a1 ¼ 0,
and not at its maximum magnitude, a1 ¼ �N1=2. To
quantify this, we use

ðN−a21ÞðN−1Þ=2¼ exp½ð1=2ÞðN−1ÞlnðN−a21Þ�
¼ expfð1=2ÞðN−1Þ½lnNþ lnð1−a21=NÞ�g
≈ exp½ð1=2ÞðN−1ÞlnN−ð1=2Þa21Þ�; (27)

which is valid at large N. Thus the measure of a single
variable, if the others are integrated out, is

Z
da1 expð−a21=2Þ: (28)

This is a Gaussian measure of unit width, whereas the
maximum magnitude a1 may attain inside the Gribov
horizon is a1 ¼ �N1=2, where N is a large number. It is
highly unlikely that the Monte Carlo process will sample a1
close to the Gribov horizon, and we should therefore expect
undersaturation. As we have just seen, this happens by the
same mechanism as equipartition of energy in statistical
physics: It is highly unlikely that a single given molecule of
the air inside a room would carry all the kinetic energy,
leaving zero kinetic energy for every other air molecule.
Although a “typical” configuration will indeed be close to
the Gribov horizon, as measured by the variable r2 which is
the “horizon function” for this toy model, nevertheless it is
highly improbable that a single given variable will be close
to its maximum allowed value, the other variables then
being constrained close to 0.

D. Formula for A�ðJÞ
The boundary ∂Ω is described by the equation

λ0ðAÞ ¼ 0, where λ0ðAÞ is the lowest nontrivial eigenvalue4
of the Faddeev-Popov operator MðAÞ ¼ −DμðAÞ∂μ.
Here we stipulate that the Euclidean volume V ¼ Ld is
finite (though large), so eigenvalues are discrete, and
eigenfunctions normalizable,

∂Ω ¼ fA∶ λ0ðAÞ ¼ 0g: (29)

According to the Lagrange multiplier method, we may find
the point A� which maximizes ðJ; AÞ for A ∈ ∂Ω by finding
the stationary point A� of

4The trivial eigenvalue belongs to constant eigenfunctions
which satisfy ∂μω ¼ 0.
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IðAÞ ¼ ðJ; AÞ − αλ0ðAÞ: (30)

It is the solution of

δIðAÞ
δAb

x;μ
¼ Jbx;μ − α

δλ0ðAÞ
δAb

x;μ
¼ 0; (31)

where the Lagrange multiplier α is determined by

λ0ðAÞ ¼ 0: (32)

As we have seen, the asymptotic free energy is then given
by WasðJÞ ¼ ðJ; A�Þ.
Geometrically (31) states that J lies along the normal

Nb
x;μ ¼

δλ0ðAÞ
δAb

x;μ
; (33)

to the Gribov horizon which is the surface defined by
λ0ðAÞ ¼ 0. There is a simple explicit formula for this
normal. Let ψ0 ¼ ψ0ðAÞ be the normalized eigenfunction
belonging to λ0ðAÞ, so MðAÞψ0 ¼ λ0ðAÞψ0, and

λ0ðAÞ ¼ ðψ0ðAÞ;MðAÞψ0ðAÞÞ: (34)

There is a theorem due to Feynman5 which asserts that in
the last formula the variation of λ0ðAÞ results only from the
variation of the operatorMðAÞ of which it is the eigenvalue,
but not from the variation of the eigenfunction ψ0ðAÞ,

δλ0ðAÞ
δAb

μðxÞ
¼

�
ψ0ðAÞ;

δMðAÞ
δAb

μðxÞ
ψ0ðAÞ

�
: (35)

With MðAÞ given in Eq. (2) we obtain

δλ0ðAÞ
δAb

μðxÞ
¼ −fabcψa�

0 ðxÞ∂μψ
c
0ðxÞ: (36)

With this result, Eq. (31) may be written, after a simple
rescaling, as

JaμðxÞ ¼ ½fabcψb�
0 ðxÞ∂μψ

c
0ðxÞ�tr: (37)

Note that A is identically transverse A ¼ Atr, so only the
transverse part of J is operative in ðJ; AÞ, and one may
impose transversality on J as is done here. One may verify
that the transverse source J given here is purely real.
In general, given J, it is difficult to find A�ðJÞ. However

we may solve the inverse problem. We find a configuration
A� that lies on the Gribov horizon, by solving the eigenvalue
problem MðA�Þψ0 ¼ λ0ðA�Þψ0 ¼ 0. Then J given by
Eq. (37) is normal to the Gribov horizon at A�. This provides
WasðJÞ ¼ ðJ; A�Þ. This method will be used in Appendix A
for the source J we shall study numerically.

E. Cusp in Gribov horizon

In the last section it was assumed that the point A� on the
Gribov horizon ∂Ω is a regular point in the sense that the
normal NðA�Þ at A� is unique. However it may happen that
the point A� is a cusp [24], see below, Fig. 3. In this case the
normal is not unique, and there is a continuum of planes
through A�, but which otherwise lie outside Ω. Let J be
normal to such a plane. Then A� maximizes ðJ; A�Þ for
A ∈ ∂Ω, and as before, we haveWasðJÞ ¼ ðJ; A�Þ. The case
that we shall investigate numerically is precisely of this type.

F. Asymptotic quantum effective action

In the determination of connected correlation functions
the quantum effective action ΓðAÞ plays a central role. It is
obtained by Legendre transformation from WðJÞ

ΓðAÞ ¼ ðJ; AÞ −WðJÞ; (38)

where

AxðJÞ ¼
∂WðJÞ
∂Jx : (39)

Here the discrete index x represents position and color and
Lorentz indices. AxðJÞ is the expectation value in the
presence of the source J,

AxðJÞ ¼ hAxiJ
¼

R
Ω dAρðAÞ expðJ; AÞAxR
Ω dAρðAÞ expðJ; AÞ ; (40)

which is an average over Ω with a positive weight
ρðAÞ expðJ; AÞ.6 Clearly the average over the convex

5To prove Feynman’s theorem, we consider a small variation
δA of A in Eq. (34),

δλ0ðAÞ ¼ ðψ0ðAÞ; δMðAÞψ0ðAÞÞ þ R;

where

R≡ ðδψ0ðAÞ;MðAÞψ0ðAÞÞ þ ðψ0ðAÞ;MðAÞδψ0ðAÞÞ:
It is sufficient to prove that R vanishes. We have

R ¼ λ0½ðδψ0ðAÞ;ψ0ðAÞÞ þ ðψ0ðAÞ; δψ0ðAÞÞ�
¼ λ0δðψ0;ψ0Þ ¼ 0;

which vanishes because ψ0ðAÞ is normalized ðψ0ðAÞ;ψ0ðAÞÞ ¼ 1.
QED.

6Here for purposes of discussion we assume the probability
ρðAÞ is nonzero out to the boundary of the Gribov region Ω,
where the boundary is given by λ0ðAÞ ¼ 0. If ρðAÞ is nonzero
over a more restrictive region, such as the fundamental modular
region ΛðAÞ, then, more generically, the boundary is denoted by
HðAÞ ¼ 0, and λ0ðAÞ gets replaced by HðAÞ in the following
discussion.
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region Ω lies inside the convex region that is averaged
over

AxðJÞ ∈ Ω; (41)

so the domain of definition of ΓðAÞ is the Gribov
region Ω. Moreover for finite J this average over Ω
yields an interior point of Ω, and a boundary point is
approached only for J → ∞. As before, the integrals in
(40) for J ¼ hĴ are dominated at large h with Ĵ fixed
by the point A�ðĴÞ that maximizes ðĴ; AÞ for points
A ∈ ∂Ω,

lim
h→∞

AxðhĴÞ ¼ A�
xðĴÞ ∈ ∂Ω: (42)

If we attempt to calculate the asymptotic form ΓasðAÞ of
the quantum effective action directly from the asymptotic
form WasðJÞ, we get

ΓasðJÞ ¼
�
J;
∂Was

∂J
�
−WasðJÞ ¼ 0; (43)

because WasðJÞ is linear in J, WasðhJÞ ¼ hWasðJÞ, so by
Euler’s equation,

X
x

Jx
∂Was

∂Jx ¼ WasðJÞ: (44)

However the situation is not hopeless. The inverse
Legendre transformation reads

JxðAÞ ¼
∂ΓðAÞ
∂Ax

; (45)

and, by Eq. (42), if A approaches a boundary point
A → A� ∈ ∂Ω, then JðAÞ diverges like JðAÞ ¼ hĴðA�Þ
with h → ∞ and ĴðA�Þ fixed. Thus as A approaches the
boundary point A�, the quantum effective action approaches
an asymptotic form, ΓðAÞ ≈ ΓasðAÞ that satisfies

hĴðA�Þ ≈ ∂ΓasðAÞ
∂Ax

; (46)

where h diverges as A approaches A� ∈ ∂Ω. With J ¼ hĴ,
we have also seen, Eq. (31), that, for A approaching a
boundary point, A ≈ A�,

hĴðA�Þ ≈ α
∂λ0ðAÞ
∂Ax

: (47)

This gives

∂ΓasðAÞ
∂Ax

≈ αðAÞ ∂λ0ðAÞ∂Ax
; (48)

and so, for A approaching a boundary point A� ∈ ∂Ω, the
normal to a surface of constant ΓasðAÞ is also everywhere
normal to a surface of constant λ0ðAÞ. Thus the surfaces of
constant ΓasðAÞ coincide with the surfaces of constant
λ0ðAÞ, and so, as A approaches the boundary, the asymptotic
quantum effective action ΓasðAÞ depends on A only through
λ0ðAÞ,

ΓasðAÞ ¼ f½λ0ðAÞ�; (49)

where fðλ0Þ is an unknown function, but depending only
on the single variable λ0ðAÞ. This formula is valid for A
approaching a boundary point A�. We have

∂ΓasðAÞ
∂Ax

¼ f0ðλ0ðAÞÞ
∂λ0ðAÞ
∂Ax

: (50)

Moreover f0ðλ0Þ diverges as A approaches a boundary
point A�,

f0ðλ0ðA�ÞÞ ¼ f0ð0Þ ¼ ∞; (51)

because in (46) h diverges for A → A�.
We now add a speculation to the above reasoning.

Observe that the Faddeev-Popov determinant is the product
of eigenvalues, det½MðAÞ� ¼ exp½−SeffðAÞ� ¼ Q

nλn, so
SeffðAÞ ¼ −Pn ln λn, and in the semiclassical limit
ΓðAÞ ∼ SeffðAÞ. This suggests that ΓasðAÞ ¼ fðλ0Þ is
given by

ΓasðAÞ ¼ −V γ̂ ln λ0ðAÞ: (52)

Here V ¼ Ld is the Euclidean volume, which is required
because Γ is a bulk quantity, and γ̂ is a constant of
dimension ðmassÞd.
We shall shortly show that for the configuration

Ab
μðxÞ ¼ c cosðkx1Þδμ2δb3, the lowest eigenvalue is given

by λ0 ¼ ð2π=LÞ2ð1 − c2=2k2Þ. It is more convenient to
work with normalized basis

ffiffiffi
2

p
cosðkx1Þ, and we write

c ¼ ffiffiffi
2

p
ĉ. Our asymptotic formula is then given by

γasðĉÞ≡ ΓasðĉÞ=V ¼ −γ̂ lnð1 − ĉ2=k2Þ: (53)

The free energy per unit Euclidean volume corre-
sponding to this expression is given by the Legendre
transformation,

wðĥÞ ¼ ĥ ĉ−γasðĉÞ; (54)

where ĉ ¼ ĉðĥÞ is determined by

ĥ ¼ ∂γasðĉÞ
∂ĉ : (55)

One finds
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wðĥÞ ¼ γ̂½1þ ðĥk=γ̂Þ2�1=2 − γ̂

− γ̂ ln

�½1þ ðĥk=γ̂Þ2�1=2 þ 1

2

�
: (56)

This is the free energy of a simple model [25],
with γ̂ → gðkÞ. This contains the leading correction
at asymptotically large ĥ to was ¼ ĥk.
It is a remarkable fact that the quantum effective action

(53) reflects the boundedness of the Gribov region: For
each momenta k, there exists a finite value of the amplitude
given by ĉ ¼ k, for which the quantum effective action
diverges, signaling that larger field values cannot be
reached, and moreover this insurmountable barrier closes
in on the origin ĉ ¼ 0 as k → 0. This fact is illustrated
in Fig. 2.

G. An example

Before determining the free energy in a simulation, it is
worthwhile to consider the concepts so far for an example.
Take the configurations in SUð2Þ gauge theory

AμðxÞ ¼ ½bþ c cosðkx1Þ�δμ2e3 (57)

parametrized by the two real parameters b and c. We
quantize in a periodic box of Euclidean volume V ¼ Ld,
with principle axes aligned in the x1 and x2 directions, and
k ¼ 2 πn=L where n ≠ 0 is a nonzero integer. Here e3
is the unit color vector in the three-direction, and the
dependence on the Lorentz index μ and on position xμ is
chosen so these configurations are transverse ∂μAμ ¼ 0.
They constitute a two-plane Pðb; cÞ through the origin in A
space. The intersection of the two-plane Pðb; cÞ with the
Gribov horizon ∂Ω occurs where the lowest nontrivial
eigenvalue of the Faddeev-Popov operator M½Aðb; cÞ�
vanishes, λ0ðb; cÞ ¼ 0.

The lowest nontrivial eigenvalue λ0ðb; cÞ is calculated
in Appendix A, under the assumption k ≫ jpj ¼ 2π=L,
which is satisfied in the infinite-volume limit L → ∞ at
fixed k, with the result7

λ0ðb; cÞ ¼ −jpbj þ p2ð1 − c2=2k2Þ: (58)

The corresponding wave function is given by

ψa
0ðxÞ ¼ ½1þ ðρjpjc=k2Þ cosðkx1Þ� expðipx2Þηa; (59)

where ρ≡ signðbÞ, η ¼ ðe1 − σie2Þ=
ffiffiffi
2

p
is a complex color

vector, and σ ¼ −signðpbÞ. The interior of the Gribov
horizon is described by λ0ðb; cÞ > 0, and the first Gribov
horizon is given by λ0ðb; cÞ ¼ 0, or

b ¼ � 2π

L

�
1 − c2

2k2

�
: (60)

This is plotted in Fig. 3, and for k ≫ 2π=L, the Gribov
region being the sector contained between the two rather
flat parabolas. Note the cusp at b ¼ 0 and c ¼ � ffiffiffi

2
p

k.
The configurations Aðb; cÞ for which the last equation is

satisfied define points A� that lie on the Gribov horizon.
The source JðA�Þ that corresponds to these points, which is
normal to the horizon at A� is found from (37) and (A14),
with the result

JμðxÞ ¼ jpj½signðbÞ þ ð2jpjcÞ=k2Þ cosðkx1Þ�δμ2e3; (61)

to leading order in 2π=L.8 The sources J are also shown
in Fig. 3.

aL)2c/(

00105005-001-

/VΓ

0

1

2

3

4

5
/Lπk=2

/Lπ 2×k=6 

/Lπ 2×k=16 

Quantum effective action

FIG. 2 (color online). The quantum effective action (53) for γ̂ ¼ 1. The lattice spacing is denoted by a.

7The next order correction in 2π=Lk is given below.
8There is also an imaginary component J1ðx1Þ, which is purely

longitudinal and which is eliminated when the transverse part is
taken.
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At the cusp at A�ðb ¼ 0; c ¼ ffiffiffi
2

p
kÞ, there are two

normals in the limit b → 0� described by Jμ�ðxÞ ¼ f�1þ
ð2π=LÞð2c=k2Þ cosðkx1Þgδfμ2ge3. As discussed in Sec. II E,
any linear combination of these two, that points outward
from the Gribov region, also satisfies the condition
maxA∈∂ΩðJ; AÞ ¼ ðJ; A�Þ, where A� ¼ Aðb ¼ 0; c ¼ffiffiffi
2

p
kÞ ¼ ffiffiffi

2
p

k cosðkx1Þ, and color and Lorentz indices
are suppressed. In particular the linear combination
JμðxÞ ¼ h cosðkx1Þδμ2e3 satisfies this condition. For this
source, the optimal bound is given by

WðJÞ ≤ ðJ; A�Þ ¼
Z

ddxh cosðkx1Þ
ffiffiffi
2

p
k cosðkx1Þ

¼ Vhk=
ffiffiffi
2

p
: (62)

To this order the bound is independent of p, so for large
volume V ¼ Ld at fixed k, a large number of levels λnðAÞ,
all with pn ≪ k, cross through the Gribov horizon
together, λnðA�Þ ≈ λ0ðA�Þ.
The next order correction in p2=k2 ¼ ð2π=LkÞ2 is

given by

λ0ðb; cÞ ¼ −jpbj þ p2ð1 − c2=2k2Þ þ ð7=32Þðp4c4=k6Þ;
(63)

and the Gribov horizon, λ0ðb; cÞ ¼ 0, by

b ¼ �jpj½1 − ðc2=2k2Þ þ ð7=32Þðp2c4=k6Þ�: (64)

There is a cusp at b ¼ 0, and c ¼ � ffiffiffi
2

p
k½1þ ð7=16Þðp2=

k2Þ�. For the current JμðxÞ ¼ h cosðkx1Þδμ2e3, this gives
the optimal bound

WðJÞ ≤ ðJ; A�Þ ¼ Vðhk=
ffiffiffi
2

p
Þ½1þ ð7=16Þðp2=k2Þ�; (65)

where p2 ¼ ð2π=LÞ2.
For the case c ¼ 0, the Gribov horizon occurs at

b ¼ �2π=L, and the optimal bound for the source
JμðxÞ ¼ hδμ2e3 is given, without approximation, by

WðJÞ ≤ ðJ; A�Þ ¼ Vhð2π=LÞ: (66)

We easily obtain a bound on the “magnetization”

mðk; hÞ≡ ∂wðk;hÞ
∂h ¼ haðkÞih where the last quantity is

the expectation value of the Fourier component aðkÞ
of the configuration AðxÞ in the presence of the external
source h. Note that mðk; 0Þ ¼ 0, because haki0 ¼ 0 and

that ∂mðk;hÞ
∂h ¼ ð1=2ÞDðk; hÞ ≥ 0 is positive because the

gluon propagator Dðk; hÞ is positive, so the magnetiza-
tion mðk; hÞ is monotonically increasing, and we have the
inequalities

0 ≤ mðk; hÞ ≤ mðk;∞Þ ¼ ∂wasðk; hÞ
∂h ≤ k=

ffiffiffi
2

p
; (67)

where the last inequality becomes an equality if the bound
on wðk; hÞ is saturated. Thus in minimal Landau gauge, the
magnetization produced by a static source vanishes,

lim
k→0

mðk; hÞ ¼ 0; (68)

for all h, and we conclude that the static color degree of
freedom cannot be excited by applying an external color-
magnetic field h, no matter how strong.

III. GLUON PROPAGATOR AT ZERO
MOMENTUM

A. Bound on gluon propagator

To estimate further the relevance of these findings to
the gluon propagator, we specialize to a plane wave source,
as will be used below in Sec. IV for the numerical
investigations,

JaμðxÞ ¼ h cosðkx1Þδa3δμ2; (69)

so

exp½WðJÞ� ¼
�
exp

�Z
ddxh cosðkx1ÞA3

2ðxÞ
�	

: (70)

Here h is the analog in a spin theory of an external magnetic
field modulated by cosðkx1Þ. The wave number takes on the
values k ¼ 2πn=L, where n is an integer, and L is the edge

)πbL/(2

-1 0 1

c/
k

-1

0

1

*
A

*
A

J

J

Example Gribov region

FIG. 3 (color online). The intersection of the Gribov region Ω
with the two-plane Pðb; cÞ contained between the two parabolas.
For each J there is a bound on the free energy given by
WðJÞ ≤ ðJ; A�Þ, where J and A� ¼ A�ðJÞ are illustrated here.
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of a periodic Euclidean box. The Lorentz indices 1 and 2
are chosen so J is transverse, ∂μJμ ¼ 0. For this source J
that depends on the two parameters h and k, we parame-
trize the free energy per unit Euclidean volume
wðJÞ ¼ WðJÞ=V, where V ¼ Ld, by

wðk; hÞ≡WðJÞ=V: (71)

The gluon propagator is its second derivative at h ¼ 0,

∂2wðk; hÞ
∂h2 ¼ ð1=2ÞDðk; hÞ for k ≠ 0

¼ Dð0; hÞ for k ¼ 0; (72)

where we have written Dðk; hÞ≡D33
22ðk; hÞ for the

gluon propagator in the presence of the source h. The
normalization comes from

∂2Wðk; hÞ
∂h2






h¼0

¼
Z

ddxddy cosðkx1Þ cosðky1ÞhA3
2ðxÞA3

2ðyÞih¼0

¼
Z

ddxddy cosðkx1Þ cosðky1ÞD33
22ðx − yÞ;

¼ ð1=2Þ
Z

ddxddyfcos½kðx1 − y1Þ�

þ cos½kðx1 þ y1Þ�gD33
22ðx − yÞ; (73)

where the second term does not contribute for k ≠ 0, and
we have DðkÞ ¼ Dð−kÞ ¼ R

ddx expðik · xÞD33
22ðxÞ.

We shall convert the bounds

wð0; hÞ ≤ jhjð2π=LÞ; (74)

wðk; hÞ ≤ jhkj=
ffiffiffi
2

p
for k ≫ 2π=L (75)

established in Sec. II G, into bounds on the gluon
propagatorDðk; hÞ in the presence of the source h. We have

Dðk; hÞ ¼ 2
∂2wðk; hÞ

∂h2 ¼ 2
∂mðk; hÞ

∂h ; (76)

where mðk; hÞ is the “magnetization” introduced in the last
section, so

Z
∞

0

dhDðk; hÞ ¼ 2½mðk;∞Þ − 2mðk; 0Þ� (77)

or, by (67),
Z

∞

0

dhDðk; hÞ ≤
ffiffiffi
2

p
k; (78)

where the last inequality becomes an equality if the
bound on wðk; hÞ is saturated. Recall that Dðk; hÞ ≥ 0 is

positive, so the left-hand side represents the area under
the curve Dðk; hÞ at fixed k, and this area decreases
toward 0 as k decreases, as illustrated in the top panels of
Figs. 4 and 5.
This bound holds for k ≫ 2π=L, and we take the

infinite-volume limit, L → ∞, keeping the momentum k
fixed. In this case k is any real number, and we take the
limit k → 0,

lim
k→0

Z
∞

0

dhDðk; hÞ ¼ 0: (79)

Since Dðk; hÞ ≥ 0 is positive, this implies

Dðk; hÞ ¼ 0; for almost all h ≥ 0: (80)

In [1] it was assumed that wð0; hÞ and Dð0; hÞ are
analytic in h, and it was concluded that this bound, which
holds for almost all h ≥ 0, does hold, Dð0; hÞ ¼ 0, for all
h ≥ 0, giving a vanishing gluon propagator at k ¼ h ¼ 0.
However, numerical data taken at h ¼ 0 indicate that the
gluon propagator is positive at zero momentum,
limk→0Dðk; 0Þ > 0, in Euclidean dimension d ¼ 3, 4,
[3–8], while limk→0Dðk; 0Þ ¼ 0, for d ¼ 2 [3,15,16].9

If so, we must allow for the possibility of a discontinuity
of Dð0; hÞ at h ¼ 0. Ignoring the possibility of other
discontinuities, we conclude from the last bound,10

lim
h→0

lim
k→0

Dðk; hÞ ¼ 0: (82)

Thus if we first take the limit k → 0 followed by h → 0,
then the gluon propagator vanishes at k ¼ 0.
The numerical result at H ¼ 0 for d ¼ 3, 4 may be

expressed as limk→0 limh→0Dðk; hÞ > 0. Thus, by com-
parison with our proven result (82), the lattice data in
Euclidean dimension d ¼ 3, 4 indicate that the order of
limits does not commute. We next exhibit a simple model
in which the limits do not commute.

9The vanishing of Dðk ¼ 0Þ in Euclidean dimension d ¼ 2 is
proven in [2,17,18].

10In the same way, for the zero-momentum component, k ¼ 0,
on a finite volume Ld, we can show

Z
∞

0

dhDð0; hÞ ≤ 2π=L:

In the infinite-volume limit, we get

lim
L→∞

Dð0; hÞ ¼ 0

and

lim
h→0

lim
L→∞

Dð0; hÞ ¼ 0: (81)
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B. A simple model free energy

As will be seen below, the numerical data are rather well
described by the free energy per unit Euclidean volume

wðk; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̂2ðkÞ þ α2h2k2

q
− γ̂ðkÞ; (83)

which is motivated by the results in Sec. II F. Here α is a
constant that accounts for undersaturation of the bound
wðh; kÞ ≤ jhkj, but saturates the bound wðhÞ ≤ αjhkj, and
γ̂ðkÞ is a function of k at our disposal. The quantum effective
action γðaÞ is given by the Legendre transformation

aðhÞ ¼ ∂wðhÞ
∂h ¼ α2hk2

ðγ̂2ðkÞ þ α2h2k2Þ1=2 ; (84)

where a represents the kth Fourier component of the
classical configuration,

γðaÞ ¼ ha − wðhÞ

¼ γ̂ðkÞ
�
1 −

�
1 − a2

α2k2

�
1=2

�
: (85)

It is nonanalytic at the Gribov horizon a ¼ �αk, and is
defined only in its interior jaj ≤ αjkj.
The corresponding gluon propagator with source of

strength h is given by

Dðk; hÞ ¼ ∂2wðk; hÞ
∂h2 ¼ α2k2γ̂2ðkÞ

ðγ̂ðkÞ2 þ α2h2k2Þ32 : (86)

With wðk; hÞ ≈ αjhkj at large h, the bound (77) on the gluon
propagator reads

R
ddhDðk; hÞ ≤ αk, and we find

Z
ddhDðk; hÞ ¼ αk; (87)

independent of γ̂ðkÞ.
In ordinary lattice calculations, the value h ¼ 0 is set

from the start, and for this value the model yields

Dðk; 0Þ ¼ α2k2

γ̂ðkÞ : (88)

Since γ̂ðkÞ is arbitrary, we may choose it to obtain any
gluon propagator Dðk; 0Þ at h ¼ 0 that one wishes, and the
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Source-dependent gluon propagator
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FIG. 4 (color online). The source-dependent infrared finite gluon propagator, (86), with γ̂ ¼ k2ð1þ k4Þ as a function of the source
strength, for different momenta (top panel), and as a function of momentum for different source strengths (bottom panel).
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model gives the h dependence for all h. As examples,
in Fig. 4 γ̂ðkÞ is chosen to produce the propagator
1=ðk2 þm2Þ, whereas in Fig. 5 it is chosen to produce
the Gribov propagator k2=ðk4 þm4Þ. In the first case the
limits do not commute, and in the second they do.
The choice γ̂ðkÞ ¼ α2k2m2 gives a finite zero-

momentum gluon propagator

lim
k→0

lim
h→0

Dðk; hÞ ¼ lim
k→0

Dðk; 0Þ ¼ 1

m2
; (89)

as is observed in lattice calculations in dimensions d ¼ 3 or
4. On the other hand, for this choice of γ̂ðkÞ, if we first take
k to zero, with h > 0, we find

lim
k→0

Dðk; hÞ ¼ lim
k→0

α3k3m4

h3
¼ 0; (90)

for all h > 0, which gives

lim
h→0

lim
k→0

Dðk; hÞ ¼ 0: (91)

This agrees with the bound (80), but disagrees with the
order of limits (89). Thus, this simple model reproduces

exactly the results of numerical studies at h ¼ 0 for which
the gluon propagator is finite at k ¼ 0, while satisfying the
exact bound limk→0Dðk; hÞ ¼ 0 for all h > 0. This hinges
critically on the nonanalyticity of the model free energy
(83), for which the radius of convergence in h is γ̂ðkÞ=αk,
which vanishes with k for γ̂ðkÞ ¼ α2k2m2. In this case,
wðk; hÞ becomes nonanalytic in h in the limit k → 0. Note
however that this does not necessarily imply that the gluon
propagator must be finite if h is taken to zero first—that
depends on the actual form of γ̂ðkÞ. So, for example, if we
take γ̂ðkÞ ¼ α2m4, independent of k, we get, for k small,
Dðk; 0Þ ≈ k2=m4, which is the Gribov form, and in this
case, the order of limits commutes.
It is time to turn to the full theory to see what

happens there.

IV. NUMERICAL STUDY

A. General considerations and systematic errors

To test the predictions would, in principle, require the
numerical measurement using a Monte Carlo approach of a
current-dependent free energy, which can be split as
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FIG. 5 (color online). The source-dependent Gribov-type gluon propagator, (86), with γ̂ ¼ 1þ k4, as a function of the source strength,
for different momenta (top panel), and as a function of momentum for different source strengths (bottom panel).
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expðWðJÞÞ ¼
Z

DA expð−SðJÞÞ; (92)

SðJÞ ¼ Sð0Þ −
Z

JA; (93)

Sð0Þ ¼
Z

1

4
FμνFμν − ln det½MðAÞ�; (94)

ΔSðJÞ ¼ SðJÞ − Sð0Þ; (95)

with the external current J. Since this current is gauge
dependent, any numerical update would be required to
remain within the same gauge. But there is not yet an
efficient lattice update algorithm known, which keeps the
gauge fixed.
To circumvent this problem, reweighting will be used

here. In this case, instead of creating a Markov chain based
on SðJÞ, it will be created using Sð0Þ. Then, W will be
obtained by the measurement

expðWðJÞÞ ¼
�
exp

�Z
JA

�	
; (96)

which will be performed in a fixed gauge, the minimal
Landau gauge [14]. If the quantity measured were a
polynomial in the fields, only the usual caveats of lattice
calculations would be required [26]. However, it is expo-
nential in the field. Thus, the importance sampling of
standard update algorithms cannot be expected to be
accurate, especially if ΔS≳ Sð0Þ, i.e. when the exponential
weight of the source term becomes comparable to the
action itself. Of course, it cannot be excluded that already a
small ΔS upsets the importance sampling significantly.
Concentrating on the example source (69)

Jaμ ¼ δa3δμ2h cosðx1kÞ;

which will be used in the following with h always positive,
a better estimate can be made. Because the gauge field
in lattice units is bounded by 1, the source term is of
maximum size

max ΔS ¼ max
Z

dxJA ≤ Vh: (97)

If there are cancellations in the integral, max ΔS could be
significantly smaller than Vh. Indeed, this is what will be
observed below, and max ΔS turns out to be essentially an
order of magnitude smaller than Vh. But for the moment,
remain with this worst-case scenario.
The conventional action term is of typical size

Sð0Þ ¼ βVdðd − 1Þ
2

hPi;

where d is the number of space-time dimensions, β ¼ 4=g2,
and hPi is the plaquette expectation value, i.e. the free

energy per unit volume. Thus, the maximum h possible is
expected to be of order

h ≲ βdðd − 1ÞhPi
2

: (98)

If, as discussed above, the source term were bounded by

max ΔS ¼ 2π

L
h;

instead of (97), the situation would improve, as then not
only for finer lattices but also for larger lattices the
maximum possible value of h would increase. But since
this lower limit holds only for special field configurations,
this may not be reliable, and in the following the more
conservative estimate (98) will be used.
Under these worst-case conditions, a maximum value

of h around 10 in lattice units would be at most possible
for our 4D simulations below. Fortunately, not only does
max ΔS turn out to be much smaller, see below Fig. 6, but
all pertinent features of the system evolve already for
h≲ 10−1, and therefore significantly even below the worst-
case scenario.

B. Lattice setup

Due to the reweighting approach, the numerical simu-
lation can be performed using standard methods. Using the
Wilson action, configurations were created using a hybrid
heat-bath-overrelaxation update and then gauge fixed to
minimal Landau gauge using stochastic overrelaxation, see
[27] for details.
Since, as noted, two dimensions is found to behave rather

differently on the level of the propagators than higher
dimensions, here the free energy (92) will be determined
for d ¼ 2, 3, and 4. To obtain an estimate of both finite
volume and finite lattice spacing artifacts, in all dimensions
nine different lattice settings have been investigated, see
Table I for details.
After gauge fixing, the gluon fields are determined

in a standard way from the links [14,27]. The determi-
nation of (96) with the source (69) is then straight-
forward. The exponential is calculated on every
configuration individually, and then the average is taken,
where the error is determined using a 67.5% interval
obtained from bootstrapping with 1000 resamplings.
Errors for all derived quantities are then obtained by
standard error propagation.
However, for large values of h standard long

double precision is insufficient due to the exponential
behavior, and arbitrary precision arithmetic was necessary,
especially for a reliable determination of the statistical
errors. However, in a small window close to the point
when switching between fixed and floating precision,
the required number of digits became large, and as a
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consequence the statistical errors in this region are some-
what overestimated.
Furthermore, especially at small h, it can happen that the

exponent of (96) fluctuates statistically to values smaller
than zero, thus giving an average of the exponential smaller
than 1, and consequently W becomes negative. This is a
purely statistical artifact, and only occurs within statistical
errors. In the limit of infinite statistics,W is indeed positive
and convex. However, this seriously affects the statistical

reliability of W at small h, while the opposite effect occurs
at large values of h.
Below, also the gluon propagator at zero momentum will

be used. It is again determined using standard methods,
see [14,27] for details.

C. Checking the systematic limit

With the source (69), the functionalW becomes a function
of the two independent variables k and h. Since k is a lattice
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FIG. 6 (color online). The free energy density Wðh; kÞ=V in lattice units as a function of h for various vales of k. The middle and
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momentum, it can have only discrete values, while h is a
continuous variable. For k, at most ten different values have
beenused, dependingon the lattice size.An example forW is
shown in Fig. 6. The situation for all other lattice settings is
virtually indistinguishable; without labeling, the plots can-
not be separated from one another. It is immediately visible
that W depends linearly on h at large values of h, and
quadratically at small values of h. Since this sets in already
some orders of magnitude below the reliability limit (98),
this may be indeed a genuine effect. Based on the argu-
mentation in Sec. II C, we expect that to be the genuine
behavior, which is thus quadratic in h at small h and linear in
h at large h, manifesting the behavior predicted in Sec. II A.
It is an interesting observation that the error appears to

become smaller at large h, which is at first sight contra-
dictory to the expectations for reweighting. To understand
this, it should be recalled that actually not W is measured,
but rather exp W, and a logarithm is taken, and the statistical
error is propagated. Since, at small h, exp W is

exponentially close to 1, the error is exponentially increased
when taking the logarithm. At the same time, at large h, W
itself is large, and the error on it is exponentially suppressed.
This is only due to statistical fluctuations. The systematic
error due to reweighting is not captured.

D. Free energy and asymptotic behavior

To identify the slope more precisely, Fig. 7 shows
W=W0, where W0 is

ffiffiffi
2

p
πLd−1h for k ¼ 0 and Ld=

ffiffiffi
2

p
hk

otherwise, motivated by the limits in Sec. II G. The free
energy indeed shows the expected large h behavior, and any
correction to it is smaller than lnðhÞ, as has been explicitly
tested. However, the bound W0 is not saturated, and a
prefactor smaller than 1 remains. Based on the arguments in
Sec. II C, this was to be expected.
To investigate whether this undersaturation is a lattice

artifact or depends on the dimensionality, the remaining
constants for all systems of Table I have been determined,
and are shown in Fig. 8. At first sight, no qualitative
difference is found. It is visible that at fixed lattice spacing
the expected bound is less fulfilled the larger the volume.
No final conclusion can be drawn from this, except that
the order of limits may be important, and that an under-
saturation remains in all cases investigated here, and that
this undersaturation seems to not decrease towards the
continuum and thermodynamic limit.

E. Quantum effective action

Once the free energy is known, it is a straightforward
exercise to also determine its Legendre transform (38)
numerically, the quantum effective action. The genuine
advantage is that the Legendre transform shows different
properties, and thus a fit which describes both the free
energy and the quantum effective action correctly will
certainly capture more of the pertinent features than a fit
which describes just one.
Especially, the discussion and arguments presented in

Secs. II F and III suggest strongly a fit form of type

Wðh; kÞ ¼ Vcð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm−2dh2k2

p
− 1Þ;

Wðh; 0Þ ¼ Vcð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm−2dþ2h2

p
− 1Þ; (99)

where c and m are fit parameters. This fit form has the
expected asymptotic dependencies on h. The classical field
A is then defined as the derivative of w ¼ W=V with respect
to the source strength h, and after resolving the implicit
dependence the Legendre transform yields the quantum
effective action. Note that the k-dependent function γ̂ of
(86) corresponds here to a suitable combination of the fit
parameters c and m, which therefore are fitted for every k
independently.
This can be applied both on the numerical data, using

numerical derivatives, as well as on the analytical fit. To
compare the two, the fit parameters are determined from the

TABLE I. The considered physical systems and number of
configurations. Scales and the lattice spacing a as a function of
the bare gauge coupling β have been set using a string tension
of ð440 MeVÞ2, according to [15,27,28]. The number of
thermalization hybrid sweeps [27] is 2ð10Lþ 100ðd − 1ÞÞ,
where L is the linear lattice size, and a tenth of this number is
used for decorrelation between two consecutive measurements.

a [fm] 0.20 0.10 0.05
d ¼ 2 β 7.99 30.5 120

L ¼ 60 1938 1720 2128

V ð12 fmÞ2 ð6 fmÞ2 ð3 fmÞ2
L ¼ 120 1034 1066 2160

V ð24 fmÞ2 ð12 fmÞ2 ð6 fmÞ2
L ¼ 240 330 1560 590

V ð48 fmÞ2 ð24 fmÞ2 ð12 fmÞ2
d ¼ 3 β 3.73 6.72 12.7

L ¼ 18 2277 2277 3415

V ð3.6 fmÞ3 ð1.8 fmÞ3 ð0.9 fmÞ3
L ¼ 36 2261 2258 3356

V ð7.2 fmÞ3 ð3.6 fmÞ3 ð1.8 fmÞ3
L ¼ 72 2228 2296 4520

V ð14.4 fmÞ3 ð7.2 fmÞ3 ð3.6 fmÞ3
d ¼ 4 β 2.221 2.457 2.656

L ¼ 6 3202 2406 1050

V ð1.2 fmÞ4 ð0.6 fmÞ4 ð0.3 fmÞ4
L ¼ 12 1792 1012 1840

V ð2.4 fmÞ4 ð1.2 fmÞ4 ð0.6 fmÞ4
L ¼ 24 1149 2296 1176

V ð4.8 fmÞ4 ð2.4 fmÞ4 ð1.2 fmÞ4
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FIG. 7 (color online). The normalized free energy W=W0 as a function of h for two [left panel, 1202=ð24 fmÞ2 at
β ¼ 7.99=a ¼ 0.2 fm], three [middle panel, 363=ð7.2 fmÞ3 at β ¼ 3.73=a ¼ 0.2 fm], and four [right panel, 244=ð4.8 fmÞ4 at
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statistical error is due to the aforementioned switch to fixed precision numerics.
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FIG. 8 (color online). The value of the normalized free energy densityWðh; kÞ=W0 at k ¼ 0 in the domain at large h, where it becomes
constant, as a function of lattice volume and discretization for two (bottom left panel), three (bottom right panel), and four (top left panel)
dimensions. The top right panel shows a cut at fixed spatial volume. Statistical error bars are smaller than the symbols. The volume is
ð12 fmÞ2 in two dimensions, ð36 fmÞ3 in three dimensions, and ð1.2 fmÞ4 in four dimensions.

ANALYTIC AND NUMERICAL STUDY OF THE FREE … PHYSICAL REVIEW D 89, 034011 (2014)

034011-15



free energy. The result for a sample lattice setting at k ¼ 0
is shown in Fig. 9. Though the statistical errors become
large due to the numerical derivatives, it is clearly visible
that the fit form describes the free energy, the classical field,
and the quantum effective action acceptably. Especially, it

is nicely seen how the Gribov horizon manifests itself in
the form of a divergence of the quantum effective action
at a finite classical field value, like in Fig. 2, and that the
classical field is indeed bounded. It should be noted that
this value of the classical field is indeed bounded by a value

h
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FIG. 9 (color online). The free energy (top panels), quantum effective action (middle panels), and classical field (bottom panels)
compared to the fit function (99) (thick line). Results are for a ð14 fmÞ3 lattice with a ¼ 0.2 fm.
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very small compared to the maximum field of 1 in lattice
units. The Gribov horizon is thus small compared to the
maximal fluctuations permitted for the gluon field, and
cutoff effects should thus be small.
The situation for the other lattice settings is essentially

the same. The fits yield always a mass parameter m of
typical size a few hundred MeV, though significantly
dependent on lattice spacing, discretization, and dimen-
sionality, with the tendency to rise with the dimension.
Thus, the form (99) is a remarkably good description of the

free energy of Yang-Mills theory, giving support to the argu-
ments given in Sec. III that indeed a nonanalyticity is present.

F. Source-dependent propagator

With respect to the question of how the free energy and
the propagators can be related, there are two critical tests,
which can be made. One is, whether the free energy is
analytic in the source strength parameter in the infinite-
volume limit. The other one is whether the source-
dependent propagators approach their source-independent
ones in the limit of h → 0 in the infinite-volume limit.
As discussed in Sec. III B, this cannot be expected for a
simple model. Since this simple model is a surprisingly
good fit of both the free energy and the quantum effective
action, this may be suspected also for the full case.
The first test is therefore the analyticity. This can be

tested by checking whether at small h the free energy is
well approximated by the first terms of its Taylor series.
Because Wðh; kÞ is the generating functional of connected
correlation functions, see (4), it should therefore be given to
leading order by the gluon propagator at zero external field
Dðk; 0Þ, as 11

Wðk; hÞ ≈ V
4θðkÞDðk; 0Þh2 þOðh4Þ ¼ Wlðk; hÞ þOðh4Þ:

(100)

Since this investigation is performed at small h the
reweighting issues should be less relevant for this analysis.
The comparison is made in Fig. 10 for various low

momenta. Note that by taking the ratio any renormalization
constants will drop out.
The result is interesting. First of all, in all cases the

leading approximation is a good description at small h, at
least within errors. However, with increasing volume this
description becomes worse at fixed h for all dimensions,
though this effect is more pronounced the higher the
dimension. At the same time, in four and three dimensions
the continuum limit does not change the quality of the
approximation at fixed h, while in two dimensions
the approximation becomes marginally worse closer to
the continuum limit. The approximation is further wors-
ened when increasing the momentum. This is due to the
presence of lattice spacing corrections. This is most
notable for the largest momentum kL=2π ¼ 3, where for
a ¼ 0.2 fm at ð1.3 fmÞ4 the approximation is worst. This is
not surprising; in this case the lattice size was only 64, and
thus at k ¼ 3 the lattice structure is probed, leading to large
corrections, which spoil the expansion (100). In general,
the lattice sizes are smallest in four dimensions, and thus
the largest finite lattice spacing corrections would be
expected there, which is also what is seen.
This result already suggests that the analyticity of the

free energy is doubtful, though of course no numerical
investigation can ever disprove it.
A second test is whether the source-dependent gluon

propagator Dðk; hÞ tends towards Dðk; 0Þ. The arguments
in Sec. III suggest that this is not the case: The usual gluon
propagator is not the limit of the source-dependent one.
To determine the source-dependent gluon propagator,

there are two possibilities. One is to use the reweighting
factor as a probability, yielding the positive semidefinite
quantity

Dðk; hÞ ¼ ∂2wðhÞ
∂h2 ¼ 1

V

��X
x

A1
yðxÞ cosðxkÞ

X
y

A1
yðyÞ cosðykÞ exp

�Z
JA

�	
1

ZðJÞ

−
�X

x
A1
yðxÞ cosðxkÞ exp

�Z
JA

�	
2 1

Z2ðJÞ
�
: (101)

Because the averages are taken with a selection of orbits
obtained by the usual Boltzmann weight, this cannot be
expected to be accurate at very large h, once more an
artifact from the reweighting. The second option is by a
numerical derivative, i.e. using the formula

Dðk; hÞ ¼ 1

2θðkÞ
∂2w
∂h∂h






k fixed

;

which is again only correct up to reweighting artifacts,
and could be negative within statistical errors. As the
formulation (101) includes also the first variation, both
are differently influenced by the statistical errors, which are
determined from error propagation. Thus, in the numerical
evaluation below for each value of h and k the formulation
is used which has less statistical error. However, within the
statistical errors both agree, though for large h especially
the statistical fluctuations of (101) become so large as to
render this statement meaningless. Still, at small h this11Note that here and hereafter the conventionθð0Þ ¼ 1=2 is used.
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FIG. 10 (color online). The ratio of the free energy divided by the leading Taylor coefficient as a function of the dimensionful field h.
The fixed volume is ð12 fmÞ2 in two dimensions, ð3.6 fmÞ3 in three dimensions, and ð1.2 fmÞ4 in four dimensions. The largest volume
can be taken from Table I. Results are shown for 2 πLk ¼ 0, 1, 2, 3 from top to bottom.
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FIG. 11 (color online). The ratio of the source-dependent propagator and the source-independent propagator as a function of the source
strength. The fixed volume is ð12 fmÞ2 in two dimensions, ð3.6 fmÞ3 in three dimensions, and ð1.2 fmÞ4 in four dimensions. The largest
volume can be taken from Table I. Results are shown for kL=2π ¼ 0, 1, 2, 3 from top to bottom.
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supports that reweighting artifacts, which could affect both
formulations differently, are not too large.
Note that this gluon propagator is anisotropic in both

momentum and color space, and here only the component
along the source direction is regarded in both cases.
The result normalized to the field-zero case is shown in

Fig. 11. There is a number of remarkable features.
First, at small source strength the ratio becomes 1. This

is to be expected, as there will be no nonanalyticity in a
finite volume, and therefore the source-dependent and
source-independent propagators have to agree in the limit.
Second, while the lattice spacing effects are negligible,

this is not the case for the volume dependence. In fact, if the
physical volume is increased, the ratio deviates at much
smaller values of the source strength from 1, and the earlier
the higher the dimension. This is precisely what is expected
if there is a nonanalyticity, as argued in Sec. III.
Third, this effect sets in at larger source strength, the

higher the momentum, i.e. the longer the wavelength the
earlier the increase in size is felt.
Concluding, the numerical results are in favor of a

nonanalyticity in the free energy, and thus a nonequivalence
of the propagators in the limit of zero source strength and at
zero source strength. It should, however, not be forgotten
that these results have been obtained using reweighting,
and that they are available only on a limited range of lattice
settings. Thus, this should not be taken as a final proof, but
rather only as supporting evidence.

V. DISCUSSION AND CONCLUSION

Assessing the implications of the presented findings is
not simple. It is therefore best to first recapitulate some
pertinent features.
What we set out to do was to understand why different

approaches should yield different results for the same
quantity, the gluon propagator. In the end, what we found
is that the difference arises because it is not the same
quantity.
To this end, one must reconsider the role of the free

energy (or the quantum effective action) and its associated
sources. In principle, the free energy, as the generating
functional of correlation functions, appears to be an
auxiliary mathematical construction, for correlation func-
tions can be calculated by various methods, without
introducing sources. However sources can make this
process very easy to formulate, and finite sources act as
a control parameter to deform the physical system. On the
other hand, in gauge theories, external sources act in a
gauge-dependent way, and therefore do not necessarily
correspond to physical deformations. This does not, in
principle, limit their usefulness; perturbation theory is
an excellent example of this. So while it is tempting to
consider the deformation produced by gauge-dependent
sources as somehow unphysical, nevertheless a mathemati-
cally valid formulation that may appear unphysical can

nevertheless be very useful. After all, imaginary time is
unphysical, but Euclidean quantum field theory has
proven its value.
The question arises as to whether the source term ðJ; AÞ

provides a reweighting of different Gribov copies or a
reweighting of gauge orbits or some of both. We would like
to emphasize that, at least to some extent, it is a reweighting
of gauge orbits. Indeed consider the case of a perfect gauge
fixing so each gauge orbit has a unique representative. This
could be achieved, in principle, in the minimal Landau
gauge if the absolute minimum on each orbit were chosen.
In this limiting case, the source term provides a pure
reweighting of gauge orbits, which would become visible if
a suitable gauge-invariant quantity were calculated as a
function of the external source strength h, and some of this
property presumably persists in the gauge fixing that we
actually do. However we have not tested this in the present
article, but instead we have studied the free energyWðk; hÞ
and the gluon propagator Dðk; hÞ as a function of momen-
tum k and source strength h.
Here, however, something interesting happens. The

source we introduced is perfectly fine perturbatively. But
in our nonperturbative calculation something changes. We
have proven that at infinite volume the gluon propagator
Dðk; hÞ vanishes at zero momentum k for every nonzero
source strength, limk→0Dðk; hÞ ¼ 0, Eq. (82), for all h > 0,
no matter how weak, see Sec. III A.
Our lattice data are consistent with this behavior. This

can be inferred from Fig. 11: The larger the volume, the
stronger (and the earlier in the field strength) is the gluon
propagator suppressed compared to the gluon propagator at
zero field strength. Of course, in any finite volume it will
never be exactly zero, see the discussion around Eq. (80).
Though we find this result consistently for all volumes
and dimensions studied, to claim more than consistency
would require a much more systematic study of the volume
dependence.
On the other hand, lattice studies done at h ¼ 0 in

d ¼ 3 and 4 dimensions [3–8], including the present
study, give a finite value for the gluon propagator at zero
momentum, limk→0Dðk; 0Þ > 0. So, if one takes the
results shown in Fig. 11 at face value, there must be
a jump in the low momentum limit of the gluon
propagator at h ¼ 0. Stated differently, the value of the
gluon propagator Dðk; hÞ depends on the order of limits
at k → 0 and h → 0, and Dðk; hÞ is hence nonanalytic
in h at k ¼ 0, at least in the infinite-volume limit. This
is also supported by Fig. 10, which shows that the lowest
order of the Taylor series approximation to the free
energy gets worse as the volume increases. This behavior
is also consistent with a nonanalyticity, and hence zero
radius of convergence of the series, in the infinite-volume
limit. Again, a more systematic study of finite-volume
effects would be helpful in improving the confidence in
this result.
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Since these results explain the discrepancy we set out to
understand so well, if they are true, let us speculate here for
a few lines about the implications. So suppose then that
there is a jump in the low momentum limit of the gluon
propagator Dðk; hÞ at h ¼ 0. This raises the question: Are
there states that analytic or numerical calculations at h ¼ 0
miss?12 This question is prompted by what happens in a
ferromagnetic spin lattice. Recall that to find the sponta-
neously magnetized state, one adds an arbitrarily small
external magnetic field, h, which is then taken to zero. Of
course in the ferromagnetic case it is the first derivative
w0ðhÞ that is discontinuous at h ¼ 0 whereas in our case it
is the second derivative w00

kðhÞ ¼ ð1=2ÞDkðhÞ, so the two
cases are different, and we do not have the answer to this
question. Moreover, although the source JaμðxÞ breaks
Lorentz and color invariance, we do not expect these
symmetries to be spontaneously broken in the gauge field
theory case. As a word of caution, we should note that
the Landau gauge condition kμAμ ¼ 0 is not well defined
at k ¼ 0, and we are perhaps just seeing the result of a
singular gauge choice. However we have attempted to
circumvent this possible problem by always taking the limit
k → 0 from finite k in our analytic studies. One possibility
is that the different limits correspond to different gauge
choices. Another point that is (as yet) entirely not under-
stood is what implication, if any this jump has for
supplemental conditions to the Dyson-Schwinger equa-
tions, e.g. boundary conditions, which select among the
solution manifold of the functional equations. Thus there
are still some formal developments to be investigated.
Ending these speculations, let us summarize under the

assumption that the results are consistent. Then we would
have understood quite a bit more about how Yang-Mills
theory works. We would have resolved the apparent
discrepancies from different approaches to determining
the gluon propagator. This would imply that they do not
disagree, they just take limits in opposite order, and thus
obtain consistently different results.

ACKNOWLEDGMENTS

A.M. is supported by the DFG under Grant No. MA
3935/5-1.

APPENDIX A: LOCATING THE GRIBOV
HORIZON

The configuration A lies on the (first) Gribov horizon
when the lowest nontrivial eigenvalue λ0ðAÞ of the
Faddeev-Popov operatorMðAÞ vanishes. For configuration
(57), the Faddeev-Popov eigenvalue problem reads

f−∂2 − ½bþ c cosðkx1Þ�∂2e3×gψ0ðxÞ ¼ λ0ψ0ðxÞ; (A1)

where ψ0ðxÞ is a color vector, e3 is an x-independent unit
color vector, and × is the bracket of the suð2Þ Lie algebra.
To find the lowest eigenvalue, we take

ψ0ðxÞ ¼ fðxÞη; (A2)

where η ¼ ðe1 − iσe2Þ=
ffiffiffi
2

p
is a color vector satisfying

e3 × η ¼ iση with σ ¼ �1, and fðxÞ is an ordinary
function of position, so the eigenvalue equation reads

f−∂2 − iσ½bþ c cosðkx1Þ�∂2gfðxÞ ¼ λ0fðxÞ: (A3)

To proceed, we take

fðxÞ ¼ φðx1Þ expðipx2Þ; (A4)

where p ¼ 2πm=L, and m is an integer, and the eigenvalue
equation becomes one dimensional,

½−∂2
1 þ p2 þ σpbþ σpc cosðkx1Þ�φðx1Þ ¼ λ0φðx1Þ:

(A5)

The lowest eigenvalue is obtained when σ ¼ �1 is given by
the sign function, σ ¼ −signðpbÞ, and we have

½−∂2
1 þ p2 − jpbj þ q cosðkx1Þ�φðx1Þ ¼ λ0φðx1Þ; (A6)

where q≡ σpc ¼ −ρjpjc, and ρ≡ signðbÞ.
This is a familiar one-dimensional Schrödinger eigen-

value problem with a periodic potential. The lowest non-
trivial eigenvalue is obtained if jpj has the smallest nonzero
value jpj ¼ 2π=L, and the eigenvalue problem reads

½−∂2
1 þ q cosðkx1Þ�φðx1Þ ¼ λ0φðx1Þ; (A7)

where λ0 ¼ λ0 − p2 þ jpbj, and q ¼ −ð2π=LÞρc. We are
interested in the infinite-volume limit L → ∞, with the
momentum k held fixed. This corresponds to q → 0, and
we may treat the term in q as a small perturbation. In zeroth
order we have φðx1Þ ¼ 1, and the exact solution is of the
form

φðx1Þ ¼ 1þ
X∞
m¼1

am cosðmkx1Þ; (A8)

where am ¼ OðqmÞ. In the limit L → ∞, it is sufficient to
take

φðx1Þ ¼ 1þ a1 cosðkx1Þ; (A9)

and systematically ignore higher terms. With this expres-
sion for φ, the eigenvalue equation reads

k2 cosðkx1Þa1 þ qfcosðkx1Þ þ ð1=2Þ½1þ cosð2kx1Þ�a1g
¼ λ0½1þ a1 cosðkx1Þ�: (A10)

12This question does not arise for the Gribov-type propagator,
for which the order of limits commutes.
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We drop the higher-order term cosð2kx1Þ, and obtain.

ð1=2Þqa1 ¼ λ0; k2a1 þ q ¼ λ0a1; (A11)

which gives

λ0 ¼ ð1=2Þ½k2 � ðk4 þ 2q2Þ1=2�; (A12)

and a1 ¼ 2λ0=q. The lower sign gives the lower
eigenvalue, and to lowest order in q we have
λ0 ¼ −q2=2k2 ¼ −p2c2=2k2, or

λ0ðb; cÞ ¼ −jpbj þ p2

�
1 − c2

2k2

�
; (A13)

and a1 ¼ −q=k2 ¼ ρjpjc=k2, with wave function

ψ0ðxÞ ¼ ½1þ ðρjpjc=k2Þ cosðkx1Þ�
× expðipx2Þðe1 − iσe2Þ=

ffiffiffi
2

p
; (A14)

where σ ¼ −signðpbÞ and ρ ¼ signðbÞ. The lowest non-
trivial eigenvalue is obtained by setting jpj ¼ 2π=L, which
gives (58) and (59).

APPENDIX B: BOUNDS FROM TRIAL
WAVE FUNCTIONS

For any configuration inside the Gribov region,
A ∈ Ω, the Faddeev-Popov operator MðAÞ is positive,
ðψ ;MðAÞψÞ ≥ 0, for any trial wave function ψ ,

ð∂μψ ; ∂μψÞ − ðψ ; A × ∂μψÞ ≥ 0: (B1)

We write this as

ðJ; AÞ ≤ ð∂μψ ; ∂μψÞ; (B2)

where

JbμðxÞ≡ ½fabcψa�ðxÞ∂μψ
cðxÞ�tr; (B3)

and the superscript “tr” means that the transverse part is
taken. This bound gives the inequality

exp WðJÞ ¼
Z
Ω
dAρðAÞ expðJ; AÞ

≤
Z
Ω
dAρðAÞ expð∂μψ ; ∂μψÞ

¼ expð∂μψ ; ∂μψÞ; (B4)

and we obtain the bound, for any trial wave function ψ ,

WðJÞ ≤ ð∂μψ ; ∂μψÞ; (B5)

where J is given in (B3).
Of course this bound is not optimal in general. However

if A lies on the Gribov horizon, and if the trial wave
function ψ is the exact wave function belonging to the
lowest nontrivial eigenvalue of the Faddeev-Popov operator
MðAÞ, then the bound just given for any trial wave function
becomes the optimal bound. To see this, observe that if
A ∈ ∂Ω, then ðψ ;MðAÞψÞ ¼ 0, which is the same as
ðJ; AÞ ¼ ð∂μψ ; ∂μψÞ, where J is given in (B3). In this
case, the bound WðJÞ ≤ ð∂μψ ; ∂μψÞ may be written
WðJÞ ≤ ðJ; AÞ. Moreover J given in (B3) is normal to
the Gribov horizon, as we have seen previously (31). Thus
all the conditions for the optimal bound are satisfied.
As an example, take

ψ ¼ expðip · xÞη; (B6)

where η ¼ ðe1 − ie2Þ=
ffiffiffi
2

p
, and e1, e2, e3 form an

orthonormal basis in color space. This yields the bound

pμ

Z
ddxA3

μ ≤ p2V: (B7)

By choosing pμ ¼ ð2π=LÞδμν we get, for each ν,

Z
ddxA3

ν ≤ ð2π=LÞV: (B8)

This agrees with the optimal bound (66).
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