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Lepton flavor-violating processes offer interesting possibilities to probe new physics at multi-TeV scale.
We discuss those in the framework of effective field theory, emphasizing the role of gluonic operators.
Those operators are obtained by integrating out heavy quarks that are kinematically inaccessible at the
scale where low-energy experiments take place and make those experiments sensitive to the couplings of
lepton flavor-changing neutral currents to heavy quarks. We discuss constraints on the Wilson coefficients
of those operators from the muon conversion u~ + (A, Z) — ¢~ + (A, Z) and from lepton flavor-violating
tau decays with one or two hadrons in the final state, e.g., 7 — fnm and 7 — £ntn~ with £ = p, e. To
illustrate the results we discuss explicit examples of constraining parameters of leptoquark models.
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I. INTRODUCTION

As follows from observations of neutrino oscillations,
there is good evidence that the individual lepton flavor is not
conserved. Explicit calculations of the standard model (SM)
rates for the charged lepton flavor-violating (LFV) transi-
tions indicate that those are tiny [1,2], well beyond the
capabilities of current and currently planned experiments.
Yet, many models of beyond the standard model (BSM)
physics do not exclude relatively large rates for such
transitions, so experimental and theoretical studies of LFV
processes like y — ey, 7 — ', or u= + (A, Z) = e~ +
(A, Z) could provide a sensitive test of those BSM schemes.

The language of effective field theory (EFT) is very
useful in the studies of flavor-violating processes for
several reasons. First, it allows us to probe the new physics
(NP) scale generically, without specifying a particular
model of NP. Studies of specific models in this framework
are equivalent to specifying Wilson coefficients of effective
operators. Second, EFT allows for studies of relative
contributions of various operators and may even provide
clues as to what experiments need to be done to discrimi-
nate among different possible models of new physics [3].

Interactions of flavor-changing neutral currents (FCNC)
of leptons with hadrons, either in muon conversion or in tau
or meson decays, can be described in terms of effective
operators of increasing dimension [3]. In order to set up an
EFT calculation, however, one must first discuss the
multitude of scales present in lepton FCNC transitions.
The highest scale, which we denote as A, is the scale
associated with new physics that generates the FCNC
interaction. There could be many ways to generate the
flavor-changing neutral current of leptons, yet, below the
scale A any heavy new physics particles are integrated out
resulting only in a few effective operators [4]. We shall keep
track of the leading contribution due to NP which, below the
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scale A, is proportional to 1/A2. The second highest scale is
the one associated with electroweak symmetry breaking, v.
The most important scales for this study are the scales
associated with heavy quark masses, m,, m,,, and m.. In the
framework of EFT one must integrate out heavy quarks that
are not kinematically accessible at the scale where the
experiment takes place, resulting in changes of Wilson
coefficients of quark and gluon operators.

The relation between all those scales can be done with the
help of a renormalization group, keeping track of which
degrees of freedom are kept and which are integrated out. We
shall list the most important operators for our analysis below.

A. Quark operators

The lowest-dimensional local operators that contribute to
lepton flavor-violating transitions without photons in the
final state [5] have operator dimension six. There are, in
general, twelve types of operators that can be constructed,

1 12

6

Lo =1 ZZC?flsz?flf2 +He, ()
i=1 ¢

where A is a high scale of new physics, and C;-’f"’pz are
dimensionless Wilson coefficients. The four fermion oper-
ators can be split into three classes which we define
according to their Dirac structure:

(i) scalar operators,

Qimfz = (1r%a1)(GrqL):
ng'fz = (£1r%a)(G14R):
nglfz = (£1.28)(Gr4L):
thmfz = (£10.628)(@L4R) 2)

where £ (q) is the SM charged lepton (quark).
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The scalar operators above are defined below the scale of
electroweak symmetry breaking (EWSB) in the standard
model as they are not invariant under electroweak SU(2),
symmetry. The proper definition of those operators above
EWSB scale should include Higgs doublet fields H. The
operators of Eq. (2) result from the substitution H — v and
redefinition of proper Wilson coefficients [6] to scale out
quark or lepton Yukawa coupling, which would result in a
(dimensionless) factor of Gpm,m, in front of the scalar
operators.

These mass factors properly suppress flavor-violating
transitions of the first generation of quarks and leptons that
are well constrained experimentally. Notice, however, that
they are not model universal. For example, models with
FCNC Higgs boson interactions often employ factors of
Mz Mz, /v (so called Cheng-Sher ansatz [7]) to suppress
flavor-changing lepton currents, while generic leptoquark
or R-parity violative supersymmetric models do not have
any factors of mass, relying on the smallness of coupling
constants to suppress those effects [8]. In the following we
shall absorb all mass factors into the definition of Wilson
coefficients C?f‘fz. There are also

(ii) vector operators,

qf & (?:ﬂ Vﬂsz)( YML)’
qf = (210" (GrY,uqR)-
= (¢ )@rruar)
= (¢ )(@rY44r)

qf “ = (81r1r" ok L)
qf & 1RV C R R) (3)
and (iii) tensor operators,
04" = (Z1g0™ £2.)(GrOWAL)
p _
01" = (Z1r0" €21)(41L0w )
£\t 5 _
q ’ ( 1. Lo" sz)(QRG,wC]L),
£\
01" = (£1.0"¢2r) (416, 4R)- “4)

All quark flavors need to be considered, but the operator
basis needed to describe a particular experiment could
include a smaller number of operators.

B. Gluonic operators

The low-energy experiments such as muon conversion
U+ N — e+ N or tau decay 7 — )i have a naturally
defined scale of the order of the mass of heavier lepton. In
order to write an appropriate set of effective operators at
that scale one must integrate out quarks with masses above
that scale [9].

The flavor-changing Lagrangian for the effective vertices
with 7|, ¢,, and two gluon external legs at the energies
lower than heavy quarks masses can be written as
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where ¢; are the Wilson coefficients, and O; are the
effective operators of dimension seven:

pL
00" = Z\pty,

i a G,
0@;2 C\rtar 4ﬁ W(;aw’
05 = 2,16z f LG,
00 = 2,105 f L Ga,Gm, (6)
where a =1,.....,8 is the gluon color index, p, =

—ba?/(2r) is the one-loop beta function of three flavor
QCD with b = 11 —2n; /3 (n; = 3 is the number of light
quarks) and a, = ¢2/(4x);

qu = auAZ - 81/AZ + gsfabcA/}:A; (7)

is the gluon strength tensor, and

a 1 aa,
G;w = EeﬁwaﬁG 4 (8)

is the dual one. In Eq. (5) we do not include the operators
with dimension higher than seven. It can be easily seen that
there are no other possibilities besides the four operators
in Eq. (6).

By calculating the loop diagrams in Flg 1, using
the standard methods [10], the coefficients c; 21%2 can be
expressed through C¢'** in Eq. (1) as

61t 1(mg) gere 6\t
C]12:—§ mQ(C?12+C12112)’ 9)

q=c,b,t q

[\
~

0 0 t 0

9 g g 9

FIG. 1. Feynman graphs for the calculation of matching
coefficients of gluonic operators. The large dots indicate the
effective vertices described by Eq. (1).
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0t 21 I,(m,)
c 41

5 — 9 (qu fv Cgflfz), (10)

q=c.b,t mq

2 I,(m,)

016, 1 q qt\¢s qt 10

- _= E 9 (¢ + ( , 11
“ 9q:cb.t q ( ’ ) ) ( )

2i I,(m
) L e S NP
9 q=c,b,t mq

where the coefficients (see Ref. [11] for I; and the
Appendix) at the leading order are

Il - 12: (13)

1 1
3’ 2’
Note, as previously discussed, that while the Wilson
coefficients in Eqs. (9)-(12) explicitly contain factors of
1/m,, in many models the coefficients Cq 12 contain
factors of m,, which we absorbed as part of thelr definition.
Also, we do not explicitly write out contributions to Wilson
coefficients due to possible colored heavy states that are not
SM quarks; those contributions would result in additive
modifications of Eqs. (9)-(12). Also, in this paper, we
ignored the running of c¢; in between different scales.

Integrating out heavy particles could also result in
higher-dimensional gluonic operators, as would happen
for vectorlike dimension-six operators. For instance, a set
of operators of dimension eight can be written as

058) = €Myaﬂ(2lLaﬂyuf2L) ﬂ Gngal)’
(8) _ uvap ( 7 p ﬂ a
0, = P (£1,0,r sz)4 G Gops
oY = (2,,0,¢ hr ana,
= (1.0, 2L)4 G, G (14)

S

Another three operators 0£8> - Oég) could be obtained by
substituting left-handed lepton fields with the right-handed
ones. Here we shall concentrate on the operators of
dimension seven, leaving analysis of higher-dimensional
operators for future work.

This paper is organized as follows. In Sec. II we
reexamine constraints on the Wilson coefficients of oper-
ators O and 07" from p-e conversion data. We consider
constraints on Wilson coefficients of operators Of™—05"
from tau decays in Sec. III. As an example, in Sec. [V we
consider how our constraints translate into constraints on
couplings of LFV lepton currents with heavy quarks in
leptoquark models. We conclude in Sec. V.
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II. CONSTRAINTS FROM p-e CONVERSION

Muon conversion on a nucleus [2,12-17] offers a
sensitive probe of new physics and a nice possibility to
study it experimentally providing an interesting interplay
of particle and nuclear physics effects. The number of
relevant operators in Egs. (1) and (5) is reduced if one only
considers coherent y+ N — ¢ + N transitions' [3].

The initial state in the 4 — e conversion process

4 (AZ) > e+ (A Z) (15)

is the 1s state of the muonic atom with the binding energy
E,, and the final electron state is the eigenstate with the
energy m, — E;, (neglecting the atomic recoil energy of a
muonic atom, see [19]). Following Ref. [20] the y —e¢
conversion amplitude can be written as

e 1 (e
Moy =z [ x| comipunt]
- u(e) / bL a apy
+C3'I’MK,WPR’//“) N 4a, 1, GuwG™|\N

+ (ch‘f"“)PLw({;) + C4'/7y,<,WPRl//13))

S

where (N’'| and |N) are the final and initial states of the
nucleus, respectively; the 1s initial muon wave function

g_)(:tl/Z

X1

wﬁ?—( M) (17)
if x

Gamx

is normalized to 1 and corresponds to the quantum numbers
k =—1 and u = £+1/2 of the operators

c-1+1 O
Kz( (18)

0 —(6-l+1)>

and j_, respectively, where [ is the orbital angular momen-
tum, and xk = %1 final electron wave functions

g_)(il/z
_< € ill/z> (19)
lfe)(l

'"There are also important nonlocal contributions from the
operators governing y — ey transitions with the photon attached
to a nucleus. Those contributions are well known [18] and will
not be discussed here.

+1/2
Wfl./W@)

and
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gt
wiiv/z(e’=< 4 ) (20)

+1/2
ifixy” 1/

are normalized as

[ ot

where W is the energy. The electron mass was neglected in
Eqgs. (19) and (20) so that g/ =if, and if} = g,. Using
the normalization

1
/dcosé’/ d(p”*”,—(S/(S/ (22)
-1 0

of the eigenfunctions y¢ of (6 -1+ 1) and j., we have

W (X) = 278,,5,08(W — W'),  (21)

= g\ Pryl, 23)

1
(1 WPl = - 5(929;—f;f;), (24)

with a = L, R.

The pseudoscalar nucleon current couples to the nuclear
spin leading to incoherent contribution [21]. The matrix
element in Eq. (16) relevant to the coherent conversion
process (N = N') can be expressed by the proton p(?) and
neutron p" densities in a nucleus as

AL
(¥ enm )

_ _g [ZG9P)pP) 1 (A —Z)Glomp],  (25)

apv
;U/G a

where A and Z represent the mass and atomic number of the
nucleus, and the matrix element of gluon operator between
the nucleon states is defined as

GlaN) — <

with N = n, p. This scalar matrix element can be calculated
by using the trace of the energy-momentum tensor ® [22]
and applying the flavor SU(3) symmetry. Since @), is flavor
symmetric, the proton and neutron scalar matrix elements
are equal. For the strange-quark sigma term o,
m(p|3s|p) = 50 MeV the numerical result is G(HN)
—189 MeV [23].

The nucleon densities are assumed spherically symmet-
ric and normalized as

as
s Ga Ggamv
4 M

N > (26)
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/00 drazxr’p™N(r) = 1. (27)

0

As usual for spherical nuclei, the two-parameter Fermi
(2pF) charge distribution is used

o Po
) = T el 28)

where c is the half-density radius.

The formula for the coherent conversion rate can be
written as

le? + lesP)ay.  (29)

4
1—‘conv(/dv - EN) = P(

where
ay = Gl §r) 4 Glan g, (30)

The overlap integrals are defined as [20]

1 o o S
-7 A ArPZp)(g; gy — fofa), G

—L 0 2 o (
2\/§A drr(A = 2)p"(ge G — fefu)- (32)

The parameters of model 2pF of nucleon densities in
Eq. (28) [24], and the overlap integrals in Eqs. (31) and (32)
[20] for the same distributions

PP (F) = p (1) = p(r) (33)

of neutrons and protons in the nuclei $3Ti and %’ Au are
shown in Table 1. The parameters of the Founer Bessel
expansion (FB)

S a, sin(vzrR™")/(varR~") for r <R
p(r) = { v (34)

0 forr<R
are given in Refs. [24,25].

The branching ratio for 4 — e conversion on a nucleus N
is defined as

TABLE L. Nucleon densities model parameters and the overlap
integrals in the unit of m;/ for several nuclei.

Nucleus Model ¢, fm z,fm st NE
BTi FB N/A N/A 0.0368  0.0435
157 Au 2pF 6.38 0.535 0.0614  0.0918
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TABLE II. Muon capture rates, bounds on BN

> and binding
energies for several nuclei N.

Nucleus Teyp(u™N), s7' B, (90%C.L.) E,, MeV

STi 2.59 x 106 4.3 x 107'2 Ref. [28] 1.25 Ref. [29]
157 Au 13.07 x 10° 7 x 10713 Ref. [19] 10.08 Ref. [19]
TABLE III.  Upper bounds on the parameters of the Lagrangian

in Eq. (5) from muon conversion experiments.

Coefficient Bound on |c¢{*|/A%, GeV~3
Conversion on 3$Ti ~ Conversion on 137 Au

¢ 5.7 x 1012 2.6 x 10-12

CH N/A N/A

cs 5.7 x 10712 2.6 x 1012

ca N/A N/A

B;ZYe = 1—‘conv(/‘_l\] - e_Ng.S,>/Fcapt(/“_N)7 (35)
where g.s. stands for ground state. The SM muon capture
rates [20,26], the upper bounds on Bﬁ/e, and the binding
energies of 35Ti and 137 Au are given in Table II with the
respective references. The upper bounds on the parameters
of the Lagrangian in Eq. (5) for one nonzero coefficient ¢ at
a time are given in Table III. It shows that the bound on the
1 — e conversion rate on gold gives the best limit (see

also Ref. [27]).

ITII. CONSTRAINTS FROM 7 DECAYS

The analysis presented above only deals with experimen-
tally interesting coherent u-e conversion. As a result, no
parity-violating operator gives any contribution to the
experimental transition rates. Moreover, we had to resort
to models to describe nuclear effects affecting conversion
rates. It might be advantageous to use other experimental
observables to study LFV new physics couplings to heavy
quarks via gluonic operators. LFV tau decays offer such
opportunity. Besides, analyses of tau decays have different
theoretical uncertainties than muon conversion calculations;
in fact, one can use chiral symmetry and low-energy
theorems to provide model-independent evaluations of
operator matrix elements. While the tau decays have been
studied in a variety of models [8], to the best of our
knowledge gluonic operator contribution (and thus con-
straints on heavy quark couplings from those decays) has not
been previously considered. In what follows we shall use tau
decays to constrain matrix elements of gluonic operators.

A. Parity-conserving gluonic operators

Complimentary to muon conversion experiments con-
sidered in Sec. II, parity-conserving operators can also be
probed in lepton flavor-violating tau decays 1 — ZM ™M™,
where £ =y, e and M =z, 5, K [30,31]. In what
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follows, let us concentrate on the case of three-body decays
7 — un 7z~ and T — uK " K~, which are the most interest-
ing experimentally since all the final particles are charged.
Transitions to other states (like 7 — £7n) can be obtained
by employing flavor SU(3) symmetry relations.

In order to constrain the Wilson coefficients of the
operators in Egs. (2), (3), and (6) one needs to constrain
hadronic matrix elements. For the scalar operators we shall
follow [30] to state

(m*7"1qq|0) = (K*K~|qq|0) = 8;/By.  (36)
where for charged final states 524 =1 if the flavor of the
quark field g in the operator matches the flavor content of the
meson and zero otherwise. For example, (K*K~|5s]0) =
(K*K~|au|0) = By, while (K*K~|dd|0) = 0. Matrix ele-
ments for other light final states can be related to Eq. (36) via
flavor SU(3) relations [30], e.g.,

3(ngng|iuu|0) = — (ngns|gq|0) = By. 37

B w

Note that By = 1.96 GeV can be estimated from the chiral
Lagrangian relations, m2 = (m, + my)B, assuming that
m, =my; =15 MeV.

For the vector operators Eq. (3) one can use the definition
of the pion (kaon) form factor and crossing symmetry,

(MM~ |37,910) = 8Y G\ (Y (p, —p_),. (38)

where Q = p, — p, is the momentum transfer to the
hadronic system and p. are the 4-momenta of M*.
Note that Gl(tf,’) (0) = 1 [32]. Just like before, flavor content
of the operators should match that of the final state mesons.

The matrix elements of gluonic operators Eq. (6) are
easiest estimated in the chiral limit, where m, = m,; =
my = my; = 0. In that limit, a low-energy theorem states
that [33]

a 2
MM |GGy |0) = =S¢,
< 4r e 97

(39)

We do not expect the results to change much away from the
chiral limit, so we shall use this estimate in what follows.
Finally, parity invariance of strong interactions implies that

%)

= (M*M~|gy,rsq|0) = 0.

(MM~ [arsql0) = (M M-| T2 GG,y
4z

(40)

With the definitions above one can calculate the differential
decay rate for the decay 7 — #M*M~. For the scalar and
gluonic operators one has
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TABLE IV. Upper bounds on the parameters of the Lagrangian in Eq. (5§) from tau decay experiments.

Bound on |cf7|/A%, GeV~?

" Btourtn) B(zr—>entn) Bt —>ukK'K") Bz > eK'K™) Bt —un') B(t—en) Blrt—un) Bz— en)
<21x1078 <23x1078 <44x1078 <33x10® <13x107 <1.6x107 <13x1077 <1.6x 1077
cy 6.8 x 1078 6.5x 1078 9.4 x 1078 82x 1078 N/A N/A N/A N/A
cy N/A N/A N/A N/A 23x1077  25x1077 1.6x1077 1.5x1077
c3 6.8 x 1078 6.5x 1078 9.4x 1078 82 x 1078 N/A N/A N/A N/A
Cy N/A N/A N/A N/A 23x1077  25x1077 1.6x1077 15x1077
dl'(t > M +M‘) m, n B of glue, which makes it possible to constrain gluonic LFV
dg> 32(27)3 A4 [Apaal* + 1Brana ] operators resulting from integrating out heavy quarks.
To calculate the decay rates one needs to parametrize the
w1 m3 U ( - q ) ’ @1 hadronic matrix elements,
q* m;
(M(p)lar'ysql0) = —ib,fi,p",
where we set m, = 0 and defined (M(p)|arsql0) = —ibth&,
2 & apv ~a —
Ay = — % ; + T (O + )M, (m(p)| GGy, 0) = ay, 45)
q u,d,s
2oLt 1 . . where g = u, d, s, and b, ; = 1/+/2, by = 1. The form
Byy = — T3q2 +3 Z (CI7" 4 C§77)8Y By, (42)  factors defined above in the Feldmann-Kroll-Stech mixing
g=ud.s scheme [34] are constrained for 7 and 7’ mesons to be [35]

Integrating Eq. (41) we obtain constraints on c T and c
listed in Table IV. Finally, for completion, we present the
contribution to the differential decay rate due to vector
operators,

dly(t » MM~ m3
at )_ (1Crul* + |Duime ]

dg? T 76873 A
2\ 3/2 2\ 2
(-5 (%)
q m;
q2
x (1 —2—2>, (43)
m‘L’

where we set m, = 0 and defined

qtt gt oM
CMM_Eq;\ (CI7 + CLUMGyy,

1 ‘T ‘T
Dy = D (CIT+ )M Gy, (44)

q=u.d,s

This result could be used to constrain Wilson coefficients of
vector operators.

B. Parity-violating gluonic operators

Constraints on the parity-violating contributions can be
obtained from the lepton flavor-violating meson and tau
decays,7 - /M and M — pe, where £ = y, e,and M =,
1, 1. The analysis of decays involving an 7 is especially
interesting, as the #” meson contains a considerable amount

m2, — m2
no -
a, =——" 5 sin 2¢(—f,b, sin ¢ + f, cos @),
m2/ - m2
ay; = —"T” sin 2¢(f,b, sin @ + f, cos @), (46)

where ¢ = 39.3° £ 1.0° is a mixing angle of # and 5 in
the flavor basis [35]. Numerically, the anomaly matrix
elements are a, = —0.022 + 0.002 GeV?, ay = —0.057+
0.002 GeV?. The decays constants in Eq. (45) used in
numerical work are f7 =108 +3 MeV, fﬂ, =89+
3MeV, f;=-111£6MeV, and f, =136+
6 MeV [35,36].

Neglecting terms of the order O(m,/m,), which would
change our answer to at most 5% for £ = u, we can write
for the decay rate,

2

2
. [IAM|2+|BM|2]<1—%> . @)

m
[(z > uM) = -

where A, and B, are defined as

A, =2t + Z qf‘r o qur bqhg/l
e CZ o q=u,d,s 4m
1 43 (43
+5m (€37 = €& )byf iy
q:u,d.s
1 T T
—ome Y (O = )byt (48)
q=ud,s
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By =—"cffay+ > (CIF C’””’bhq
M__— 4 UM -
q=u.d.s 4m
1 ‘T ‘Tt
—gme Y, (CFT=Cibufy

q=u,d,s

m, Z qu’r_cqff) qu (49)

q=u,d,s

The current experimental bounds on flavor-violating tau
decays allow us to put stringent constraints on Wilson
coefficients ¢/* [37]. We display them in Table IV. These
results, along with the ones displayed in Table III, can be
translated into bounds on flavor-changing interactions of
leptons with heavy quarks in particular models. As an
example of how this can be done, we consider a generic
leptoquark model.

IV. MODEL EXAMPLE: LEPTOQUARKS

The Wilson coefficients of effective gluonic operators
that were constrained in the previous sections can be used
to put bounds on parameters of operators describing lepton
interactions with heavy quarks in particular models of NP.
Let us provide an example of how this can be done using a
generic leptoquark (LQ) model.

The general renormalizable, B and L conserving, and
SU(3) x SU(2) x U(1) invariant LQ-lepton-quark inter-
actions are given in Refs. [38—40]. The relevant for our
consideration scalar LQs (S) and vector LQs (V) inter-
actions are

Ls = (A5, @5 102801 + Ags, 842 18) Sy
+ (/ILSl/zb_lszL + lRS]/ZC_ILifzflR)SJ{/z +H.c., (50)

Ly=Av,qrruto1 +/1RVOaR7/4f1R)VI6T
+ (ﬂLv,/zaerysz +’1RV1/ZZIZJ/M£1R)V/S2 +Hec., (51

where ¢, u, and d are doublet, singlet up, and singlet down
quarks, respectively; we omit flavor indexes, the subin-
dexes 0 and 1/2 indicate SU(2) singlet and doublet LQs,
respectively, and couplings A are assumed to be real.

Consider y — e conversion on 737Au induced by lepto-
quark exchange. For the values of the loop integral in
Eq. (A1) we simply have I,(m,) =1I,(m,) =1,(m.) =
0.333 since the muon mass and the binding energy of the
muonic gold are much lower than ¢, b, and ¢ quark masses.
The expressions for relevant Wilson coefficients in Eq. (1)
are given in Table V, where the quark flavor indexes are
u=u,c,tand d =d,s,b.

We assume that only the couplings A for a single quark
flavor are nonzero at a time. From Eqgs. (9) and (11) it
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TABLE V. The Wilson coefficients for the model with LQs.

Ct/N? Expression C4/\? Expression
c J o cd t2b b
i RS ;LS )y -+ LV "RV )y
B A v —
S1/2 Vi
ct f1u ytou cd t9b 401
A—% RS ZL.S[) A_% }“Lvofkvo
ZMS(] M;,O
ct fou \tyu cd £1b ,tab
A—i ARSO{LSO A_; ﬂLVOjRVO
M3, My,
Cg ‘ou ﬂ(l“ Cf‘[ £1b b
2 RS ;5 "LS) ) el LY "RV )y
2M? M3
S1/2 Vi

follows that the best bounds for the scalar LQs (left half of
Table V) are relaxed by the factor 2m,/m;, =75 with
respect to the ones for the vector LQs (right half of
Table V). Using the bound on |c;|, we have for e = ¢,
and u =72,

M?ets A"SS | M%IS /2112{9 /2| _ —
]\jlz 0o — 1{/12 2o<12x107% GeV2,  (52)
So Si/2
M’i@olﬁw | LV, RV1/2| —10 2
o 12T <16 % 10710 Gev 2, (53)
Vo Vi

and, using the bound on |c3|, we have

s A | |Aks, 1455, ]
RJS&zLS() L < 12107 Gev?, (54)
So S1)2
eb ub Kb
MLVQJ’R | _ |/1LV1/7 RV1/7| < 1.6 x 10710 GeV*z. (55)
M, My,
o 1/2

Finally, for the common scales My and M, of scalar and
vector LQ masses, respectively, we get

a a — MS 2
s As, | = 145, , 415, ,| < 1.2x 10 2<m> ., (56)

My \2
ab P ab pb —4
AV ARy, | = 40V, ARy, .| < 1.6 X107 <1T V) (57)

where a # f = e, u.

In leptoquark models the couplings of heavy quarks can
also be constrained from the photon dipolelike operators
that also contribute to u — ey. Those have been recently
constrained in Ref. [41]. Assuming the dominance of the
dipole operator over all other contributions, one obtains
comparable bounds on heavy quark couplings to lepto-
quarks which are of order 107°(M,o/1 TeV)* for the
products of couplings with the same chiralities |27 Q/I |.
Here we only considered quarks of the last two generatlons
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i =2,3 (either ¢, ror 5, b), LO = LSy, RSy, LS}/, RS 5,
LVy, RV, LV, and RV ,, with M, being the mass of
the correspondent scalar or vector LQ [41].

Similar constraints are also available from tau decays.
For uy =7, and t = ¢,,

A 23 | ks, AT,
REZW - <23x107 GeVE, (58)
So N
b
|z pid | 1A%, ARy,
LX;ZRVO g < 44x 1070 Gev2, (59)
Vo Vip
and
Agis, s, | Vs,
RIS‘;;SO = <23x1074 GeV2 (60)
S() Sl/l
ub g ‘[b
) _ Vi | <44x107° GeV2  (61)
M, My
0 1/2

While for e = ¢ and 7 = >,

M?S(,’lztSJ |/11?51/2 ztsl/z| 4 )
e e <22x107" GeV™, (62)
So Si)2
A, Akv, | A5y, A7, ]
T 1;;2 < 42x107° GeV2, (63)
Vo Vi
and
AR ALl _ [A&s, 405, |
1&2 0 1;//;2 2. <22x107* GeV~2, (64)
So Si2
255 /ﬁ!’vl 1455, ARy, |
1\/012 0 1\]//122 2. <42x107° GeV=2.  (65)
Vo Vip

Clearly, constraints on the coefficients of operators
containing tau-lepton fields are much weaker than the
ones containing muon fields. We expect those constraints
to improve with new data coming from the Belle II
Collaboration.

V. CONCLUSIONS

We considered contributions of heavy quark-induced
operators to leptonic FCNC transitions. We constrained
Wilson coefficients of effective gluonic operators in u — e,

PHYSICAL REVIEW D 89, 033005 (2014)

7 — u, and 7 — e transitions. These bounds can be used to
study interactions of leptonic FCNCs with heavy quarks
that are kinematically inaccessible in the described experi-
ments. We provided an explicit example of constraints on
the parameters of a generic leptoquark model.
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APPENDIX: INTEGRALS

In this appendix we present the results of the compu-
tation of the integrals needed to obtain the matching
coefficients of gluonic operators of dimension seven.
The matching coefficients can be computed to be

—x —4
= /dx/ xy,
lx
af ot

where A, = m}/E* with the process energy scale E. For
Ay > 1/4 they take the form

(A

(A2)

(1+iy/~T ¥4,
Iy =20y = 444y = 1) |Lig (V") (A3)
q

2i
Lip( ——— Ad
+ 12( ,/—1+4/1q—i) ’ (A9

[ +i/ T+ 4,

12:),(] L12 42/,{q (AS)

2i
Lip( ———2 )|, A6
- 12( ,/_—1+4Aq'—i)] (A0)

for A4, > 1 they are
i oo (A7)
=3 12074 ’
e Lo ousy). (AS)
2| T2

In this paper we use the leading order result in the 4,
expansion.
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