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The existence of two metrics in massive gravity theories, in principle, allows solutions where there are
singularities in new scalar invariants jointly constructed from them. These configurations occur when the
two metrics differ substantially from each other, as in black hole and cosmological solutions. The simplest
class of such singularities includes determinant singularities. We investigate whether the dynamics of bi-
metric massive gravity—where the second metric is allowed to evolve jointly with the spacetime metric—
can avoid these singularities. We show that it is still possible to specify nonsingular initial conditions that
evolve to a determinant singularity. Determinant singularities are a feature of massive gravity of both fixed
and dynamical metric type.
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I. INTRODUCTION

Massive gravity is a theory with two metrics. In the sim-
plest version, only the usual spacetime metric is dynamical;
the second metric is taken to be static and typically flat
[1–3]. When the spacetime metric evolves to a point where
it deviates far from the secondmetric, massive gravity enters
an interesting regime where singularities in scalar invariants
built from the two metrics can arise. By allowing the second
metric to evolve with its own dynamics in the so-called
bigravity or bimetricmassivegravity theory [4], it is possible
that the character of these singularities can change.
These issues have been explored in detail for black hole

solutions [5–10]. Indeed, the bimetric theory allows a dif-
ferent class of solutions from those of the flat metric theory
[11], where the two metrics are simultaneously diagonaliz-
able and horizons coincide. Being static solutions, it is
however unclear as to whether dynamical systems evolve
into these or other solutions.
A simpler case in which a singularity arises dynamically

was studied for the fixed flat metric case in Ref. [12]. Here,
the spacetime metric evolves from nonsingular initial con-
ditions to a determinant singularity in unitary gauge where
the flat metric is in standard Minkowski form. This implies
the presence of a coordinate invariant singularity in the ratio
of determinants of the two metrics. Although the theory is
formally undefined at this point, one can smoothly join sol-
utions on either side of the singularity with the help of viel-
beins, or equivalently Stückel\-berg fields.
In this article, we study the impact of bimetric dynamics

on determinant singularities. We begin in Sec. II with a

brief review of the bimetric theory and continue in
Sec. III with the construction of exact isotropic solutions.
We address the determinant singularity in Sec. IV and dis-
cuss these results in Sec. V.

II. BIMETRIC MASSIVE GRAVITY

The Boulware-Deser ghost-free bimetric massive gravity
Lagrangian is [4]

LG ¼ M2
pl

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi− det g
p �

R −m2

4
UðγÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
det Σ
det g

s
R
ϵ

�
; (1)

whereR is the Ricci scalar for the gmetric to which matter is
coupled and R is that of the second metric Σ. Here Mpl ¼
ð8πGÞ−1 is thereducedPlanckmassandϵallowsforthesecond
metric to have a different Planck mass. The massive gravity
potential term U is constructed from the square root matrix γ,

ðg−1ΣÞμν ≡ ðγ2Þμν ¼ γμαγ
α
ν (2)

such that

U
4
¼

X4
k¼0

βk
k!

Fk; (3)

where [1,2,13]

F0ðγÞ ¼ 1;

F1ðγÞ ¼ ½γ�;
F2ðγÞ ¼ ½γ�2 − ½γ2�;
F3ðγÞ ¼ ½γ�3 − 3½γ�½γ2� þ 2½γ3�;
F4ðγÞ ¼ ½γ�4 − 6½γ�2½γ2� þ 3½γ2�2 þ 8½γ�½γ3� − 6½γ4�; (4)
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and [] denotes the trace of the enclosed matrix. To avoid con-
fusion,werefrainfromraisingandloweringindiceswherepos-
sible, hence g−1 rather than gμν.
Bimetric theories for which the Minkowski metric is a

joint solution to both g and Σ are restricted to

β0 ¼ −12ð1þ 2α3 þ 2α4Þ;
β1 ¼ 6ð1þ 3α3 þ 4α4Þ;
β2 ¼ −2ð1þ 6α3 þ 12α4Þ;
β3 ¼ 6ðα3 þ 4α4Þ;
β4 ¼ −24α4; (5)

and thus we will consider theories parametrized by the
graviton mass m, the ratio of squared Planck masses ϵ
and the parameters fα3;α4g. Varying the action with
respect to each of the metrics gives two Einstein equations,

Rμ
ν − 1

2
Rδμν ¼ m2Tμ

ν þ
1

M2
pl

TðmÞμ
ν;

Rμ
ν − 1

2
Rδμν ¼ ϵm2T μ

ν; (6)

where the potential term supplies an effective stress energy
for both metrics, whereas the matter stress energy TðmÞ is
coupled only to g. The construction of Tμ

ν out of γ is given
in Eq. (7) of Ref. [14], and the stress tensor source for Σ is
given by [15]

T μ
ν ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
det g
det Σ

r �
Tμ

ν þ
U
8
δμν

�
: (7)

Interestingly, this relation between the stress tensors
involves the ratio of metric determinants, which can
become singular. Nonetheless, as we shall see next, for
self-accelerating solutions both stress tensors are simply
constants given by the parameters of the theory.

III. EXACT BI-ISOTROPIC SOLUTIONS

Exact self-accelerating solutions of bimetric massive
gravity can be constructed when the two metrics are simul-
taneously isotropic,

gμνdxμdxν ¼ −b2ðr; tÞdt2 þ a2ðr; tÞðdr2 þ r2dΩ2Þ;
σabdxadxb ¼ −β2ðg; fÞdf2 þ α2ðg; fÞðdg2 þ g2dΩ2Þ; (8)

where σab is the representation of Σ in the so-called unitary
gauge and fðr; tÞ and gðr; tÞ, not to be confused with the
determinant of g, give the transformation between this
coordinate system and the one used for g. Note that they
represent auxiliary Stückelberg fields

ϕ0 ¼ fðt; rÞ; ϕi ¼ gðt; rÞ x
i

r
; (9)

such that the second metric in the same coordinate system
as g is

Σμν ¼ ∂μϕ
a∂νϕ

bσab: (10)

In general, the number of gravitational degrees of freedom
is 7—the five polarization states of one massive graviton,
together with two polarizations of one massless graviton. In
this representation, the extra polarization states of massive
gravity are carried by the Stückelberg fields. While there
are four Stückelberg fields, the ghost-free construction
eliminates 1 degree of freedom and the assumption of
bi-isotropy eliminates 2 more degrees of freedom [16],
leaving the pair of Stückelberg fields as a single degree
of freedom on top of the 2 usual tensor degrees of freedom
of the two metrics.
Bi-isotropy allows us to express the potential as [14,17]

U
4
¼ P0

�
αg
ar

�
þ

ffiffiffiffi
X

p
P1

�
αg
ar

�
þWP2

�
αg
ar

�
; (11)

where the Pn polynomials are

P0ðxÞ ¼ −12 − 2xðx − 6Þ − 12ðx − 1Þðx − 2Þα3
− 24ðx − 1Þ2α4;

P1ðxÞ ¼ 2ð3 − 2xÞ þ 6ðx − 1Þðx − 3Þα3 þ 24ðx − 1Þ2α4;
P2ðxÞ ¼ −2þ 12ðx − 1Þα3 − 24ðx − 1Þ2α4: (12)

Here

Xðr; tÞ ¼
�
β

b
f
:
þ μ

α

a
g0
�

2 −
�
α

b
g
: þ μ

β

a
f0
�

2

;

Wðr; tÞ ¼ μ
αβ

ab
ðf

:
g0 − g

:
f0Þ (13)

are related to the t − r block of γ as
ffiffiffiffi
X

p ¼ ½γ2� and
W ¼ det γ2, whereas

γ2 ¼

0
BBBBB@

β2f
:2−α2g:2
b2

β2f
:
f0−α2g:g0
b2 0 0

α2g
:
g0−β2f:f0
a2

−β2f02þα2g02
a2 0 0

0 0 α2g2

a2r2 0

0 0 0 α2g2

a2r2

1
CCCCCA
.

The branch choice in the solution to the matrix square
root of γ2 specifies μ ¼ �1, which remains constant even
if W changes sign [12] (cf. [18]). Varying the action with
respect to the Stückelberg fields gives the equations of
motion for f and g. For any bi-isotropic pair of metrics,
these equations are exactly solved by P1ðx0Þ ¼ 0, yielding
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x0 ¼
1þ 6α3 þ 12α4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3α3 þ 9α23 − 12α4

p
3ðα3 þ 4α4Þ

(14)

and

αg
ar

¼ x0: (15)

Note that as α3 → −4α4 one branch of Eq. (14) remains
finite. On both, this consistency condition (15) for self-
accelerating solutions requires that the respective radial
coordinates are algebraically related.
The stress-energy source for the g metric is then a

cosmological constant [14,17],

Tμ
ν ¼ − 1

2
P0ðx0Þδμν: (16)

Since this relation holds for any isotropic metric, the inter-
action potential term acts as a cosmological constant for
any isotropic distribution of matter, not just vacuum or
homogeneous ones.
Moreover, since

ffiffiffiffiffiffiffiffiffiffiffi
det Σ
det g

s
¼ det γ ¼ x20W; (17)

the stress tensor source to the second metric

T μ
ν ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
det g
det Σ

r
W

P2ðx0Þ
2

¼ − 1

x20

P2ðx0Þ
2

δμν (18)

is also a constant [15,19,20]. Note that the stress tensor
remains constant even through a determinant singularity
where det g= det Σ → ∞. Given the identity

1

2
P0ðxÞ þ

1

2
P2ðxÞ þ P1ðxÞ þ ðx − 1Þ2 ¼ 0 (19)

and P1ðx0Þ ¼ 0, if one metric has a positive cosmological
constant, the other has a negative one [15] but both metrics
may have a negative cosmological constant.
Since there is no matter source to Σ, the second Einstein

equation (6) is then solved by a de Sitter metric in isotropic
coordinates

αðgÞ ¼ 1

1þ λðg=x0Þ2=4
;

βðgÞ ¼ 1 − λðg=x0Þ2=4
1þ λðg=x0Þ2=4

; (20)

where

λ ¼ ϵm2

6
P2ðx0Þ: (21)

Of course, as ϵ → 0, so does λ, and the second metric takes
the Minkowski form of the original massive gravity theory
in unitary gauge [1,2].
Note that these results are independent of the solution for

f which relates unitary or isotropic Σ time to isotropic g
time. There are in fact many solutions for this relation that
give the same stress tensor and metric structure individu-
ally. They are specified by solving the second equation
of motion [12,16],

P0
1

�
x0 þ

W
x0

− ffiffiffiffi
X

p �
¼ 0. (22)

Aside from the special parameter choice of P0
1ðx0Þ ¼ 0,

where 12α4 ¼ 1þ 3α3 þ 9α23, this equation governs the
evolution of f. Importantly, it remains nonsingular as
the determinant W goes to zero. For the special parameter
choice, more static solutions exist [21], but the initial value
problem in f, g is then ill posed [12].
Using Eqs. (13) and (15), we can see that Eq. (22)) is a

nonlinear partial differential equation for f whose solutions
are specified by boundary conditions such as fð0; tÞ [16].
Note that for a fixed λ, both f and g ∝ x0, and so a solution
for a single set of massive gravity parameters α3, α4 but
arbitrary λ can be scaled to any choice [16]. The determi-
nant singularity we discuss next is related to a specific
choice of fð0; tÞ in the solution to Eq. (22).

IV. DETERMINANT SINGULARITY

Given that metric determinants appear in the Einstein
equations (6) through (7), it is interesting to examine
whether the nature of determinant singularities in fixed
metric massive gravity changes when the second metric
becomes dynamical. One might expect that a singularity
that impacts the equations of motion would be dynamically
avoided. We shall see that none of them exhibits singular
behavior at a determinant singularity.
In the fixed flat metric theory, we can easily construct

solutions that evolve from nonsingular initial conditions
to a determinant singularity. By a coordinate transforma-
tion, this singularity can be hidden from either metric indi-
vidually but not both simultaneously. The simplest example
is that of an open Friedmann-Robertson-Walker (FRW)
universe in the g metric [22] with a negative cosmological
constant term from the interaction potential [12]. Here, the
singularity occurs when an initial expansion turns to con-
traction because of the presence of negative stress energy.
Now let us consider how the dynamics of the second

metric alter this singular solution. The open FRW space-
time metric in isotropic coordinates is given by

ds2 ¼ −dt2 þ
�

aFðtÞ
1þ Kr2=4

�
2

ðdr2 þ r2dΩ2Þ; (23)
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where the scale factor aF obeys the ordinary Friedmann
equation with spatial curvature K < 0,

�
a
:
F

aF

�
2

þ K
a2F

¼ ρðmÞ

3M2
pl

þm2

6
P0ðx0Þ: (24)

By choosing α3 and α4 appropriately, we can make P0<0,
and hence the g metric evolves to a point where a

:
F ¼ 0.

We next solve Eq. (22)) for the relationship between the
two time coordinates f and t. Transforming the isotropic
radial coordinate r to the dimensionless angular diameter
distance

y ¼
ffiffiffiffiffiffiffiffi−Kp

r
1þ Kr2=4

; (25)

we obtain

y2½1 − ðλ=KÞa2F�f
:2 − 2yð1þ y2Þ a

:
F

aF
f
: ∂f
∂y

−
1þ y2

a2F
½K þ y2ðλa2F − a

: 2
FÞ�

�∂f
∂y

�
2

¼ x20y
2
K − λa2F þ a

: 2
F

K þ λa2Fy
2

: (26)

First note that as λ → 0, we recover the solution for a fixed
flat second metric [12],

lim
λ→0

f ≡ f0 ¼ x0aF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

−K
r

; (27)

with the boundary condition fð0; tÞ ∝ aFðtÞ. The determi-
nant singularity appears since both f0 and g ∝ aF and thus
W ¼ 0 when a

:
F ¼ 0 by virtue of Eq. (13).

Now let us check what happens for λ ≠ 0. Since λ ¼ 0
and f ¼ f0 represent a determinant singularity, the simplest
test for whether bimetric dynamics automatically avoids
determinant singularities is to solve Eq. (22)) perturbatively
for a finite λ=K ≪ 1. Even in this limit, there are many sol-
utions to this equation corresponding to different choices of
the perturbed boundary condition fð0; tÞ. The simplest
choice is

fðy; tÞ ¼ f0

�
1 − 1

6
ð−1þ 2y2Þðλa2F=KÞ

þ 1

40
ð3 − 4y2 þ 8y4Þðλa2F=KÞ2 þ…

�
: (28)

SinceαðgÞg ∝ aF, Eq. (13) implies that this solution retains a
determinant singularity at a

:
F ¼ 0. Other solutions can alter

the timeatwhich thedeterminantbecomes singular as a func-
tion of radius. Nonetheless, a determinant singularity must
appear in all solutions since f remains perturbatively close
to f0. W changes sign during the evolution through turn-
around and must therefore pass through zero. Although we
have assumed ϵ ≪ 1 for simplicity, since neither the stress
source (18) nor any term in the Stückelberg field
equations(22))becomessingular forW ¼ 0,weexpectdeter-
minant singularities to be allowed even beyond this limit.

V. DISCUSSION

While the bimetric theory of massive gravity allows the
second metric to evolve in response to the first, it does not
automatically resolve issues arising from the very existence
of two metrics that may evolve to become very different
from each other. We have explicitly shown here that it is
still possible to construct solutions where a determinant sin-
gularity arises from the evolution of nonsingular initial
conditions.
This singularity cannot be removed by a coordinate

transformation, but the nonsingular equations of motion
imply that solutions can be matched on either side of
the singularity. The curvature of both metrics remains finite
through the singularity, and its presence is hidden from
observables in the matter sector. Hence the existence of
determinant singularities is a peculiar but perhaps not
pathological feature of both fixed and dynamical bimetric
massive gravity theories.
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