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We investigate the influence of noninertial effects on the ground state energy of a massive scalar field
in the cosmic string spacetime. We generalize the results obtained by Khusnutdinov and Bordag
[N. R. Khusnutdinov and M. Bordag, Phys. Rev. D 59, 064017 (1999)] to a noninertial reference frame
and show, by contrast, that a nonvanishing contribution to the ground state energy stems from the non-
inertial effects. Moreover, we show that there is no influence of the curvature of the spacetime on this
nonvanishing contribution to the ground state energy of a massive scalar field.
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I. INTRODUCTION

The Casimir effect has been a subject of many investi-
gations since the first experimental test performed by
Sparnaay [1] in the late 1950s. This effect, which was
predicted by Casimir [2], originally arises from quantum
fluctuations in the vacuum of the electromagnetic field
and, as a consequence, a finite vacuum energy (associated
with an attractive force) appears induced by material boun-
daries in contrast to the vacuum energy defined in the
Minkowski spacetime. Besides, from the experimental
point of view, the reality of the effect has been extensively
confirmed by many experiments [3–5], which has opened a
window for a variety of physical applications in different
areas such as biology and chemistry [6,7].
Due to the quantum nature of the Casimir effect, it can

also arise from the quantum fluctuation of other relativistic
quantum fields, for instance, scalar and fermionic fields
[8,9]. Furthermore, it has also been realized that the
Casimir effect can be investigated in the context of space-
times with nontrivial topology, in which cases there is no
need to have a material boundary by imposing boundary
conditions, since the own topology of these backgrounds
is responsible for imposing conditions on the considered
fields [7,10]. A particular kind of spacetime with nontrivial
topology is the cosmic string spacetime. The cosmic string
is a linear topological defect which originally arises, in the
context of some gauge field theories, as a consequence of a
symmetry breaking phase transition in the early Universe. It
can either form closed loops or extend to infinity [11]. A
particular interest in the present paper is the latter case,
which describes a spacetime with a conical topology.
Although locally there is no gravity describing the cosmic
string spacetime, there exist several interesting gravitational

effects associated with the nontrivial topology of the space-
like region of the cosmic string spacetime. Among these
effects, a cosmic string can act as a gravitational lens
[12], it can produce the Casimir effect [13] and it can be
studied as a background in other different contexts [14–24].
Our interest in this brief report is to investigate the in-

fluence of noninertial effects on the ground state energy
of a massive scalar field in the cosmic string spacetime.
The study of noninertial effects has discovered interesting
effects in the context of quantum mechanics, as example, in
interferometry associated with geometric phases [25–27],
and a new coupling between the angular momentum and
the angular velocity of the rotating frame [28–30]. Other
discussions about phase shifts in the wave function of a
quantum particle in noninertial systems have been made
via Lorentz transformations [31], in the weak field approxi-
mation [32], and by obtaining the analogue effect of the
Aharonov-Casher effect [33]. Other studies of noninertial
effects in quantum systems have also been extended to con-
fined systems, such as persistent currents in quantum rings
[34], spin currents [35], Dirac fields [36], scalar fields [37],
the Dirac oscillator [38], rotational and gravitational effects
in quantum interference [39–41], and the confinement of a
neutral particle to a quantum dot [22,24].
In recent years, Khusnutdinov and Bordag [42] showed

that the ground state energy of a massive scalar field in the
cosmic string spacetime is zero. In this work, we generalize
the results of Khusnutdinov and Bordag [42] to a noniner-
tial reference frame and show, by contrast, that noninertial
effects yield a nonvanishing contribution to the ground state
energy. Moreover, we show that this nonvanishing contri-
bution to the ground state energy of a massive scalar field
does not depend on the topology of the cosmic string
spacetime.
This paper is organized as follows: in Sec. II, we intro-

duce the Klein-Gordon equation for a massive scalar field
in a noninertial reference frame in the cosmic string
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spacetime, then, we discuss the influence of noninertial
effects on the ground state energy of a massive scalar field;
in Sec. III, we present our conclusions.

II. MASSIVE SCALAR FIELD IN NONINERTIAL
REFERENCE FRAME IN THE COSMIC

STRING SPACETIME

In this section, we discuss the influence of the noninertial
effects of a rotating reference frame on the eigenfrequen-
cies of a massive scalar field in the cosmic string spacetime.
We begin by writing the line element of the cosmic string
spacetime and, in the following, we obtain the eigenfre-
quencies of the massive scalar field in a noninertial refer-
ence frame. The line element of the cosmic string spacetime
is characterized by the presence of a parameter related to
the deficit of angle, which is defined as α ¼ 1–4Gμ, where
μ is the dimensionless linear mass density of the cosmic
string, G is the gravitational Newton constant, and the azi-
muthal angle is defined in the range 0 ≤ Φ < 2π. Working
with the units ℏ ¼ c ¼ 1, the line element of the cosmic
string spacetime is given by [12,14]

ds2 ¼ −dT2 þ dR2 þ α2R2dΦ2 þ dZ2. (1)

Furthermore, the geometry described by the line element
(1) possesses a conical singularity represented by the cur-
vature tensor Rρ;φ

ρ;φ ¼ 1−α
4α δ2ðr⃗Þ, where δ2ðr⃗Þ is the two-

dimensional delta function. This behavior of the curvature
tensor is denominated as a conical singularity [15], which
gives rise to the curvature concentrated on the cosmic string
axis and possesses a null curvature in all other points. It is
worth mentioning that all values of the parameter α > 1
correspond to a spacetime with negative curvature which
does not make sense in the general relativity context
[16,17,19]. Therefore, the parameter α given in the line
element (1) can only assume values for which α < 1.
Now, let us make the following coordinate transforma-

tion: T ¼ t, R ¼ ρ, Φ ¼ φþϖt and Z ¼ z, where 0 ≤
φ < 2π and ϖ is the constant angular velocity of the rotat-
ing frame. Thus, the line element (1) becomes

ds2 ¼ −ð1 −ϖ2α2ρ2Þdt2 þ 2ϖα2ρ2dφdtþ dρ2

þ α2ρ2dφ2 þ dz2: (2)

Hence, the line element (2) describes a scenario of general
relativity corresponding to the cosmic string spacetime
background in a rotating coordinate system. We should
note that the line element (2) is defined in the range 0 <
ρ < 1=ϖα [21,22,24,38,43]. Values where ρ > 1=ϖα
mean that the line element (2) is not well defined because
this region of the spacetime corresponds to a particle placed
outside of the light cone. This interesting restriction of the
radial coordinate imposed by noninertial effects gives rise
to a hard-wall confining potential, where the geometry of

the spacetime plays this role of a hard-wall confining poten-
tial. In the context of quantum mechanics, if the wave func-
tion of the quantum particle cross the limit ρ ¼ 1=αϖ, thus,
a non-null probability of finding the particle outside the
light cone exists and, as a consequence, the velocity of
the particle would be greater than the velocity of the light.
In this sense, a hard-wall confining potential stems from
both noninertial effects and the topology of the cosmic
string spacetime by imposing that the wave function of
the quantum particle vanishes at ρ → 1=αϖ. Recently,
the behavior of the Dirac oscillator frequency has been ana-
lyzed under the influence of noninertial effects and the top-
ology of the cosmic string spacetime [38]. In the present
work, we show that this restriction allows us to analyze
the influence of noninertial effects and the topology of
the cosmic string spacetime on the Casimir energy, that
is, on the ground state energy which stems from the eigen-
frequencies of a scalar field.
Now, let us consider an uncharged scalar quantum par-

ticle embedded in the scenario of general relativity
described by the line element (2). We deal with this system
within the framework of general relativity, then, the field
equation that describes this quantum dynamics is given
by the Klein-Gordon equation in curved spacetime [44].
In this way, the Klein-Gordon equation becomes

m2ϕ ¼ −∂2ϕ

∂t2 þ 2ϖ
∂2ϕ

∂φ∂t −ϖ2
∂2ϕ

∂φ2
þ ∂2ϕ

∂ρ2 þ
1

ρ

∂ϕ
∂ρ

þ 1

α2ρ2
∂2ϕ

∂φ2
þ ∂2ϕ

∂z2 ; (3)

with m being the mass of the scalar particle. We can
observe that ϕ is an eigenfunction of the operators p̂z ¼−i∂z and L̂z ¼ −i∂φ, thus, we can write the solution of
Eq. (3) in terms of the eigenvalues of the operators p̂z
and L̂z in the following form:

ϕðt; ρ;φ; zÞ ¼ e−iωteilφeikzfðρÞ; (4)

where ω and k are constants and l ¼ 0;�1;�2;…. Then,
substituting the solution (4) into Eq. (3), we obtain the fol-
lowing radial equation:

d2f
dρ2

þ 1

ρ

df
dρ

− l2

α2ρ2
f þ λ2f ¼ 0; (5)

where we have defined the parameter λ in the form

λ2 ¼ ðωþ lϖÞ2 −m2 − k2 ¼ ω2
eff −m2 − k2; (6)

where ωeff ¼ ωþ lϖ. From now on, we consider just the
positive values of the angular momentum l in order to keep
ωeff being positive definite, thus, we write ωeff ¼ ωþ jljϖ.
Note that, by writing ωeff ¼ ωþ jljϖ, we keep ωeff being
positive definite and the values of the angular momentum
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quantum number defined as l ¼ 0;�1;�2;…. Then, we
have that Eq. (5) is the Bessel differential equation [45].
The general solution of Eq. (6) is given in the form
fðρÞ ¼ AJjlj

α
ðλρÞ þ BN jlj

α
ðλρÞ, where Jjlj

α
ðλρÞ and N jlj

α
ðλρÞ

are the Bessel function of first kind and second kind
[45]. In order to have a regular solution at the origin,
we must take B ¼ 0 in the general solution since the
Neumann function diverges at the origin. Thus, the regular
solution of Eq. (5) at the origin is given by

fðρÞ ¼ AJjlj
α
ðλρÞ: (7)

Returning to our previous discussion about the restriction
of the radial coordinate due to noninertial effects made in
Eq. (2), we have seen that all values of the radial coordinate
given by ρ > 1=αϖ mean that the particle is situated
outside the light cone. In the context of the quantum
field theory, this restriction of the values of the radial coor-
dinate imposes that the scalar field must vanish at
ρ → ρ0 ¼ 1=αϖ, that is, the radial part of the scalar field
(7) must satisfy the boundary condition:

fðρ → ρ0 ¼ 1=αϖÞ ¼ 0. (8)

This means that the geometry of the spacetime plays the
role of a hard-wall confining potential [21,22,24,38].
Thereby, from Eq. (7), we have Jjlj

α
ðλρ0Þ ¼ 0. The boundary

condition (8) implies that λ → λn; l, where n ¼ 1; 2; 3;…
correspond to the set of zeros of the Bessel function.
Therefore, by using Eq. (6), we can establish the relation
between the eigenfrequencies and the angular velocity of
the rotating frame:

ωn;l ¼ ðλ2n;l þm2 þ k2Þ1=2 − jljϖ: (9)

The last term of Eq. (9) corresponds to the coupling
between the angular velocity and the angular momentum
quantum number, which is a Sagnac-type effect [25,30].
It is worth mentioning that, in the nonrelativistic limit, this
coupling between the angular velocity and the angular
momentum quantum number is known as the Page-
Werner et al. term [28,29]. On the other hand, the first term
of Eq. (9) corresponds to the eigenfrequencies associated
with the topology of the cosmic string spacetime.
Henceforth, let us discuss the ground state energy of this

system from the eigenfrequencies obtained in Eq. (9). The
ground state energy of the field is given by (with the units
ℏ ¼ c ¼ 1)

E0 ¼
1

2

X∞

n¼1

X∞

l¼−∞
ωn;l

¼ 1

2

X∞

n¼1

�X∞

l¼−∞
ðλ2n;l þm2 þ k2Þ1=2 − X∞

l¼−∞
jljϖ

�
: (10)

For this purpose, one can analyze each part of Eq. (10)
separately. The first term of Eq. (10) corresponds to the
renormalized ground state energy of a massive scalar field
in the cosmic string spacetime, which was analyzed by
Khusnutdinov and Bordag [42] by using the zeta functional
regularization procedure. The interesting result obtained by
Khusnutdinov and Bordag [42] is that the renormalized
ground state energy in this case is zero.
On the other hand, the last term of Eq. (10) which stems

from noninertial effects yields a nonvanishing contribution
to the ground state energy given by

Ē0 ¼ − 1

2

X∞

n¼1

X∞

l¼−∞
jljϖ ¼ −ϖX∞

n¼1

X∞

l¼1

l: (11)

Observe that the sum given in Eq. (11) diverges, therefore,
we need to apply a regularization procedure in order to
obtain a finite energy. For this purpose, we can make
use of the properties of the Riemann zeta function [45]

ζðsÞ ¼
X∞

k¼1

k−s: (12)

Thereby, the Riemann zeta function (12) is calculated in
Eq. (11) for the cases s ¼ 0 and s ¼ −1, which corre-
sponds to the sum over the indices n and l, respectively.
In this way, the sums in Eq. (11) yield a renormalized
energy given by Eren

0 ¼ −ϖζð0Þζð−1Þ and, due to ζð0Þ ¼
−1=2 and ζð−1Þ ¼ −1=12, thus, the renormalized energy
associated with noninertial effects is

Eren
0 ¼ − ϖ

24
: (13)

Hence, in contrast to the results of Khusnutdinov and
Bordag [42], we have that noninertial effects yield a finite
contribution to the ground state energy of a scalar field
in the cosmic string background. Moreover, this finite
contribution to the ground state energy does not depend
on the topology of the cosmic string spacetime. Observe
that we can recover the result of Ref. [42] by taking the
limit ϖ → 0.
In recent decades, the influence of curvature of a discli-

nation (corresponding to the spatial part of the line element
of the cosmic string spacetime) on the vacuum polarization
of the electromagnetic field was investigated in Ref. [46].
Based on the results of Ref. [46], an interesting point of
discussion can be the contribution of noninertial effects
and curvature to the vacuum polarization of the electromag-
netic field. Another point of interest can be the influence of
torsion and noninertial effects on the Casimir energy. The
contribution of torsion to the Casimir energy was studied in
Ref. [47] by considering a topological defect called screw
dislocation. Moreover, it has been shown in Ref. [48] that
torsion effects can modify the electromagnetic field;
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therefore, new contributions of torsion and noninertial
effects to the vacuum polarization of the electromagnetic
field can be expected.

III. CONCLUSIONS

In this brief report, we have investigated the ground state
energy of a massive scalar field in the cosmic string space-
time by considering the presence of noninertial effects. We
have seen that noninertial effects restrict the radial coordi-
nate to a range given by 0 < ρ < 1=ϖα and, thus, where
the massive scalar field can be defined. In this way, we
can interpret this restriction of the physical region of the
spacetime imposed by noninertial effects as giving rise
to a hard-wall confining potential, whose geometry of
the spacetime can play the role of a hard-wall confining
potential.
Thereby, we have solved the Klein-Gordon equation

in the general relativity background defined by the line
element (2) by imposing the Dirichlet boundary condition
(8). As a consequence, the noninertial effects yield an addi-
tional term to the eigenfrequencies of the scalar field given
by −jljϖ, which corresponds to the coupling between the

angular momentum and the angular velocity [30].
Therefore, we can interpret the eigenfrequencies (9) as con-
sisting in a term associated with the topology of the cosmic
string spacetime and a term which arises from the coupling
between the angular momentum and the angular velocity.
Moreover, by analyzing the ground state energy of the

scalar field, we have seen that noninertial effects yield a
finite contribution to the ground state energy of the scalar
field in the cosmic string background in contrast to the
results of Ref. [42], whose contribution to the ground state
energy of a scalar field from the topology of the cosmic
string spacetime is zero. Besides, we have shown that
the finite contribution to the ground state energy obtained
in Eq. (13) does not depend on the topology of the cosmic
string spacetime; that is, it depends only on the noninertial
effects. By taking the limitϖ → 0, we have also shown that
the results of Ref. [42] are recovered.
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