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In the context of dynamical breaking of local supersymmetry (supergravity), including the Deser-
Zumino super-Higgs effect, for the simple but quite representative cases ofN ¼ 1,D ¼ 4 supergravity, we
discuss the emergence of Starobinsky-type inflation, due to quantum corrections in the effective action
arising from integrating out gravitino fields in their massive phase. This type of inflation may occur after a
first-stage small-field inflation that characterizes models near the origin of the one-loop effective potential,
and it may occur at the nontrivial minima of the latter. Phenomenologically realistic scenarios, compatible
with the Planck data, may be expected for the conformal supergravity variants of the basic model.
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This short article serves as an addendum to our previous
publication [1], where we discussed dynamical breaking of
supergravity (SUGRA) theories via gravitino condensation.
In particular, we shall demonstrate the compatibility of this
scenario with Starobinsky-like [2] inflationary scenarios,
which in our case can characterize the massive gravitino
phase. As we shall argue, this is a second inflationary
phase, which may succeed a first inflation that occurs in the
flat region of the one-loop effective potential for the
gravitino condensate field [3].
Starobinsky inflation is a model for obtaining a de Sitter

(inflationary) cosmological solution to gravitational equa-
tions arising from a (four space-time-dimensional) action
that includes higher curvature terms, specifically of the type
in which the quadratic curvature corrections consist only of
scalar curvature terms [2]

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi−gp ðRþ βR2Þ; β ¼ 8π

3M2
; (1)

where κ2 ¼ 8πG, and G ¼ 1=m2
P is Newton’s (gravita-

tional) constant in four space-time dimensions, withmP the
Planck mass, and M is a constant of mass dimension one,
characteristic of the model.
The important feature of this model is that inflationary

dynamics are driven by the purely gravitational sector,
through the R2 terms, and the scale of inflation is linked to
M. From a microscopic point of view, the scalar curvature-
squared terms in (1) are viewed as the result of quantum
fluctuations (at the one-loop level) of conformal (massless
or high energy) matter fields of various spins, which have
been integrated out in the relevant path integral in a curved
background space-time [4]. The quantum mechanics of this
model, by means of tunneling of the Universe from a state
of “nothing” to the inflationary phase of Ref. [2], has been
discussed in detail in [5]. The above considerations
necessitate truncation to one-loop quantum order and to

curvature-square (four-derivative) terms, which implies that
there must be a region of validity for curvature invariants
such that OðR2=m4

pÞ ≪ 1, which is a condition satisfied in
phenomenologically realistic scenarios of inflation [6,7],
for which the inflationary Hubble scale HI ≤ 0.74 ×
10−5mP ¼ Oð1015Þ GeV (the reader should recall that R ∝
H2

I in the inflationary phase).
Although the inflation in this model is not driven by

fundamental rolling scalar fields, nevertheless the model (1)
[and for that matter, any other model where the Einstein-
Hilbert space-time Lagrangian density is replaced by an
arbitrary function fðRÞ of the scalar curvature] is conformally
equivalent to that of an ordinary Einstein-gravity coupled to a
scalar field with a potential that drives inflation [8]. To see
this, one first linearizes the R2 terms in (1) by means of an
auxiliary (Lagrange-multiplier) field ~αðxÞ, before rescaling
the metric by a conformal transformation and redefining the
scalar field (so that the final theory acquires canonically
normalized Einstein and scalar-field terms):

gμν → gEμν ¼ ð1þ 2β ~αðxÞÞgμν; (2)

~αðxÞ → φðxÞ≡
ffiffiffi
3

2

r
ln ð1þ 2β ~αðxÞÞ: (3)

These steps may be understood schematically viaZ
d4x

ffiffiffiffiffiffi−gp ðRþ βR2Þ

↪
Z

d4x
ffiffiffiffiffiffi−gp ðð1þ 2β ~αðxÞÞR − β ~αðxÞ2Þ

↪
Z

d4x
ffiffiffiffiffiffiffiffiffi−gEp

ðRE þ gEμν∂μφ∂νφ − VðφÞÞ; (4)

where the arrows have the meaning that the corresponding
actions appear in the appropriate path integrals, with the
potential VðφÞ given by
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VðφÞ ¼ ð1 − e−
ffiffi
2
3

p
φÞ2

4β
¼ 3M2ð1 − e−

ffiffi
2
3

p
φÞ2

32π
: (5)

The potential is plotted in Fig. 1. We observe that it is
sufficiently flat for large values of φ (compared to the
Planck scale) to produce phenomenologically acceptable
inflation, with the scalar field φ playing the role of the
inflaton. In fact, the Starobinsky model fits excellently the
Planck data on inflation [7].
Quantum-gravity corrections in the original Starobinsky

model (1) have been considered recently in [9] from the point
of view of an exact renormalization-group (RG) analysis
[10]. It was shown that the nonperturbative beta functions for
the “running” of Newton’s “constant” G and the dimension-
less R2 coupling β−1 in (1) imply an asymptotically safe
ultraviolet (UV) fixed point for the former [that is,
Gðk → ∞Þ → const, for some four-momentum cutoff scale
k], in the spirit of Weinberg [11], and an attractive asymp-
totically free [β−1ðk → ∞Þ → 0] point for the latter. In this
sense, the smallness of the R2 coupling, required for agree-
ment with inflationary observables [7], is naturally ensured
by the presence of the asymptotically free UV fixed point.
The agreement of the model of [2] with the Planck data

triggered an enormous interest in the current literature in
revisiting the model from various points of view, such as its
connection with no-scale supergravity [12] and (super)
conformal versions of supergravity and related areas [13].
In the latter works, however, the Starobinski scalar field is
fundamental, arising from the appropriate scalar compo-
nent of some chiral superfield that appears in the super-
potentials of the model. Although of great value,
illuminating a strong connection between supergravity

models and inflationary physics, and especially for explain-
ing the low scale of inflation compared to the Planck scale,
these works contradict the original spirit of the Starobinsky
model (1) where, as mentioned previously, the higher
curvature corrections are viewed as arising from quantum
fluctuations of matter fields in a curved space-time back-
ground such that inflation is driven by the pure gravity
sector in the absence of fundamental scalars.
In a recent publication [3], we have considered an

alternative inflationary scenario, in which, in the spirit of
the original Starobinsky model, the inflaton field was not a
fundamental scalar but arose as a result of condensation (in
the scalar s-wave channel) of the gravitino field in simple
SUGRA models with spontaneous breaking of global
supersymmetry (SUSY) via the super-Higgs effect [1], at
a (mass) scale

ffiffiffi
f

p
. Dynamical breaking of SUGRA, in the

sense of the generation of a mass for the gravitino field ψμ,
while the gravitons remain massless, occurs in the model as
a result of the four-gravitino interactions characterizing the
SUGRA action, arising from the torsionful contributions of
the spin connection, characteristic of local supersymmetric
theories. The one-loop effective potential for the scalar
gravitino condensate field σc ∝ hψ̄μψ

μi has a double-well
shape as a function of σc, which is symmetric about the
origin, as dictated by the fact that the sign of a fermion mass
does not have physical significance. Dynamical generation
of the gravitino mass occurs at the nontrivial minima
corresponding to σc ≠ 0. The potential of the σc field is
also flat near the origin, and this has been identified in [3]
with the inflationary phase.
In [1] the one-loop effective potential was derived by first

formulating the theory on a curved de Sitter background
[14], with cosmological constant (one-loop induced) Λ > 0,
and integrating out spin-2 (graviton) and spin 3=2 (grav-
itino) quantum fluctuations in a given class of gauges
(physical), before considering the flat limit Λ → 0 in a
self-consistent way. The detailed analysis in [1], performed
in the physical gauge, has demonstrated that the dynami-
cally broken phase is then stable (in the sense of the effective
action not being characterized by imaginary parts) provided

σ2c ≤ f2: (6)

This result demonstrated the importance of the existence of
the global SUSY breaking scale for the stability of the phase
where dynamical generation of gravitino masses occurs,
which was not considered in the previous literature [15].1

FIG. 1 (color online). The effective potential (5) of the
collective scalar field φ that describes the one-loop quantum
fluctuations of matter fields, leading to the higher-order scalar
curvature corrections in the Starobinski model for inflation (1).
The potential is sufficiently flat to ensure slow-roll conditions for
inflation are satisfied, in agreement with the Planck data, for
appropriate values of the scale 1=β ∝ M2 (which sets the overall
scale of inflation in the model).

1Although performed in different gauges from our own, the
result of those references that imaginary parts prevent gravitino
mass generation would also be valid in the case we consider here,
were it not for the super-Higgs effect and the condition (6). Such a
conclusion could, however, not be reached in [15], as the role of
the super-Higgs effect, and the “eating” of the Goldstino
associated with the global SUSY breaking by the gravitino,
was not included.
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The self-consistency of the Λ → 0 limit necessarily
implies the vanishing of the one-loop effective potential
at the nontrivial minima, which is a limiting case consistent
with the supersymmetry breaking. This restricts the scale of
the f2 and σ2c in such a way that both scales must be of order
of Planck if the simplest four-dimensional N ¼ 1 SUGRA
model is considered. On the other hand, if one considers
superconformal versions of SUGRA, e.g. those in
Ref. [16], then phenomenologically realistic scales for
f2 and σc of order of the grand unification scale, can
appear, for appropriate values of the expectation value of
the conformal factor, implying inflationary scenarios in
perfect agreement with the Planck data [3,7], on equal
footing with the original Starobinski model. The infla-
tionary period in this scenario is obtained by a simple
embedding of the one-loop effective potential for the
gravitino condensate field in a standard Einstein-back-
ground gravity, where higher curvature corrections are
ignored, while the end of the inflationary period coincides
with the flat space-time limit that characterizes the dynami-
cal breaking of SUGRA at the nontrivial minima of the one-
loop effective potential.
In this note we would like to consider an extension of the

analysis of [1], where the de Sitter parameter Λ is
perturbatively small compared to m2

P, but not zero, so that
truncation of the series to order Λ2 suffices. This is in the
spirit of the original Starobinsky model [2], with the role of
matter fulfilled by the now-massive gravitino field.
Specifically, we are interested in the behavior of the
effective potential near the nontrivial minimum, where
σc is a nonzero constant. In our analysis, unlike
Starobinsky’s original work, we will keep the contributions
from both graviton (spin-two) and gravitino quantum
fluctuations. Notice that our one-loop analysis does not
allow us to make any comment on the asymptotic safety of
the solution as in [9], as this would require a detailed
analysis based on exact RG, which we do not perform here.
We first note that the one-loop effective potential,

obtained by integrating out gravitons and (massive) grav-
itino fields in the scalar channel (after appropriate
Euclideanization), may be expressed as a power series in Λ,

Γ≃ Scl − 24π2

Λ2
ðαF0 þ αB0 þ ðαF1 þ αB1 ÞΛ

þ ðαF2 þ αB2 ÞΛ2 þ � � �Þ; (7)

where Scl denotes the classical action with tree-level
cosmological constant Λ0 (to be contrasted with the one-
loop cosmological constant Λ),

− 1

2κ2

Z
d4x

ffiffiffi
g

p ðR̂ − 2Λ0Þ; Λ0 ¼ κ2ðσ2 − f2Þ; (8)

with R̂ denoting the fixed S4 background we expand around
(R̂ ¼ 4Λ, volume ¼24π2=Λ2), and the α’s indicate the

bosonic (graviton) and fermionic (gravitino) quantum
corrections at each order in Λ.
The leading order term in Λ is then the effective action

found in [1] in the limit Λ → 0,

ΓΛ→0 ≃− 24π2

Λ2

�
−Λ0

κ2
þ αF0 þ αB0

�
≡ 24π2

Λ2

Λ1

κ2
; (9)

and the remaining quantum corrections then proportional to
Λ and Λ2 may be identified, respectively, with Einstein-
Hilbert R-type and Starobinsky R2-type terms in an
effective action (10) of the form

Γ≃ −
1

2κ2

Z
d4x

ffiffiffi
g

p ððR̂ − 2Λ1Þ þ α1R̂þ α2R̂
2Þ; (10)

where we have combined terms of order Λ2 into curvature
scalar square terms. For general backgrounds such terms
would correspond to invariants of the form R̂μνρσR̂

μνρσ,
R̂μνR̂

μν, and R̂2, which for a de Sitter background all
combine to yield R̂2 terms. The coefficients α1 and α2
absorb the nonpolynomial (logarithmic) in Λ contributions,
so that we may then identify (10) with (7) via

α1 ¼
κ2

2
ðαF1 þ αB1 Þ; α2 ¼

κ2

8
ðαF2 þ αB2 Þ: (11)

To identify the conditions for phenomenologically
acceptable Starobinsky inflation around the nontrivial
minima of the broken SUGRA phase of our model, we
impose first the cancellation of the “classical” Einstein-
Hilbert space term R̂ by the “cosmological constant” term
Λ1, i.e. that R̂ ¼ 4Λ ¼ 2Λ1. This condition should be
understood as a necessary one characterizing our back-
ground in order to produce phenomenologically acceptable
Starobinsky inflation in the broken SUGRA phase follow-
ing the first inflationary stage, as discussed in [3]. This may
naturally be understood as a generalization of the relation
R̂ ¼ 2Λ1 ¼ 0, imposed in [1] as a self-consistency con-
dition for the dynamical generation of a gravitino mass.
The effective Newton’s constant in (10) is then

κ2eff ¼ κ2=α1, and from this, we can express the effective
Starobinsky scale (1) in terms of κeff as βeff ≡ α2=α1. This
condition thus makes a direct link between the action (7)
with a Starobinsky type action (1). Comparing with (1), we
may then determine the Starobinsky inflationary scale in
this case as

M ¼
ffiffiffiffiffiffiffiffiffiffiffi
8π

3

α1
α2

s
: (12)

We may then determine the coefficients α1 and α2 in
order to evaluate the scale 1=β of the effective Starobinsky
potential given in Fig. 1 in this case, and thus the scale of
the second inflationary phase. To this end, we use the
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results of [1], derived via an asymptotic expansion as
explained in the appendix therein, to obtain the following
forms for the coefficients:

αF1 ¼ ð25491 − 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27076337

p Þ
25016

~κ2σ2c log

�
Λ
μ2

�

þ ð3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
65028102

p − 18700Þ
81397

~κ2σ2c

þ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100304662585

p − 247787Þ
945888

~κ2σ2c log
�
~κ2σ2c
μ2

�
;

αF2 ¼ ð6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5018206

p − 12882Þ
38914

log

�
~κ2σ2c
μ2

�

þ ð50249 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2590498021

p Þ
22066

log

�
Λ
μ2

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10592733

p − 1377

65388
; (13)

and

αB1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
356979979

p − 17707

64839
Λ0 log

�
Λ
3μ2

�

þ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2812791101

p − 52583Þ
9244

Λ0 log

�
− 3Λ0

μ2

�

−
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1416210349
p − 27907Þð1þ log ð2ÞÞ

198570
Λ0;

αB2 ¼ − ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
220573721

p − 19811Þ
232300

log

�
Λ
3μ2

�

þ ð10 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12614479

p − 36763Þ
86027

log

�
− 6Λ0

μ2

�

þ 2731− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1392978

p

76777
; (14)

where ~κ ¼ e−hΦiκ is the conformally rescaled gravitational
constant in the model of [16] and hΦi ≠ 0 is the vacuum
expectation value of the conformal (“dilaton”) factor,
assumed to be stabilized by means of an appropriate
potential. In the case of standard N ¼ 1 SUGRA,
hΦi ¼ 0. We note at this stage that the spin-two parts,
arising from integrating out graviton quantum fluctuations,
are not dominant in the conformal case [1], provided
~κ=κ ≥ Oð103Þ, which leads [3] to the agreement of the
first inflationary phase of the model with the Planck data
[7]. However, if the first phase is succeeded by a
Starobinsky phase, it is the latter only that needs to be
checked against the data.
We search numerically for points in the parameter space

such that the effective equations,

∂Γ
∂Λ ¼ 0;

∂Γ
∂σ ¼ 0; (15)

are satisfied, Λ is small and positive (0 < Λ < 10−5M2
Pl, to

ensure the validity of our expansion in Λ), and
10−6 < M=MPl < 10−4, to match the known phenomenol-
ogy of Starobinsky inflation [7].
For ~κ ¼ κ (i.e. for nonconformal supergravity), we were

unable to find any solutions satisfying these constraints.
This of course may not be surprising, given the previously
demonstrated nonphenomenological suitability of this
simple model [1]. If we consider ~κ ≫ κ, however, we find
that we are able to satisfy the above constraints for a range
of values. We present this via the two representative cases
below, indicated in Figs. 2 and 3, where we have the
gravitino mass [1]

m3=2 ¼
ffiffiffiffiffi
11

2

r
~κσc; (16)

ffiffiffi
f

p
is the scale of global supersymmetry breaking, and we

have set the normalization scale via κμ ¼ ffiffiffiffiffiffi
8π

p
. Every point

in the graphs of the figures is selected to make the
Starobinsky scale of order M ∼ 10−5MPl; hence we
are able to achieve phenomenologically acceptable
Starobinsky inflation in the massive gravitino phase,
consistent with the Planck-satellite data [7].
The exit from the inflationary phase is a complicated

issue that we shall not discuss here, aside from the
observation that it can be achieved by coherent oscillations
of the gravitino condensate field around its minima, or
tunneling processes à la Vilenkin [5]. We hope to address
these issues in detail in a future work.

FIG. 2 (color online). Results for ~κ ¼ 103κ.

FIG. 3 (color online). Results for ~κ ¼ 104κ.
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