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We implement D7 flavor branes in anti-de Sitter-sliced coordinates on AdS5 × S5 with the ansatz that the
brane fluctuates only in the warped (μ) direction in this slicing, which is particularly appropriate for
studying the Janus solution. The natural field theory dual in this slicing isN ¼ 4 super-Yang–Mills on two
copies of AdS4. Branes extending from μ ¼ �π=2 can end at different locations, giving rise to quarks with
a piecewise constant mass on each AdS4 half-space, jumping discontinuously between them. A second
class of flavor brane solutions exists in this coordinate system, dubbed “continuous” flavor branes, which
extend across the entire range of μ. We propose that the correct dual interpretation of the “disconnected”
flavor brane in this ansatz is a quark hypermultiplet with constant mass on one of the AdS4 half-spaces with
totally reflecting boundary conditions at the boundary of AdS4; whereas the dual interpretation of a
continuous flavor brane has totally transparent boundary conditions. Numerical studies indicate that AdS-
sliced D7 flavor branes of both classes exhibit spontaneous chiral symmetry breaking, as a nonzero vacuum
expectation value persists for solutions of the equation of motion down to zero mass. Continuous flavor
branes in this ansatz exhibit many other surprising behaviors: their masses seem to be capped at a modest
value near m ¼ 0.551 in units of the inverse AdS radius, and there may be a phase transition between
continuous branes of different configurations. We also numerically study quark states in Janus. The
behavior of the mass and vacuum expectation value is similar in Janus, including the existence of chiral
symmetry breaking at zero mass, though qualitative features of the phase diagram change (sometimes
significantly) as the Janus parameter c0 increases.
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I. INTRODUCTION

Holography and the AdS/CFT correspondence have
been exciting fields of study since their discovery in the
late 1990s [1–3]. Matter fields can be added to the gravity
side by the well-known prescription of adding a small
number, Nf, of “flavor” branes [4]. This breaks half the
supersymmetries of the gauge theory. The Janus solution of
type IIB supergravity is interesting because locally it is very
similar to ordinary anti-de Sitter (AdS) space, but the
dilaton and 5-form vary in the warped direction in a
particular slicing. This situation breaks supersymmetry
entirely yet remains stable. The dual gauge theory is most
commonly viewed as an “interface” conformal field theory,
that is N ¼ 4 super-Yang–Mills theory with a gauge
coupling that jumps suddenly at the interface of a domain
wall. The jumping coupling is somewhat analogous to
filling half the Universe with a dielectric medium with a
planar interface. This analogy is imprecise in one very
important way: the speed of light does not change when

crossing the domain wall, as it would if the interface were
truly that between two dielectric media.
We expect systems that break supersymmetry to generi-

cally also break chiral symmetry as the formation of a
condensate is no longer forbidden. Janus provides a novel
mechanism for this to occur, since supersymmetry in the
dual gauge theory is broken by the jumping of the coupling
constant. Chiral symmetry will be broken by the same
unusual mechanism. More surprisingly, regular AdS space
with flavor branes set up according to a Janus-like ansatz
also appears to break chiral symmetry.

II. REVIEW OF JANUS SOLUTION

A. Coordinate systems

We review a variety of coordinate systems for AdSdþ1,
defined as a hyperboloid in R2;d:

X2
0 þ X2

dþ1 − X2
1 − � � � − X2

d ¼ 1: (1)

We will always work with unit radius. If necessary, the
AdS curvature radius can be restored with dimensional
analysis.
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1. Global coordinates

Global coordinates cover the entirety of AdS space. They
consist of the following parametrization:

X0 ¼
cos τ
cos θ

; Xdþ1 ¼
sin τ
cos θ

;

Xi ¼ tan θni; i ¼ 1;…; d; (2)

where the ni are unit vectors on Rd. The coordinate τ fills
the timelike role, and θ is the warped direction and is
bounded ½0; π=2�. The metric in these coordinates is

ds2AdSdþ1
¼ 1

cos2θ
ð−dτ2 þ dθ2 þ sin2θdΩ2

d−1Þ: (3)

2. Poincaré patch coordinates

Poincaré patch coordinates are often the most convenient
coordinates, despite the ugly parametrization

X0 ¼
1

2
ðzþ ð1þ x⃗2 − t2ÞÞ; Xdþ1 ¼

t
z
;

Xd ¼
1

2
ðz − ð1 − x⃗2 þ t2ÞÞ; Xi¼1;…;d−1 ¼

xi
z
: (4)

This gives us the metric

ds2AdSdþ1
¼ 1

z2
ð−dt2 þ dx⃗2 þ dz2Þ: (5)

The timelike coordinate is of course t, z is the warped
coordinate bounded ½0;∞�, and x⃗ denotes ðx1; :::::xd−1Þ.
Patch coordinates only cover half of the spacetime. If one
defines u ¼ 1

z, Poincaré patch coordinates can be recast so
that the metric takes on the form

ds2AdSdþ1
¼ u2ð−dt2 þ dx⃗2Þ þ 1

u2
du2: (6)

When it is necessary to distinguish these two coordinate
systems, we will refer to the coordinates with u as
“braneworld patch coordinates,” as this is the metric that
shows up most naturally when taking the near horizon limit
of the spacetime created by a stack of coincident D-branes.
The coordinate u plays the role of a radius or transverse
distance from the branes.
A third variation of Poincaré patch coordinates is some-

times useful. Let r ¼ logðuÞ. Then the metric becomes

ds2AdSdþ1
¼ e2rð−dt2 þ dx⃗2Þ þ dr2: (7)

3. AdS-sliced coordinates

First, parametrize Xd ¼ arctanðμÞ, where μ is an angle in
½−π=2; π=2�. For the remaining hyperboloid coordinates,
choose any coordinate system for an AdS space of one

lower dimension with variable radius given by cos μ. The
metric becomes

ds2AdSdþ1
¼ 1

cos2μ
ðdμ2 þ ds2AdSdÞ: (8)

We point out a useful identity from Ref. [5]. If we take
Poincaré patch coordinates on the AdS4 slices, the full
metric is

ds2AdS5 ¼
1

y2cos2μ
ð−dt2 þ dx⃗2 þ dy2 þ y2dμ2Þ; (9)

where y is the warped coordinate on the AdS4 slices and x⃗
refers to the two nonwarped spatial directions on the AdS4
slices. This can be related to conventional Poincaré patch
coordinates by the following transformation:

x ¼ y sin μ

z ¼ y cos μ; (10)

where x is a nonwarped direction in conventional Poincaré
patch coordinates. For braneworld coordinates, this relation
becomes

u ¼ 1

y cos μ
¼ er: (11)

For more details on the coordinate system, see
Refs. [5,6]. We will use the term “Janus-sliced coordinates”
as an easier to pronounce alternative to “AdS-sliced
coordinates.”

B. Janus ansatz

The original Janus solution was an ansatz for a dilaton
and 5-form running in the warped direction of a deformed
AdS, presented in AdS-sliced coordinates. The deformation
alters the warp factor away from 1=cos2μ and introduces an
“angular excess” [5].
When making the Janus ansatz, the warp factor of AdS5

is promoted from the fixed function 1= cos2 μ to a more
general fðμÞ. The dilaton and 5-form are allowed to run in
the μ direction as follows:

ϕ ¼ ϕðμÞ (12)

F5 ¼ 2fðμÞ5=2dμ∧ωAdS4 þ 2ωS5 ; (13)

where the ω’s denote unit volume forms on their respective
subspaces. With this ansatz, the supergravity equations of
motion reduce to
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ϕ0ðμÞ ¼ c0
f3=2ðμÞ (14)

for the dilaton, where c0 is an integration constant, and

ðf0Þ2 ¼ 4f3 − 4f2 þ c20
6f

(15)

for the warp factor. For more detail, see Refs. [5,6].
Equation (15) can be integrated to find the maximum
value of μ, dubbed μ0 [5], and the integral can in turn be
evaluated in a series expansion for sufficiently small c0
[6,7]:

μ0 ¼
ffiffiffi
π

p
2

X∞
n¼0

Γð4nþ 1
2
Þ

Γð3nþ 1Þn!
�
c20
24

�
n

: (16)

It is worth noting that Eq. (15) has four zeros in f, but only
two of them are real and only for the choice
0 ≤ c0 ≤ 9

4
ffiffi
2

p ≈ 1.59. So to find a physical solution, onemust
choose the integration constant c0 within that range and
choose initial conditions forf so that it equals the largest root
of the rhs ofEq. (15) atμ ¼ 0. The second faceof Janus arises
fromanalyticallycontinuingthesolutiontonegativevaluesof
μ. This can be implemented by brute force in numerics by
taking the square root of Eq. (15) and multiplying the rhs
by signðμÞ.
The main qualitative feature that distinguishes the Janus

metric from undeformed AdS is that the boundary occurs
at a value of the warped coordinate μ greater than π=2,
the so-called angular excess [5–7]. The asymptotic
behavior of the warp factor near the boundary is fðμÞ ≈

1
sin2ðμ−μ0Þ ð1þOðμ − μ0Þ8Þ [6], identical at leading order to
the behavior AdS. The nonperturbative stability of this
solution was shown in Ref. [6]. The dual gauge theory was
studied in Ref. [7]. Many subsequent papers explored
restoring supersymmetry in a Janus framework [8–14],
adding a black hole [15,16], nesting Janus spacetimes
of different dimension [17], and many other variations
[18–32].

III. ADDING PROBE D7-BRANES WITH
JANUS SLICING

Flavor is traditionally added to AdS/CFT via the pre-
scription of adding Nf probe D7-branes that are spacetime
filling in the AdS dimensions, wrapping a 3-cycle on the S5,
and slipping off the pole of the S5 at some finite value of the
warped coordinate, thus “ending in thin air” at that location
[4]. In the dual theory, this corresponds to adding a number
Nf of massive N ¼ 2 hypermultiplets in the fundamental
representation of the gauge group. The probe limit means
that the number of colors, Nc, is much greater than Nf, so
any gravitational backreaction of the D7-branes on the
metric can be neglected. As noted in Ref. [33], coordinate
systems other than the Poincaré patch (or braneworld) do not
readily admit an interpretation as the near horizon limit of a

black D3-brane (or stack of Nc coincident such branes). So
we follow the example of Ref. [33] and employ the strongest
form of the AdS/CFT correspondence. Even if the dual
gauge theory cannot be interpreted as the world volume
theory of a stack of coincident D3-branes, AdS5 × S5 with
D7 flavor branes in a coordinate system other than the
Poincaré patch is a perfectly valid supergravity system and
should have a dual gauge theory description, regardless of
the coordinate system or ansatz for the brane. In Ref. [33]
flavor branes of various dimension were considered in
global coordinates with the ansatz that the branes could
fluctuate only in the radial, or ρ, direction. We will do the
same in Janus-sliced coordinates, with the ansatz that
the branes can only fluctuate in the μ direction. Much
heuristic intuition can be gained by considering results from
flavor branes in Poincaré patch coordinates and replacing
z → cos μ, effectively fixing the y coordinate to unity. This
can serve as a guidepost for certain features, butmany details
are quite different in the Janus-sliced ansatz. We proceed
under the assumption that our description of the dual gauge
theory above is correct, exactly parallelling the original
D3–D7 system except the natural spacetime for constructing
this dual gauge theory consists of two copies of AdS4 with
their boundaries identified. By identifying boundaries, we
mean that the boundary conditions for fields in one AdS4
are related to the boundary conditions in the other, similar to
the construction of Ref. [34].
We apply the same procedure in Janus-sliced coordinates

both with and without the flowing dilaton of Janus itself.
The D7-brane extends in the AdS directions and wraps an
S3 ⊂ S5. The D7 is only allowed to fluctuate in the μ
direction in Janus-sliced coordinates, and it extends from
the boundary to some nonzero value of μ. When the
flowing dilaton of Janus is added, we can no longer neglect
the factor of the dilaton in the DBI action, and the equation
of motion picks up additional terms from the dilaton. Recall
that ϕ denotes the dilaton field, not an angle. We use
Poincaré patch coordinates on the AdS4 slices with y as the
warped coordinate of the AdS4 slices and take ψ and θ to be
the two angles on the S5 that are transverse to the D7-brane.
In regular AdS, the dirac-born-infeld (DBI) action for the
Janus-sliced D7-brane has the same form as the usual case,
but the warp factor is slightly different:

S ∼
Z

d8xcos3ðψðμÞÞ 1

cos3ðμÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2ðμÞðψ 0ðμÞÞ2

q
:

(17)

The DBI action for full Janus can be obtained from Eq. (17)
by substituting cos μ → f−1=2ðμÞ and inserting the
factor e−ϕðμÞ.
The resulting equation of motion is identical to the

general equation of motion for D7-branes presented in
Ref. [35], but we expand it here to highlight unique features
in Janus-sliced coordinates:
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0 ¼ 3 tan ψðμÞ þ 3 cosðμÞ sinðμÞψ 0ðμÞ þ 4cos3ðμÞ sinðμÞψ 0ðμÞ3 þ cos2ðμÞψ 00ðμÞ
1þ cos2ðμÞψ 0ðμÞ2 : (18)

Note that arcsine functions do not solve this equation of
motion, unlike the original flavor brane ansatz, as can be
easily checked by plugging in trial functions. We will turn
to numerics to solve this equation of motion in Sec. III B.

A. Asymptotic expansion in Janus slicing

To examine the near boundary behavior of ψ , we expand
our equations of motion about μ0. As in Ref. [35], we will
begin with the most general possible form for a power
series expansion of ψðμÞ. We will then substitute this into
our equation of motion (EOM), expanded in terms of
v ¼ μ − μ0, and examine the restrictions the EOM place on
the coefficients of the expansion. According to the standard
AdS/CFT dictionary, in order for the field ψ to properly
describe a quark hypermultiplet mass operator in the
boundary theory, its near boundary behavior should follow,

ψðμÞ ≈ Aðμ − μ0ÞΔ þ Bðμ − μ0Þd−Δ; (19)

with Δ ¼ 3. Thus, the leading behavior should be

ψðvÞ ¼ Avþ Bv3: (20)

The general expansion for ψðvÞ has the form [35]

ψðμÞ ¼ v

�X∞
n¼0

αnvn þ
X∞
j¼0

βjvj logðvÞ

þ
X∞
k¼0

Xp
l¼2

Ψk;lvk½logðvÞ�l
�
: (21)

We note that this expansion hinges on writing the metric in
Fefferman–Graham coordinates [35], and in principle the
coefficients of both the expansion of the metric in
Fefferman–Graham coordinates and the expansion of bulk
fields can be functions of other coordinates than the warped
coordinate. The full implementation of Fefferman–Graham
coordinates in Janus-sliced coordinates was carried out in
Ref. [36]; however, for our brane ansatz, the bulk fields
cannot vary with any coordinate other than μ, so we may
safely ignore dependence of the coefficients on AdS4
coordinates. The Janus warp factor, fðμÞ, has the same
near boundary behavior as the 1=cos2ðμÞ of ordinary AdS5,
and may be treated as [5,6]

fðvÞ ≈ 1

sin2ðvÞ ≈
1

ðv − 1
6
v3Þ2 (22)

in the EOM. Furthermore, the dilaton field contributes to
the EOM, only through its first μ derivative. Thus, we can
see from Eq. (14) that it may be expanded as

ϕ0ðvÞ ≈ c0sin3ðvÞ ≈ c0ðv − 1

6
v3Þ3: (23)

Below, we will keep the notation compact by denoting

X ¼ sinðvÞ
Y ¼ −2 sinðvÞ cosðvÞ (24)

and later expanding these trigonometric functions in their
appropriate power series.
Our equation of motion for ψ then takes on the near

boundary form

X2ψ 00 þ ½1þ X2ðψ 0Þ2�3 tanðψÞ þ 3

2
Yψ 0 þ 2YX2ψ 0

− ½1þ X2ðψ 0Þ2�X5c0ψ 0 ¼ 0: (25)

The explicit dilaton contribution is clearly identifiable, due
to the factor of c0, and can be seen to contribute only at
order v5 and higher. Since the leading asymptotic behavior
of the warp factor is the same for both the Janus and
ordinary AdS solutions, and the explicit dilaton terms in the
Janus solution appear beyond the relevant order of v3, we
can conclude that this expansion will proceed identically
for both cases. Thus, the asymptotic behavior found below,
will apply to both the Janus solution and the “sliced branes”
in ordinary AdS5.
To confirm the proper asymptotic behavior for ψ, we

must expand the EOM to order v3. When we explicitly
expand Eq. (25) in powers of v, including all terms relevant
up to order v3, we find

�
v2 − 1

3
v4
�

2

ψ 00 þ 3

�
ψ þ 1

3
ψ3

�
þ 3v2ψðψ 0Þ2

− ð3vþ 2v3Þψ 0 ¼ 0: (26)

At first glance, it seems there may be many contributing
terms. However, examining the EOM expansion (21) at
lower orders in v, and looking at both the lowest and the
highest powers of logðvÞ, will reveal some simplifying
restrictions:

0 ¼ vfð−β0 þ 2Ψ0;2Þ þ ð6Ψ0;3 − 4Ψ0;2Þ logðvÞ þ � � �
þ ðp − 1Þ½pΨ0;p − 2Ψ0;p−1�½logðvÞ�p−2
− 2pΨ0;p½logðvÞ�p−1g: (27)

Recall, that l denotes an integer greater than 1. If we assume
that Ψ0;l vanishes for l ¼ p and higher, then the second-to-
last logðvÞ term tells us thatΨ0;p−1 must also vanish, and so
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on down the line. If there had been a contribution propor-
tional to β0v logðvÞ, this would have allowed a linear
combination of β0 and Ψ0;2 to vanish as the coefficient of
the v logðvÞ term. However, this is not the case, as the
β0v logðvÞ terms from the portions of the EOM linear in ψ
and ψ 0 cancel with one another. As noted in Ref. [35], an
infinite tower of terms higher order in logðvÞ could exist,
but this would invalidate the assumption of the existence of
the power series solution. The same argument can also be
shown to apply to the various Ψk;l with k ≥ 1. Thus, our
power series solution for ψ actually has the simpler form

ψðvÞ ¼ v

�X∞
n¼0

αnvn þ
X∞
j¼0

βjvj logðvÞ
�
: (28)

This mirrors the form found in Ref. [35], with the radial
coordinate r, which vanishes at the boundary, replaced by
our v ¼ μ − μ0, which also vanishes at the boundary (μ0
being equal to π=2 in the case of ordinary AdS5.) Also note
that notation for the expansion coefficients varies in the
literature. For example, Ref. [35] uses ϕðiÞ where Ref. [33]
used θðiÞ: We chose αðiÞ to minimize confusion between
expansion coefficients and angles corresponding to super-
gravity fields.
Inserting this simpler expansion for ψ into the EOM, we

can examine the leading order terms for further restrictions
on the remaining coefficients. The first and second order
pieces give

vf−β0g ¼ 0; (29)

v2f−α1 − β1 logðvÞg ¼ 0: (30)

From the lowest order term, it is clear that β0 ¼ 0. The
second order contribution reveals that α1 ¼ β1 ¼ 0. The
vanishing of β0 ensures that there will be no higher powers
of logðvÞ contributed by the ðψÞ3 and ψðψ 0Þ2 terms in the
EOM. Thus, the order v3 contribution will be

v3fβ2 − 6α0 þ 6α30g ¼ 0: (31)

The coefficient α0 will thus be undetermined. The coef-
ficients β0, β1, and α1 will vanish. Then, α0, when fixed,
will determine the value of β2 though the algebraic equation

β2 ¼ 6α0ð1 − α20Þ: (32)

This same essential behavior (with a different algebraic
equation relating β2 and α0) was found in Ref. [35].
Insuring that it applies here as well confirms that our
branes—which are embedded differently due to the radial
coordinate μ picked out by the Janus solution—will still
properly describe fermion flavors in the boundary theory.

This applies equally well in ordinary AdS5 and Janus
spaces.

B. Numerics

To solve Eq. (18) numerically, we denote by μb the
ending location of the brane and use as initial conditions
ψðμbÞ ¼ π=2 − ϵ, ψ 0ðμbÞ ¼ −1=ϵ with ϵ ¼ 10−3 to
approximate the usual conditions that the brane slip off
the north pole with an infinite derivative. We present a few
sample solutions to the equation of motion in Fig. 1; the
numeric solution is shown in red (upper curve), and the
function arcsin ðcos μ=cos μbÞ is shown in blue for com-
parison. We plot solutions for three different values of μb on
the same axes, for reference.
For large μb (and thus large mass), the Arcsine function is

close to the actual solution, but it gets increasingly inaccu-
rate as μb decreases. Per the asymptotic expansion, we fit
the numeric solutions to αð0Þðπ=2 − μÞ þ αð2Þðπ=2 − μÞ3,
where we have reversed the sign of the difference, v,
introduced at the beginning of Sec. III A. The sign reversal
is for convenience, so that we plotmostly positivemasses, as
an overall sign can be introduced in the dual gauge theory by
a chiral rotation. For reference, we list the fit parameters for
the example solutions shown in Fig. 1. For μb ¼ 0.5 we
obtain αð0Þ ¼ 0.203805, αð2Þ ¼ 1.21054. For μb ¼ 1.0 we
find fit parameters of 1.40824 and 3.31012, respectively.
Finally for μb ¼ 1.3 we find 3.53835 and 12.2155.
To obtain plots for studying the phase structure of this

system, we numerical solve and fit Eq. (18) successively
from μb ¼ 1.4 down to μb ¼ 0.1 in steps of 0.01, then
adjust the step size successively to 10−5, 10−7, and 10−12
for reasons that will become apparent. Recall that in
Ref. [4] with arcsine solutions the mass was given by
the inverse of the position where the brane ended. For
Janus-sliced flavor branes, the relation between mass ðαð0ÞÞ
and μb is more complicated, given by Fig. 2. For values of
μb near π=2, this has approximately the same shape as
1=cos μb, as one might expect from naively extending the

0.8 1.0 1.2 1.4

0.5

1.0

1.5

FIG. 1 (color online). ψ vs μ [in red (upper curve)] and
arcsinðμ=μbÞ [in blue (lower curve)], for μb ¼ 0.5, 1.0, 1.3.
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relation from Ref. [4] with the Poincaré patch slicing using
z ¼ y cos μ, but the relationship is more subtle for lower
mass configurations.
We plot αð2Þ vs αð0Þ in Fig. 3, zooming in to give detail in

Fig. 4. The colors used denote the step size taken in μb. The
blue curve ends at μb ¼ 0.01, the red curve at μb ¼ 10−5,
the yellow curve at μb ¼ 10−7, and the green curve (which
appears more as a dot) at μb ¼ 10−12. The step size for each
color is equal to the ending value of μb. At first, near μb ¼
0.01 and again near μb ¼ 10−5, it appears that we are
making bigger and bigger steps in the αð2Þ − αð0Þ plane as
we approach μb ¼ 0. But then the curve appears to stop
abruptly at μb ¼ 10−12.
There appears to be a kind of limit point in the numerical

solutions approaching αð0Þ ¼ 0.5501, αð2Þ ¼ 1.08895 as
μb → 0. Note, however, that it is impossible to impose “brane
ending” boundary conditions at μb ¼ 0. The boundary con-
dition that ψðμÞ → π=2 causes the tan ψðμÞ term to diverge.
For nonzero μb the accompanying boundary condition
that ψ 0ðμÞ → ∞ naturally cancels this divergence when both
are implemented as ψðμbÞ ¼ π=2 − ϵ, ψ 0ðμbÞ ¼ 1=ϵ.

Unfortunately, when μb ¼ 0 the coefficients of all
the ψ 0 terms in the equation of motion vanish, reducing the
equationofmotion to0 ¼ 3 tanψðμÞ þ ψ 00ðμÞ=ð1þ ψ 0ðμÞ2Þ.
Imposing both boundary conditions simultaneously requires
infinite ψ 00ð0Þ and cannot be solved numerically. If we try a
series expansion near μ ¼ 0, similar to the expansion in
Ref. [33], promoting the infinitesimal ε to a small fluctuation,
ψ ¼ π=2 − εðμÞ, the action reduces to

S ∼
Z

d8x
�
−εðμÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðψ 0ðμÞÞ2

q �
: (33)

The resulting equation of motion is

ε2ðμÞð−3 − 3ðε0ðμÞÞ2 þ εðμÞε00ðμÞÞ ¼ 0; (34)

which does not have an analytic solution except for the trivial
one, ε ¼ 0. The action and lack of a nontrivial solution are
consistentwith the series expansions inRef. [33] for branes of
generaldimension that extend injof theAdSdimensionsand i
of the S5 dimensions. Our action for μ ∼ 0 in Janus-sliced
coordinatesissimilartotheactionofRef.[33]fori ¼ 2,andthe
critical solution, Eq. (3.4) of Ref. [33], does not exist for the
i ¼ 2 case. This analysis does not rule out the possibility of
other solutions not detected by our numerics that would
continue the spiral of Fig. 4 down to αð0Þ ¼ 0, αð2Þ ¼ 0;
however, if a nontrivial such solution exists, it does not reach
the origin of Fig. 4 at μb ¼ 0. This would be extremely
puzzling, since this is ordinary AdS space where there is
nothing to set a scaleorotherwisemarkany locationother than
μb ¼ 0 as special.
We find evidence of spontaneous chiral symmetry

breaking in Fig. 4. The mass (αð0Þ) reaches zero between
μb ¼ 0.38 and 0.39. Since this occurs with αð2Þ between
0.75398 and 0.784872, we conclude that the dual theory
will exhibit spontaneous chiral symmetry breaking as the
mass of the quarks is taken zero. Note that Fig. 4 describes
a brane confined to one-half of the boundary, at either

1.0 0.5 0.5 1.0
b

4

2

2

4

mass 0

FIG. 2 (color online). Mass vs μb for disconnected flavor
branes.

1 2 3 4
0

5

10

15

20

25

30
2

FIG. 3 (color online). αð2Þ vs αð0Þ for disconnected flavor
branes.
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FIG. 4 (color online). αð2Þ vs αð0Þ for disconnected flavor branes
detail.
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μ ¼ þπ=2 or μ ¼ −π=2. Chiral symmetry breaking is
assured as long as the number of disconnected branes on
either side is unequal. The possibility exists that an equal
number of disconnected branes on either side might not
truly break chiral symmetry as this state may possess higher
free energy than the trivial, supersymmetric D7 with
constant equatorial (on the S5) embedding. However, we
believe the disconnected brane embedding to be at least
metastable. Dynamically evolving from the disconnected
state to the trivial embedding would require the discon-
nected D7s to “unslip” (i.e., for the collapsed S3 to reappear
and slide down from the pole of the S5) before they could
merge, as Eq. (18) does not admit a solution for the
collapsed S3 boundary condition occurring at μb ¼ 0 as
discussed above. It may prove to be the case that dis-
connected Janus-sliced embeddings should not be com-
pared to the trivial embedding due to these dynamical
concerns. We will explore these questions, including
questions of free energy, in detail in future work.
Chiral symmetry breaking would be expected for Janus

proper, but it is surprising to find it in undeformed AdS
simply with Janus-sliced flavor branes. Interestingly, this
chiral symmetry breaking is not detected by the test
proposed in Refs. [37,38], but the geometry in our case
is sufficiently different from the backgrounds considered
there that this is not too surprising. In particular, there is no
central singularity in our geometry, so the criteria used in
Ref. [37] do not apply.

C. Asymmetric and continuous flavor branes

Janus-sliced coordinates do not exhibit a horizon, so the
possibility exists for a D7-brane to extend across the full
range of μ, from the “right-hand” boundary at μ ¼ π=2,
through the “center” at μ ¼ 0, and out to the “left-hand”
boundary at μ ¼ −π=2. Indeed, the trivial solution,
ψðμÞ ¼ 0, obviously exists and gives zero mass and zero
vacuum expectation value quarks in the dual theory1.
Furthermore, the flavor branes examined in Sec. III B fill
only half the spacetime, so quarks in the dual theory would
exist in only one of the two AdS4 spaces. Since the
geometry is symmetric under μ → −μ, it is trivial to extend
these results by adding a mirror image brane extending
from μ ¼ −π=2 to −μb. This is borne out by numerics:
numerically solving Eq. (18) from μ ¼ −π=2 to μb < 0
yields results for αð0Þ and αð2Þ that differ from the values for
the corresponding positive μb by at most Oð10−3Þ. For a
given μb, this would give quarks in the dual theory with
mass constant across both AdS4 spaces. However, the two
branes are disconnected in the bulk, so there is nothing
beyond aesthetics imposing symmetry. The D7-brane in the
negative μ half of space may end at a different distance than
the D7 in the positive μ half of space. The dual theory in

such a case would have quark masses that were constant on
each AdS4 but different between the two AdS4 spaces.
Continuous branes can also exhibit this asymmetry.

Generic solutions to Eq. (18) for continuous branes exhibit
different asymptotic behavior at the two boundaries. If
initial conditions are chosen for a continuous brane solution
such that the center of AdS, μ ¼ 0, is a turning point for ψ,
then the symmetry of the geometry guarantees that the
behavior of ψ will be symmetric at the two boundaries as
well. This, too, is borne out by numerics to Oð10−3Þ. For
continuous brane solutions, we solve Eq. (18) numerically
imposing boundary conditions at μ ¼ 0. For the symmetric
mass cases, we impose ψ 0ð0Þ ¼ 0, ψð0Þ ¼ c, where c is a
real parameter we step through from -1.57 to þ1.57. For a
sample solution in this class, see Fig. 5. For generic cases,
we allow the first derivative to be nonzero, giving a two-
parameter family of solutions. See Fig. 6 for a sample
solution in this class.
The easiest to understand data on continuous brane

solutions come from the symmetric case. We plot αð2Þ vs
αð0Þ for symmetric continuous branes as ψð0Þ ranges from -
1.57 toþ1.57 in steps of 0.005 in Fig. 7. The plot begins at
the origin for ψð0Þ ¼ 0, corresponding to the trivial
solution. The two spiral arms are symmetric and stem
from the fact that changing the sign of ψð0Þ in this case
simply changes the sign of both fit parameters in the
asymptotic solution. The blue curve represents solutions
with ψð0Þ < 0. The red curve represents ψð0Þ > 0 and
extends out to ψð0Þ ¼ 1.5707, with the step size reducing
to Δψð0Þ ¼ 10−4 after we reach ψð0Þ ¼ 1.57, then reduc-
ing again to Δψð0Þ ¼ 10−6 when we reach ψð0Þ ¼ 1.5707.
The fact that the red curve overlaps the blue so completely
is surprising. It certainly indicates that continuous branes
cannot produce quarks with arbitrarily large mass. The
maximum value of mass in our runs is m ¼ 0.551489. The
near perfect overlap of the two curves suggests that a phase
transition may occur between different types of symmetric,
continuous branes: one with positive value of ψð0Þ very
close to π=2 and one with a more modest, negative value of
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FIG. 5 (color online). ψ vs μ for a continuous brane solution
with ψð0Þ ¼ þ1.4, ψ 0ð0Þ ¼ 0.1We are indebted to A. Karch for these observations.
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ψð0Þ (and vice versa). The doubling back of the curves also
indicates that spontaneous chiral symmetry breaking occurs
for continuous flavor branes with ψð0Þ ≲ 1.57, where it
appears the curve crosses the αð2Þ axis with nonzero
intercept, indicating a nonzero vacuum expectation value
at zero mass. Note that while this seems a value extremely
close to π=2, it occurs well before the region of the possible
phase transition. Note that Fig. 7 includes the trivial
solution (flat, equatorial D7 preserving chiral symmetry)
at the origin. As in the disconnected case, future work will
compare the free energy of the chiral breaking embedding
compared to the trivial embedding and explore questions of
the stability of the chiral breaking embedding.
More generic continuous brane solutions require us to fit

the asymptotic solution at μ ¼ þπ=2 and μ ¼ −π=2
separately. We use subscripts “R” and “L,” respectively,
to denote these different sets of fit parameters. We present
our results as a pair of contour plots, Figs. 8 and 9, treating
αð2ÞL and αð2ÞR as dependent variables that depend on the
pair of independent variables ðαð0ÞL; αð0ÞRÞ. Note the
apparent mirror image relationship between the two
contour plots.

IV. APPARENT LACK OF PHASE TRANSITION
BETWEEN DISCONNECTED AND CONTINUOUS

FLAVOR BRANES

The natural expectation is that for low mass continuous
branes might be favored, while for larger mass discon-
nected branes might be favored. This does not prove to be
the case, however. In Fig. 10 we overlay the plots from
Figs. 4 and 7 but use blue and red to denote the symmetric
brane configurations. While the curves cross at various
points, we do not see the telltale merging of the plots that
would signal a phase transition. We tried looking for other
classes of solutions to fill in the phase diagram; in particular
we considered disconnected branes that crossed the center
of AdS at μ ¼ 0 and “bubble” branes that pinched off at
both a positive and a negative value of μ and extended
through the center. Both seemed to be ruled out by
numerics. Attempting to impose boundary conditions

1.5 1.0 0.5 0.5 1.0 1.5

1.0

0.5

FIG. 6 (color online). ψ vs μ for a continuous brane solution
with ψð0Þ ¼ −1.4, ψ 0ð0Þ ¼ þ1.
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FIG. 7 (color online). αð2Þ vs αð0Þ for symmetric, continuous
branes.

FIG. 8 (color online). αð2ÞL vs αð0ÞL and αð0ÞR for general
continuous branes.

FIG. 9 (color online). αð2ÞR vs αð0ÞL and αð0ÞR for general
continuous branes.
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ψðμbÞ ≈ π=2, ψ 0ðμbÞ ≈∞ (necessary for both classes)
while solving for 0 < μ < μb immediately encounters a
singularity to the left of μb when a numeric solution is
attempted.
While it remains possible that there exists some class of

solutions which we have not discovered, we speculate that
the lack of phase transition is because disconnected flavor
branes and continuous flavor branes describe incommen-
surate dual gauge theories. For example, with disconnected
branes, even if the masses are chosen to be equal, one need
not even choose to use the same number of branes on the
left and right sides of AdS. The fact that this option is
simply unavailable in the case of continuous branes is the
first piece of evidence to suggest the two types of solutions
are described by qualitatively different dual gauge theories.
A second piece of evidence is the lack of disconnected
brane solutions pinching off at μ ¼ 0. Heuristically, we
would have liked to think of the (nonexistent) phase
transition as occurring when flavor branes on the left
and right sides of AdS approached the center and merged.
However, in Sec. III B we showed that disconnected branes
simply cannot “pinch off” at μ ¼ 0. This was shown both at
the large scale from the failure of Eq. (18) to accommodate
the “brane pinching off” boundary conditions at μ ¼ 0 and
at the small scale (small values of μ) by the failure of
Eq. (34) to admit nontrivial solutions in the vicinity of
μ ¼ 0. If disconnected branes can never reach or cross
μ ¼ 0, then there is no hope of achieving a phase transition
by melding disconnected branes from the left and right
halves of AdS in Janus-sliced coordinates.
Since the disconnected branes are confined to one-half of

the bulk AdS5, we speculate that the dual gauge theories for
disconnected and continuous brane solutions differ in the
boundary conditions for the quark hypermultiplet fields at
the boundary between the two AdS4 halves of the boundary
theory. A disconnected brane on the right side of AdS5
seems to naturally correspond to a quark hypermultiplet
restricted to the “right” AdS4 in the dual gauge theory with
“perfectly reflecting” boundary conditions at the boundary

between the two AdS4 half-spaces. A continuous flavor
brane, however, should correspond to quarks that can freely
traverse from the right AdS4 to the “left,” corresponding to
“transparent” boundary conditions where the leading and
subleading terms on the two boundary AdS4 spaces match.
The phrases perfectly reflecting and transparent boundary
conditions are meant only in a heuristic sense, as we are
discussing solutions to the equations of motion for fields of
arbitrary mass in AdS4, which must have the well-known
asymptotic form ϕΔ ∼ ayΔ þ byd−Δ, where y denotes the
warped coordinate in the Poincaré slicing of the boundary
AdS4 (d ¼ 3 in the general formula). The mass from the
AdS4 equation of motion and the dimension Δ are related
by Witten’s venerable prescription [2], and both are
determined by the solutions of the D7 slipping mode in
the bulk. Denoting the two boundary AdS4 spaces as L and
R, we can phrase our boundary conditions more precisely:
perfectly reflecting means a field in AdS4L does not provide
a corresponding source in AdS4R (and vice versa), thus
requiring aL ¼ 0 for a quark field in AdS4L (and similarly
for aR and quarks in AdS4R); transparent means aL ¼ aR
and bL ¼ bR, allowing the field to propagate unaltered
from AdS4L to AdS4R in a heuristic sense.
If this is the correct interpretation of the dual gauge

theory, then there clearly cannot be a phase transition as the
two scenarios are completely different. However, this
hypothesis poses additional puzzles. If continuous flavor
branes indeed describe an N ¼ 2 hypermultiplet with
transparent boundary conditions between the two AdS4
spaces, there should be no obstacle to large quark mass
solutions. Yet the continuous brane solutions do not seem
to admit solutions with quark mass larger than about
mL;R ¼ 0.551. While it is difficult to see this in the contour
plots of Figs. 8 and 9, it remains true for generic,
asymmetric continuous branes as well. The most likely
answer is that a second class of continuous flavor brane
solutions exists that was not detected by our numerics and
admits large mass solutions, although the space of possible
alternative explanations is by definition infinite.

V. FLAVOR BRANES IN JANUS

The dynamical factor of the DBI action for such a
D7-brane in Janus is

S ∼
Z

d8xe−ϕðμÞcos3ψðμÞf2ðμÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðμÞ þ ðψ 0ðμÞÞ2

q
: (35)

This gives rise to the following equation of motion for ψ :

0¼ fðμÞcos2ψðμÞ
2ðfðμÞ þ ðψ 0ðμÞÞ2Þ3=2 ð6 sinψðμÞfðμÞ2ðfðμÞ þ ψ 0ðμÞ2Þ

þ cosðψðμÞÞð4ψ 0ðμÞ3f0ðμÞ þ fðμÞð3ψ 0ðμÞf0ðμÞ
− 2ψ 0ðμÞ3φ0ðμÞÞ þ 2fðμÞ2ð−ψ 0ðμÞφ0ðμÞ þψ 00ðμÞÞÞÞ:

(36)
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FIG. 10 (color online). αð2Þ vs αð0Þ overlay plot for both
symmetric-continuous and disconnected branes.
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Qualitatively, turning on the dilaton of Janus does exactly
as little as we expect it to thus far: the warp factor is
changed slightly, the boundary is pushed out beyond
μ ¼ π=2, and the equation of motion for our Janus-sliced
flavor branes picks up some extra terms proportional to the
derivative of the dilaton field.
Numerically solving Eq. (36) with the same brane

pinching off boundary conditions as in regular AdS for
c0 ¼ 0.2, 0.8, and 1.2, we obtain Fig. 11. The left end of
each curve corresponds to μb ¼ 0.2. Note that the same
qualitative shape found for Janus-sliced flavor branes in
undeformed AdS is present. As c0 increases, the shape of
the curve changes more and more radically, changing
convexity and flipping over to the fourth quadrant
for c0 ¼ 1.2.

VI. IMPLICATIONS IN DUAL THEORY

Roughly speaking, the natural choice of the conformal
factor in AdS slicing gives a dual theory on two copies of
AdS4 joined at their common boundary. If we make this
choice for Janus-sliced flavor branes in undeformed AdS,
we would expect to find that the quark mass jumps as one
crossed the boundary from one AdS4 to the other. After
studying Janus-sliced flavor branes in detail, we realize that
far more dramatic changes could take place, such as
changing the number of flavors. Different choices of the
conformal factor and thus different coordinate systems in
the dual gauge are of course allowed.

Following the general prescription of Ref. [2] for con-
structing the dual gauge theory and the refinements of
Refs. [39,40], we obtain the boundarymetric bymultiplying
the AdS metric by g2, where g is any function with a linear
zero at the boundary, often dubbed the “conformal factor.”
Weare specializing to the case of Janus-sliced coordinates in
the bulk. For a general bulk scalar field,ϕΔ, of dimensionΔ,
where x generically denotes the “nonwarped” directions of
AdSdþ1, the near boundary behavior is given by

φΔ ∼ agðxÞðgd−Δ þ � � �Þ þ bgðxÞðgΔ þ � � �Þ: (37)

It is well known that ag is the source of the dual operator and
bg is the vacuum expectation value, although the vacuum
expectation value is in general a more complicated function
of the leading and subleading coefficients using the pre-
scription of holographic renormalization [35]. In the dual
theory, changing metrics is accomplished with a conformal
transformation. In the bulk theory, the same is realized by
choosing a different conformal factor to regulate the
boundary metric. To see the relationships between coeffi-
cientswith different choices of the conformal factor, recall in
the bulk the field is a scalar, so each term in the asymptotic
expansion must be invariant. If we compare two conformal
factors, g1 and g2, this gives us the relationship between two
boundary coefficients of

ag1 ¼
�
g2
g1

�
d−Δ

ag2; (38)

bg1 ¼
�
g2
g1

�
Δ
bg2: (39)

A similar discussion centered on the operator dual to the
dilaton field appears in Ref. [7]. Applying this to Janus-
sliced flavor branes shows us that ifwe choose the conformal
factor such that the dual theory lives on two copies of AdS4,
then the mass of the quarks will be piecewise constant. If we
conformally transform to Minkowski space, examining
metric (9), we see that the mass becomes a function of y
in the dual theory,

mM4
¼ mAdS4

y
; (40)

since the scalar field describing our D7-brane is of dimen-
sion 3. Massive quarks in actual Janus will be further
complicated by the presence of the operator dual to the
dilaton [7], but at leading order, this will not effect the
position dependence of the mass operator in the dual theory.
We postpone more detailed study of the dual theory for
future work.
Since the phase diagrams of disconnected brane sol-

utions and continuous brane solutions do not exhibit

FIG. 11 (color online). αð2Þ vs αð0Þ for Janus. Green (steepest
positive slope in first quadrant): c0 ¼ 0.2, blue (shallower
positive slope in first quadrant): c0 ¼ 0.8; red (negative slope
in fourth quadrant): c0 ¼ 1.2.
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behavior characteristic of a phase transition, we hypoth-
esize that the two types of brane solutions are dual to
qualitatively different gauge theories. We propose that
continuous brane solutions are dual to an N ¼ 2 hyper-
multiplet mass operator that has transparent boundary
conditions at the shared boundary in AdS4, in the sense
discussed above (aL ¼ aR and bL ¼ bR). Recall this is a
statement about the AdS4 boundary conditions necessary
for solving the equations of motion of the fields of the
N ¼ 2 hypermultiplet in the dual field theory. That is to
say, the leading and subleading terms of a solution to the
equation of motion for a quark in the dual theory must be
the same on both sides of the defect in the CFT, as
discussed in more detail above.
Our proposal for the system dual to disconnected flavor

branes is that this dual mass operator is for quark fields that
exhibit “totally reflecting” boundary conditions in the sense
discussed above and are confined to one of the boundary
AdS4 spaces. Disconnected flavor branes extending to the
right boundary do not have any impact on fields in the left
boundary and vice versa. We think this is the most likely
case for several reasons. First, from the gravity side, we
could choose to use a different number of flavor branes on
each side of AdS5, giving a different number of flavors in
the two half-spaces in the dual theory. Second, since the
value of the dual operator is determined by the leading
order behavior of the gravity state in the bulk as it
approaches the boundary, the coupling of the mass operator
from a flavor brane in the right half of AdS5 is literally
undefined in the AdS4 of the dual theory that corresponds
to the left half of the bulk. A brane on the right (μ > 0) does
not exist on the left (μ < 0), so the asymptotic behavior of
that state as it approaches μ ¼ −π=2 is undefined. In the
bulk, causality demands that, quite literally, the left brane
does not know what the right brane is doing. We see no way
to implement this in the dual theory without totally
reflecting boundary conditions for the dual quarks in each
half-space AdS4.
We must impose totally transparent boundary conditions

on gluons in the dual theory for both flavor brane scenarios,
as those states are only sensitive to the existence or type of
flavor branes through interactions with the quark states.

VII. CONCLUSION

We have proposed and analyzed Janus-sliced flavor
branes as the appropriate system for studying the addition
of flavor to the Janus solution. Janus-sliced coordinates on
AdS5 produce a theory most naturally dual toN ¼ 4 super-
Yang–Mills on two copies of AdS4 joined at a common
boundary. The main motivation for studying such a system
is to look at Janus itself, but our numeric studies have
uncovered a rich and surprising structure even in unde-
formed AdS5 without turning on the flowing dilaton of
Janus. Janus-sliced coordinates admit possibilities that do
not exist in other coordinate systems: continuous flavor

branes that extend from one boundary through the center of
AdS out to the other boundary have been studied in global
coordinates [33] but are not possible in the Poincaré patch,
and asymmetric flavor branes that end at different positions
on the two “halves” of AdS do not seem to be possible in
any other coordinate system.
We have demonstrated that both disconnected and

continuous branes exhibit spontaneous chiral symmetry
breaking, each possessing a state with nonzero vacuum
expectation value at zero mass. Disconnected flavor branes
can produce states of arbitrarily large mass, while con-
tinuous branes (whether symmetric or not) yield solutions
with mass bounded by approximately mmax ¼ 0.551 in
units of the inverse AdS radius. This is one of many puzzles
associated with the continuous flavor brane solutions, as
there seems to be no compelling reason to restrict the mass
of quarks in the dual gauge theory, suggesting the existence
of yet another class of flavor brane solutions. There may
also be a phase transition between continuous flavor branes
with values of ψð0Þ near þπ=2 and those near −π=2,
indicated by the overlap in the phase diagram of Fig. 7.
Analysis of the free energies of the brane configurations
will be necessary to confirm the existence of such a phase
transition.
Since there does not appear to be a phase transition

between disconnected flavor branes and connected, we
propose that disconnected flavor branes are dual to quark
hypermultiplets with piecewise constant mass on AdS4
with totally reflecting boundary conditions at the boundary
of each AdS4 half-space, whereas continuous flavor branes
are dual to quark hypermultiplets with piecewise constant
mass and totally transparent boundary conditions. In both
cases, the entire gluon multiplet must have totally trans-
parent boundary conditions. This proposal for differing
quark boundary conditions on AdS4 is further supported by
gravity-side arguments such as causal disconnection of left
and right branes as well as the fact that the number of flavor
branes could be chosen to be different on each side.
We have also presented a phase diagram for quarks in

Janus proper, using disconnected branes with μb > 0 and
three different values of the Janus parameter, c0. The
additional terms in the equation of motion arising from
the flowing dilaton make the numerics intrinsically less
stable in Janus proper than in undeformed AdS with Janus-
sliced coordinates, so we cannot offer as much detail.
Qualitatively, we see expected behavior, with large mass
when μb is near μ0 and solutions very similar to unde-
formed AdS when c0 is small. Large c0 begins to change
qualitative features of the phase diagram, pushing the
“turnaround point” for the spiral further to the left and
reversing the convexity of the curve when c0 is large
enough. It will be important for future work to address
the mysteries surrounding the continuous flavor brane
solutions, determine whether a phase transition exists for
“near polar” continuous flavor branes, and study the dual
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theories we propose in Sec. VI. Future work will also
explore questions of the free energy of Janus-sliced D7
embeddings in comparison to the trivial embedding to
ascertain whether the symmetric cases studied here truly
break chiral symmetry. It is very surprising that simply
changing the flavor brane ansatz in this manner results in
such a radical change of behavior. It will also be very
interesting to study the exact mechanism by which chiral
symmetry breaking occurs, both in the dual gauge theory
and in the supergravity.
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