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Lepton flavor-violating processes offer interesting possibilities to probe new physics at multi-TeV scale.
We discuss those in the framework of effective field theory, emphasizing the role of gluonic operators.
Those operators are obtained by integrating out heavy quarks that are kinematically inaccessible at the
scale where low-energy experiments take place and make those experiments sensitive to the couplings of
lepton flavor-changing neutral currents to heavy quarks. We discuss constraints on the Wilson coefficients
of those operators from the muon conversion μ− þ ðA; ZÞ → e− þ ðA; ZÞ and from lepton flavor-violating
tau decays with one or two hadrons in the final state, e.g., τ → lηð0Þ and τ → lπþπ− with l ¼ μ; e. To
illustrate the results we discuss explicit examples of constraining parameters of leptoquark models.
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I. INTRODUCTION

As follows from observations of neutrino oscillations,
there is good evidence that the individual lepton flavor is not
conserved. Explicit calculations of the standard model (SM)
rates for the charged lepton flavor-violating (LFV) transi-
tions indicate that those are tiny [1,2], well beyond the
capabilities of current and currently planned experiments.
Yet, many models of beyond the standard model (BSM)
physics do not exclude relatively large rates for such
transitions, so experimental and theoretical studies of LFV
processes like μ → eγ, τ → ηð0Þμ; or μ− þ ðA; ZÞ → e− þ
ðA; ZÞ could provide a sensitive test of those BSM schemes.
The language of effective field theory (EFT) is very

useful in the studies of flavor-violating processes for
several reasons. First, it allows us to probe the new physics
(NP) scale generically, without specifying a particular
model of NP. Studies of specific models in this framework
are equivalent to specifying Wilson coefficients of effective
operators. Second, EFT allows for studies of relative
contributions of various operators and may even provide
clues as to what experiments need to be done to discrimi-
nate among different possible models of new physics [3].
Interactions of flavor-changing neutral currents (FCNC)

of leptons with hadrons, either in muon conversion or in tau
or meson decays, can be described in terms of effective
operators of increasing dimension [3]. In order to set up an
EFT calculation, however, one must first discuss the
multitude of scales present in lepton FCNC transitions.
The highest scale, which we denote as Λ, is the scale
associated with new physics that generates the FCNC
interaction. There could be many ways to generate the
flavor-changing neutral current of leptons, yet, below the
scale Λ any heavy new physics particles are integrated out
resulting only in a few effective operators [4]. We shall keep
track of the leading contribution due to NPwhich, below the

scaleΛ, is proportional to 1=Λ2. The second highest scale is
the one associated with electroweak symmetry breaking, v.
The most important scales for this study are the scales
associated with heavy quark masses,mt,mb, andmc. In the
framework of EFTone must integrate out heavy quarks that
are not kinematically accessible at the scale where the
experiment takes place, resulting in changes of Wilson
coefficients of quark and gluon operators.
The relation between all those scales can be done with the

help of a renormalization group, keeping track of which
degrees of freedom are kept andwhich are integrated out.We
shall list themost important operators for our analysis below.

A. Quark operators

The lowest-dimensional local operators that contribute to
lepton flavor-violating transitions without photons in the
final state [5] have operator dimension six. There are, in
general, twelve types of operators that can be constructed,

Lð6Þ
l1l2

¼ 1

Λ2

X12
i¼1

X
q

Cql1l2

i Qql1l2
i þ H.c.; (1)

where Λ is a high scale of new physics, and Cql1l2
i are

dimensionless Wilson coefficients. The four fermion oper-
ators can be split into three classes which we define
according to their Dirac structure:
(i) scalar operators,

Qql1l2
1 ¼ ðl̄1Rl2LÞðq̄RqLÞ;

Qql1l2
2 ¼ ðl̄1Rl2LÞðq̄LqRÞ;

Qql1l2
3 ¼ ðl̄1Ll2RÞðq̄RqLÞ;

Qql1l2
4 ¼ ðl̄1Ll2RÞðq̄LqRÞ; (2)

where l ðqÞ is the SM charged lepton (quark).
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The scalar operators above are defined below the scale of
electroweak symmetry breaking (EWSB) in the standard
model as they are not invariant under electroweak SUð2ÞL
symmetry. The proper definition of those operators above
EWSB scale should include Higgs doublet fields H. The
operators of Eq. (2) result from the substitution H → v and
redefinition of proper Wilson coefficients [6] to scale out
quark or lepton Yukawa coupling, which would result in a
(dimensionless) factor of GFmlmq in front of the scalar
operators.
These mass factors properly suppress flavor-violating

transitions of the first generation of quarks and leptons that
are well constrained experimentally. Notice, however, that
they are not model universal. For example, models with
FCNC Higgs boson interactions often employ factors offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiml1ml2
p =v (so called Cheng-Sher ansatz [7]) to suppress
flavor-changing lepton currents, while generic leptoquark
or R-parity violative supersymmetric models do not have
any factors of mass, relying on the smallness of coupling
constants to suppress those effects [8]. In the following we
shall absorb all mass factors into the definition of Wilson
coefficients Cql1l2

i . There are also
(ii) vector operators,

Qql1l2
5 ¼ ðl̄1Lγ

μl2LÞðq̄LγμqLÞ;
Qql1l2

6 ¼ ðl̄1Lγ
μl2LÞðq̄RγμqRÞ;

Qql1l2
7 ¼ ðl̄1Rγ

μl2RÞðq̄LγμqLÞ;
Qql1l2

8 ¼ ðl̄1Rγ
μl2RÞðq̄RγμqRÞ; (3)

and (iii) tensor operators,

Qql1l2
9 ¼ ðl̄1Rσ

μνl2LÞðq̄RσμνqLÞ;
Qql1l2

10 ¼ ðl̄1Rσ
μνl2LÞðq̄LσμνqRÞ;

Qql1l2
11 ¼ ðl̄1LLσμνl2RÞðq̄RσμνqLÞ;

Qql1l2
12 ¼ ðl̄1Lσ

μνl2RÞðq̄LσμνqRÞ: (4)

All quark flavors need to be considered, but the operator
basis needed to describe a particular experiment could
include a smaller number of operators.

B. Gluonic operators

The low-energy experiments such as muon conversion
μþ N → eþ N0 or tau decay τ → ηð0Þμ have a naturally
defined scale of the order of the mass of heavier lepton. In
order to write an appropriate set of effective operators at
that scale one must integrate out quarks with masses above
that scale [9].
The flavor-changing Lagrangian for the effective vertices

with l1, l2, and two gluon external legs at the energies
lower than heavy quarks masses can be written as

Lð7Þ
l1l2

¼ 1

Λ2

X4
i¼1

cl1l2i Ol1l2
i þ H.c.; (5)

where ci are the Wilson coefficients, and Oi are the
effective operators of dimension seven:

Ol1l2
1 ¼ l̄1Rl2L

βL
4αs

Ga
μνGaμν;

Ol1l2
2 ¼ l̄1Rl2L

βL
4αs

Ga
μν
~Gaμν;

Ol1l2
3 ¼ l̄1Ll2R

βL
4αs

Ga
μνGaμν;

Ol1l2
4 ¼ l̄1Ll2R

βL
4αs

Ga
μν
~Gaμν; (6)

where a ¼ 1; :::::; 8 is the gluon color index, βL ¼
−bα2s=ð2πÞ is the one-loop beta function of three flavor
QCD with b ¼ 11 − 2nL=3 (nL ¼ 3 is the number of light
quarks) and αs ¼ g2s=ð4πÞ;

Ga
μν ¼ ∂μAa

ν − ∂νAa
μ þ gsfabcAb

μAc
ν (7)

is the gluon strength tensor, and

~Ga
μν ¼

1
2
εμναβGaαβ (8)

is the dual one. In Eq. (5) we do not include the operators
with dimension higher than seven. It can be easily seen that
there are no other possibilities besides the four operators
in Eq. (6).
By calculating the loop diagrams in Fig. 1, using

the standard methods [10], the coefficients cl1l2i can be
expressed through Cql1l2

i in Eq. (1) as

cl1l21 ¼ − 2

9

X
q¼c;b;t

I1ðmqÞ
mq

ðCql1l2
1 þ Cql1l2

2 Þ; (9)

FIG. 1. Feynman graphs for the calculation of matching
coefficients of gluonic operators. The large dots indicate the
effective vertices described by Eq. (1).
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cl1l22 ¼ 2i
9

X
q¼c;b;t

I2ðmqÞ
mq

ðCql1l2
1 − Cql1l2

2 Þ; (10)

cl1l23 ¼ −
2

9

X
q¼c;b;t

I1ðmqÞ
mq

ðCql1l2
3 þ Cql1l2

4 Þ; (11)

cl1l24 ¼ 2i
9

X
q¼c;b;t

I2ðmqÞ
mq

ðCql1l2
3 − Cql1l2

4 Þ; (12)

where the coefficients (see Ref. [11] for I1 and the
Appendix) at the leading order are

I1 ¼
1

3
; I2 ¼

1

2
: (13)

Note, as previously discussed, that while the Wilson
coefficients in Eqs. (9)–(12) explicitly contain factors of
1=mq, in many models the coefficients Cql1l2

i contain
factors ofmq, which we absorbed as part of their definition.
Also, we do not explicitly write out contributions to Wilson
coefficients due to possible colored heavy states that are not
SM quarks; those contributions would result in additive
modifications of Eqs. (9)–(12). Also, in this paper, we
ignored the running of ci in between different scales.
Integrating out heavy particles could also result in

higher-dimensional gluonic operators, as would happen
for vectorlike dimension-six operators. For instance, a set
of operators of dimension eight can be written as

Oð8Þ
1 ¼ ϵμναβðl̄1L∂μγνl2LÞ

βL
4αs

Ga
αρG

aρ
β ;

Oð8Þ
2 ¼ ϵμναβðl̄1L∂μγ

ρl2LÞ
βL
4αs

Ga
ρνGa

αβ;

Oð8Þ
3 ¼ ðl̄1L∂μγ

ρl2LÞ
βL
4αs

Gρα
~Gaμα: (14)

Another three operators Oð8Þ
4 −Oð8Þ

6 could be obtained by
substituting left-handed lepton fields with the right-handed
ones. Here we shall concentrate on the operators of
dimension seven, leaving analysis of higher-dimensional
operators for future work.
This paper is organized as follows. In Sec. II we

reexamine constraints on the Wilson coefficients of oper-
ators Oeμ

1 and Oeμ
3 from μ-e conversion data. We consider

constraints on Wilson coefficients of operators Olτ
1 –Olτ

4

from tau decays in Sec. III. As an example, in Sec. IV we
consider how our constraints translate into constraints on
couplings of LFV lepton currents with heavy quarks in
leptoquark models. We conclude in Sec. V.

II. CONSTRAINTS FROM μ-e CONVERSION

Muon conversion on a nucleus [2,12–17] offers a
sensitive probe of new physics and a nice possibility to
study it experimentally providing an interesting interplay
of particle and nuclear physics effects. The number of
relevant operators in Eqs. (1) and (5) is reduced if one only
considers coherent μþ N → eþ N transitions1 [3].
The initial state in the μ − e conversion process

μ− þ ðA; ZÞ → e− þ ðA; ZÞ0 (15)

is the 1s state of the muonic atom with the binding energy
Eb, and the final electron state is the eigenstate with the
energy mμ − Eb (neglecting the atomic recoil energy of a
muonic atom, see [19]). Following Ref. [20] the μ − e
conversion amplitude can be written as

Mμe
NN0 ¼ 1

Λ2

Z
d3x

�
ðc1ψ̄μðeÞ

κ;W PLψ
ðμÞ
1s

þ c3ψ̄
μðeÞ
κ;W PRψ

ðμÞ
1s Þ
�
N0
���� βL4αs Ga

μνGaμν

����N
�

þ ðc2ψ̄μðeÞ
κ;W PLψ

ðμÞ
1s þ c4ψ̄

μðeÞ
κ;W PRψ

ðμÞ
1s Þ

×

�
N0
���� βL4αs Ga

μν
~Gaμν

����N
��

; (16)

where hN0j and jNi are the final and initial states of the
nucleus, respectively; the 1s initial muon wave function

ψ ðμÞ
1s ¼

 
g−μ χ�1=2

−1
if−μ χ�1=2

1

!
(17)

is normalized to 1 and corresponds to the quantum numbers
κ ¼ −1 and μ ¼ �1=2 of the operators

K ¼
�σ · l þ 1 0

0 −ðσ · l þ 1Þ

�
(18)

and jz, respectively, where l is the orbital angular momen-
tum, and κ ¼ �1 final electron wave functions

ψ�1=2ðeÞ
−1;W ¼

 
g−e χ�1=2

−1
if−e χ�1=2

1

!
(19)

and

1There are also important nonlocal contributions from the
operators governing μ → eγ transitions with the photon attached
to a nucleus. Those contributions are well known [18] and will
not be discussed here.
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ψ�1=2ðeÞ
1;W ¼

�
gþe χ

�1=2
1

ifþe χ
�1=2
−1

�
(20)

are normalized as

Z
d3xψμðeÞ�

κ;W ðxÞψμ0ðeÞ
κ0;W0 ðxÞ ¼ 2πδμμ0δκκ0δðW −W0Þ; (21)

whereW is the energy. The electron mass was neglected in
Eqs. (19) and (20) so that gþe ¼ if−e and ifþe ¼ g−e . Using
the normalization

Z
1

−1
d cos θ

Z
2π

0

dφχμ�κ χμ
0

κ0 ¼ δμμ0δκκ0 (22)

of the eigenfunctions χμκ of ðσ · l þ 1Þ and jz, we have

ψ̄ ðeÞ
−1;WPαψ

ðμÞ
1s ¼ 1

2
ðg−e g−μ − f−e f−μ Þ

¼ ψ̄ ðeÞ
1;WPRψ

ðμÞ
1s ; (23)

ψ̄ ðeÞ
1;WPLψ

ðμÞ
1s ¼ −

1

2
ðg−e g−μ − f−e f−μ Þ; (24)

with α ¼ L, R.
The pseudoscalar nucleon current couples to the nuclear

spin leading to incoherent contribution [21]. The matrix
element in Eq. (16) relevant to the coherent conversion
process (N ¼ N0) can be expressed by the proton ρðpÞ and
neutron ρðnÞ densities in a nucleus as

�
N

���� βL4αs Ga
μνGaμν

����N
�

¼ − 9

2
½ZGðg;pÞρðpÞ þ ðA − ZÞGðg;nÞρðnÞ�; (25)

where A and Z represent the mass and atomic number of the
nucleus, and the matrix element of gluon operator between
the nucleon states is defined as

Gðg;N Þ ¼
�
N

���� αs4πGa
μνGaμν

����N
�
; (26)

withN ¼ n, p. This scalar matrix element can be calculated
by using the trace of the energy-momentum tensor Θμ

μ [22]
and applying the flavor SUð3Þ symmetry. SinceΘμ

μ is flavor
symmetric, the proton and neutron scalar matrix elements
are equal. For the strange-quark sigma term σs ≡
mshpjs̄sjpi ¼ 50 MeV the numerical result is Gðg;N Þ ¼
−189 MeV [23].
The nucleon densities are assumed spherically symmet-

ric and normalized as

Z
∞

0

dr4πr2ρðNÞðrÞ ¼ 1: (27)

As usual for spherical nuclei, the two-parameter Fermi
(2pF) charge distribution is used

ρðrÞ ¼ ρ0
1þ exp½ðr − cÞ=z� ; (28)

where c is the half-density radius.
The formula for the coherent conversion rate can be

written as

ΓconvðμN → eNÞ ¼ 4

Λ4
ðjc1j2 þ jc3j2Þa2N; (29)

where

aN ¼ Gðg;pÞSðpÞ þ Gðg;nÞSðnÞ: (30)

The overlap integrals are defined as [20]

SðpÞ ¼ 1

2
ffiffiffi
2

p
Z

∞

0

drr2ZρðpÞðg−e g−μ − f−e f−μ Þ; (31)

SðnÞ ¼ 1

2
ffiffiffi
2

p
Z

∞

0

drr2ðA − ZÞρðnÞðg−e g−μ − f−e f−μ Þ: (32)

The parameters of model 2pF of nucleon densities in
Eq. (28) [24], and the overlap integrals in Eqs. (31) and (32)
[20] for the same distributions

ρðpÞðrÞ ¼ ρðnÞðrÞ≡ ρðrÞ (33)

of neutrons and protons in the nuclei 48
22Ti and

197
79 Au are

shown in Table I. The parameters of the Fourier-Bessel
expansion (FB)

ρðrÞ ¼
(P

v
av sinðvπrR−1Þ=ðvπrR−1Þ for r ≤ R

0 for r ≤ R
(34)

are given in Refs. [24,25].
The branching ratio for μ − e conversion on a nucleus N

is defined as

TABLE I. Nucleon densities model parameters and the overlap
integrals in the unit of m5=2

μ for several nuclei.

Nucleus Model c, fm z, fm SðpÞ SðnÞ

48
22Ti FB N/A N/A 0.0368 0.0435
197
79 Au 2pF 6.38 0.535 0.0614 0.0918
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BN
μe ≡ Γconvðμ−N → e−Ng:s:Þ=Γcaptðμ−NÞ; (35)

where g.s. stands for ground state. The SM muon capture
rates [20,26], the upper bounds on BN

μe, and the binding
energies of 48

22Ti and
197
79 Au are given in Table II with the

respective references. The upper bounds on the parameters
of the Lagrangian in Eq. (5) for one nonzero coefficient c at
a time are given in Table III. It shows that the bound on the
μ − e conversion rate on gold gives the best limit (see
also Ref. [27]).

III. CONSTRAINTS FROM τ DECAYS

The analysis presented above only deals with experimen-
tally interesting coherent μ-e conversion. As a result, no
parity-violating operator gives any contribution to the
experimental transition rates. Moreover, we had to resort
to models to describe nuclear effects affecting conversion
rates. It might be advantageous to use other experimental
observables to study LFV new physics couplings to heavy
quarks via gluonic operators. LFV tau decays offer such
opportunity. Besides, analyses of tau decays have different
theoretical uncertainties thanmuon conversion calculations;
in fact, one can use chiral symmetry and low-energy
theorems to provide model-independent evaluations of
operator matrix elements. While the tau decays have been
studied in a variety of models [8], to the best of our
knowledge gluonic operator contribution (and thus con-
straints on heavy quark couplings from those decays) has not
been previously considered. In what followswe shall use tau
decays to constrain matrix elements of gluonic operators.

A. Parity-conserving gluonic operators

Complimentary to muon conversion experiments con-
sidered in Sec. II, parity-conserving operators can also be
probed in lepton flavor-violating tau decays τ → lMþM−,
where l ¼ μ, e and M ¼ π, ηð0Þ, K [30,31]. In what

follows, let us concentrate on the case of three-body decays
τ → μπþπ− and τ → μKþK−, which are the most interest-
ing experimentally since all the final particles are charged.
Transitions to other states (like τ → lηη) can be obtained
by employing flavor SUð3Þ symmetry relations.
In order to constrain the Wilson coefficients of the

operators in Eqs. (2), (3), and (6) one needs to constrain
hadronic matrix elements. For the scalar operators we shall
follow [30] to state

hπþπ−jq̄qj0i ¼ hKþK−jq̄qj0i ¼ δMq B0; (36)

where for charged final states δMq ¼ 1 if the flavor of the
quark field q in the operatormatches the flavor content of the
meson and zero otherwise. For example, hKþK−js̄sj0i ¼
hKþK−jūuj0i ¼ B0, while hKþK−jd̄dj0i ¼ 0. Matrix ele-
ments for other light final states can be related to Eq. (36) via
flavor SUð3Þ relations [30], e.g.,

3hη8η8jūuj0i ¼
3

4
hη8η8jq̄qj0i ¼ B0: (37)

Note that B0 ¼ 1.96 GeV can be estimated from the chiral
Lagrangian relations, m2

π ¼ ðmu þmdÞB0 assuming that
mu ¼ md ¼ 5 MeV.
For the vector operators Eq. (3) one can use the definition

of the pion (kaon) form factor and crossing symmetry,

hMþM−jq̄γμqj0i ¼ δMq G
ðqÞ
M ðQ2Þðpþ − p−Þμ; (38)

where Q ¼ pτ − pl is the momentum transfer to the
hadronic system and p� are the 4-momenta of M�.
Note that GðqÞ

M ð0Þ ¼ 1 [32]. Just like before, flavor content
of the operators should match that of the final state mesons.
The matrix elements of gluonic operators Eq. (6) are

easiest estimated in the chiral limit, where mu ¼ md ¼
ms ¼ mM ¼ 0. In that limit, a low-energy theorem states
that [33]

D
MþM−

��� αs
4π

GaμνGa
μν

���0E ¼ − 2

9
q2: (39)

We do not expect the results to change much away from the
chiral limit, so we shall use this estimate in what follows.
Finally, parity invariance of strong interactions implies that

hMþM−jq̄γ5qj0i ¼
D
MþM−

��� αs
4π

Gaμν ~Ga
μν

���0E
¼ hMþM−jq̄γμγ5qj0i ¼ 0: (40)

With the definitions above one can calculate the differential
decay rate for the decay τ → lMþM−. For the scalar and
gluonic operators one has

TABLE II. Muon capture rates, bounds on BN
μe, and binding

energies for several nuclei N.

Nucleus Γcaptðμ−NÞ, s−1 BN
μe ð90%C:L:Þ Eb, MeV

48
22Ti 2.59 × 106 4.3 × 10−12 Ref. [28] 1.25 Ref. [29]
197
79 Au 13:07 × 106 7 × 10−13 Ref. [19] 10.08 Ref. [19]

TABLE III. Upper bounds on the parameters of the Lagrangian
in Eq. (5) from muon conversion experiments.

Coefficient Bound on jceμi j=Λ2, GeV−3

Conversion on 48
22Ti Conversion on 197

79 Au
c1 5.7 × 10−12 2.6 × 10−12
c2 N/A N/A
c3 5.7 × 10−12 2.6 × 10−12
c4 N/A N/A

LEPTON FLAVOR-VIOLATING TRANSITIONS IN… PHYSICAL REVIEW D 89, 033005 (2014)

033005-5



dΓðτ → lMþM−Þ
dq2

¼ mτ

32ð2πÞ3Λ4
½jAMMj2 þ jBMMj2�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

M

q2

s �
1 − q2

m2
τ

�
2

; (41)

where we set ml ¼ 0 and defined

AMM ¼ − 2clτ1
9

q2 þ 1

2

X
q¼u;d;s

ðCqlτ
1 þ Cqlτ

2 ÞδMq B0;

BMM ¼ −
2clτ3
9

q2 þ 1

2

X
q¼u;d;s

ðCqlτ
3 þ Cqlτ

4 ÞδMq B0: (42)

Integrating Eq. (41) we obtain constraints on clτ1 and clτ3
listed in Table IV. Finally, for completion, we present the
contribution to the differential decay rate due to vector
operators,

dΓVðτ → lMþM−Þ
dq2

¼ m3
τ

768π3Λ4
½jCMMj2 þ jDMMj2�

×

�
1 − 4m2

M

q2

�
3=2
�
1 − q2

m2
τ

�
2

×

�
1 − 2

q2

m2
τ

�
; (43)

where we set ml ¼ 0 and defined

CMM ¼ 1

2

X
q¼u;d;s

ðCqlτ
5 þ Cqlτ

6 ÞδMq GM;

DMM ¼ 1

2

X
q¼u;d;s

ðCqlτ
7 þ Cqlτ

8 ÞδMq GM: (44)

This result could be used to constrainWilson coefficients of
vector operators.

B. Parity-violating gluonic operators

Constraints on the parity-violating contributions can be
obtained from the lepton flavor-violating meson and tau
decays, τ → lM andM → μe, where l ¼ μ, e, andM ¼ π,
η, η0. The analysis of decays involving an η0 is especially
interesting, as the η0 meson contains a considerable amount

of glue, which makes it possible to constrain gluonic LFV
operators resulting from integrating out heavy quarks.
To calculate the decay rates one needs to parametrize the

hadronic matrix elements,

hMðpÞjq̄γμγ5qj0i ¼ −ibqfqMpμ;

hMðpÞjq̄γ5qj0i ¼ −ibqhqM;D
MðpÞ

��� αs
4π

Gaμν ~Ga
μν

���0E ¼ aM; (45)

where q ¼ u, d, s, and bu;d ¼ 1=
ffiffiffi
2

p
, bs ¼ 1. The form

factors defined above in the Feldmann-Kroll-Stech mixing
scheme [34] are constrained for η and η0 mesons to be [35]

aη ¼ −m2
η0 −m2

η

2
sin 2φð−fqbq sin φþ fs cos φÞ;

aη0 ¼ −
m2

η0 −m2
η

2
sin 2φðfqbq sin φþ fs cos φÞ; (46)

where φ ¼ 39:3° � 1.0° is a mixing angle of η and η0 in
the flavor basis [35]. Numerically, the anomaly matrix
elements are aη ¼ −0.022� 0.002 GeV3, aη0 ¼ −0.057�
0.002 GeV3. The decays constants in Eq. (45) used in
numerical work are fqη ¼ 108� 3 MeV, fqη0 ¼ 89�
3 MeV, fsη ¼ −111� 6 MeV, and fsη0 ¼ 136�
6 MeV [35,36].
Neglecting terms of the order Oðml=mτÞ, which would

change our answer to at most 5% for l ¼ μ, we can write
for the decay rate,

Γðτ → μMÞ ¼ mτ

8πΛ4
½jAMj2 þ jBMj2�

�
1 −m2

M

m2
τ

�
2

; (47)

where AM and BM are defined as

AM ¼ − 2i
9
clτ2 aM þ

X
q¼u;d;s

ðCqlτ
2 − Cqlτ

1 Þ bqh
q
M

4mq

þ 1

2
mμ

X
q¼u;d;s

ðCqlτ
5 − Cqlτ

6 ÞbqfqM

−
1

2
mτ

X
q¼u;d;s

ðCqlτ
7 − Cqlτ

8 ÞbqfqM; (48)

TABLE IV. Upper bounds on the parameters of the Lagrangian in Eq. (5) from tau decay experiments.

clτi

Bound on jclτi j=Λ2, GeV−3
Bðτ → μπþπ−Þ
< 2.1 × 10−8

Bðτ → eπþπ−Þ
< 2.3 × 10−8

Bðτ → μKþK−Þ
< 4.4 × 10−8

Bðτ → eKþK−Þ
< 3.3 × 10−8

Bðτ → μη0Þ
< 1.3 × 10−7

Bðτ → eη0Þ
< 1.6 × 10−7

Bðτ → μηÞ
< 1.3 × 10−7

Bðτ → eηÞ
< 1.6 × 10−7

c1 6.8 × 10−8 6.5 × 10−8 9.4 × 10−8 8.2 × 10−8 N/A N/A N/A N/A
c2 N/A N/A N/A N/A 2.3 × 10−7 2.5 × 10−7 1.6 × 10−7 1.5 × 10−7
c3 6.8 × 10−8 6.5 × 10−8 9.4 × 10−8 8.2 × 10−8 N/A N/A N/A N/A
c4 N/A N/A N/A N/A 2.3 × 10−7 2.5 × 10−7 1.6 × 10−7 1.5 × 10−7
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BM ¼ − 2i
9
clτ4 aM þ

X
q¼u;d;s

ðCqlτ
4 − Cqlτ

3 Þ bqh
q
M

4mq

−
1

2
mτ

X
q¼u;d;s

ðCqlτ
5 − Cqlτ

6 ÞbqfqM

þ 1

2
mμ

X
q¼u;d;s

ðCqlτ
7 − Cqlτ

8 ÞbqfqM: (49)

The current experimental bounds on flavor-violating tau
decays allow us to put stringent constraints on Wilson
coefficients clτi [37]. We display them in Table IV. These
results, along with the ones displayed in Table III, can be
translated into bounds on flavor-changing interactions of
leptons with heavy quarks in particular models. As an
example of how this can be done, we consider a generic
leptoquark model.

IV. MODEL EXAMPLE: LEPTOQUARKS

The Wilson coefficients of effective gluonic operators
that were constrained in the previous sections can be used
to put bounds on parameters of operators describing lepton
interactions with heavy quarks in particular models of NP.
Let us provide an example of how this can be done using a
generic leptoquark (LQ) model.
The general renormalizable, B and L conserving, and

SUð3Þ × SUð2Þ ×Uð1Þ invariant LQ-lepton-quark inter-
actions are given in Refs. [38–40]. The relevant for our
consideration scalar LQs (S) and vector LQs (V) inter-
actions are

LS ¼ ðλLS0 q̄cLiτ2l2L þ λRS0 ū
c
Rl1RÞS†0

þ ðλLS1=2 ūRl2L þ λRS1=2 q̄Liτ2l1RÞS†1=2 þ H.c.; (50)

LV ¼ðλLV0
q̄Lγμl2LþλRV0

d̄Rγμl1RÞVμ†
0

þðλLV1=2
d̄cRγμl2LþλRV1=2

q̄cLγμl1RÞVμ†
1=2þH.c.; (51)

where q, u, and d are doublet, singlet up, and singlet down
quarks, respectively; we omit flavor indexes, the subin-
dexes 0 and 1/2 indicate SUð2Þ singlet and doublet LQs,
respectively, and couplings λ are assumed to be real.
Consider μ − e conversion on 197

79 Au induced by lepto-
quark exchange. For the values of the loop integral in
Eq. (A1) we simply have I1ðmtÞ ¼ I1ðmbÞ ¼ I1ðmcÞ ¼
0.333 since the muon mass and the binding energy of the
muonic gold are much lower than c, b; and t quark masses.
The expressions for relevant Wilson coefficients in Eq. (1)
are given in Table V, where the quark flavor indexes are
u ¼ u; c; t and d ¼ d; s; b.
We assume that only the couplings λ for a single quark

flavor are nonzero at a time. From Eqs. (9) and (11) it

follows that the best bounds for the scalar LQs (left half of
Table V) are relaxed by the factor 2mt=mb ≃ 75 with
respect to the ones for the vector LQs (right half of
Table V). Using the bound on jc1j, we have for e ¼ l1

and μ ¼ l2

jλetRS0λ
μt
LS0

j
M2

S0

¼
jλetRS1=2λ

μt
LS1=2

j
M2

S1=2

< 1.2 × 10−8 GeV−2; (52)

jλμbLV0
λebRV0

j
M2

V0

¼
jλμbLV1=2

λebRV1=2
j

M2
V1=2

< 1.6 × 10−10 GeV−2; (53)

and, using the bound on jc3j, we have

jλμtRS0λetLS0 j
M2

S0

¼
jλμtRS1=2λetLS1=2 j

M2
S1=2

< 1.2 × 10−8 GeV−2; (54)

jλebLV0
λμbRV0

j
M2

V0

¼
jλebLV1=2

λμbRV1=2
j

M2
V1=2

< 1.6 × 10−10 GeV−2: (55)

Finally, for the common scales MS and MV of scalar and
vector LQ masses, respectively, we get

jλαtRS0λ
βt
LS0

j ¼ jλαtRS1=2λ
βt
LS1=2

j < 1.2 × 10−2
�

MS

1 TeV

�
2

; (56)

jλαbLV0
λβbRV0

j ¼ jλαbLV1=2
λβbRV1=2

j < 1.6 × 10−4
�

MV

1TeV

�
2

; (57)

where α ≠ β ¼ e, μ.
In leptoquark models the couplings of heavy quarks can

also be constrained from the photon dipolelike operators
that also contribute to μ → eγ. Those have been recently
constrained in Ref. [41]. Assuming the dominance of the
dipole operator over all other contributions, one obtains
comparable bounds on heavy quark couplings to lepto-
quarks which are of order 10−3ðMLQ=1 TeVÞ2 for the
products of couplings with the same chiralities jλμiLQλeiLQj.
Here we only considered quarks of the last two generations

TABLE V. The Wilson coefficients for the model with LQs.

Cu
i =Λ

2 Expression Cd
i =Λ

2 Expression
Cu
1

Λ2
λ
l1u
RS1=2

λ
l2u
LS1=2

2M2
S1=2

Cd
1

Λ2
λ
l2b
LV1=2

λ
l1b
RV1=2

M2
V1=2

Cu
2

Λ2
λ
l1u
RS0

λ
l2u
LS0

2M2
S0

Cd
2

Λ2
λ
l2b
LV0

λ
l1b
RV0

M2
V0

Cu
3

Λ2
λ
l2u
RS0

λ
l1u
LS0

2M2
S0

Cd
3

Λ2
λ
l1b
LV0

λ
l2b
RV0

M2
V0

Cu
4

Λ2
λ
l2u
RS1=2

λ
l1u
LS1=2

2M2
S1=2

Cd
4

Λ2
λ
l1b
LV1=2

λ
l2b
RV1=2

M2
V1=2
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i ¼ 2, 3 (either c; t or s; b), LQ ¼ LS0, RS0, LS1=2, RS1=2,
LV0, RV0, LV1=2, and RV1=2, with MLQ being the mass of
the correspondent scalar or vector LQ [41].
Similar constraints are also available from tau decays.

For μ ¼ l1 and τ ¼ l2,

jλμtRS0λτtLS0 j
M2

S0

¼
jλμtRS1=2λτtLS1=2 j

M2
S1=2

< 2.3 × 10−4 GeV−2; (58)

jλτbLV0
λμbRV0

j
M2

V0

¼
jλτbLV1=2

λμbRV1=2
j

M2
V1=2

< 4.4 × 10−6 GeV−2; (59)

and

jλτtRS0λ
μt
LS0

j
M2

S0

¼
jλτtRS1=2λ

μt
LS1=2

j
M2

S1=2

< 2.3 × 10−4 GeV−2; (60)

jλμbLV0
λτbRV0

j
M2

V0

¼
jλμbLV1=2

λτbRV1=2
j

M2
V1=2

< 4.4 × 10−6 GeV−2: (61)

While for e ¼ l1 and τ ¼ l2,

jλetRS0λτtLS0 j
M2

S0

¼
jλetRS1=2λτtLS1=2 j

M2
S1=2

< 2.2 × 10−4 GeV−2; (62)

jλτbLV0
λebRV0

j
M2

V0

¼
jλτbLV1=2

λebRV1=2
j

M2
V1=2

< 4.2 × 10−6 GeV−2; (63)

and

jλτtRS0λetLS0 j
M2

S0

¼
jλτtRS1=2λetLS1=2 j

M2
S1=2

< 2.2 × 10−4 GeV−2; (64)

jλebLV0
λτbRV0

j
M2

V0

¼
jλebLV1=2

λτbRV1=2
j

M2
V1=2

< 4.2 × 10−6 GeV−2: (65)

Clearly, constraints on the coefficients of operators
containing tau-lepton fields are much weaker than the
ones containing muon fields. We expect those constraints
to improve with new data coming from the Belle II
Collaboration.

V. CONCLUSIONS

We considered contributions of heavy quark-induced
operators to leptonic FCNC transitions. We constrained
Wilson coefficients of effective gluonic operators in μ − e,

τ − μ, and τ − e transitions. These bounds can be used to
study interactions of leptonic FCNCs with heavy quarks
that are kinematically inaccessible in the described experi-
ments. We provided an explicit example of constraints on
the parameters of a generic leptoquark model.
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APPENDIX: INTEGRALS

In this appendix we present the results of the compu-
tation of the integrals needed to obtain the matching
coefficients of gluonic operators of dimension seven.
The matching coefficients can be computed to be

I1ðmqÞ ¼ λq

Z
1

0

dx
Z

1−x
0

dy
1 − 4xy
λq − xy

; (A1)

I2ðmqÞ ¼ λq

Z
1

0

dx
Z

1−x
0

dy
1

λq − xy
; (A2)

where λq ¼ m2
q=E2 with the process energy scale E. For

λq > 1=4 they take the form

I1 ¼ 2λq − λqð4λq − 1Þ
�
Li2

�
1þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−1þ 4λq
p
2λq

�
(A3)

þ Li2

�
− 2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−1þ 4λq
p − i

��
; (A4)

I2 ¼ λq

�
Li2

�
1þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−1þ 4λq
p
2λq

�
(A5)

þ Li2

�
− 2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−1þ 4λq
p − i

��
; (A6)

for λq ≫ 1 they are

I1 ¼
1

3

�
1þ 7

120
λ−1q þOðλ−2q Þ

�
; (A7)

I2 ¼
1

2

�
1þ 1

12
λ−1q þOðλ−2q Þ

�
: (A8)

In this paper we use the leading order result in the λq
expansion.
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