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We present a general procedure for measuring the tensor structure of the coupling of the scalar Higgs-like
boson recently discovered at the LHC to two Z bosons, including the effects of interference among different
operators.Tomotivateourconcernwith this interference,weexploretheparameter spaceof thecouplings inthe
effective theory describing these interactions and illustrate the effects of interference on the differential dilepton
mass distributions. Kinematic discriminants for performing coupling measurements that utilize the effects of
interference are developed and described. We present projections for the sensitivity of coupling measurements
that use these discriminants in future LHC operation in a variety of physics scenarios.
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I. INTRODUCTION

As the new particle discovered by the ATLAS [1] and
CMS [2] Collaborations appears to be similar to the
Standard Model (SM) Higgs boson [3–8], it becomes very
important to measure its properties as precisely as possible
in order to find or constrain physics beyond the SM. The
recent ATLAS and CMS results strongly suggest that the
newly discovered boson has spin zero [9–13], which we
take as the starting point in the studies presented in this
report. There is a large body of literature [14–61] advocat-
ing the great potential of X → ZZ → 4l decays for dis-
entangling the spin-parity properties of resonances
decaying to two Z bosons and for refining the methodology
for doing such measurements. In this work we explore the
sensitivity of future LHC analyses to interference between
various operators in this channel. We follow the framework
of Ref. [53], which is briefly reviewed below.

A. Review of framework

Weconsider a spin zero stateX,which in general is a linear
combination of a CP-even state,H, and a CP-odd state, A1:

X ≡H cos αþ A sin α: (1)

The couplings of the arbitrary spin zero boson, X, to two
Z bosons can be described by the symmetry properties of

the corresponding operators, which fall into the following
three categories: (i) CP-even terms which clearly violate
gauge invariance, (ii) CP-even terms which may preserve
gauge invariance, (iii) CP-odd terms. For each category, the
lowest dimensional operators in the effective theory, in
terms of some new physics scale Λ, yield the Lagrangian

L ⊃ −
�
g1M2

Z

v

�
HZμZμ −

�
g2
2Λ

�
HFμνFμν

−
�
g4
2Λ

�
AFμν

~Fμν; (2)

where ~Fμν ¼ 1
2
εμνρσFρσ and the gi are dimensionless

coupling constants. Reexpressing the Lagrangian terms
in Eq. (2) to involve the mass eigenstate X, we obtain

L ⊃ −X
�
κ1

M2
Z

v
ZμZμ þ κ2

2v
FμνFμν þ κ3

2v
Fμν

~Fμν

�
; (3)

where

κ1 ¼ g1 cos α; κ2 ¼ g2 cos αðv=ΛÞ;
κ3 ¼ g4 sin αðv=ΛÞ:

(4)

Each case where exactly one of the coefficients κi is
nonvanishing corresponds to a specific pure state:
(i) κ1 ≠ 0 corresponds to a SM-like Higgs (in particular
κ1 ¼ 1 is the tree-level SM coupling); (ii) κ2 ≠ 0 corre-
sponds to the state which describes a SM singlet, usually
denoted with 0þh [42]; (iii) κ3 ≠ 0 corresponds to a pure
pseudoscalar (JCP ¼ 0−).
The decay amplitude that one obtains from the

Lagrangian in Eq. (3) is
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AðX → ZZÞ ¼ − 2i
v
ε�μ1 ε�ν2 ððκ1M2

Z − κ2ðp1 · p2ÞÞgμν
þ κ2pμpν þ κ3εμναβpα

1p
β
2Þ: (5)

Here p1ð2Þ is the momentum of the intermediate Z boson
labeled “1” (“2”), while p ¼ p1 þ p2 is the momentum
of the X boson. We note, following, e.g., Refs. [30,31,42]
(cf. especiallyEq. (11) inRef. [42]) that the three operators in
Eq. (3) generate each of the three possible Lorentz structures
in the general amplitude for the decay of X to two bosons.

1. Comparison of conventions

Various conventions have been used in writing
Lagrangians and amplitudes for the study of the X → ZZ
interaction. For the convenience of the reader, Table I
contains a dictionary of the couplings used in
Refs. [30,42,48,53,62,63].

2. Sensitivity to loop-induced couplings

The coefficients κi in Eq. (5) are real, since they originate
from the tree-level Lagrangian in Eq. (3). By the optical
theorem, the amplitude may obtain contributions from
loops with light particles (lighter than MX=2 ≈ 63 GeV)
such that the expression for the amplitude including loop
effects is analogous to that in Eq. (5), where the effective
couplings κ0i are complex:

AðX → ZZÞ ¼ − 2i
v
ε�μ1 ε�ν2 ððκ01M2

Z − κ02ðp1 · p2ÞÞgμν
þκ02pμpν þ κ03εμναβp

α
1p

β
2Þ: (6)

However, at least one of the κi must not be predomi-
nantly loop induced, or else one runs into a contradiction
with the experimental constraints. For example, consider a
generic loop with some invisible new particle whose
coupling to the XðZÞ boson is gXðZÞ. Then, naively,

δκ0i ¼
gXg2Z
16π2

×Oð1Þ: (7)

In this scenario the invisible width of the X boson is

ΓX;inv ¼
g2XMX

16π
×Oð1Þ; (8)

hence taking ΓX;inv ≲ Γexp
X;total ≲ 7 GeV [68], we obtain

gX ≲ 2. Since the gauge coupling to the Z, gZ, should be
≲1, we get

δκ0i ≲ 1 × 10−2: (9)

This is about 2 orders of magnitude smaller than the
magnitude of couplings needed to give the SM rate [53].
More stringent constraints on the δκ0i (with some caveats)
may be obtained from more stringent limits on the invisible
width of the Higgs [12,58,69–72] or the invisible width of
the Z [73].2 It is therefore well motivated to treat the
relevant couplings, κ0i, (namely, the ones which are large
enough to measure at present) as predominantly real.

B. Experimental situation

The hypothesis of the new boson being a 100% pure
pseudoscalar, 0−, has been excluded by CMS [10,74] and
ATLAS [9,13]. The possibility of a 100% pure 0þh is also
disfavored at 92% C.L. [10]. Hence, in this study we
assume a nonzero value of coupling, κ1, and address the
question of the experimental sensitivity to the presence of
κ2 and κ3 terms in the XZZ Lagrangian.
The current limit, set by CMS [10], on the presence of a

pseudoscalar contribution expressed in terms of a fractional
cross section is fa3 ¼ σ3=ðσ1 þ σ3Þ < 0.58. Here the cross
sections σ1 and σ3 are taken for the 4e, 4μ, and 2e2μ final
states together3 and correspond to 100% pure 0þ and 0−
states, respectively. This result translates into a limit on the
ratio of couplings jκ3=κ1j < 6.1. The corresponding CMS
analysis was set up in such a way that it was not sensitive to
the interference between the κ3- and κ1-induced amplitudes.

C. Objective

In this paper, we show that by explicitly exploiting the
interference between amplitudes which involve the 0þ, 0þh ,

TABLE I. Comparison of notations for the effective XZZ couplings.a

Reference [53] κ1 κ2 κ3

References [30,42] ði=2Þgð0Þ1 −igð0Þ2 −igð0Þ4

Reference [48] ðg1z=2Þðv=M2
ZÞ ðg2z=2Þv ðg4z=2Þv

Reference [62] gv=ð2MZÞ gλv=ð2MZÞ −gλ0v=ð2MZÞ
Reference [63] −ðgHZZkSMv cos αÞ=ð2M2

ZÞ ðkHZZv cos αÞ=ð2ΛÞ ðkAZZv sin αÞ=ð2ΛÞ
aWe note that an overall phase in the amplitude, which can be seen in this table as an overall phase in the couplings, is irrelevant except

in the likely negligible case of interference between, e.g., the gg → X → ZZ� → 4l signal, and the loop-induced gg → ZZ� → 4l
background [64–67].

2We note that increasing the number of particles running in
the loop alleviates the constraints on the δκ0i.3For given values of couplings κi and κj, the ratios of cross
sections σi=σj ði ≠ jÞ for same-fermion and different-fermion
final states are different. This is due to the interference effects
associated with permutations of identical fermions in the final
state. Hence, one should specify which final states are used in the
definition of fa3.
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and 0− states [corresponding to the κ1, κ2, and κ3 terms in
the Lagrangian in Eq. (3), respectively] one can boost the
experimental sensitivities to the presence of a 0− (and 0þh )
admixture. We show that the gains become particularly
large at high integrated luminosities, allowing one to probe
smaller values of the κ2 and κ3 couplings. We also address
the question of establishing the presence of the interference
and evaluating its sign, should decay amplitudes associated
with spin zero higher dimensional operators be detected.
Recently, the importance of a proper treatment of interfer-
ence was discussed in the context of a somewhat different
aspect of the H → ZZ → 4l channel [48]; there it was the
interference associated with permutations of identical
leptons in the 4e and 4μ final states that was considered.
This interference is always included in the studies pre-
sented in this report.

II. THE PHYSICAL IMPORTANCE
OF INTERFERENCE

In general, interference effects can manifest themselves
in two different ways: either at the level of total cross
sections (reflected in the production rate, as discussed in
Sec. II A below), or at the level of differential distributions
(as discussed in Sec. II B below).

A. The impact of interference effects
on the production rate

The overall rate for X → ZZ → 4l events is proportional
to the partial width for X → ZZ [53]

ΓðX → ZZÞ ¼ ΓSM

X
i;j

γijκiκj; (10)

where the partial H → ZZ width predicted in the SM, ΓSM,
is factored out in order to define constant dimensionless
coefficients γij (with γij ¼ γji)

4

γ11 ¼ 1; γ22 ¼ 0.090; γ33 ¼ 0.038;

γ12 ¼ −0.250; γ13 ¼ γ23 ¼ 0.
(11)

The presence of interference is then implied by nonzero
values of the “off-diagonal” coefficients γij with i ≠ j.
Equation (11) shows that the overall rate is affected by
interference between 0þ and 0þh , which is destructive
(constructive) when κ1 and κ2 have the same (opposite)
signs. Equation (11) also implies that at the level of total
cross sections there is no interference between 0þ and 0− or
between 0þh and 0−.
The magnitude of interference depends on the values of

the couplings κ1 and κ2. Obviously, for a pure 0þ state

(κ1 ≠ 0, κ2 ¼ 0) and for a pure 0þh state (κ2 ≠ 0, κ1 ¼ 0) the
interference is absent. Given the values in Eq. (11), one
could expect the interference effect to be maximal for

κ2
κ1

¼ 1

2
tan−1

�
2γ12

γ1 − γ22

�
≃ 3.89: (12)

In practice, the signal rate for X → ZZ → 4l production
is measured from data, thus imposing one constraint
through Eq. (10) on the fκ1; κ2; κ3g parameter space [53]
(provided the production rate for the X is fixed). The
constraint may be solved explicitly by a suitable change of
variables, reducing the relevant fκig parameter space to a
two-dimensional surface which can be taken to be effec-
tively the surface of a sphere [53]. For this reason, we shall
not discuss the overall rate further. Instead, we will assume
in our analyses that the rate measurement has already been
performed and the couplings κi have been chosen so that
they satisfy the constraint of Eq. (10).

B. The impact of interference effects
on differential distributions

Even if the overall rate is kept fixed, the interference
effects are still present at the level of differential distribu-
tions (the size of this effect will be quantified in Sec. IV
below). In general, the kinematics of X → ZZ → 4l events
is described in the X rest frame by 7 independent degrees of
freedom, and interference will impact the differential
distribution in this 7-dimensional signature space. For
simplicity, in this subsection we will focus only on the
MZ1

and MZ2
invariant mass distributions and use them to

illustrate the effects of interference.5 In order to provide an
intuitive understanding of some of the results to follow in
Sec. IV, we shall derive analytical formulas for theMZ1

and
MZ2

distributions, which explicitly demonstrate the inter-
ference effects.
The doubly differential decay width with respect to MZ1

and MZ2
can be written as

d2Γ
dMZ1

dMZ2

¼ 1

v

X
i;j

κiκjFijðMZ1
;MZ2

;MXÞ; (13)

where the dimensionless6 functions Fij are symmetric with
respect to their indices: Fij ¼ Fji. In the absence of any
selection criteria, the functions Fij are

F11ðMZ1
;MZ2

Þ ¼ M4
Z

M2
Z1
M2

Z2

ðxþ 3ÞξðMZ1
;MZ2

;MXÞ; (14)

4The values quoted in Eq. (11) correspond to the 2e2μ channel
before cuts. For the 4e or 4μ channels (or with cuts) the numerical
values are similar but not identical [53].

5Note the webpage http://yichen.me/project/GoldenChannel/
created by the authors of Ref. [50], may be used to make plots of
interesting differential distributions for different values of the
couplings κi.6Since κi are already dimensionless, in the right-hand side of
Eq. (13) we factor out 1=v to make Fij dimensionless as well.
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F12ðMZ1
;MZ2

Þ ¼ M2
Z

MZ1
MZ2

3
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p
ξðMZ1

;MZ2
;MXÞ;

(15)

F22ðMZ1
;MZ2

Þ ¼ ð2xþ 3ÞξðMZ1
;MZ2

;MXÞ; (16)

F13ðMZ1
;MZ2

Þ ¼ 0; (17)

F23ðMZ1
;MZ2

Þ ¼ 0; (18)

F33ðMZ1
;MZ2

Þ ¼ 2xξðMZ1
;MZ2

;MXÞ; (19)

where the dimensionless common factor ξ is given by

ξðMZ1
;MZ2

;MXÞ≡
�
g22ðg2a þ g2vÞ
2 cos θ2W

�
2 M6

Z1
M6

Z2

ffiffiffi
x

p

9ð2πÞ5vM3
X

1

P1P2

.

(20)

Here g2 is the SUð2ÞW gauge coupling constant,
gv ¼ − 1

2
þ 2 sin θ2W , ga ¼ − 1

2
, θW is the Weinberg angle,

x≡
�
M2

X −M2
Z1

−M2
Z2

2MZ1
MZ2

�2

− 1 (21)

is a dimensionless parameter introduced in Ref. [42], and

Pi ≡ ðM2
Zi
−M2

ZÞ2 þ Γ2
ZM

2
Z (22)

are the Z propagator functions which depend on the mass,
MZ, and width, ΓZ, of the Z boson.
The doubly differential distribution in Eq. (13) is an

interesting object to study experimentally and CMS and
ATLAS have published plots of the Higgs candidate events
in the ðMZ1

;MZ2
Þ plane. Events are expected to be

clustered around MZ1
¼ MZ, while the MZ2

dependence

is nontrivial and contains interesting information [48].
Therefore we integrate the expression in Eq. (13) over
MZ1

and consider instead the corresponding one-
dimensional distribution

dΓ
dMZ2

≡
Z

dMZ1

�
d2Γ

dMZ1
dMZ2

�
≡X

i;j

κiκjfijðMZ2
;MXÞ;

(23)

with newly defined dimensionless functions

fijðMZ2
;MXÞ≡ 1

v

Z
dMZ1

FijðMZ1
;MZ2

;MXÞ (24)

in place of Eqs. (14)–(19). Comparison of Eqs. (10) and (13)
shows that the normalization of the functions Fij and fij is
given by the values of the coefficients γij in Eq. (11) [53]

γij ¼
1

vΓSM

Z
dMZ1

Z
dMZ2

FijðMZ1
;MZ2

;MXÞ (25)

¼ 1

ΓSM

Z
dMZ2

fijðMZ2
;MXÞ: (26)

Figure 1 shows the four nonvanishing functions f11
(blue), f12 (green), f22 (red) and f33 (magenta) as a
function of MZ2

for the nominal value of
MX ¼ 125 GeV. The two functions f13 and f23 vanish
due to the CP properties of the operators considered in the
Lagrangian in Eq. (3). All functions in panel (a) are
normalized to unity, which makes it easier to study the
differences in their shapes. In panel (b) the functions
are properly normalized in accordance with Eq. (26).
Figure 1(a) shows that all four functions exhibit similar

dependance on MZ2
. At first, they all monotonically

increase from 0 at MZ2
¼ 0, reaching a peak somewhere

in the neighborhood of MZ2
∼ 25–30 GeV, followed by a

(a) (b)

FIG. 1 (color online). The four nonvanishing functions fij defined in Eq. (24) as a function ofMZ2
, withMX ¼ 125 GeV and (a) unit

normalization or (b) properly normalized as in Eq. (26).
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sudden drop at aroundMZ2
∼ 34 GeV, and a long tail until

MZ2
¼ 62:5 GeV. This behavior can be understood purely

in terms of kinematics. The majority of the events contain
an on-shell Z boson with MZ1

≈MZ, which leaves only up
to MX −MZ ∼ 34 GeV available to MZ2

, which explains
the kinematic endpoint at MZ2

∼ 34 GeV. The tail results
from events where both Z bosons are off shell, and extends
to half the X mass, MX=2 ¼ 62:5 GeV. Finally, the
distributions peak relatively close to the MZ2

∼ 34 GeV
endpoint, since the propagator functions in Eq. (22) prefer
MZ2

to be as close as possible to the mass MZ of the Z
boson.7

Figure 1(b) compares the relative size of the different fij
functions. We see that the overall magnitude is largest for
f11 and smallest for f33. Note that the interference con-
tribution from f12 has the second largest magnitude and an
opposite sign compared to the other three functions shown
in the plot—these two facts will be important in the
discussion to follow.
The observable MZ2

distribution is obtained by a
suitable superposition of the individual contributions seen
in Fig. 1(b), properly weighted by products of κi couplings
as specified in Eq. (23). Figure 1 allows us to understand
the resulting MZ2

shapes. First, we concentrate on the
location of the peak of the totalMZ2

distribution, which has
been suggested as an easily measurable global observable
characterizing any invariant mass distribution [75]. The
peak location is plotted in Fig. 2 for two scenarios:
(a) κ3 ¼ 0 and varying the ratio κ2=κ1, keeping the total
X → ZZ → 4l partial width fixed to ΓSM, and (b) κ2 ¼ 0
and similarly varying the ratio κ3=κ1.

Let us first focus on the interplay between the κ1 and κ3
terms in the Lagrangian (3). In this case, the behavior of
the peak shown in Fig. 2(b) is relatively simple, due to the
absence of an interference contribution (f13 ¼ 0). The case
of the SM (denoted by the blue circle) corresponds to
κ1 ¼ 1 and κ3 ¼ 0, in which case the MZ2

distribution is
made up entirely of the f11 contribution, which peaks
around 28 GeV. As the value of κ3 is gradually increased,
one introduces a larger fraction of the f33 component
from Fig. 1, which peaks at a lower value of MZ2

, around
25 GeV. As a result, the peak location in Fig. 2(b) is initially
a decreasing function of the ratio κ3=κ1. Eventually, we
reach the case of a pure 0− state with κ2 ≠ 0 and κ1 ¼ 0,
when the MZ2

distribution is composed entirely of the f33
component and the MZ2

peak is located at MZ2
∼ 25 GeV.

The right half of Fig. 2(b), where the κ1 and κ3 couplings
are taken with a relative minus sign, is a mirror image of the
left and can be understood in the same way.
Notice that the f11 and f33 contributions always enter

with positive weights, κ21 and κ23, respectively. Thus the
shape of the combined MZ2

distribution is a weighted
average between the f11 and f33 shapes seen in Fig. 1(a),
which are already very similar. As a result, the peak
location stays relatively constant over the whole range of
the couplings ratio κ3=κ1.
In contrast, when we consider the interplay between κ1

and κ2, the situation changes completely, as demonstrated
by Fig. 2(a). Now theMZ2

distribution is built up from three
components: f11, which peaks near 28 GeV, f22, which
peaks around 30 GeV, and f12, whose magnitude peaks
near 29 GeV. Given that the peaks of all these three
components are very close, one might expect that the peak
of the total MZ2

distribution would also fall in the vicinity
of 28–30 GeV However, Fig. 2(a) reveals that this naive
expectation is false and that in the range where the
couplings κ1 and κ2 have the same sign, the peak location
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FIG. 2 (color online). The location of the peak in theMZ2
distribution as a function of (a) the ratio κ2=κ1, with κ3 ¼ 0 and (b) the ratio

κ3=κ1, with κ2 ¼ 0. The shaded region denotes the lower cut on MZ2
used in our analysis. The blue circle corresponds to the case of

the tree-level SM (κ1 ¼ 1, κ2 ¼ 0, κ3 ¼ 0).

7Contrast this to the case of the SM background, where there is
a contribution from a virtual photon which dominates and causes
the MZ2

distribution to peak at much lower values [42,48].
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can vary from as low as 15 GeV to as high as 31 GeV. The
reason for this wild behavior can be traced to the fact that
the interference term, f12, is significant and opposite in
sign from f11 and f22, so that when the couplings κ1 and κ2
have equal signs, it destructively interferes with the sum of
the f11 and f22 terms. Even more surprisingly, as the value
of κ2 is increased relative to κ1, at a certain point the MZ2

distribution undergoes a type of first order phase transition,
where the location of the peak “jumps” suddenly and
discontinuously from around 18 GeV to near 30 GeV,
signaling the presence of at least two local maxima in the
MZ2

distribution.
The peculiarities exhibited in Fig. 2(a) prompt further

detailed investigations. In Fig. 3 we plot the MZ2
distri-

bution (shown with a red solid line) for a series of
interesting ratios κ2=κ1. In each frame, we also show the
three individual contributions, appropriately weighted with
products of κi factors: f11 (dashed blue), f22 (dot-dashed
orange) and the interference term f12 (dotted green). The
top left frame represents the case of the SMwith κ1 ¼ 1 and
κ2 ¼ 0. The MZ2

distribution is comprised entirely of the
f11 component and peaks rather sharply around 28 GeV. As
we start increasing the value of κ2, the (negative) interfer-
ence term f12 begins to partially offset the f11 piece and
shifts the peak towards lowerMZ2

values. At the same time,

the shape of theMZ2
distribution becomes deformed, while

the MZ2
peak becomes rather broad.

A very interesting situation occurs in the κi parameter
region illustrated by the plots in the second row of Fig. 3.
Here the cancellation between the (negative) interference
term f12 and the (positive) f11 and f22 is near maximal [see
Eq. (12)]. More importantly, the resulting MZ2

distribution
begins to develop a second local peak at high values of
MZ2

∼ 30 GeV. As κ2 grows, this secondary peak becomes
stronger and eventually takes over as the primary peak in
the distribution, causing the sudden jump seen in Fig. 2(a).
This phenomenon resembles a first order phase transition
and can be seen more clearly in Fig. 4, where we zoom
in on the actual MZ2

distribution without the individual
contributions. Of course, in the regime where this interest-
ing behavior occurs, the large destructive interference also
suppresses the cross section. The reader will note that the
values of κ1 and κ2 shown in Fig. 4, which are necessary to
give the correct SM partial width in Eq. (10), are relatively
large as a result.
As thevalueof κ2 is increasedbeyond the regionof the first

order phase transition shown in Fig. 4, theMZ2
distribution

starts to be dominated by the f22 contribution and eventually
we get to the pure 0þh state (the second to last panel in Fig. 3).
The final panel in Fig. 3 shows a representative point with
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FIG. 3 (color online). MZ2 distributions for κ3 ¼ 0 and different choices of κ1 and κ2. The net total (shown in solid red) is comprised of
three contributions: from f11 (dashed blue), from f22 (dot-dashed orange), and from the interference term f12 (dotted green). More plots
like these are available in movie form in Ref. [76].
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opposite signs for the couplings κ1 and κ2. In that case, the
sign of the interference term f12 is flipped and it adds
constructively with f11 and f22, causing the peak of the
MZ2

distribution to stay in the vicinity of 28–30 GeV.

III. METHODOLOGY

A. Optimized analyses

To obtain the greatest sensitivity to a signal in a model
which is characterized by a modest number of parameters,
it is customary to use analyses with criteria specifically
optimized for each point in the parameter space of the
underlying model. This procedure is used in all searches for
Higgs bosons, whether SM or otherwise. The approach has
also been advocated for supersymmetry searches where the
signal model may have a greater number of parameters
[77,78]. In line with this idea, we introduce the kinematic
discriminants that are automatically optimized for each
point in the XZZ coupling parameter space.
In this reportweassumethat thecrosssectionhasbeenwell

measured and that variations in the overall rate may be
absorbed into the ggX couplings (providedwe consider only
the pp → X → ZZ → 4l channel). For this reason, the

parameters we aim to measure are not the XZZ couplings,
κi, but their ratios κ2=κ1 and κ3=κ1. These quantities can
be easily reexpressed in any desired convention, such as
“geolocating” angles as in Ref. [53] or fa-like fractions as in
Ref. [10]. In this study we assume that the couplings are real
numbers, as already explained in Sec. I A 2.

B. Preparation of Monte Carlo samples

The analyses are performed using simulated gg → X →
ZZ → 4l events, generated using FeynRules [79] and
MadGraph [80] according to the MEKD framework [48].
This approach ensures that we include all interference
effects: those arising from the presence of multiple terms
in the Lagrangian as well as those associated with permu-
tations of identical leptons in the 4e and 4μ final states.
Following the ATLAS and CMS results [9,10] the mass of
the scalar Higgs-like boson mass is taken to be 125 GeV.
We use MadGraph to simulate the qq̄ → ZZ backgrounds.
Our simulation is performed entirely at the leading order
and at the parton level. In order to compensate somewhat,
we consider events with the four-lepton invariant mass in a
very conservative 10 GeV mass window centered at the
Higgs mass of 125 GeV (in contrast, the LHC detectors

(a) (b)

(c) (d)

FIG. 4. Unit-normalized differential MZ2
distributions for κ3 ¼ 0 and several choices of κ1 and κ2 near the point of the “first order

phase transition.” where the impact of interference on the shape of the distribution is maximal (see Fig. 3). Distributions are shown for
κ1 ¼ 1.58943 and κ2 ¼ 5.93185 (top left), κ1 ¼ 1.43018 and κ2 ¼ 5.95715 (top right), κ1 ¼ 1.40455 and κ2 ¼ 5.94757 (bottom left),
and κ1 ¼ 1.30476 and κ2 ¼ 5.88537 (bottom right).
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have 1%–2% mass resolution). Consequently, the larger
mass window results in the acceptance of more background
events.
We use lepton kinematic selection criteria very similar to

those used in the H → ZZ → 4l analyses of ATLAS and
CMS experiments [9,10]. Leptons are required to have
transverse momenta pT > 5 GeV and pseudorapidity
jηj < 2.5. At least one same-flavor opposite-sign lepton
pair must have an invariant mass greater than 40 GeV, while
the other lepton pair must have an invariant mass greater
than 12 GeV. We use events with all three final-state
combinations (4e, 4μ, and 2e2μþ 2μ2e) in all of our
analyses.

C. Projected event yields

In order to obtain the analysis results as a function of
the integrated luminosity of the LHC runs at 14 TeV, we
estimate experimental reconstruction efficiencies and con-
tribution of the background at the 14 TeV LHC using the
average of the expected signal and background event yields
reported by ATLAS and CMS (Table II). The number of
events expected in the 14 TeV LHC runs with L fb−1 of
integrated luminosity, NðLÞ, is computed as

NðLÞ ¼ NATLAS þ NCMS

2
×
σð14 TeVÞ
σð8 TeVÞ ×

L
ð25 fb−1Þ :

(27)

The ratios of cross sections for the SM Higgs boson signal
and the dominant qq̄ → ZZ background used in Eq. (27)
are σHð14TeVÞ=σHð8TeVÞ¼2.6 [81] and σZZð14 TeVÞ=
σZZð8 TeVÞ ¼ 1.9 (computed with MCFM [82]). With
these assumptions, the average expected event rates per
experiment per fb−1 of integrated luminosity at the 14 TeV
LHC are 1.9 (signal) and 0.76 (background, in the 10 GeV
mass window described above).

D. Kinematic discriminants

Kinematic discriminants for separation between the two
types of four-lepton processes, A and B, may be constructed
by calculating the ratio of the squared matrix elements for
these two hypotheses, as described in Ref. [48]. For each
four-lepton event with kinematic information x, one can
compute

DðA;B;xÞ ¼ jMðA;xÞj2
jMðB;xÞj2 : (28)

In our analysis, we compute the kinematic discriminants
following this approach. We first consider the kinematic
discriminant DðX; 0þÞ. Here, the hypothesis X is the
hypothesis that the scalar Higgs-like boson couples to
Zs via both the κ1 and κ3 operators. We will further refer
symbolically to this state as X ¼ κ1½0þ� þ κ3½0−�. The
hypothesis 0þ assumes that the scalar Higgs-like boson
has only the tree-level SM coupling to Z bosons. Therefore,
for DðX; 0þÞ we obtain

DðX; 0þÞ ¼ jMðXÞj2
jMð0þÞj2

¼ κ21 þ κ23
jMð0−Þj2
jMð0þÞj2 þ κ1κ3

ðinterferenceÞ
jMð0þÞj2 :

(29)

By construction, this discriminant takes into account all
aspects in which kinematic distributions differ between the
two hypotheses, including in particular those associated
with the interference between the κ1 and κ3 operators in
hypothesis X.
Alternatively, one can choose to use the kinematic

discriminant Dð0−; 0þÞ [10], where the two hypotheses,
0− and 0þ, correspond to the cases where only the κ3 term
or only the κ1 term are nonvanishing, respectively,

Dð0−; 0þÞ ¼ jMð0−Þj2
jMð0þÞj2 : (30)

Since the two hypotheses from which the discriminant is
calculated correspond to two pure states, discriminant
Dð0−; 0þÞ is explicitly insensitive to the potential effects
on kinematic distributions associated with the interference
[unlike discriminant DðX; 0þÞ]. The Dð0−; 0þÞ discrimi-
nant is optimal for comparing the two pure states or for
testing for the presence of an additional pseudoscalar state
nearly degenerate with the scalar Higgs-like boson (but
with a sufficiently different mass that there is no significant
interference in the scalar and pseudoscalar production and
decays). However, as it ignores interference effects, it is not
optimal for measuring the state X which couples with ZZ

TABLE II. The expected event yields for the SM Higgs boson signal with mass mH ¼ 125 GeV and background,
as reported by the ATLAS and CMS Collaborations for 7þ 8 TeV LHC Run I.

Experiment Process Event yield Integrated luminosity at 7þ 8 TeV Source

ATLAS
Signal 18.2

4.6þ 20.7 ¼ 25.3 fb−1 Tab. 7 in Ref. [9]
Background ∼1 event=GeV Fig. 4 in Ref. [9]

CMS
Signal 19.2

5.1þ 19.6 ¼ 24.7 fb−1 Tab. 2 in Ref. [10]
Background ∼1 event=GeV Fig. 2 in Ref. [10]
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via both κ1 and κ3 terms. Discriminant DðX; 0þÞ described
above is ideal for this purpose.

E. Statistical analysis

We obtain distributions for the kinematic discriminants
described above using simulation. Distributions are
obtained for events that correspond to the signal hypothesis
X, to the signal hypothesis 0þ (both described above) and
to the background hypothesis. Examples of the distribu-
tions, pdf ðDjX þ bkgÞ and pdf ðDj0þ þ bkgÞ are shown
in Fig. 5.
These kinematic discriminant distributions are then used

to construct the test statistic q as follows:

q ¼ −2 ln Lð“data”jX þ bkgÞ
Lð“data”j0þ þ bkgÞ

¼ −2 ln
Y
i

pdfðDijX þ bkgÞ
pdfðDij0þ þ bkgÞ ; (31)

where i runs over all the events in an pseudoexperiment.
An example of the test statistic distributions obtained
with 50000 pseudoexperiments for a particular choice
of the integrated luminosity L and κ3=κ1 ratio is shown
in Fig. 5(b).
To quantify the expected separation power between

alternative signal hypotheses, we find a “midpoint” value,
~q, of the test statistic q between the medians of the two test
statistic distributions (those generated using each signal
hypothesis). We use point ~q to define two “tail probabil-
ities,” Pðq ≥ ~qjXÞ and Pðq ≤ ~qj0þÞ, in such a way that
Pðq ≥ ~qjXÞ ¼ Pðq ≤ ~qj0þÞ. This tail probability is then
converted into significance ~Z (in σ) using the one-sided
Gaussian tail convention:

P ¼
Z þ∞

~Z

1ffiffiffiffiffiffi
2π

p expð−x2=2Þ dx: (32)

Finally, for the separation power between alternative signal
hypotheses we quote Z ¼ 2 ~Z, where the extra factor of 2
arises from the fact that the ~q point is half-way between the
medians of the two distributions. With such a definition, we
treat two alternative hypotheses symmetrically and we do
not need to generate billions of pseudoexperiments to
assess tail probabilities corresponding to 5σ separations.
The presence of a nonzero value of κ3 could be

established, albeit with different significances, in searches
performed using either DðX; 0þÞ or Dð0−; 0þÞ. The differ-
ence in the sensitivity between the two searches is
manifested in case the interference between the κ1 and
κ3 operators is present. This is not unlike the actual
discovery of the Higgs boson candidate, which gave rise
to the ∼5σ signal in the SM Higgs search [1,2] and at the
same time was also seen as ∼3σ excesses in the Higgs
boson searches performed in the context of the fermio-
phobic and SM4 scenarios [83]. In case the presence of a
nonzero value of κ3 is established, the next two questions to
answer are

i) whether there is one state X ¼ κ1 ½0þ� þ κ3 ½0−� with
interference or there are two noninterfering states,
scalar S ¼ κ1 ½0þ� and pseudoscalar P ¼ κ3 ½0þ�;

ii) if there is interference, how well we can tell apart the
relative signs of κ3 and κ1 couplings.

Both of these questions can be addressed by repeating the
statistical analysis with properly adjusted kinematic dis-
criminants. To demonstrate the ability of an experiment to
establish the presence or absence of interference, as well as
to determine the relative sign of couplings, we plot the per
event log likelihood for two particular benchmark points in
Figs. 6 and 7. The benchmark point used for Fig. 6 (Fig. 7)
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FIG. 5 (color online). (a) Distributions of DðX; 0þÞ ¼ jMðXÞj2
jMð0þÞj2 for two alternative hypotheses 0þ and X, where X has κ3=κ1 ¼ 5.21.

(b) Corresponding distributions for the test statistic defined in Eq. (31) for pseudoexperiments at an integrated luminosity L ¼ 100 fb−1.
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has nonzero values for κ1 and κ2 (κ1 and κ3), while the
log likelihood is evaluated for various values of the
κ2=κ1ðκ3=κ1Þ ratio.
In the absence of interference, the likelihood functions

are symmetric under κ2;3 → −κ2;3. The presence of inter-
ference breaks this symmetry and gives one sensitivity to
the sign of the couplings. We note that interference between
contributions to the amplitude from the κ1 and the κ2 terms
is relatively straightforward to detect, as one would expect

from the behavior of the MZ2 distribution discussed above.
On the other side, interference involving the κ1 and κ3 terms
will be more challenging to detect. Interestingly, it is
significantly easier to determine the correct sign of κ3
assuming interference, than it is to determine whether that
interference is present.

IV. RESULTS

Figure 8(a) presents the expected upper limits on the
ratio of couplings κ3=κ1 versus the integrated luminosity.
Similarly, Fig. 8(b) shows a plot for the expected 5σ-
observation sensitivity. Results with both the optimal
DðX; 0þÞ and the interference-blind Dð0−; 0þÞ discrimi-
nants are shown. The expected exclusion and observation
sensitivities are identical for positive and negative signs of
the κ3=κ1 ratio. Of course, for a given pseudoexperiment
and in the actual LHC running one sign or the other will be
preferred by the data.
In Figs. 8(a) and 8(b) one can see that the sensitivities

obtained with the two discriminants scale very differently
with integrated luminosity L. This is because theDð0−; 0þÞ
discriminant does not change when one wishes to probe
smaller or larger values of the κ3=κ1 ratio. In this case, the
sensitivity to jκ3=κ1j2 which is related to the ratio of cross
sections σ3=σ1 ¼ γ33κ

2
3=κ

2
1 scales approximately as 1=

ffiffiffiffi
L

p
.

On the other hand, the DðX; 0þÞ discriminant is automati-
cally optimized for any given κ3=κ1 value probed. For this
reason analyses with DðX; 0þÞ which probe different
fractions of the 0− state can be thought of as separate
analyses, and their respective sensitivities to jκ3=κ1j2 at
different luminosities do not have to be connected via a
simple 1=

ffiffiffiffi
L

p
relationship.

The difference between the sensitivities obtained with
the two discriminants can be quantified in terms of a ratio
of integrated luminosities required to achieve the same
sensitivity. Figures 8(a) and 8(b) show that this difference
grows very large for smaller values of κ3=κ1. For example,
to probe κ3=κ1 ¼ 1, the integrated luminosities needed
for a 2σ separation differ by a factor of 4: ∼700 fb−1 with
the interference-sensitive DðX; 0þÞ discriminant versus
∼3000 fb−1 with the interference-blind discriminant
Dð0−; 0þÞ. With L ¼ 3000 fb−1, the interference-sensitive
discriminant DðX; 0þÞ allows for reaching a 5σ sensitivity
for jκ3=κ1j ∼ 1. However, at an integrated luminosity of
10 fb−1, which approximately corresponds to 25 fb−1 at
8 TeV, the difference in sensitivities to κ3=κ1 achievable
with the two discriminants is rather modest, Oð10%Þ.
Figure 9 shows the expected 2σ-exclusion and 5σ-

observation sensitivities for the ratio of couplings κ2=κ1
versus the integrated luminosity. In these figures we focus
on the κ2=κ1 > 0 region for which destructive interference
is present, as the prospects for early detection are more
favorable with this choice of the relative sign of the two
couplings. Results with both the optimal DðX; 0þÞ, where
X ¼ κ1 × ½0þ� þ κ2½0þh �, and interference-blind Dð0þh ; 0þÞ

FIG. 7 (color online). The log likelihood per event for various
values of κ3=κ1 for a particular benchmark point with ðκ1; κ3Þ ¼
ð1= ffiffiffi

2
p

; 1=
ffiffiffiffiffiffiffiffiffi
2γ33

p Þ (vertical line), which is the point with the same
cross section as the standard model and an angle of π=4 with
respect to the SM axis, along a circle of constant cross section in
ðκ1; κ3Þ space.

FIG. 6 (color online). The log likelihood per event for various
values of κ2=κ1 for a particular benchmark point with ðκ1; κ2Þ ≈
ð1.77; 4.26Þ (vertical line), which is the point with the same cross
section as SM for which x1 ¼ x2 in the language of Ref. [53]. The
quantity on the horizontal axis represents the angle along a circle
of constant cross section in ðκ1; κ2Þ space in the absence of
interference.
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discriminants are shown. As suggested in Eq. (12) above,
there is substantial destructive interference in the range of
κ2=κ1 ≈ 2–4 that leads to dramatic changes in the MZ2

invariant mass distribution shown in Fig. 3. The kinematic
discriminants are automatically sensitive to such changes
in the MZ2

distributions, as well as to changes in other
kinematic variables. As a results, it would be relatively easy
to differentiate the case where κ2=κ1 is in this range from
the pure SM Higgs-like boson. In fact, since the ∼25 fb−1
of 8 TeV data already recorded on tape translates into the
∼10 fb−1 of 14 TeV data, we find that the LHC experi-
ments should already be able to discover or exclude the
2 < κ2=κ1 < 4 range. We note also that with existing data

there should be a borderline sensitivity for exclusion of the
κ2=κ1 > 4 range, which includes the case of a pure 0þh state.
This result is well in agreement with the expected sensi-
tivity of 1.8σ for a 100% pure 0þh state reported by CMS
[10]. The observed limit reported by CMS is 92% C.L.

V. SUMMARY

We have considered the important question of how to
measure the couplings of the scalar Higgs-like boson, X, to
two Z bosons. In particular, we have studied the effects of
the interference between various XZZ operators, presented
the kinematic discriminants that take into account these
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FIG. 9 (color online). (a) The integrated luminosity required for a 95% C.L. exclusion of the ratio of couplings κ2=κ1, provided the
data is described by the SM hypothesis. (b) The integrated luminosity required for 5σ observation sensitivity to the presence of a nonzero
ratio of couplings κ2=κ1. Results with interference-sensitive DðX; 0þÞ and interference-insensitive Dð0þh ; 0þÞ discriminants are shown
with blue and green curves, respectively.
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FIG. 8 (color online). (a) The integrated luminosity required for an expected 2σ exclusion of the ratio of couplings κ3=κ1, provided the
data is described by the SM hypothesis. (b) The integrated luminosity required for 5σ-observation sensitivity for the ratio of couplings
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shown with blue and green curves, respectively.
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interference effects, and provided projections for the
coupling measurements using these discriminants at the
14 TeV LHC.
We have also compared the sensitivity of these kinematic

discriminants with the kinematic discriminants that do not
include interference terms and found that incorporating
interference effects allows one to significantly improve the
sensitivity to states where more than one operator is present
in the XZZ coupling. Depending on the value of the
couplings being probed, using analyses that take interfer-
ence into account may reduce the integrated luminosity
required to reach a given sensitivity by as much as a factor

of 4, as compared with analyses that neglect this interfer-
ence. Thus using analyses such as those presented may
allow one to reach given sensitivity benchmarks at the LHC
years earlier than otherwise.
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