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We present results of unitary triangle fits based on the scan method. This frequentist approach employs
Gaussian uncertainties for experimental quantities, but avoids assumptions about the distribution of theo-
retical errors. Instead, we perform a large number of fits, scanning over regions of plausible theory errors
for each quantity. We retain those fits meeting a specific confidence level criterion, thereby constructing a
region in the ρ̄ − η̄ plane using the “standard” measurements (Cabibbo-Kobayashi-Maskawa matrix ele-
ments, sin 2β, B0

d;s mixing, ϵK). In addition we use branching fraction and CP asymmetry measurements of
B decays to pseudoscalar pseudoscalar, pseudoscalar vector, vector vector, and a1 pseudoscalar final states
to determine α, Dð�ÞKð�Þ modes to determine γ, and Dð�Þπ and Dρ modes to determine 2β þ γ. We para-
metrize individual decay amplitudes in terms of color-allowed tree, color-suppressed tree, penguin, singlet
penguin, electroweak penguin, as well as W-exchange and W-annihilation amplitudes. With this paramet-
rization, we obtain a good fit to the measured branching fractions and CP asymmetries within the standard
model ansatz, with no new physics contributions. This simultaneous fit allows us to determine, for the first
time in a global fit, the correlation between α and β, as well as between γ and β.
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I. INTRODUCTION

The phase of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [1] is responsible for CP violation in the standard
model (SM). The unitarity relations within the CKMmatrix
provide an excellent laboratory to test this prediction, the
relation Vub

�Vud þ Vcb
�Vcd þ Vtb

�Vtd ¼ 0 being particu-
larly useful since many measurements and theory inputs in
the B and K systems can be combined for this test. Tests
(including simultaneous estimation of the fundamental
CKM parameters) such as those by the CKMfitter [2]
and UTfit [3] groups are in common circulation. The former
is a frequentist technique, the latter Bayesian. The scan
method [4] presented herein is a frequentist-based fitting
technique to determine the parameters of the CKM matrix
and test consistency with the standard model. The scan
method takes a different approach in its treatment of
theoretical uncertainties, as well as in the construction of
confidence sets.
We first describe the scan method in Sec. II. The results

for the global fits are presented in Sec. III. We begin with a
comparison with CKMfitter and UTfit, employing the scan
method to extract CKM parameters using inputs standard-
ized for the book Physics of the B Factories [5]. Then we
look at the current situation using inputs from PDG12 [6]
and HFAG [7], investigating the question of consistency
of the results with SM expectations. We call such fits
“baseline” fits. Their characteristic is that the χ2 function
has of the order of Oð20Þ terms and Oð10Þ fit parameters
including explicit inputs for α and γ. To take into account
the correlations between α and β or γ and β in the extraction
of the parameters of the unitarity triangle, we perform a fit

in which we replace the inputs for α and γ by branching
fractions and CP asymmetries of B decays to pseudoscalar
pseudoscalar (PP), pseudoscalar vector (PV), vector vector
(VV), and a1 pseudoscalar (a1P) final states and B decays
toDð�ÞKð�Þ,Dð�Þπ, andDρ final states. We refer to the latter
as “full” fits. Thus, we are able for the first time to include
the correlations between α and β and γ and β in the extrac-
tion of the parameters of the unitarity triangle.
In Sec. IV, we perform stand-alone determinations

of the angles α and γ, which are then used in the baseline
fits. First, we determine the correlations between α and β
by performing fits to measurements of B decays to
PP, PV, VV, and a1P final states. Next, we determine
the correlations between γ and β by performing fits to
measurements of B decays to Dð�ÞKð�Þ, Dð�Þπ, and
Dρ final states. Finally, the results are summarized
in Sec. V.

II. FIT METHODOLOGY

The scan method accounts for the theoretical uncertain-
ties in the QCD parameters fBs

, ξf ¼ fBs
=fBd

, BBs
,

ξb ¼ BBs
=BBd

, and BK [8,9] and the CKM parameters
jVubj and jVcbj by scanning over the range allowed by
theory uncertainties using fixed grid or Monte Carlo
(MC) methods. In the baseline fit, we combine measure-
ments of ΔmBd

, ΔmBs
, ϵK , jVcbj, jVubj, jVudj, jVusj,

jVcdj, jVcsj, jVtbj, sin 2β, α, and γ in the χ2 function,
Eq. (1). The angle brackets (h i) here indicate the
experimental averages.
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χ2ðρ̄; η̄; pi; tjÞ ¼
�hΔmBd;si − ΔmBd;s

ðρ̄; η̄; pi; tjÞ
σΔmBd;s

�
2

þ
�hjVcb;ub;ud;usji − jVcb;ub;ud;usjðρ̄; η̄; pi; tjÞ

σjVcb;ub;ud;usj

�
2

þ
�hjϵKji − ϵKðρ̄; η̄; pi; tjÞ

σϵK

�
2

þ
�hSψK0i − sin 2βðρ̄; η̄; piÞ

σSψK0

�
2

þ
�hαi − αðρ̄; η̄; piÞ

σα

�
2

þ
�hγi − γðρ̄; η̄; piÞ

σγ

�
2

þ
X
k

�hMki −MkðpiÞ
σMk

�
2

þ
X
n

�hT ni − T nðpi; tjÞ
σT n

�
: (1)

The dependence of the predicted values on the quantities
ρ̄, η̄, pi, and tj is described in detail in the appendix. The pi
are measured inputs to these predicted values, including the
Wolfenstein parameters [10] A and λ and the quark masses
and B meson masses. We add terms in the χ2, denoted
generically by Mk, accounting for the contributions from
the uncertainties in the pi. Note that the dependence on
these terms introduces correlations in the χ2 expression.
The tj represent parameters having a theoretical uncer-
tainty, e.g., the QCD parameters as well as jVubj and jVcbj.
We are careful to distinguish among different kinds of

uncertainties. Observables with experimental errors only
(statistical and systematic) are assumed to be Gaussian-
distributed. Theoretical quantities such as lattice-derived
QCD parameters, and inputs to jVubj and jVcbj, typically
have two types of uncertainties. The first type of error is
of a “statistical” nature, resulting from an input with stat-
istical uncertainties or from Monte Carlo statistics in lattice
calculations. We assume this error to be Gaussian-distrib-
uted and add corresponding terms to the χ2, denoted by T n.
The second type of uncertainty is a theory error with no
known underlying statistical distribution. We therefore

make no assumption as to the distribution of these errors,
and instead perform a scan over a large range of plausible
values, doing a χ2 minimization at each point. Our use of
such fit results is described in the next section.
The scan includes the QCD parameters (fBs

, ξf, BBs
, ξb,

and BK) and the CKMmatrix elements jVubj and jVcbj. The
QCD corrections ηcc, ηct, and ηtt used in the determination
of ϵK and ηb that appear in the prediction ofΔmBd

also have
theory errors. Although the fit methodology is able to scan
over them, we do not do so, since this is unnecessary at the
current level of precision. We parametrize ηcc in terms of
m̄cðmcÞ and αs [11]. Tables I and II summarize the input
parameters for our baseline fits. We are preparing a more
detailed article that includes a fuller discussion of all input
values, provides a study of the correlations among the
theory uncertainties, and shows further results [14].

III. RESULTS OF THE GLOBAL FITS

We present in this section the results for the global fits
according to the scan method, beginning with a comparison
with the results for CKMfitter and UTfit for a common set

TABLE I. Observables used in the baseline fits and full fits. Fit type I are baseline fits with inputs specified by CKMfitter and UTfit
(July 2012) to compare the fit results among the different fit methodologies. The values of jVcbj and jVubj have only a total uncertainty.
We list a second set in which experimental and theory uncertainties are separated allowing scans over the theoretical component of the
uncertainties in jVcbj and jVubj. Fit type II are the baseline fits using the most recent input values to test the SM with and without the
inclusion of BðBþ → τþνÞ. The first set of α and γ values has been fixed by CKMfitter and UTfit, while the second set results from our
global fits to branching fractions and CP asymmetries of B decay modes. Fit type III represents the full fits in which α and γ are replaced
by branching fraction and CP asymmetry measurements of the B decay modes.

Fit type mpole
t [GeV=c2] m̄cðmcÞ [GeV=c2] ΔmBd

[ps−1] ΔmBs
[ps−1]

I 173.2� 0.9 [5] 1.275� 0.025 [6] 0.508� 0.004 [6] 17.719� 0.042 [6]
II, III 173.5� 0.9 [6] same same same
Fit type jVcbj jVubj jVudj jVusj
I ð4.16� 0.038� 0.05Þ × 10−2 [5] ð3.95� 0.38� 0.39Þ × 10−3 [5] 0.97425� 0.0002 [12] 0.2208� 0.0039 [12]
II, III ð4.09� 0.07� 0.09Þ × 10−2 [6] ð4.15� 0.31� 0.39Þ × 10−3 [6] same same
Fit type ϵK sin 2β α γ
I ð2.228� 0.0011Þ × 10−3 [6] 0.0677� 0.020 [7] ð88.0� 5.0Þ° [5] ð67.0� 11Þ° [5]
II, III same same ð84.6� 2.1Þ°a ð79.7� 4.2Þ°a
Fit type jVcdj jVcsj jVtbj BðBþ → τþνÞ
I not used not used not used ð1.15� 0.23Þ × 10−4
II, III 0.23� 0.011 [6] 1.023� 0.036 [6] 0.97� 0.08 [6] same
aInput from global fit to unitarity triangle angles (see below); not used in the full fit (III).

EIGEN et al. PHYSICAL REVIEW D 89, 033004 (2014)

033004-2



of inputs. Then we look at the scan method results for a
more current set of inputs, including both a stand-alone
determination of the angles α and γ and a fit explicitly
incorporating the measurements that enter into the α and
γ determination.

A. Comparison to CKMfitter and UTfit

To begin, we compare the performance of the scan
method with that of CKMfitter and UTfit using 19 input
measurements (jVudj, jVusj, jVcbj, jVubj, ϵK , ΔmBd

,
ΔmBs

, sin 2β, α, γ, fBs
, BBs

, ξf, ξb, BK , m
pole
t , m̄cðmcÞ,

mBd
, mBs

), choosing values specified for the book
Physics of the B Factories [5] to fit 13 parameters (ρ̄, η̄,
A, λ, fBs

, BBs
, ξf, ξb, BK , m

pole
t , m̄cðmcÞ, mBd

, mBs
). In

these fits, which we call fit type I in Tables I and II, we
use the central values and measurement errors for α and
γ in the χ2 function. We compute m̄tðmtÞ, which enters into
the Inami-Lim functions [15] for ΔmBd

, ΔmBs
, and ϵK , in

theMS scheme from the pole massmpole
t at three loop level

for six quarks [16–18]. We plot 1σ contours in the ρ̄ − η̄

plane according to the prescription described below (see
Eq. (2)). For the central value, we select the fit with the
highest Pðχ2Þ. We take the �1σ uncertainties from the
maximum and minimum values of the envelope of all con-
tours. We perform three different fits. In the first, we com-
bine theory and experimental uncertainties, treating these as
Gaussian. In the second, we scan over the theory uncertain-
ties in fBs

, BBs
, BK . In the third, we separate theory uncer-

tainties from experimental uncertainties in jVubj and jVcbj
(see Table I) thus scanning over theory uncertainties in
jVubj, jVcbj, as well as those for fBs

, ξf, and BK. We per-
formed the separation according to the ratio of experimen-
tal to theory uncertainties listed in PDG10 [19] keeping the
total uncertainty unchanged. Figure 1 shows the overlay of
68% confidence level contours in the ρ̄ − η̄ plane for the
second fit. Since values of jVubj and jVcbj, which have sub-
stantial theoretical uncertainties, are not scanned the
accepted contours are similar. Figure 2 shows the compa-
rable results for the third fit, i.e., the most complete scan.
Table III lists our results in comparison to those from
CKMfitter and UTfit. The three methods yield broadly

TABLE II. QCD parameters used in the baseline fits. The first row shows the inputs for fit type I that were the averages listed by the
Lattice group in July 2012. The second row shows the values with separate “statistical” and theory uncertainties used in the baseline fit II
and the full fit (III).

Fit type fBs
[MeV] ξf BBs

ξb BK Reference

I 227.6� 2.2� 4.5 1.201� 0.012� 0.012 1.33� 0.06 1.05� 0.07 0.7643� 0.0034� 0.0091 [8,9]
II, III same same 1.33� 0.018� 0.06 1.05� 0.025� 0.07 same [13]
Fit type ηcc ηct ηtt ηb
I, II, III 1.39� 0.35 0.47� 0.04 0.5765� 0.0065 0.551� 0.007 [11]
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FIG. 1. Overlay of 68% CL contours in the ρ̄ − η̄ plane for the
inputs of Physics of the B Factories with scanning over fBs

, ξf,
and BK . The black points show the central values of each
accepted fit.
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FIG. 2. Overlay of 68% CL contours in the ρ̄ − η̄ plane for the
inputs of Physics of B the Factories with scanning over fBs

, ξf,
BK , jVubj, and jVcbj. The green ellipses show selected contours of
accepted fits.
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similar results. Scanning over theoretical errors increases
the uncertainties, often substantially. With this methodol-
ogy the resulting uncertainties are typically around a factor
of two larger than those from CKMfitter and UTfit. Large
differences may be expected with UTfit, as UTfit is a
Bayesian approach and includes prior distributions for
the theoretically uncertain quantities.
The differences with CKMfitter are more subtle, as

both are frequentist approaches. The essential difference
between the two interval estimation methods is the follow-
ing: CKMfitter uses the conventional change in χ2 from its
minimum value to determine confidence regions. The moti-
vation for the scan method is to test the hypothesis that the
standard model is correct against the alternative that it is
incorrect. The statistical test adopted is the χ2 test.
Hence, this motivation is reflected in our confidence region
determination, in which we use the method of inverting a
test acceptance region (as described in standard statistics
texts, for example [20]). That is, the confidence regions
are determined by comparing χ2 values with a critical value
instead of looking for a change in χ2.
Specifically, the algorithm for a 1 − α confidence region

in d dimensions of a p dimensional parameter space with n
measurements is as follows. First, determine the acceptance
region, at the α significance level, by determining the
critical value χ2c such that

Pðχ2 ≥ χ2c; n − pþ djH0Þ ≥ α; (2)

where H0 is the hypothesis of the standard model, and n −
pþ d is the number of degrees of freedom. The d is added
back here because the critical region for the test is con-
structed for each point in the d-dimensional subspace of
the full parameter space. The confidence region is then
given by all those points in the d-dimensional parameter
subspace for which χ2 ≤ χ2c, under H0.
For the theoretical uncertainties, CKMfitter makes an

implicit scan by incorporating a term in the likelihood func-
tion for each theoretically uncertain quantity. The term

equals 1 or 0 depending on whether the theory parameter
is in the theoretically “allowed” region or not. A modified
algorithm is also available, which makes a smooth transi-
tion between 1 and 0. In the scan method, the scan over
theoretical parameter space is explicit. No theoretical term
is included in the likelihood function. Instead, each point in
the theoretical parameter space of interest is treated as a
possible value, and the fit procedure is performed at each
such point.
Depending on the value of the minimum χ2, the regions

determined by either method may be larger or smaller. If
the best fit gives a high p-value, then the scan method
regions will be larger. On the other hand, if the best fit
gives a low p-value, the CKMfitter regions will be larger.
In the present instance, the best fit p-value is 0.76, hence
the scan method confidence intervals will tend to be larger
than those from CKMfitter. Reflecting its origins in
goodness-of-fit testing, the scan method region goes to
null in the limit where the fit fails at the specified confi-
dence level. In the limit of no theoretical uncertainties,
both methods give valid frequentist confidence regions,
with different properties. However, this comparison
points out the importance of methodology in forming
conclusions, and hence of examining the problem with
multiple approaches.

B. Fit results with direct inputs of α and γ

To test the SM with the scan method, we perform the
same baseline fits with updated input parameters also
listed in Tables I and II. We refer to these fits as type
II fits. We use PDG12 jVubj and jVcbj averages [6].
Since the jVubj and jVcbj results from exclusive modes
are significantly lower than those from inclusive modes,
the PDG uses scaling factors on the total errors of 2.6 and
2.0, respectively. If we have any fit satisfying
Pðχ2Þ > 5%, the SM is deemed to be compatible with
the data at the present level of theoretical uncertainties.
We compute 95% CL contours according to the inversion
of a test acceptance region prescription described above.
That is, we compute contours based on Eq. (2), with

TABLE III. Comparison of unitarity triangle parameters for different fitting techniques using inputs for the book Physics of the B
Factories. The second and third columns show the fit results from CKMfitter and UTfit. The fourth column shows our fit result if no
scanning over theory parameters is performed and experimental uncertainties and theory uncertainties are added in quadrature. The fifth
column shows the fit results if we scan over the QCD parameters fBs

, ξf, BK . The sixth column shows the fit results if we scan, in
addition, over the theory errors associated with jVubj and jVcbj.

Our fit Scan method
Parameter CKMfitter [5] UTfit [5] no scan Scan over fBs

, ξf, BK Scan over fBs
, ξf, BK , jVcbj, jVubj

ρ̄ 0.129þ0.027−0.022 0.132� 0.020 0.134� 0.041 0.132þ0.048−0.042 0.139þ0.048−0.052
η̄ 0.345� 0.014 0.348� 0.013 0.348þ0.024−0.023 0.348þ0.026−0.025 0.341þ0.034−0.025
β½°� 21.6þ0.8−0.7 21.8þ0.8−0.7 21.9þ2.4−2.2 21.8þ2.5−2.1 21.6þ2.6−2.2
α½°� 88.8þ4.2−3.6 88.6� 2.9 89.2þ1.7−2.9 89.0þ2.9−3.6 90.6þ2.8−5.9
γ½°� 68.96þ3.5−4.2 69.4� 3.1 68.9þ5.1−4.1 69.2þ5.5−5.2 67.8þ7.4−5.1
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d ¼ 1, such that taking the extrema of a contour along a
parameter axis provides a 95% CL interval for the param-
eter. In the limit of no theoretical uncertainties, the
procedure has the stated coverage. Figure 3 shows the
overlay of 95% CL contours in the ρ̄ − η̄ plane for all
accepted baseline fits using 22 measurements to
fit 13 parameters, as in Sec. III. To obtain a range of
values for a given parameter, we take the extrema of
the union of the contours attached to accepted fits.
Table IV shows the range of the unitarity triangle
parameters thus obtained (hereinafter referred to as the
95% CL range).
The Bþ → τþν branching fraction [21], measured by

BABAR [22] and Belle [23], is very sensitive to contribu-
tions from a charged Higgs boson. The PDG average
BðBþ → τþνÞ ¼ ð1.65� 0.34Þ × 10−4 [6,7] is larger than
the SM prediction of BðBþ → τþνÞ ¼ ð1.2� 0.25Þ × 10−4
[24]. Even with these high values of BðBþ → τþνÞ, we
obtain a sizeable allowed ρ̄ − η̄ region; there is no conflict
with the SM. Belle has now presented a new measurement
of BðBþ → τþνÞ ¼ ð0.72þ0.27−0.25ðstatÞ � 0.11ðsysÞÞ × 10−4
[25] that reduces the world average to BðBþ → τþνÞ ¼
ð1.14� 0.22Þ × 10−4. Figure 4 shows our results in the
ρ̄ − η̄ plane for this world average and Table IV summa-
rizes the 95% CL ranges of unitarity parameters. The inclu-
sion of the present BðBþ → τþνÞ world average has hardly
any impact on the ρ̄ − η̄ plane.

C. Fit Results using individual measurements
of branching fractions and CP asymmetries

of various decays

We also perform fits, called type III fits, in which, instead
of treating the values of α and γ as inputs, we directly
include the measurements that determine them. This allows
us to determine the correlations in the extraction of the
various unitarity triangle angles from the fit. We omit
BðBþ → τþνÞ in these fits; this has little effect on the
results.
We replace the direct αmeasurement term in the χ2 func-

tion by all measured branching fractions and CP asymme-
tries in B → PP, B → PV, B → VV, and B → a1P modes
in the fit. Following the Gronau-Rosner approach [26],
we parametrize amplitudes in terms of tree, color-sup-
pressed tree, penguin, singlet penguin, W-annihilation/
W-exchange, electroweak, and color-suppressed electro-
weak diagrams (up to λ2 beyond leading order). Thus
for order λ2, we consider SU(3) corrections for the tree,
color-suppressed tree, and penguin diagrams. Since calcu-
lations of branching fractions use the Bþ and B0

d lifetimes,
we add χ2 terms for these lifetimes in the fit.
We replace the direct γ measurement term in the χ2 func-

tion, by all measured branching fractions and CP asymme-
tries for Bþ → Dð�ÞKþ and Bþ → DK�þ decays analyzed
in the Giri-Grossman-Soffer-Zupan (GGSZ) [27], Gronau-
London-Wyler (GLW) [28], and Atwood-Dunietz-Soni
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FIG. 3. Overlay of 95% CL contours in the ρ̄ − η̄ plane for the
baseline fit scan with 22 measurements without including
BðBþ → τþνÞ. The green ellipses show selected contours of
accepted fits.

TABLE IV. The 95% CL ranges for unitarity triangle parameters from our baseline fit scans without the inclusion of BðBþ → τþνÞ,
from our baseline fit scans with the inclusion of BðBþ → τþνÞ and our full fit scans without the inclusion of BðBþ → τþνÞ. The values
of α and γ are, in these cases, computed from the values of ρ̄ and η̄.

Parameter ρ̄ η̄ β½°� α½°� γ½°�
Baseline fit: scan without Bþ → τþν 0.069–0.147 0.319–0.395 19.0–24.7 82.7–88.5 68.8–77.9
Baseline fit: scan with Bþ → τþν 0.073–0.147 0.324–0.396 19.3–24.8 82.8–88.4 68.8–77.4
Full fit: scan without Bþ → τþν 0.070–0.151 0.318–0.395 18.8–24.8 82.4–89.0 67.9–77.9
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FIG. 4. Overlay of 95% CL contours in the ρ̄ − η̄ plane for the
baseline fit scan with 23 measurements with inclusion of
BðBþ → τþνÞ. The green ellipses show selected contours of
accepted fits.
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(ADS) methods [29]. We also include branching fractions
and CP asymmetries for Bþ → Dð�Þπþ decays analyzed in
the ADS method. Here, the observables are calculated in
terms of b → cūsðdÞ and b → uc̄sðdÞ amplitudes. We also
include time-dependent CP asymmetries in B0 → Dð�Þþπ−
and B0 → Dð�Þþρ− decays that determine sinð2β þ γÞ.
Thus, the total number of measurements in the global fits
increases to 257; the fit has 120 parameters. Figure 5 shows
the 95% CL contours of all accepted fits in the ρ̄ − η̄ plane.
Table IV summarizes the 95% CL ranges for unitarity tri-
angle parameters. This result shows that the 257 measure-
ments are in good agreement with the SM. This procedure
accounts for possible correlations between α, γ and the
other Wolfenstein parameters (e.g., β).

IV. DETERMINATION OF α AND γ

In addition to the global fits of the CKM matrix, we per-
form separate fits that determine the unitarity triangle

angles α and γ. These results are then used as inputs to
the baseline fits. They are also used to investigate the cor-
relation with the angle β.

A. Determination of α

For the α determination we combine all measured
branching fractions and CP asymmetries in B → PP,
B → PV, and B → VV modes. We first perform separate
fits for each class of decays. As in Sec. IV we parametrize
the observables in terms of amplitudes, following the
Gronau-Rosner method. We include fBs

and ξf in the
fit, but we do not scan over them, since these parameters
appear only in the W-exchange and W-annihilation dia-
grams that are at order λ2 with respect to the tree diagram;
any variation in these parameters is absorbed by adjusting
the magnitude of the W-annihilation/W-exchange dia-
grams, leaving α and the remaining parameters unchanged.
Thus, we perform a single fit for each class of decays and
plot 95% CL α − β contours. Table V shows the central
values for α and β with uncertainties obtained by changing
Δχ2 by one for all fits. In addition, we list the correlation
between α and β and the fit probability. The correlation
coefficients vary between −18% and 5%.
We next perform a combined fit of all measurements in

B → PP, B → PV and B → VV and B → Pa1 modes to
extract α. We use 185 measurements [7] to determine 96
parameters. Figure 6 shows the 95% CL contour in the α −
β plane, which encompasses the world average β ¼
ð21.4� 0.8Þ° measured using b → cc̄s modes. The fit
probability is Pðχ2Þ ¼ 38.6%. The correlation coefficient
is about −4%. These results show that all measurements
in B → PP, B → PV and B → VV and B → Pa1 modes
are consistent with the SM description and no new physics
amplitudes are required.

B. Determination of γ

For the γ determination, we use branching fraction and
CP asymmetries of Bþ → Dð�ÞKþ and Bþ → DK�þ decays
analyzed in the GGSZ [27], GLW [28], and ADS [29]
methods. We also include branching fractions and CP
asymmetries of Bþ → Dð�Þπþ decays analyzed in the
ADS method and time-dependent CP asymmetries in
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0.5

0        0.1        0.2        0.3        0.4        0.5

The Method 

FIG. 5. Overlay of 95% CL contours in the ρ̄ − η̄ plane for
fits with 257 measurements without BðBþ → τþνÞ. The green
ellipses show selected contours of accepted fits.

TABLE V. Measurements of α, β, and γ from fits of branching fractions and CP asymmetries in B → PP, B → PV, B → VV decays
and in a combination of all modes combined plus B → Pa1 decays (α) and B → Dð�ÞKðπÞ þ B → DK�ðρÞ decays (γ).

B → PP B → PV B → VV B modes combined B → Dð�ÞKðπÞ þ B → DK�ðρÞ
α½°� 85.9þ3.0−2.7 82.4þ4.1−4.3 83.8þ5.5−5.6 84.7þ2.1−2.1 � � �
γ½°� � � � � � � � � � � � � 79.6þ4.1−4.2
β½°� 20.8þ2.1−1.9 20.5þ3.6−3.4 24.3þ6.4−4.9 21.1þ1.6−1.6 22.8þ7.7−2.1
α − β correlation 0.052 −0.182 −0.151 −0.035 � � �
γ − β correlation � � � � � � � � � � � � −0.194
p-value 0.50 0.369 0.248 0.386 0.051–0.071
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B0 → Dð�Þþπ− and B0 → Dð�Þþρ− decays that determine
sinð2β þ γÞ. We separate the CKM factors,
jVusV�

ubj=jVcsV�
cbj and jVudV�

ubj=jVcdV�
cbj from the ratio

of b → u to b → c amplitudes. We include the ratios
jVus=Vudj and jVub=Vcbj in the fit, scanning over jVubj
and jVcbj. Since the predictions contain a product
of CKM factors and ratios of amplitudes, it is necessary
to constrain the CKM factors in the fit to obtain sensible
values for the amplitude ratios and CKM factors.
We use 56 measurements [7] to extract 19 fit parameters,

scanning over the constraint jVubj=jVcbj. The probabilities
for these fits range between Pðχ2Þ ¼ 5.1% and
Pðχ2Þ ¼ 7.1%. Figure 7 shows the resulting contours at
95% CL in the γ − β plane. Table V lists the fit results.
Again, these 56 modes are well described within the SM
and no new physics amplitudes are required. The γ − β
correlation coefficient is −19%.

V. CONCLUSION

The three fitting approaches: CKMfitter, UTfit, and the
scan method yield similar central values for ρ̄ and η̄ when

presented with identical inputs. However, the allowed
region in the ρ̄ − η̄ plane is substantially larger in the
scan method. This may be expected from the difference
with the Bayesian methodology of UTfit, in which prior
distributions are assigned for the theoretical uncertain-
ties. The differences with CKMfitter are more subtle,
as both are frequentist approaches. In fact, the larger
scan method intervals is not a given; with different meas-
urement values the situation could reverse in the com-
parison with CKMfitter. This comparison points out
the importance of methodology in forming conclusions,
and hence of examining the problem with multiple
approaches.
Using the scan method, we find no tension with

the SM even when we include the current PDG value
of BðBþ → τþνÞ ¼ ð1.65� 0.34Þ × 10−4; the scan
yields global fits consistent with the SM at 95% CL.
When we include the recent Belle result, the BðBþ →
τþνÞ branching fraction has hardly any impact on the
ρ̄ − η̄ plane.
Our global fit allows us to determine and incorporate the

correlation between α and β, as well as between γ and β.
Using all measured branching fractions and CP asymme-
tries of B → PP, B → PV, B → VV, B → a1P modes
and Bþ → Dð�ÞKþ, B → DK�þ modes that are sensitive
to α and γ, respectively, we observe small changes in
the allowed region in the ρ̄ − η̄ plane. From separate fits
of branching fractions and CP asymmetries in these
modes, we determine α − β and γ − β contours. Though
α measurements agree with each other and β results are
consistent with sin 2β from b → cc̄s modes, some correla-
tion among Wolfenstein parameters in the different mea-
surements is observed. The values of α, determined from
a fit to all measured branching fractions and CP asymme-
tries of B → PP, B → PV, B → VV, and B → Pa1 modes,
and γ, extracted from a fit to Bþ → Dð�ÞKþ, B → DK�þ,
B → Dð�Þπ, and B0 → Dþρ− modes, agree with the SM
expectations.
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APPENDIX

In the baseline fits, the χ2 function [Eq. (1)] includes 23
or 22 terms, depending on whether BðB → τνÞ is included
or not. In this appendix, we describe the dependence of the
predicted values used in the χ2 expression on the quantities
ρ̄, η̄, pi, and tj.
The CKM matrix elements are parametrized in terms of

Wolfenstein parameters ρ̄, η̄, A, and λ up to order Oðλ9Þ
[10,30,31]:
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FIG. 6. The 95% CL contour in the α − β plane from a fit in-
cluding the B → PP, B → PV, B → VV, and B → Pa1 modes.
The black dot shows the central value from the fit. The vertical
band shows the 68% CL range for β obtained from sin 2β
measurements [7].
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FIG. 7 (color online). Overlay of 95% CL contours in the γ − β
plane for fits including the B → DKð�Þ, DK�, Dð�Þπ, Dρ modes.
The vertical band shows the 68% CL β region obtained from
sin 2β measurements [7].
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Vud ¼ 1 − 1

2
λ2 − 1

8
λ4 − 1

16
λ6ð1þ 8A2ðρ2 þ η2ÞÞ

− 1

128
λ8ð5 − 32A2ðρ2 þ η2ÞÞ;

Vus ¼ λ

�
1 − 1

2
A2λ6ðρ2 þ η2Þ

�
;

Vub ¼ Aλ3ðρ − iηÞ;

Vcd ¼ −λ
�
1 − 1

2
A2λ4ð1 − 2ðρþ iηÞÞ − 1

2
A2λ6ðρþ iηÞ

�
;

Vcs ¼ 1 − 1

2
λ2 − 1

8
λ4ð1þ 4A2Þ

− 1

16
λ6ð1 − 4A2 þ 16A2ðρþ iηÞÞ

− 1

128
λ8ð5 − 8A2 þ 16A4Þ;

Vcb ¼ Aλ2
�
1 − 1

2
A2λ6ðρ2 þ η2Þ

�
;

Vtd ¼ Aλ3ð1 − ρ − iηÞ þ 1

2
Aλ5ðρþ iηÞ

þ 1

8
Aλ7ð1þ 4A2Þðρþ iηÞ;

Vts ¼ −Aλ2
�
1 − 1

2
λ2ð1 − 2ðρþ iηÞÞ − 1

8
λ4

− 1

16
λ6ð1þ 8A2ðρþ iηÞÞ

�
;

Vtb ¼ 1 − 1

2
A2λ4 − 1

2
A2λ6ðρ2 þ η2Þ − 1

8
A4λ8: (A1)

The unitarity triangle angles β, α, and γ are imple-
mented by

sin 2β ¼ 2η̄ð1 − ρ̄Þ
ð1 − ρ̄Þ2 þ η̄2

;

tan α ¼ η̄

η̄2 þ ρ̄ðρ̄ − 1Þ ;

tan γ ¼ η̄

ρ̄
: (A2)

The oscillation frequencies for B0
dB̄

0
d and B0

sB̄0
s mixing

are computed according to

ΔmBd
¼ G2

F

6π2
ηBmBd

f2Bs

ξ2f

BBs

ξb
m2

WSðxtÞjVtdV�
tbj2;

ΔmBs
¼ G2

F

6π2
ηBmBs

f2Bs
BBs

m2
WSðxtÞjVtsV�

tbj2; (A3)

where GF is the Fermi constant, ηB is a QCD correction,
mW is the W mass, SðxtÞ is the Inami-Lim function [15],
and xt ¼ m̄2

t =m2
W where the top quark mass is calculated

in the MS scheme. We have expressed the B0
d decay con-

stant and bag parameters in terms of the B0
s decay constant

and bag parameters and their ratios ξf and ξb since the latter
have smaller uncertainties. The explicit relation between
m̄tðmtÞ and mpole

t is given by

m̄tðmtÞ ¼ mpole
t

�
1 − 4

3

�
αs
π

�
− 9.1253

�
αs
π

�
2

− 80.4045
�
αs
π

�
3
�
; (A4)

where αsðm̄tÞ ¼ 0.1068� 0.0018 is calculated in the MS
scheme for six quark flavors at the scale of the pole mass
[32,2].
CP violation in the K0K̄0 system is represented by the

parameter ϵK. In the SM, this is proportional to the off-
diagonal matrix element of the mixing matrix divided by
the K0

L − K0
S mass difference ΔmK yielding [33]

ϵK ¼ Cϵκϵ exp iφϵBKðIm½ðVcsV�
cdÞ2�ηccSðxcÞ

þ Im½ðVtsV�
tdÞ2�ηttSðxtÞ

þ 2Im½VcsV�
cdVtsV�

td�ηctSðxc; xtÞÞ; (A5)

where κϵ ¼ 0.94� 0.02 [34], ϕϵ ¼ ð43.5� 0.7Þ°,
xc ¼ m̄2

c=m2
W , m̄c is the charm quark mass in the MS

scheme. The constant is given by

Cϵ ¼
G2

Ff
2
KmKm2

W

12π2
ffiffiffi
2

p
ΔmK

; (A6)

where mK and fK are the kaon mass and kaon decay con-
stant, respectively. The contribution from the decay rate dif-
ference has been neglected. We use NLO calculations of the
QCD parameters; ηcc and ηct calculations at NNLO [35,36]
have now been done.
The Bþ → τþν branching fraction is given by

BðBþ → τþνÞ ¼ G2
F

8π
mBþm2

τ

�
1 − m2

τ

m2
Bþ

�
f2Bs

ξ2f
jVubj2τBþ ;

(A7)

where τBþ is the Bþ lifetime, mBþ is the Bþ mass and mτ is
the τþ mass.
We also add Gaussian terms in the χ2 function for the

quark masses mpole
t and m̄cðmcÞ, meson messes mB0

d
and

mB0
s
, and the Gaussian parts of the QCD parameters BK ,

fBs
, ξf, BBs

, and ξb.

EIGEN et al. PHYSICAL REVIEW D 89, 033004 (2014)

033004-8



[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi
and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[2] J. Charles, A. Öcker, H. Lacker, S. Laplace, F. R. Diberder,
J. Malclés, J. Ocariz, M. Pivk, and L. Roos, Eur. Phys. J. C
41, 1 (2005); updates at http://ckmfitter.in2p3.fr/.

[3] M. Bona et al., J. High Energy Phys. 03 (2008) 049 updates
at http://www.utfit.org/.

[4] G. P. Dubois-Felsmann, G. Eigen, D. G. Hitlin, and
F. C. Porter, arXiv:hep-ph/0308262v2.

[5] Physics of the B Factories, edited by A. Bevan et al. (to be
published).

[6] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,
010001 (2012).

[7] D. Asner et al., arXiv:1010.1589v3; www.slac.stanford.edu/
xorg/hfag/triangle/index.html.

[8] J. Laiho, E. Lunghi, and R. S. Van de Water, Phys. Rev. D
81, 034503 (2010).

[9] J. Laiho, E. Lunghi, and R. S. Van de Water, http://mypage
.iu.edu/∼elunghi/webpage/LatAves/page7/page7.html.

[10] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
[11] S. Herrlich and U. Nierste, Nucl. Phys. B 419, 292 (1994);

A. J. Buras, M. Jamin, and P. H. Weisz, Nucl. Phys. B 347,
491 (1990); S. Herrlich and U. Nierste, Phys. Rev. D 52,
6505 (1995); Nucl. Phys. B 476, 27 (1996).

[12] G. Colangelo et al., Eur. Phys. J. C 71, 1695 (2011).
[13] E. Gamiz, C. Davies, G. Lepage, J. Shigemitsu, and

M. Wingate, Phys. Rev. D 80, 014503 (2009).
[14] G. Eigen, G. P. Dubois-Felsmann, D. G. Hitlin, and

F. C. Porter (to be published).
[15] T. Inami and C. S. Lim, Prog. Theor. Phys. 65, 297 (1981).
[16] K. Melnikov and T. van Ritbergen, Phys. Lett. B 482, 99

(2000).
[17] N. Gray, D. J. Broadhurst, W. Grafe, and K. Schilcher,

Z. Phys. C 48, 673 (1990).
[18] D. J. Broadhurst, N. Gray, and K. Schilcher, Z. Phys. C 52,

111 (1991).
[19] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,

075021 (2010).

[20] J. Shao, Mathematical Statistics (Springer-Verlag,
New York, 2003), 2nd ed.

[21] CP conjugate states are implied.
[22] P. del Amo Sanchez et al. (BABAR Collaboration),

Phys. Rev. D 82, 051101 (2010); J. P. Lees et al. (BABAR
Collaboration), Phys. Rev. D 88, 031102 (2013).

[23] K. Hara et al., Phys. Rev. D 82, 071101 (2010).
[24] D. Silverman and H. Yao, Phys. Rev. D 38, 214 (1988).
[25] I. Adachi et al. (Belle Collaboration), Phys. Rev. Lett. 110,

131801 (2013).
[26] M. Gronau, O. F. Hernandez, D. London, and J. L. Rosner,

Phys. Rev. D 50, 4529 (1994); M. Gronau, D. Pirjol, and T.
M. Yan, Phys. Rev. D 60, 034021 (1999); Phys. Rev. D 69,
119901(E) (2004); A. S. Dighe, M. Gronau, and J. L.
Rosner, Phys. Rev. D 57, 1783 (1998); M. Gronau and
J. L. Rosner, Phys. Rev. D 61, 073008 (2000); M. Gronau,
Phys. Rev. D 62, 014031 (2000); A. Beneke, M. Gronau,
J. Rohrer, and M. Spranger, Phys. Lett. B 638, 68 (2006).

[27] A. Giri, Y. Grossman, A. Soffer, and J. Zupan, Phys. Rev. D
68, 054018 (2003).

[28] M. Gronau and D. London, Phys. Lett. B 253, 483 (1991);
M. Gronau and D. Wyler, Phys. Lett. B 265, 172
(1991).

[29] D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. 78,
3257 (1997); Phys. Rev. D 63, 036005 (2001).

[30] A. J. Buras, M. E. Lautenbacher, and G. Ostermaier, Phys.
Rev. D 50, 3433 (1994).

[31] Y. H. Ahn, H. Y. Cheng, and S. Oh, Phys. Lett. B 703, 571
(2011).

[32] A. J. Buras and R. Fleischer, Adv. Ser. Dir. High Energy
Phys. 15, 65 (1998).

[33] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev.
Mod. Phys. 68 1125 (1996).

[34] A. J. Buras, D. Guadagnoli, and G. Isidori, Phys. Lett. B
688, 309 (2010).

[35] J. Brod and M. Gorbahn, Phys. Rev. D 82, 094026 (2010).
[36] J. Brod and M. Gorbahn, Phys. Rev. Lett. 108, 121801

(2012).

GLOBAL CKM FITS WITH THE SCAN METHOD PHYSICAL REVIEW D 89, 033004 (2014)

033004-9

http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1140/epjc/s2005-02169-1
http://dx.doi.org/10.1140/epjc/s2005-02169-1
http://ckmfitter.in2p3.fr/
http://ckmfitter.in2p3.fr/
http://ckmfitter.in2p3.fr/
http://dx.doi.org/10.1088/1126-6708/2008/03/049
http://www.utfit.org/
http://www.utfit.org/
http://dx.doi.org/10.1088/1126-6708/2008/03/049
http://arXiv.org/abs/hep-ph/0308262v2
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://arXiv.org/abs/1010.1589v3
www.slac.stanford.edu/xorg/hfag/triangle/index.html
www.slac.stanford.edu/xorg/hfag/triangle/index.html
www.slac.stanford.edu/xorg/hfag/triangle/index.html
www.slac.stanford.edu/xorg/hfag/triangle/index.html
www.slac.stanford.edu/xorg/hfag/triangle/index.html
www.slac.stanford.edu/xorg/hfag/triangle/index.html
http://dx.doi.org/10.1103/PhysRevD.81.034503
http://dx.doi.org/10.1103/PhysRevD.81.034503
http://mypage.iu.edu/elunghi/webpage/LatAves/page7/page7.html
http://mypage.iu.edu/elunghi/webpage/LatAves/page7/page7.html
http://mypage.iu.edu/elunghi/webpage/LatAves/page7/page7.html
http://mypage.iu.edu/elunghi/webpage/LatAves/page7/page7.html
http://dx.doi.org/10.1103/PhysRevLett.51.1945
http://dx.doi.org/10.1016/0550-3213(94)90044-2
http://dx.doi.org/10.1016/0550-3213(90)90373-L
http://dx.doi.org/10.1016/0550-3213(90)90373-L
http://dx.doi.org/10.1103/PhysRevD.52.6505
http://dx.doi.org/10.1103/PhysRevD.52.6505
http://dx.doi.org/10.1016/0550-3213(96)00324-0
http://dx.doi.org/10.1140/epjc/s10052-011-1695-1
http://dx.doi.org/10.1103/PhysRevD.80.014503
http://dx.doi.org/10.1143/PTP.65.297
http://dx.doi.org/10.1016/S0370-2693(00)00507-4
http://dx.doi.org/10.1016/S0370-2693(00)00507-4
http://dx.doi.org/10.1007/BF01614703
http://dx.doi.org/10.1007/BF01412333
http://dx.doi.org/10.1007/BF01412333
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1103/PhysRevD.82.051101
http://dx.doi.org/10.1103/PhysRevD.88.031102
http://dx.doi.org/10.1103/PhysRevD.82.071101
http://dx.doi.org/10.1103/PhysRevD.38.214
http://dx.doi.org/10.1103/PhysRevLett.110.131801
http://dx.doi.org/10.1103/PhysRevLett.110.131801
http://dx.doi.org/10.1103/PhysRevD.50.4529
http://dx.doi.org/10.1103/PhysRevD.60.034021
http://dx.doi.org/10.1103/PhysRevD.69.119901
http://dx.doi.org/10.1103/PhysRevD.69.119901
http://dx.doi.org/10.1103/PhysRevD.57.1783
http://dx.doi.org/10.1103/PhysRevD.61.073008
http://dx.doi.org/10.1103/PhysRevD.62.014031
http://dx.doi.org/10.1016/j.physletb.2006.05.012
http://dx.doi.org/10.1103/PhysRevD.68.054018
http://dx.doi.org/10.1103/PhysRevD.68.054018
http://dx.doi.org/10.1016/0370-2693(91)91756-L
http://dx.doi.org/10.1016/0370-2693(91)90034-N
http://dx.doi.org/10.1016/0370-2693(91)90034-N
http://dx.doi.org/10.1103/PhysRevLett.78.3257
http://dx.doi.org/10.1103/PhysRevLett.78.3257
http://dx.doi.org/10.1103/PhysRevD.63.036005
http://dx.doi.org/10.1103/PhysRevD.50.3433
http://dx.doi.org/10.1103/PhysRevD.50.3433
http://dx.doi.org/10.1016/j.physletb.2011.08.047
http://dx.doi.org/10.1016/j.physletb.2011.08.047
http://dx.doi.org/10.1103/RevModPhys.68.1125
http://dx.doi.org/10.1103/RevModPhys.68.1125
http://dx.doi.org/10.1016/j.physletb.2010.04.017
http://dx.doi.org/10.1016/j.physletb.2010.04.017
http://dx.doi.org/10.1103/PhysRevD.82.094026
http://dx.doi.org/10.1103/PhysRevLett.108.121801
http://dx.doi.org/10.1103/PhysRevLett.108.121801

