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We analyze the Weyl invariance constraints on higher spin vertex operators in open superstring theory
describing massless higher spin gauge field excitations in d-dimensional space-time. We show that these
constraints lead to low-energy equations of motion for higher spin fields in AdS space, with the leading-
order β function for the higher spin fields producing Fronsdal’s operator in AdSdþ1, despite that the higher
spin vertex operators are originally defined in flat background. The correspondence between the β function
in string theory and AdSdþ1 Fronsdal operators in space-time is found to be exact for d ¼ 4, while for other
space-time dimensions, it requires modifications of manifest expressions for the higher spin vertex oper-
ators. We argue that the correspondence considered in this paper is the leading order of a more general
isomorphism between Vasiliev’s equations and equations of motion of extended open string field theory,
generalized to include the higher spin operators.

DOI: 10.1103/PhysRevD.89.026010 PACS numbers: 11.25.-w, 11.90.+t

I. INTRODUCTION

Both string theory and higher spin gauge theories have
been immensely active and fascinating fields formanyyears.
These two cutting-edge fields are in fact deeply connected to
each other. At this point, our understanding of this connec-
tion is very far from being complete, still leaving many
profound and conceptual questions unanswered. In the
meantime the interplay between higher spins and strings
appears of crucial relevance to fundamental questions such
as underlying reasons behind the AdS=CFT conjecture
holography principle, origin of space-time geometry, and
others (for an incomplete list of references, seeRefs. [1–19]).
There exists a number of examples linking string and

higher spin dynamics. It is well known that massless higher
spin modes appear in the tensionless limit of string theory as
the massive vertex operators carrying spin s ∼m2 (wherem
is the mass). This correspondence has been explored in a
number of insightful papers (e.g., see Refs. [20,21] for some
reviews). This approach has many obvious advantages (it is,
in principle, straightforward to construct higher spin vertex
operators in the massive sector both in bosonic and super-
string theory), however it faces a number of difficulties as
well,many of them related to the fact that, in general, the ten-
sionless limit of string theory is the difficult one to describe.
In particular, it seems hard to recover the full set of
Stuckelberg symmetries when the vertex operators techni-
callybecomemassless, asα0 → ∞.Thevertexoperators con-
structed in this approach can be used to describe metriclike
Fronsdal fields (rather than the framelike gauge fields in
Vasiliev’s theory [22–27]); therefore fundamental space-

time symmetries, related to higher-spin currents are not
manifest in this approach. Moreover, while this approach
allows to understand the structure of vertex operators in flat
space-time, it isknowntobedifficult toextend it to theanti-de
Sitter (AdS) case (e.g.,Ref. [28]) since straightforwardquan-
tization of strings in the AdS background is not known
beyond the semiclassical limit [29]. At the same time,
AdS geometry appears to be a pertinent and crucial
ingredient in constructing consistently interacting higher
spin theories. Apart from crucial relevance toAdS=CFT cor-
respondence [4,5], understanding higher spin dynamics in
AdS space is of special interest to us since it is theAdSgeom-
etry that circumvents the limitations of Coleman and
Mandula’s theorem [30,31], leaving the possibility of
constructing consistent higher spin interactions at all orders,
following the Vasiliev equations [32].
In our previous papers, we showed that, apart from the

tensionless limit, higher spin vertex operators describing
emissions of higher spin gauge fields by an open string
also can be constructed at an arbitrary tension value but
at noncanonical ghost pictures [33,34]. These operators
are related to global symmetries present in noncritical
superstring theory, including hidden AdS isometries
and their higher spin extensions, that can be classified
using the formalism of ghost cohomologies [34]. The
generators inducing these symmetries do not mix with
standard Poincare generators, in this sense describing
“symmetries of different world,” coexisting with our
world within “larger” superstring theory, which includes
picture-dependent operators existing at nonzero ghost
numbers, for which the ghost dependence cannot be
removed by picture changing (these states and related*polyakov@sogang.ac.kr; twistorstring@gmail.com
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symmetries, however, have no effect on standard string
perturbation theory).
The hidden symmetry generators can be conveniently

classified in terms of ghost cohomologies Hn. For the sake
of completeness, we briefly remind the reader of the def-
inition of Hn, for which the properties were analyzed in a
number of previous works (e.g., see Refs. [33,34]) For each
positive n > 0 Hn is defined as a set of physical [Becchi-
Rouet-Stora-Tyutin (BRST) closed and BRST nontrivial]
vertex operators existing at minimal positive picture n
and above, annihilated by inverse picture-changing trans-
formation at minimal picture n (with the picture transfor-
mations above the picture n generated by usual direct and
inverse picture changings). For each negative n ≤ −3, and
below Hn is defined as a set of physical vertex operators
existing at minimal positive picture n and below (i.e.,
n − 1, n − 2, etc.) annihilated by direct picture-changing
transformation at minimal negative picture n (with the pic-
ture transformations above the picture n generated by usual
direct and inverse picture changings). The cohomologies of
positive and negative orders are isomorphic according to
Hn ∼H−n−2ðn ≥ 1Þ. Also, H0 by definition consists of
all picture-independent operators (existing at all picture
representations) while H−1 and H−2 are empty. Thus, all
conventional string theory operators (such as a photon, a
graviton, or Poincare generators) are the elements of H0

or H0 ⊗ H0. The generators inducing AdS transvections
in the larger string theory are the elements of H1 ∼H−3
while the massless closed string vertex operator of
spin 2 bilinear in transvections, H1 ⊗ H1 ∼H−3 ⊗ H−3,
describes gravitational fluctuations around the AdS vac-
uum (see below). Massless open string operators of spin
s ≥ 3 describing framelike gauge fields in Vasiliev’s theory
are the elements of Hs−2 ∼H−s; their explicit construction
will be given below. The fusion rules describing operator
products between the vertices of differentHs have the same
structure as the higher spin algebras in AdS space; in other
words, the operator product expansion (OPE) algebra in the
larger string theory constitutes one (very convenient) reali-
zation of AdS higher spin algebras.
Given the global symmetry generators, it is then straight-

forward to construct the appropriate vertex operators in open
and closed string theories describing emissions of massless
particles of various spins (with the open string physical
vertex operators being objects linear in the symmetry gen-
erators and the closed string operators being bilinear in the
symmetry generators). The purpose of this work is to ana-
lyze how AdS geometry emerges in the β-function equa-
tions for the massless higher spin modes in superstring
theory. In the leading order, the Weyl invariance constraints
on the higher spin vertex operators lead to low-energy equa-
tions of motion for massless higher spin fields defined by
the Fronsdal operator in AdS space-time. The AdS structure
of the Fronsdal operator (with the appropriate masslike
terms) emerges, despite the fact that the higher spin vertex

operators are initially defined in the flat background in
superstring theory. The appearance of the AdS geometry
is directly related to the ghost cohomology structure of
the higher spin vertices and is detected through the off-shell
analysis of the two-dimensional scale invariance of the ver-
tex operators for higher spins. It is crucial that, in order to
see the emergent AdS geometry, one must go off shell, e.g.,
to analyze the scale invariance of the operators in 2þ ϵ
dimensions so that the trace Tzz̄ of the stress-energy tensor
generating two-dimensional Weyl transformations is no
longer identically zero. Namely, it is the off-shell analysis
of the operators at nonzero Hn that allows us to catch cos-
mological-type terms in low-energy equations of motion
while the on-shell constraints on the operators (such as
BRST conditions) do not detect them, only leading to stan-
dard Pauli–Fierz equations for massless higher spins in flat
space. This is a strong hint that, from the string-theoretic
point of view, the appropriate framework to analyze the
higher spin interactions is the off-theory, i.e., string field
theory, with the string field theory (SFT) equations of
motion, QΨ ¼ Ψ⋆Ψ, related to Vasiliev’s equations in
unfolding formalism. It is important to stress, however, that
Vasiliev’s equations must be related to the enlarged, rather
than ordinary SFT, with the string fieldΨ extended to higher
ghost cohomologies. Higher spin interactions in AdS should
then be deduced from the off-shell string field theory com-
putations involving higher spin vertex operators for
Vasiliev’s framelike fields on theworld sheet boundary, with
the appropriate insertions of Tzz̄ in the bulk controlling the
cosmological constant dependence. The rest of this paper is
organized as follows. In the next section, we review the hid-
den AdS isometries in noncritical superstring theory and
construction of the vertex operator in H1 ⊗ H1 based
on these isometries, describing gravitational fluctuations
around the underlying AdS background, and appearance
of the cosmological term in its beta function as a result
of the off-shell scale-invariance condition. Next, we analyze
the Weyl invariance of higher spin operators for massless
spin s fields in Vasiliev’s formalism, constructed in Hs−2 ∼
H−s In this work we mostly limit ourselves to the peculiar
case of the higher spins that are polarized and propagating
along the AdS boundary (which nevertheless is the limit rel-
evant for holography) while also making some comments
regarding the bulk-dependent case. The Weyl invariance,
in the leading order, leads to the low-energy equations of
motion for the higher spins, determined by Fronsdal’s oper-
ator in AdS space. In the concluding section, we outline the
higher order extension of this calculation (currently in
progress) in order to establish the isomorphism between
higher spin vertices in AdS space and off-shell amplitudes
in the extended string field theory with Tzz̄ insertions. The
ultimate aim of this program is to explore the conjectured
isomorphism between equations of extended SFT and
Vasiliev equations that describe higher spin interactions
in an unfolded approach.
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II. HIDDEN ADS ISOMETRIES AND GRAVITONS IN ADS

The starting point is noncritical superstring theory in flat d-dimensional space-time, with the action given by

SRNS ¼ Smatter þ Sbc þ Sβγ þ SLiouville

Smatter ¼ − 1

4π

Z
d2zð∂Xm∂̄Xm þ ψm∂̄ψm þ ψ̄m∂ψ̄mÞ

Sbc ¼
1

2π

Z
d2zðb∂̄cþ b̄∂c̄Þ

Sβγ ¼
1

2π

Z
d2zðβ∂̄γ þ β̄∂ γ̄Þ

SLiouville ¼ − 1

4π

Z
d2zð∂ϕ∂̄ϕþ ∂̄λλþ ∂λ̄ λ̄þμ0eBϕðλλ̄þ FÞÞ; (1)

where Xmðm ¼ 0;…d − 1Þ are the space-time coordinates
and ψm are their world sheet superpartners, b ¼ e−σ ,
c ¼ eσ are reparametrization ghosts, γ ¼ eφ−χ ≡ eφη and
β ¼ eχ−φ∂χ ≡ ∂ξe−φ aresuperconformal ghosts, ϕ, λ, F
are components of the super Liouville field, and the

Liouville background charge is Q ¼ Bþ B−1 ¼
ffiffiffiffiffiffi
9−d
2

q
.

The action (1) is obviously invariant under global
Poincare symmetries generated by

Pm ¼
I

dz∂XmðzÞ

Pmn ¼
I

dzð∂X½mXn� þ ψmψnÞ: (2)

The standard physical vertex operators in superstring
theory are the objects that are the elements of H0, linear
in Poincare generators P (for open strings) or bilinear
(for closed strings), up to multiplication by the exponent
field ∼eipX. For example, the photon operator is
Vm ∼

H
dzΠmeipX, and the graviton is Vmn∼R

d2zΠmΠ̄neipXðz; z̄Þ, where Πm ¼ ∂Xm þ iðpψÞψm at
picture 0, Πm ¼ e−φψm at picture −1, etc. The crucial point
is that, apart from obvious Poincare symmetries of flat
space-time, the action (1) also has nonlinear global sym-
metries realizing hidden AdS isometry algebra. Namely,
as a warm-up example, it is straightforward to check the
invariance of Eq. (1) under

δαXm ¼ αð∂ðeφψmÞ þ 2eφ∂ψmÞ
δαψm ¼ −αðeφ∂2Xm þ 2∂ðeφ∂XmÞÞ
δαγ ¼ αeφðψm∂2Xm − 2∂ψm∂XmÞ
δαb ¼ δαc ¼ δαβ ¼ 0 (3)

as well as under the dual version of these transformations,
given by replacing φ → −3φ in the transformation laws for

X and ψ ; vanishing variations of b, c, and γ ghosts; and the
transformation of the β ghost given by

δβ ¼ ∂ξe−4φ X2
k¼0

PðkÞ
−3φ∂ð2−kÞF5

2
; (4)

where α is a global bosonic infinitesimal parameter, the pol-

ynomials PðnÞ
f ¼ e−fðzÞ dn

dzn e
fðzÞ are the conformal weight n

operators if fðzÞ is linear in the ghost fields φ, χ, and σ and
F5

2
is a dimension-5

2
primary field: F5

2
¼ ψm∂2Xm−

2∂ψm∂Xm. The generators of Eqs. (3) and (4) are easily
constructed to be given by

Tðþ1Þ ¼
I

dzeφF5
2
ðzÞ (5)

for Eq. (3) and

Tð−3Þ ¼
I

dze−3φF5
2
ðzÞ (6)

for Eq. (4). The operator (6) is BRST invariant and nontri-
vial while the operator (5) is not, as it does not commute
with the supercurrent terms ofQbrst. To make Eq. (5) BRST
invariant, one has to modify it with b − c ghost-dependent
terms according to the homotopy K transformation
T → L ¼ K∘T, where, in general, T is an operator given
by an integral of dimension-one primary field V, not com-
muting with Qbrst,

T ¼
I

dzVðzÞ;

and the transformation is defined as

K∘T ¼ T þ ð−1ÞN
N!

I
dz
2iπ

ðz − wÞN∶K∂NW∶ðzÞ

þ 1

N!

I
dz
2iπ

∂Nþ1
z ½ðz − wÞNKðzÞ�KfQbrst; Ug; (7)
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where w is some arbitrary point on the world sheet, U and
W are the operators defined according to

½Qbrst; VðzÞ� ¼ ∂UðzÞ þWðzÞ; (8)

K ¼ ce2χ−2φ (9)

is the homotopy operator satisfying

fQbrst; Kg ¼ 1;

and N is the leading order of the operator product

Kðz1ÞWðz2Þ ∼ ðz1 − z2ÞNYðz2Þ þOððz1 − z2ÞNþ1Þ: (10)

In the case of the symmetry generator (5), we have
N ¼ 2. It is straightforward to check that, with the defini-
tion Eq. (7), the operator K∘T is BRST invariant. The
homotopy transformation (7) is straightforward to general-
ize for closed string operators, multiplying it by antiholo-
morphic transformation, so that the invariant closed string
operator is KK̄∘ R d2z…. The important property of the K
transformation is the homomorphism relation preserving
the OPE structure constants so that, up to BRST-exact
terms, the OPE structure constants of BRST-invariant oper-
ators K∘T1 and K∘T2 can be read off the OPE of the non-
invariant operators T1 and T2, with the appropriate K
transform (7) of the right-hand side (see Ref. [34] for
the proof). Given Eqs. (6)–(10), the dual symmetry gener-
ators Tð−3Þ and K∘Tðþ1Þ belong to isomorphic cohomolo-
giesH−3 andH1 note that both Tðþ1Þ and K∘Tðþ1Þ generate
global symmetries in space-time; however, while the non-
invariant operator Tðþ1Þ generates the symmetry transfor-
mations (3) that do not involve the ghost fields b, c, and
β, the invariant operator K∘Tðþ1Þ generates the extended
(complete) version of Eq. (3), which involves all the ghost
fields. Given the definitions (5), (7), the extended space-
time transformations are straightforward to construct; we
will not present their manifest form here for the sake of
brevity. It shall be sufficient to note that, due to the homo-
morphism property [34], the K-transformed symmetry gen-
erators satisfy the same symmetry algebra relations as the
abbreviated noninvariant operators, such as Eq. (12). As a
simple analogy of the above, one can think of the non-
invariant symmetry generators ∼

H
dzψmψn inducing the

truncated global symmetries of (1) satisfying correct com-
mutation relations for Lorentz rotations in space-time.
However, the abbreviated noninvariant generators only
act on ψ and not on X. To make them invariant, one has
to add extra terms proportional to

R ∂X½mXn� so that the
invariant rotation generator satisfies the same symmetry
algebra but now acts on both X and ψ . We now turn to

the question of symmetry algebras satisfied by the gener-
ators of the same type as Eqs. (5)–(7). First of all, it is
straightforward to check that, up to BRST-exact terms,
these operators all commute with Poincare generators
(2). The geometrical meaning of the hidden symmetries (3),
(5)–(7) becomes clearer if one considers the vector analogs
of these transformations given by

Lm ¼ K∘
I

dzeφðλ∂2Xm − 2∂λ∂XmÞ

Lþ ¼ K∘
I

dzeφðλ∂2ϕ − 2∂λ∂ϕÞ

Lmn ¼ K∘
I

dzψmψn

Lþm ¼ K∘
I

dzλψm: (11)

Then, with some effort involving tedious picture-changing
transformations [34], one can show that the operators (11)
realize the AdSdþ1 isometry algebra:

½Lm; Ln� ¼ −Lmn

½Lþ; Lm� ¼ −Lþm

½Lm; Lnp� ¼ −ηmnLp þ ηmpLn

½Lþ; Lmn� ¼ 0

½Lþm; Lnp� ¼ −ηmnLþp þ ηmpLþn

½Lmn; Lpq� ¼ ηmpLnq þ � � � (12)

It is worth mentioning that the minus signs on the RHS of
the first two commutators in Eqs. (11) and (12) appear in a
rather nontrivial way, through a process of cumbersome
OPE calculations [34]. The radial coordinate of the under-
lying AdSdþ1 space related to the isometry algebra (12) nat-
urally coincides with the Liouville direction [35–37]. The
operators of AdS transvections Lm and Lþ are the elements
of H1 and can also transformed into isomorphic H−3 coho-
mology by replacing K∘ H dz →

H
dz, eφ → e−3φ. The next

step is to construct physical vertex operators based on
isometry generators (3), (5)–(7). Obviously the object of
particular interest is the spin-2 operator in the closed string
sector, bilinear in transvection generators (11), (12), with
appropriate momentum-dependent extra terms to ensure
BRST invariance. As above, for our purposes, we shall
limit ourselves to excitations polarized and propagating
along the AdS boundary (which in our case is simply
orthogonal to the Liouville direction). The construction
in H−3 ⊗ H−3 cohomology leads to the following expres-
sion for the operator:
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Vs¼2 ¼ GmnðpÞ
Z

d2ze−3φ−3φ̄RmR̄neipXðz; z̄Þ

Rm ¼ λ̄∂2Xm − 2∂λ∂Xm

þ ipm

�
1

2
∂2λþ 1

q
∂ϕ∂λ − 1

2
λð∂ϕÞ2 þ ð1þ 3q2Þλ

�
3∂ψpψ

p − 1

2q
∂2ϕ

��

m ¼ 0;…; d − 1; (13)

where Gmn is symmetric. The operator on H1 ⊗ H1 is con-
structed likewise by replacing

R
d2z → KK̄∘ R d2z and

−3φ → φ, −3φ̄ → φ̄. Provided that k2 ¼ 0, 0 it is straight-
forward to check its BRST invariance with respect to the
flat space BRST operator

Qbrst ¼
I

dz

�
cT − bc∂c − 1

2
γψm∂Xm − 1

4
bγ2

�
(14)

as well as the linearized diffeomorphism invariance since
the transformation GmnðpÞ → GmnðpÞ þ pðmϵnÞ shifts hol-
omorphic and antiholomorphic factors of Vs¼2 by terms
BRST exact in small Hilbert space [34]. To identify this
symmetric massless spin-2 state with gravitational fluctua-
tions, however, one needs to analyze the low-energy equa-
tions of motion for Gmn, for which the leading order is
given by theWeyl constraints. Wewill address this question
in the next section.

III. FLAT VS ADS GRAVITONS: WEYL
INVARIANCE AND COHOMOLOGY

STRUCTURES

As an instructive example, in this section we shall con-
sider in detail the scale-invariance constraints on the oper-
ator (13) of H−3 ⊗ H−3 and compare them to those for the
ordinary graviton in superstring theory (1). To see the dif-
ference, let us first recall the most elementary example–the
graviton in bosonic string theory given by

V ¼ Gmn

Z
d2z∂Xm∂̄XneipX: (15)

The condition ½Q;V� ¼ 0 leads to constraints,
p2GmnðpÞ ¼ pmGmnðpÞ ¼ 0, related to linearized Ricci
tensor contributions to the graviton’s β function. The com-
plete linearized contribution to the graviton’s β function,
however, is given by βmn ¼ Rlinearized

mn þ 2∂m∂nD (where
D is the space-time dilaton) with the last term particularly
accounting for the ∼e−2D factor in the low-energy effective
action. This term in fact is not produced by any of the on-
shell (BRST) constraints on the graviton vertex operator; to
recover it, one has to analyze the off-shell constraints
related to the Weyl invariance. Namely, the generator
of the Weyl transformations is given by the Tzz̄ com-
ponent of the stress energy, which is identically zero on
shell in d ¼ 2 but nonzero in d ¼ 2þ ϵ. The leading-order
contribution to the β-function of the closed string vertex
operator V is determined by the coefficient in front of
∼ 1

jz−wj2 in the midpoint OPE of Tzz̄ðz; z̄Þ and Vðw; w̄Þ
leading to logarithmic divergence in the integral
∼
R
d2z

R
d2wTzz̄ðz; z̄ÞVðw; w̄Þ. In bosonic string theory,

one has

Tzz̄ ∼ −∂Xm∂̄Xm þ ∂σ∂̄σ þ ∂∂̄ð…Þ; (16)

skipping the full-derivative part proportional to the two-
dimensional Laplacian related to background charge, as
it leads to contact terms in the OPE with V, not contributing
to its β function. Using Eqs. (15) and (16), one easily
calculates

Z
d2z

Z
d2wTzz̄ðz; z̄ÞVðw; w̄Þ

∼GmnðpÞ
Z

d2z
Z

d2w
1

jz − wj2 e
ipX

�
zþ w
2

;
z̄þ w̄
2

�
fp2∂Xm∂̄Xn − 1

2
ðpmps∂Xs∂̄Xn þ pnps∂Xm∂̄XsÞ

þ 1

4
ηmnpspt∂Xs∂̄Xtg

�
zþ w
2

;
z̄þ w̄
2

�

∼ lnΛ½p2GmnðpÞ − 1

2
ðpspmGnsðpÞ þ pspnGmsðpÞÞ þ 2pmpnDðpÞ�

Z
d2ζ∂Xm∂̄XneipXðζ; ζ̄Þ; (17)
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where we introduced lnΛ ¼ R d2ξ
jξj2, ζ ¼ zþ w and identified

the dilaton with the trace of the space-time met-
ric: DðpÞ ∼ ηstGstðpÞ.
For conventional reasons and in order not to introduce

too many letters in this paper, we adopt the same notation,
Λ, for both the world sheet cutoff and the cosmological
constant in space-time. However, we hope that the distinc-
tion between those will be very clear to a reader from the
context; in particular, in this paper the cutoff shall always
appear in terms of logs, while all expressions in the cosmo-
logical constants are either linear or polynomial.
The coefficient in front of the integral thus determines

the leading-order contribution to the graviton’s β function.
The first three terms in this coefficient simply give linear-
ized Ricci tensor while the last one proportional to the trace
of the space-time metric determines the string coupling
dependence. All these terms contain two space-time deriv-
atives, and obviously no cosmological-type contributions
appear. The calculation analogous to Eq. (17) is of course
similar in superstring theory, producing the similar answer.
However, in comparison with the bosonic string, the super-
string case also contains some instructive subtlety, which is
useful to observe for future calculations. That is, consider
the graviton operator in superstring theory at the canonical
ð−1;−1Þ picture:

Vð−1;−1Þ ¼ GmnðpÞ
Z

d2ze−φ−φ̄ψmψ̄neipXðz; z̄Þ: (18)

The generator of Weyl transformations in superstring
theory is

Tzz̄ ¼ TX þ Tψ þ Tb−c þ Tβ−γ þ TLiouv

¼ 1

2
∂Xm∂̄Xm − 1

2
ð∂̄ψmψm þ ∂ψ̄mψ̄

mÞ

þ 1

2
∂σ∂̄ σ̄− 1

2
∂φ∂̄ ϕ̄þ 1

2
∂χ∂̄ χ̄þ∂∂̄ð� � �Þ. (19)

The contribution of TX to the scale transformation of
Eq. (18) is again easily computed to give
∼p2GmnðpÞ lnΛVð−1;−1Þ, i.e., the gauge fixed linearized
Ricci tensor (with the gauge condition pmGmn ¼ 0
imposed by invariance under transformations of Vð−1;−1Þ
by worldsheet superpartners of TX, namely, Gþz̄ and
G−z). To compute the contribution from Tψ , it is convenient
to bosonize ψ according to

ψ1 � iψ2 ¼ e�iϕ1

� � �
ψd−1 � iψd ¼ e

�iϕd
2 (20)

(for simplicity we can assume the number d of dimensions
even without loss of generality) Then the stress-energy
tensor for ψ is

T ¼ − 1

2
ð∂̄ψmψ

m þ ∂ψ̄mψ̄
mÞ ¼

Xd
2

i¼1

∂ϕi∂̄ϕ̄i: (21)

Writing ψ1 ¼ 1
2
ðeiϕ1 − e−iϕ1Þ, it is easy to compute the

contribution of Tψ to the β function:

Z
d2zTψðz; z̄ÞGmnðpÞ

Z
d2we−φ−φ̄ψmψ̄neipXðw; w̄Þ

¼ 1

2
lnΛGmnðpÞ

Z
d2ζe−φ−φ̄ψmψ̄neipXðζ; ζ̄Þ

≡ 1

2
lnΛVð−1;−1Þ: (22)

Note the scale transformation by Tψ contributes the term
proportional to ∼ 1

2
Gmn with no derivatives, i.e., a “cosmo-

logical-type” term. The cosmological term is of course
absent in the overall graviton’s β function as the contribu-
tion (22) is precisely cancelled by the scale transformation
of the ghost part of Vð−1;−1Þ by Tβγ ¼ − 1

2
j∂φj2 þ ∂∂̄ð…Þ,

Z
d2zTβγðz; z̄ÞGmnðpÞ

Z
d2we−φ−φ̄ψmψ̄neipXðw; w̄Þ

¼ − 1

2
lnΛVð−1;−1Þ; (23)

with the minus sign related to that of the φ-ghost field in the
trace of the stress-energy tensor. So the absence of the cos-
mological term in the graviton’s β function in superstring
theory is in fact the result of the smart cancellation between
the Weyl transformations of the matter and the ghost factors
of the graviton operator at ð−1;−1Þ canonical picture
(despite that the final answer—the absence of the overall
cosmological term— may seem obvious) The same result
of course applies to the graviton operator (18) transformed
to any other ghost picture since it is straightforward to
check that both Γ and Γ−1 are Weyl invariant, up to
BRST-exact terms. The absence of cosmological (or mass-
like) terms in the Weyl transformation laws is actually typ-
ical for any massless operators of H0 or H0 ⊗ H0; at
nonzero pictures it is the consequence of the cancellation
of Weyl transformations for the matter and the ghosts, as
was demonstrated above. This observation is of importance
since, as it will be shown below, this matter-ghost cancel-
lation does not occur for operators of nonzero Hn’s, in par-
ticular, for the spin-2 operator (13) in closed string theory
and for massless operators for higher spin fields of Vasiliev
type in the open string sector. Namely, wewill show that for
the operator (13) the scale-invariance constraints lead to the
cosmological term, while for massless higher spin fields,
the similar constraints lead to the emergence of AdS geom-
etry in Fronsdal’s operator in the low-energy limit. We start
by analyzing the scale transformation of the spin operator
(13) by TX. The canonical picture for the operator (13)
is ð−3;−3Þ. To deduce the transformation law for the
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operator (13), it is sufficient to consider the momentum-independent part ∼Rm
0 R̄

n
0 of the matter factor ∼RmR̄n in (13),

Rm ¼ Rm
0 þ ikmð…Þ Rm

0 ¼ λ∂2Xm − 2∂λ∂Xm; (24)

and similarly for R̄m. Then the straightforward application of TX to

GmnðpÞ
Z

d2we−3φ−3φ̄Rm
0 R̄

n
0e

ipXðw; w̄Þ
gives

Z
d2zTXðz; z̄ÞGmnðpÞ

Z
d2we−3φ−3φ̄Rm

0 R̄
n
0e

ipXðw; w̄Þ

¼ lnΛ ×GmnðpÞ
Z

d2ζ

�
− 1

2
p2e−3φ−3φ̄Rm

0 R̄
n
0e

ipXðζ; ζ̄Þ� − i
8
pm∂2ðe−3φλeipXðζÞÞe−3φ̄R̄n

0e
ipXðζ̄Þ

þ i
2
pm∂∂ðe−3φ∂λeipXðζÞÞe−3φ̄R̄n

0e
ipXðζ̄Þ þ ðc:c:;m↔nÞ�

�

¼ lnΛGmnðpÞ
Z

d2ζ

�
− 1

2
p2δnq þ

1

2
pmpq

�
e−3φ−3φ̄Rm

0 R̄
q
0e

ipX þ � � � ; (25)

where we dropped BRST-exact terms and only kept terms
contributing to the Gmn’s β function, skipping those rel-
evant to β functions of the space-time fields other than
Gmn. In addition, for simplicity we skipped the dilaton-type
contributions involving the trace of Gmn; it is, however,
straightforward to generalize the computation to include
the dilaton, accounting for the standard factor of e−2D in
the effective action. Comparing the transformation laws
(17) and (25), one easily concludes that the contribution
of TX transformation to the Gmn β function results in the
linearized Ricci tensor Rlinearized

mn . Next, consider the contri-
butions from Tλ ¼ − 1

2
ð∂λ̄ λ̄þ∂̄λλÞ and Tβγ to βmn. The

analysis is similar to the one for the ordinary graviton oper-
ator (18)–(23); however, the crucial difference is that this
time there is no cancellation between transformations due
to the world sheet matter (Liouville) fermion and the β − γ
ghost, observed above. As previously stated, the transfor-
mation of Eq. (25) by Tλ contributes

GmnðpÞ
Z

d2zTλðz; z̄Þ
Z

d2we−3φ−3φ̄Rm
0 R̄

n
0e

ipXðw; w̄Þ

¼ 1

2
lnΛGmnðpÞ

Z
d2ζe−3φ−3φ̄Rm

0 R̄
n
0e

ipXðw; w̄Þ:

(26)

On the other hand, the transformation by Tβ−γ produces

GmnðpÞ
Z

d2zTβ−γðz; z̄Þ
Z

d2we−3φ−3φ̄Rm
0 R̄

n
0e

ipXðw; w̄Þ

¼ − 9

2
lnΛGmnðpÞ

Z
d2ζe−3φ−3φ̄Rm

0 R̄
n
0e

ipXðw; w̄Þ;

(27)

where we used the OPE j∂φj2ðz; z̄Þe−3φ−3φ̄ðw; w̄Þ∼
9

jz−wj2 e
−3φ−3φ̄ðw; w̄Þ. Unlike the case of the ordinary grav-

iton, the cosmological-type contributions from the scale
transformations of the ghost and the matter part of the oper-
ator (13) no longer cancel each other. As a result, the overall
cosmological term∼ð9

2
− 1

2
ÞGmn appears in the β function of

Eq. (28) for which the leading order is now given by

βmn ¼ Rlinearized
mn − 8Gmn (28)

(with the extra factor of 2 related to the normalization of the
Ricci tensor). Note that Eq. (28) is written in the units
implying α0 ¼ 1 (absorbed in the momentum normalization
in vertex operators). Recovering the α0 dependence, it is
easy to see that the cosmological constant appearing in
Eq. (28) is related to the AdS radius of the order of the
string length, i.e., the scale where one expects higher spin
symmetry enhancement to occur. In this sense the appear-
ance of higher spin vertex operators, discussed in the next
section, is natural since their zero momentum limits should
correspond to generators of higher spin symmetry algebra.
The emergence of the cosmological term in Eq. (28) is thus
closely related to the ghost cohomology structure of the
operator (13), i.e., to the fact that the canonical picture
for this operator is ð−3;−3Þ while the standard ð−1;−1Þ
picture representation of the “ordinary” graviton does
not exist for Eq. (13).
Collecting Eqs. (25)–(27), this altogether allows us to

identify the space-time massless spin-2 Gmn field emitted
by H−3 ⊗ H−3 with the gravitational fluctuations around
the AdS vacuum. In fact, this is not a surprise since the
operator (13) was originally built as a bilinear of the gen-
erators (11), (12) realizing transvections in AdS. The next
step is to generalize the above arguments to the vertex
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operators for the massless higher spin fields (with s ≥ 3),
which are also the elements of nonzero cohomologies
Hs−2 ∼H−s. In analogy with the mechanism generating
the cosmological term in Eq. (28), we expect that the
scale-invariance analysis of these operators shall also lead
to the appearance of the masslike terms in their β functions
(although the operators by themselves are massless). We
shall attempt to show that the “masslike” terms are in fact
related to the AdS geometry couplings of the higher spin
fields, adding up to appropriate AdS Fronsdal operators in
their low-energy equations of motion in the leading order.

IV. HIGHER SPIN OPERATORS: WEYL
INVARIANCE AND β FUNCTIONS

In this section we extend the analysis of the previous sec-
tions to vertex operators describing massless higher spin
excitations in open superstring theory. The space-time
fields emitted by these operators correspond to symmetric
higher spin gauge fields in Vasiliev’s framelike formalism.
The main result of this section is that the leading order of
the β function for the higher spin operators gives the low-
energy equations of motion determined by Fronsdal oper-
ator in the AdS space, despite the fact that the operators are
initially defined around the flat background. As in the case
of the AdS graviton considered in the previous section, the
information about the AdS geometry is encrypted in the
ghost cohomology structure of the operators. In the frame-
like formalism [22–27], [38–41], a symmetric higher spin
gauge field of spin s is described by collection of two-row
fields Ωs−1jt ≡Ωa1…as−1jb1…bt

m ðxÞ with 0 ≤ t ≤ s − 1 and
the rows of lengths s − 1 and t. The only truly dynamical
field of those isΩs−1j0 while the fields with t ≠ 0, called the
extra fields, are related to the dynamical one through gen-
eralized zero torsion constraints,

Ωs−1jt ∼DðtÞΩs−1j0; (29)

where DðtÞ is a certain order t linear differential operator
preserving the symmetries of the appropriate Yang
tableaux. There are altogether s − 1 constraints for the field
of spin s. As for the dynamical Ωs−1j0 field (symmetric in
all the a indices), it splits into two diagrams with respect to
the manifoldm index. Assuming the appropriate pullbacks,
the one-row symmetric diagram describes the dynamics
of the metriclike symmetric Fronsdal field of spin s while
the two-row component of Ωs−1j0 can be removed by
appropriate gauge transformation. In the language of string
theory, the higher spin s operators are the elements of
Hs−2 ∼H−s. The on-shell (Pauli–Fierz type) constraints
on these space-time fields follow from the BRST-invariance
constraints on the vertex operators while the gauge trans-
formations correspond to shifting the vertex operators by
BRST-exact terms (see Ref. [42] for a detailed analysis).
The zero torsion constraints (29) relating Ωs−1jt gauge
fields with different t follow from the cohomology

constraints on their vertex operators Vs−1jt, that is, by
requiring that all these vertex operators belong to the
same cohomology Hs−2 ∼H−s (there are, however, certain
subtleties with this scheme arising at t ¼ s − 1 or t ¼ s − 2
tjat were discussed in Ref. [42] for the s ¼ 3 case). The on-
shell (Pauli–Fierz type) constraints on these space-time
fields follow from the BRST-invariance constraints on
the vertex operators while the gauge transformations corre-
spond to shifting the vertex operators by BRST-exact terms
(see Ref. [42] for a detailed analysis). Furthermore, it turns
out that the vertex operators Vs−1j0 generating the Ωa1…as−1

m

dynamical fields in space-time are only physical when
Ωs−1j0 are fully symmetric one-row fields (describing
Fronsdal’s metriclike tensors for symmetric fields of spin
s) while the operators for the two-row (s − 1, 1) fields
are typically the BRST commutators in the small Hilbert
space, and therefore the space-time fields are pure gauge
[42]. This altogether constitutes the dictionary between ver-
tex operators in superstring theory (extended to higher
ghost cohomologies). Finally, the zero torsion constraints
(29) relatingΩs−1jt gauge fields with different t follow from
the cohomology constraints on their vertex operators Vs−1jt,
that is, by requiring that all these vertex operators belong to
the same cohomology Hs−2 ∼H−s (with some subtleties at
t ¼ s − 1 or t ¼ s − 2, mentioned above). The zero torsion
and cohomology constraints involving the t ¼ s − 1 and
s − 2 cases are very interesting and deserve separate con-
sideration; however, we shall not discuss them in this paper
for the sake of brevity.
To understand the meaning of the cohomology con-

straints, it is useful to recall first a much simpler example
known from the conventional Ramond–Ramond sector of
closed superstring theory. Namely, the relation between
cohomology and zero torsion constraints can be thought
of as a symmetric higher spin generalization of a more
elementary and familiar example of standard Ramond–
Ramond vertex operators in closed critical superstring
theory. It is well known that the canonical picture represen-
tation for the Ramond–Ramond operators is given by

V
ð−1

2
;−1

2
Þ

RR ¼ FαβðpÞ
Z

d2ze−φ
2
−φ̄

2ΣαΣ̄βeipXðz; z̄Þ

FðpÞ
αβ ≡ γ

m1…mp

αβ Fm1…mp
; (30)

where FðpÞ
αβ is the Ramond–Ramond p-form field strength

(contracted with ten-dimensional gamma matrices). Note
that since the operator (30) is the source of the field strength
(the derivative of the gauge potential) it does not carry
Ramond–Ramond (RR) charge (which instead is carried
by a corresponding Dp-brane). The operator (30) exists
at all the pictures and is the element ofHð−1

2
;−1

2
Þ cohomology

(which is the superpartner ofHð0;0Þ consisting of all picture-
independent physical states). It is, however, possible to
construct the vertex operator that couples to Ramond–
Ramond gauge potential rather than field strength. The
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canonical picture for such an operator is ð− 3
2
;− 1

2
Þ (or

equivalently ð− 1
2
;− 3

2
Þ, with the explicit expression given by

U
ð−1

2
;−3

2
Þ

RR ¼ Aαβðp − 1Þ
Z

d2ze−φ
2
−3φ̄

2 ΣαΣ̄βeipXðz; z̄Þ

Aðp−1Þ
αβ ≡ γ

m1…mp

αβ Am1…mp−1 ; (31)

where generically A is arbitrary. The U operator (31) is gen-
erally not the picture-changed version of the V operator (30)
nor is it the element of Hð−1

2
;−1

2
Þ for general A. To relate

U
ð−1

2
;−3

2
Þ

RR to V
ð−1

2
;−1

2
Þ

RR of Eq. (30) by the picture changing,

V
ð−1

2
;−1

2
Þ

RR ¼ ∶ΓUð−3
2
;−1

2
Þ

RR ; (32)

one has to impose the constraint F ¼ dA that ensures that U
is the physical operator of Hð−1

2
;−1

2
Þ. Thus, the cohomology

constraint in U leads to the standard relation between
the gauge potential and the field strength. Similarly, the
generalized Hs−2 ∼H−s-cohomology constraints on higher
spin operators Vs−1jt for Ωs−1jt space-time fields lead to
generalized zero torsion constraints (29). Note that for
0 ≤ t ≤ s − 3, the canonical pictures for Vsjt are
2s − t − 5 ∼ tþ 3 − 2s with the cohomology constraints
Vsjt ∈ Hs−2 ∼H−s inducing the chain (29) of zero torsion
relations.
We are now prepared to analyze the scale-invariance con-

straints for open string vertex operators describing the
Vasiliev-type higher spin fields in space-time. It turns
out that for massless fields of spin s the canonical picture
representation is especially simple for the field with
t ¼ s − 3, that is, for Ωs−1js−3. The explicit vertex operator
expression for this field is given by

Vs−1js−3 ¼ Ωa1���as−1jb1…bs−3
m ðpÞ

I
dze−sφ−sφ̄

× ψm∂ψb1∂2ψb2…∂s−3ψbs−3∂Xa1…∂Xs−1eipX

∼ Ωa1…as−1jb1…bs−3
m ðpÞK∘

Z
d2zeðs−2Þφ−ðs−2Þφ̄

× ψm∂ψb1∂2ψb2…∂s−3ψbs−3∂Xa1…∂Xs−1eipX:
(33)

For s ¼ 3, this immediately gives the operator for the
Fronsdal field considered in Refs. [33,42]. The on-shell
conditions on Ωs−1js−3 to ensure the BRST invariance of
Eq. (33) are not difficult to obtain using the BRST charge
(14). The commutation with the TX component of the
stress-energy part of Qbrst leads to the tracelessness of Ω
in the a indices, that is, Ωaa1…as−3jb1…bs−3

ma ¼ 0, which
is the well-known constraint on framelike fields and
to the second Pauli–Fierz constraint of transversality:
paΩ

aa1…as−2jb1…bs−3
m ðpÞ ¼ 0. The commutation with the

Tψ part of Qbrst, given by − 1
2

H
dzc∂ψpψ

m, requires
the symmetry of Ω in the b indices, as it is easy to
see from the OPE between Tψ and Smb1…bs−3 ¼
ψm∂ψb1…∂s−3ψbs−3—the latter is the primary field of
dimension hψ ¼ 1

2
ðs − 2Þ2 only if S is symmetric and

traceless in all indices. While the symmetry in the b indices
is another standard familiar constraint in the framelike for-
malism, the symmetry and tracelessness of m with respect
to the b indices is an extra condition on Ω that can be
obtained by partial fixing of the gauge symmetries of Ω.
Given that the above conditions are fulfilled, the commu-
tation with the supercurrent part of Qbrst produces no new
constraints; however, there is one more condition coming
from the H−s-cohomology constraint on Vs−1js−3, that is,

∶ΓVs−1js−3 ≔ 0. (34)

This constraint further requires the vanishing of the
mixed trace over any pair of ða; bÞ ¼ indices:
ηabΩ

aa1…as−2jbb1…bs−4
m ¼ 0. Fortunately, the gauge sym-

metry of Ω is more than powerful enough to absorb this
extra constraint as well. Finally, we are left to consider
the BRST nontriviality conditions on Eq. (33). First
of all, the nontriviality constraint, Vs−1js−3 ≠ fQbrst;
Ws−1js−3g, where W is some operator in small Hilbert
space, requires either

ηmaΩ
aa1…as−2jb1…bs−3
m ≠ 0 (35)

or

pmΩa1…as−1jb1…bs−3
m ≠ 0 (36)

since otherwise, generically, there exist operators

Ws−1js−3 ∼Ωa1…as−1jb1…bs−3
m

Xs−1
k¼0

I
dzeχ−ðs−1Þφ∂χ

× ∂ψb1…∂s−3ψbs−3∂Xa1…∂Xs−1
× ∂s−1−kXmGðkÞðφ; χÞeipX (37)

commuting with the stress tensor part of Qbrst while, at
the same time, the commutators of the supercurrent part
of Qbrst with Ws−1js−3 are proportional to Vs−1js−3:
fQbrst;Ws−1js−3g ¼ αsVs−1js−3, where αs are some num-
bers (generically, nonzero) and GðkÞðφ; χÞ are polynomials
in derivatives of φ and χ of conformal dimension k ( generi-
cally, inhomogeneous in degree and quite cumbersome)
such that

eχ−ðsþ1Þφ∂s−1−kXmGðkÞðφ; χÞ∂χ
is a primary field (this is a rather stringent constraint,
which, nevertheless, typically has nontrivial solutions for
generic s; e.g., see Ref. [33] for some concrete examples).
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For this reason, unless one of the nontriviality conditions,
Eq. (35) or Eq. (36), holds, the operators Vs−1js−3 are BRST
exact in small Hilbert space; however, if either Eq. (35)
or Eq. (36) are satisfied, the W operators do not commute
with the stress-energy tensor part of Qbrst, and therefore
their overall commutators with Qbrst no longer produce
Vs−1js−3 with the latter now being in BRST cohomology
and physical. However, it is easy to see that out of two pos-
sible nontriviality conditions (35), (36), it is the second one
(36) that must be chosen since the first one clearly violates
the H−s-cohomology condition (34). This immediately
entails the gauge transformations for the Ω field,

Ωa1…as−1jb1…bs−3
m → Ωa1…as−1jb1…bs−3

m

þ pmΛa1…as−1jb1…bs−3 ; (38)

that shift Vs−1js−3 by BRST-trivial terms irrelevant for
amplitudes and lead to well-known vast and powerful
gauge symmetries possessed by the higher spin fields.
Note that, although all the above analysis has been per-
formed for the operators at negative cohomologies (which
are simpler from the technical point of view), all the above
results directly apply to the corresponding operators at iso-
morphic positive Hs−2 cohomologies since the explicit iso-
morphism between negative and positive cohomologies is
BRST invariant [33].
To complete our analysis of BRST on-shell constraints

on the higher spin operators of Hs−2 ∼H−s, we shall com-
ment on the only remaining possible source of BRST trivi-
ality for Vs−1js−3 coming from operators proportional to the
ghost factor ∼e2χ−ðsþ2Þφ. All the hypothetical operators in
the small Hilbert space with such a property are given by

Us−1js−3 ¼ Ωa1…as−1jb1…bs−3
m

I
dzc∂ξ∂2ξe−ðsþ2Þφ

× Rð2s−2Þðφ; χ; σÞψm∂ψb1…∂s−3ψbs−3

× ∂Xa1…∂Xs−1eipX; (39)

whereRð2s−2Þ is the conformal dimension 2s − 2 polynomial
in derivatives of φ, χ, and σ (again, homogeneous in con-
formal weight but not in degree). Indeed, the commutator
of the matter supercurrent part of Qbrst, given by
− 1

2

H
dwγψm∂Xm with Us−1js−3, is zero since the leading

order of the OPE between γψm∂XmðwÞ and the integrand
of Us−1js−3 at a point z is nonsingular, that is, proportional
to ðz − wÞ0, as is easy to check. At the same time, the com-
mutator ofUs−1js−3 with the ghost supercurrent part ofQbrst,
given by − 1

4
bγ2, is nonzero and is proportional to Vs−1js−3,

fQbrst; Us−1js−3g ¼ λsVs−3 (40)

(where λs are certain numbers), provided that the coefficient
σ2s−2 in front of the leading OPE order of Rð2s−2Þ and bγ2 is
nonzero:

Rð2s−2ÞðzÞ∶bγ2∶ðwÞ ∼ σ2s−2bγ2ðwÞ
ðz − wÞ2s−2
þOðz − wÞ2s−3σ2s−2 ≠ 0. (41)

Then, provided that the conditions

λs ≠ 0 (42)

and

σ2s−2 ≠ 0 (43)

are both satisfied, the operator Vs−1js−3 could be trivial only
if the stress-tensor part of Qbrst commuted with Us−1js−3,
which is only possible if (given the on-shell conditions
on Ω described above)

GsðzÞ ¼ ∶c∂ξ∂2ξe−ðsþ2ÞφRð2s−2Þðφ; χ; σÞ∶ðzÞ (44)

is a primary field. That is, the OPE of Gs with the full ghost
stress-energy tensor,

Tgh ¼
1

2
ð∂σÞ2 þ 1

2
ð∂χÞ2 − 1

2
ð∂φÞ2

þ 3

2
∂2σ þ 1

2
∂2χ − ∂2φ; (45)

is generically given by

TghðzÞGsðwÞ ¼
X2s−1
k¼0

ykYð−s2
2
−sþkÞðwÞ

ðz − wÞ2sþ2−k þ ðs − 1
2
s2ÞGsðwÞ

ðz − wÞ2

þ ∂GsðwÞ
ðz − wÞ þOðz − wÞ0; (46)

where yk are numbers and Yð−s2
2
−sþkÞ are operators of con-

formal dimensions − s2
2
− sþ k. So the Vs−1js−3 operators

are trivial only if the constraints

yk ¼ 0 k ¼ 0;…; 2s − 1 (47)

are fulfilled simultaneously with the conditions (42), (43).
Clearly, for s large enough, the constraints (42), (43),
(47) are altogether too restrictive, leaving no room for
any possible choice of Rð2s−2Þðφ; χ; σÞ, so the operators
are nontrivial [of course, provided that Eq. (36) holds as
well]. To see this note that for any large s and given k in
the sum (46) the number of independent operators

Yð−s2
2
−sþkÞ is of the order of ∼ d

dk ðe
a
ffiffiffiffiffiffi
2s−kpffiffiffiffiffiffiffiffi

2s−kp Þ, where a is a certain

constant, since the number of conformal weight n polyno-
mials is of the order of the number of partitions of n, which,
in turn, is given by the Hardy–Ramanujan asymptotic for-
mula for large n. Summing over k, it is clear that the number
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of constraints (47) on Gð2s−2Þ is asymptotically of the order

of e
a
ffiffi
s

pffiffi
s

p while the number of independent terms in Rð2s−2Þ is of
the order of ea

ffiffi
s

p

s , so the number of constraints (47) exceeds
the number of possible operators Us−1js−3 by the factor
of the order of

ffiffiffi
s

p
. Therefore, all the operators (33) with

large spin values are BRST nontrivial, provided that
Eq. (36) is satisfied. For the lower values of s, however,
the constraints (42), (43), (47) have to be analyzed sepa-
rately. For s ¼ 3, 4 it can be shown that the constraints
(43), (47) lead to polynomials satisfying λs ¼ 0, so the
appropriate higher spin operators are physical. For 5 ≤ 10
direct numerical analysis shows the incompatibility of the
conditions (42), (43), (47), with the number of constraints

exceeding the number of operators of the type (39) posing
a potential threat of BRST triviality, showing that operators
with spins greater than 4 are physical as well.
With the on-shell BRST conditions pointed out, the next

step is to analyze the scale-invariance (off-shell) constraints
on the operators (33). It is instructive to start with the s ¼ 3
case since for s ¼ 3Ωs−1js−3 is precisely the Fronsdal field.
Similarly to the closed string case, the Weyl transforma-
tion of Vs−1js−3 is determined by the OPE coefficient in
front of the ∼jz − τj−2 term in the operator product
limz;z̄→τTzz̄ðz; z̄ÞVs−1js−3ðτÞ, where τ is on the world sheet
boundary and, as previously mentioned, the ϵ-expansion
setup is assumed, so Tzz̄ ≠ 0. Starting from the transforma-
tion by TX ¼ − 1

2
j∂X⃗j2, we have

Z
d2zTzz̄

X ðz; z̄ÞΩa1a2
m ðpÞ

I
dτe−3φψm∂Xa1∂Xa2e

ipXðτÞ

∼ lnΛ ×
I

dτe−3φψm∂Xa1∂Xa2e
ipXðτÞ½−p2Ωa1a2

m ðpÞ þ 2ptpða1Ωa2Þt
m − pa1pa2Ω0

m�; (48)

where we introducedΩ0
m ≡ ηa1a2Ω

a1a2
m (similarly, using Fronsdal’s notations, the “prime” will stand for contraction of a pair

of fiber 0 indices for any other higher spin field below). This gives the part of the leading-order contribution to the spin-3 β
function proportional to Fronsdal’s operator in flat space. The analysis of the contributions by Tzz̄

ψ and by Tzz̄
β−γ is analogous

to the one performed in the previous section for the AdS graviton operator (13), and the result is

Z
d2zðTð

ψz; z̄Þ þ Tð
β−γz; z̄ÞÞΩa1a2

m ðpÞ
I

dτe−3φψm∂Xa1∂Xa2e
ipXðτÞ∼−8 lnΛΩa1a2

m ×
I

dτe−3φψm∂Xa1∂Xa2e
ipXðτÞ; (49)

where the coefficient in front of Ω ensures that the overall
normalization of Eq. (49) is consistent with that of Eq. (48).
As in the case of the cosmological term appearing in the
graviton’s β function (28), the appearance of the masslike
term in the spin-3 β function (48), (49) is due to the non-
cancellation of the corresponding terms in the Weyl trans-
formation laws for the matter and for the ghost parts, which
in turn is the consequence of the H−3 ∼H1-cohomology
coupling of the spin-3 operator. The term (49) in the β func-
tion is not, however, a mass term. Namely, combined
together, the contributions (48), (49) give the low-energy
equations of motion for a massless spin-3 field, correspond-
ing to the special case of Fronsdal’s operator in the AdS
space acting on a spin-3 field that is polarized along the
AdS boundary and is propagating along the boundary.

The correspondence between Eq. (49) and the masslike
term in Fronsdal’s operator in AdSdþ1 is exact for
d ¼ 4; to make the correspondence precise for d ≠ 4
requires some modification of the operators of the type
(33) (see the discussion below for the general spin
case).
The next step is to generalize this simple calculation to

the general spin value and to calculate the β functions of the
framelike fields (33). The vertex operators (33) do not gen-
erate Fronsdal’s fields for s ≥ 4 (but rather the derivatives
of Fronsdal’s fields), and explicit expressions for Vs−1jt-
operators for 0 ≤ t ≤ s − 4, following from cohomology
constraints, are generally quite complicated. For example,
the manifest form of operators for Ωs−1js−4 fields at the
canonical ð−s − 1Þ picture is given by

Vs−1js−4 ¼ Ωa1…as−1jb1…bs−4
m ðpÞ

I
dze−ðsþ1Þφψm∂ψb1…∂s−4ψbs−4

×
X2s−3
k¼0

Tð2s−3−kÞðφÞ
�Xk−1
j¼1

aj∂jXq∂k−jXq þ bj∂j−1ψq∂k−jψq

�
; (50)
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where aj and bj are certain coefficients and Tð2s−3−kÞðφÞ are again certain conformal dimension 2s − 3 − k inhomogeneous
polynomials in the derivatives of φ. The coefficients and the polynomial structures must be chosen to ensure that the
integrand of Eq. (50) is a primary field of dimension 1, and the picture-changing transformation of the operator (50)
is nonzero, producing an operator at picture −s and at cohomology H−s, so that the hohomology condition on
Eq. (50) produces the zero torsionlike condition relating the framelike fields in Vasiliev’s formalism,

∶ΓVs−1js−4 ≔ Vs−1js−3 þ fQbrst;…g
Ωs−1js−3ðpÞ ∼ pΩs−1js−4ðpÞ; (51)

so that the transformation of Vs−1js−4 produces the vertex operator proportional to Vs−1js−3 with the space-time field
Ωs−1js−3ðpÞ ∼ pΩs−1js−4ðpÞ given by a certain first-order differential operator acting on Ωs−1js−4ðpÞ. The explicit structure
of this operator (giving one of the zero-curvature constraints) is determined by the details of the picture changing; for
example, one of the contributions to Eq. (50) from the picture transformation of the k ¼ 0 term in Eq. (50) results from
the OPE contributions,

eφðzÞe−ðsþ1ÞφðwÞ ∼ ðz − wÞsþ1e−sφ
�
zþ w
2

�
þ � � �

∂XqðzÞeipXðwÞ ∼ ðz − wÞ−1 × ð−ipqÞeipX
�
zþ w
2

�
þ � � �

eφðzÞTð2s−3ÞðφÞðwÞ ∼ ðz − wÞ3−2seφ
�
zþ w
2

�
þ � � � ; (52)

so the leading OPE order of the product of the picture-
changing operator Γ ∼ − 1

2
eφψq∂Xq þ � � � with Vs−1js−4

is ∼ðz − wÞ3−s, so to obtain the normally ordered contribu-
tion, relevant to the picture-changing transformation (51),
one has to expand the remaining field ψqðzÞ of Γ up to the
order of s − 3 around the midpoint zþw

2
, which altogether

produces the result proportional to Vs−1js−3, with the
space-time field proportional to the space-time derivative
of Ωs−1js−4 [as it is clear from the second OPE in
Eq. (52)]. There are of course many other terms in the
OPE between Γ and Vs−1js−4, but, provided that all the
coefficients and the polynomial structures in Eq. (50) are
chosen correctly, they all give the result proportional to
Vs−1js−3, up to BRST-exact terms and with the zero torsion
condition

Ωs−1js−3 ∼ ∂Ωs−1js−4

controlled by the picture-changing procedure. The explicit
expressions for the operators with t ¼ s − 5; s − 6;… and,
ultimately, for t ¼ 0 (Fronsdal’s field) are increasingly
complicated for general s. However, to deduce the Weyl-
invariance constraints on massless vertex operators for
Fronsdal’s fields of spin s, we do not actually need to know
the explicit expressions for Vs−1j0. The key point here is the
mutual independence of the Weyl transformations and the
cohomology constraints on the vertex operators. That is,
the cohomology constraints relate Fronsdal’s operator at
a canonical 3 − 2s picture and the operator for the
Ωs−1js−3 extra field through

Ωa1…as−1jb1…bs−3
m ðpÞ

I
dze−sφψm∂ψb1…∂s−3ψbs−3∂Xa1…∂Xas−1e

ipX ¼ Ωa1…as−1
m ∶Γs−3∶

I
dzUmð−2sþ3Þ

a1…as−1 ðpÞ; (53)

where U is the integrand of the vertex operator for Fronsdal’s field. Since Γ is BRST and Weyl invariant, the relation (53)
allows us to deduce the low-energy equations of motion for Fronsdal’s fields by studying the Weyl transformations of the
operators (33), which are much simpler. The transformations of Vs−1js−3 by Tzz̄

X and Tzz̄
β−γ are computed similarly to the

spin-3 case considered above. One easily finds
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Z
d2zTzz̄

X ðz; z̄ÞΩa1…as−1jb1…bs−3
m ðpÞ

I
dτe−sφψm∂ψb1…∂s−3ψbs−3∂Xa1…∂Xas−1e

ipX

∼ lnΛ
I

dτe−sφψm∂ψb1…∂s−3ψbs−3∂Xa1 :::∂Xas−1e
ipX

× ½−p2Ωa1…as−1jb1…bs−3
m ðpÞ þ ptΣ1ða1ja2…as−1Þpa1Ωa2…as−1tjb1…bs−3

m

− 1

2
Σ2ðas−2; as−1ja1;…; as−3Þpas−1pas−2ðΩ0

mÞa1…as−3jb1…bs−3 (54)

and

Z
d2zTzz̄

β−γðz; z̄ÞΩa1…as−1jb1…bs−3
m ðpÞ

I
dτe−sφψm∂ψb1…∂s−3ψbs−3∂Xa1…∂Xas−1e

ipX

∼ −s2Ωa1…as−1jb1…bs−3
m ðpÞ lnΛ

I
dze−sφψm∂ψb1…∂s−3ψbs−3∂Xa1…∂Xas−1e

ipX: (55)

Here Σ1ðbja1:::anÞ and Σ2ðb1; b2ja1::::anÞ are Fronsdal’s
symmetrization operations [43], acting on free indices,
e.g., Σpða1;…; apjb1;…; bsÞTaa1…apHb1…bs

a , where H is
symmetric, symmetrizes over a1;…ap; b1;…; bs.
To compute the Weyl transform of the ψ part, it is again

helpful to use the bosonization relations (20), (21). Since

the bosonized ϕi fields carry no background charges [as
it is clear from the stress-energy tensor (21)], the coefficient
in front of the jz − τj2 term in the OPE of Tzz̄

ψ ðz; z̄Þ and
Vs−1js−3ðτÞ coincides with the conformal dimension of
the ψ-factor, ψm∂ψb1…∂s−3ψbs−3 , which is equal to
1
2
ðs − 2Þ2, so

Z
d2zTzz̄

ψ ðz; z̄ÞΩa1…as−1jb1…bs−3
m ðpÞ

I
dτe−sφψm∂ψb1…∂s−3ψbs−3∂Xa1…∂Xas−1e

ipX

∼ ðs − 2Þ2Ωa1…as−1jb1…bs−3
m ðpÞ lnΛ

I
dze−sφψm∂ψb1…∂s−3ψbs−3∂Xa1…∂Xas−1e

ipX þ � � � (56)

(again, with no factor of 1
2
due to the normalization chosen

for the kinetic term). The last identity is true as long as the
ψ factor is a primary field, i.e., the appropriate on-shell con-
ditions are imposed on Ω. It is not difficult to see, however,
that the contributions due to the off-shell part are generally
proportional to space-time derivatives of Ω and its traces,
multiplied by higher spin operators that are not of the form
(33), so these contributions are irrelevant for β functions of

the higher spin fields of Vasiliev’s type (instead, they con-
tribute to the low-energy equations of motion of more com-
plicated higher spin fields, such as those with mixed
symmetries; so these contributions may become important
in various generalizations of Vasiliev’s theory). Collecting
Eqs. (54)–(56) and using the cohomology constraint (53),
we deduce that the leading-order β function for the mass-
less Fronsdal fields of spin s is

βa1…as−1
m ¼ −p2Ωa1…as−1

m ðpÞ þ Σ1ða1ja2;…as−1Þptpa1Ωa2…as−1t
m

− 1

2
Σ2ðas−2; as−1ja1;…; as−3Þpas−1pas−2ðΩ0

mÞa1…as−3 − 4ðs − 1ÞΩa1…as−1
m : (57)
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The appearance of the masslike terms is related to the
emergence of the curved geometry already observed in
Eq. (28). Namely, vanishing of the β function (57) gives,
in the leading order, the low-energy effective equations of
motion on Ω given by

F̂AdSΩ ¼ 0; (58)

where F̂AdS is Fronsdal’s operator in AdSdþ1 space (exactly
for d ¼ 4 and with some modifications in other dimen-
sions) for which the action is restricted on higher spin fields
Ω polarized along the AdS boundary. Indeed, the explicit
expression for Fronsdal’s operator in AdSdþ1 [43],
acting on symmetric spin-s fields polarized along the boun-
dary is

ðF̂AdSΩÞa1…as ¼ ∇A∇AΩa1…as − Σ1ða1ja2:::asÞ∇t∇ða1Ωa2…astÞ

þ 1

2
Σ2ða1; a2ja3;…; asÞ∇a1∇a2ðΩ0Þa3…as −m2

ΩΩa1…as þ 2Σ2Λga1a2ðΩ0Þa3…as

m2
Ω ¼ −Λðs − 1Þðsþ d − 3Þ; (59)

where A ¼ ða; αÞ is the AdSdþ1 space-time index (with the
Latin indices being along the boundary and α being the
radial direction)
The cosmological constant in our units is fixed Λ ¼ −4

to make it consistent with the Weyl transform of the AdS
graviton operator (13). In what follows, we shall ignore the
last term in this operator since, in the string theory context,
it is related to the higher-order (cubic) contributions to the β
function, which are beyond the leading-order Weyl invari-
ance constraints. For the remaining part, consider the box

(∇2) of Ω first. It is convenient to use the Poincare coor-
dinates for AdS:

ds2 ¼ R2

y2
ðdy2 þ dxadxaÞ: (60)

With the Christoffel symbols,

Γy
a1a2 ¼ −Γy

yyδa1a2 ¼ − 1

y
δa1a2 ; (61)

one easily computes

∇A∇AΩa1:::asðxÞ≡ ð∇a∇a þ∇y∇yÞΩa1:::asðxÞ ¼ ð∂a∂a − Λsðsþ dÞÞΩa1:::as : (62)

Substituting Eq. (62) into the AdS Fronsdal operator in the momentum space (with the Fourier transformed boundary
coordinates) gives

ðF̂AdSΩðpÞÞa1…as ¼ −p2Ωa1…as−1
m ðpÞ þ Σ1ða1ja2…as−1Þptpa1Ωa2…as−1t

m

− 1

2
Σ2ðas−2; as−1ja1;…as−3Þpas−1pas−2ðΩ0

mÞa1…as−3 þ Λðsþ 3 − dÞΩa1…as−1
m : (63)

Thus, the β functions for the Vs−1j0 vertex operators
coincide with AdS Fronsdal operators precisely for the
AdS5 case (d ¼ 4). For other values of d, the string theo-
retic calculation of the masslike factor m2

Ω ∼ Λðs − 1Þ is
still proportional to s, but there is a discrepancy propor-
tional to d − 4. This discrepancy can always be cured,

however, by suitable modification of the ψ part of the ver-
tex operators of the type (33). This modification typically
involves the shift of the canonical picture of the operator for
Fronsdal’s field from 2s − 3 to 2s − 3þ jd − 4j and is
somewhat tedious, but straightforward, with the explicit
form depending on d. However, the shift does not change
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the order of the cohomology, which is still Hs−2 ∼H−s for
each value of s. The Regge-style behavior (57) of the mass-
like terms in Fronsdal operators is thus the consequence of
the cohomology structure of the higher spin vertices in the
larger string theory.

V. CONCLUSIONS

We have shown that the massless higher spin operators
(33), although initially constructed around the flat back-
ground in d dimensions, lead to the low-energy higher spin
dynamics in the underlying AdSdþ1 space, the presence of
which is initially hinted at by the hidden symmetries of the
superstring action (3), (11), (12) and by the cosmological
terms appearing in the β function of the spin-2 operator (13)
identified with the gravitational fluctuations around the
AdS vacuum. In this paper we limited ourselves to the spe-
cial case of vertex operators, describing the space-time
higher spin fields polarized (and propagating) along the
AdS boundary. The generalization to the bulk case involves
switching on the Liouville mode in expressions for the
operators, which accounts for the radial AdS direction.
This generalization shall be important to perform since
hopefully it shall reveal interesting interplay between
AdS geometry and the Liouville central charge in various
dimensions [44] as well as nontrivial relations between
Liouville structure constants and those of higher spin alge-
bra in various dimensions. Another important direction to
explore is related to the higher order corrections to the β
functions of the higher spin operators, mixing the Weyl
transformations with the higher-order vertex operator con-
tributions in the sigma model (1). One obvious complica-
tion that can be seen immediately is that the cohomology
argument (53), allowing us to deduce the β functions for the
Fronsdal fields in the leading order by studying those for
the extra field operators in the framelike formalism, is no
longer valid at higher orders, with the contributions to the β
functions no longer being linear. At the same time, manifest
expressions for vertex operators for Fronsdal’s higher fields
are generally too complicated to work with in a straightfor-
ward way, unless some structural algorithm may be found.
One could still hope though that, with certain modifica-
tions, the cohomology argument (53) could still work at
higher orders, allowing one to compute the low-energy cou-
plings of Fronsdal’s fields by using the extra field operators
for which the structure is far simpler. We hope to elaborate
on the higher order contributions in the near future, with the
work currently in progress. The off-shell arguments consid-
ered in this paper strongly suggest that the most natural
string-theoretic framework for understanding the structure
of the higher spin interactions at higher orders is the cubi-
clike string field theory, extended to ghost cohomologies of
higher orders, containing the higher spin operators. The rel-
evant objects to compute in such an approach are the off-
shell correlators

AN ∼ hTzz̄…Tzz̄Vs1…VsN i; (64)

with Vasiliev-type fields being on the world sheet boundary
and the Weyl generators inserted in the bulk. The insertions
of Weyl generators account for the AdS curvature effects in
higher spin interactions, with the number of the insertions
corresponding to the order in the cosmological constant. In
general, this is not an easy computation to get through;
however, at the first nontrivial order in cosmological con-
stant Λ (with only one T insertion in SFT correlators), the
formalism of Sen–Zwiebach type of open superstring field
theory [45] (extended to higher cohomologies) can hope-
fully be used, at least for the fields of Vasiliev’s type.
The key point here is that equations of extended superstring
field theory ∼QΨ ∼Ψ⋆Ψ hold the information about
higher spin couplings at all orders similarly to Vasiliev’s
equations. In fact, the isomorphism between extended
SFT and Vasiliev’s equations may ultimately be a correct
language to understand higher spin holography in general.
Extended string field theory, as we may hope further, could
be an efficient approach to understand the dynamics and
geometrical aspects of multiparticle generalizations and
of quantum higher spin field theories [7] in general.
Testing β functions for higher spin fields through string
field theory at higher orders, to establish their consistency
with higher spin interactions in AdS should thus provide a
nontrivial check of the conjectured isomorphism between
equations of Vasiliev and the formalism of extended
SFT. If this isomorphism holds, one can hope that the string
field theory formalism will provide an efficient tool to
explore the higher spin holography in general. It would
be particularly interesting to compare the SFT computation
of higher spin couplings with those performed in [10] by
using Vasiliev’s equations. We hope to be able to elaborate
on these issues in future works. Another separate question
of interest is whether, in addition to the AdS isometry (3),
the action (1) also possesses any extra compact isometries
that one could interpret as R symmetry. While the gener-
ators inducing the isometry (3) are the elements of
H1 ∼H−3, the isometries that could be interpreted in terms
of R symmetries may be contained in higher order coho-
mologies, such as H2 ∼H−4 and H3 ∼H − 5. Examples
of such isometries were particularly considered in
Ref. [46], where they were interpreted in terms of extra
space-time dimensions. Identifying the isometries of this
type with the R symmetries would be particularly
important to ensure that the dual CFT theories are
supersymmetric.

ACKNOWLEDGMENTS

It is a pleasure to thank Loriano Bonora, Igor Klebanov,
Soo-Jong Rey, Zhenya Skvortsov, and Misha Vasiliev for
useful comments and discussions. I also would like to thank
the organizers of the GGI Workshop on Higher Spin Gauge

STRING THEORY AND EMERGENT ADS GEOMETRY IN … PHYSICAL REVIEW D 89, 026010 (2014)

026010-15



Theories at Galileo Institute in Florence for hospitality
where part of this work has been done. This work was par-
tially supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government

(MEST) through the Center for Quantum Spacetime
(CQUeST) of Sogang University with Grant No. 2005-
0049409. I also acknowledge the support of the NRF
Grant No. 2012-004581.

[1] J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[2] S. Gubser, I. Klebanov, A. Polyakov, Phys. Lett. B 428, 105

(1998).
[3] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[4] I. Klebanov and A. M. Polyakov, Phys. Lett. B 550, 213

(2002).
[5] E. Sezgin and P. Sundell, J. High Energy Phys. 07 (2005)

044.
[6] S. Giombi and I. Klebanov, arXiv:1308.2337.
[7] M. A.Vasiliev,ClassicalQuantumGravity 30, 104006 (2013).
[8] M. Vasiliev, J. Phys. A 46, 214013 (2013).
[9] M. Vasiliev, Nucl. Phys. B862, 341 (2012).

[10] S. Giombi and X. Yin, J. High Energy Phys. 09 (2010) 115.
[11] S. Giombi and X. Yin, J. High Energy Phys. 04 (2011) 086.
[12] R. d. M. Koch, A. Jevicki, K. Jin, and J. P. Rodrigues, Phys.

Rev. D 83, 071701 (2011).
[13] J. Maldacena and A. Zhiboedov, Classical Quantum Gravity

30, 104003 (2013).
[14] J. Maldacena and A. Zhiboedov, J. Phys. A 46, 214011

(2013).
[15] M. Heanneaux and S.-J. Rey, J. High Energy Phys. 12

(2010) 007.
[16] A. Campoleoni, S. Fredenhagen, and S. Pfenninger, J. High

Energy Phys. 09 (2011) 113.
[17] M Gaberdiel and T. Hartman, J. High Energy Phys. 05

(2011) 031.
[18] M. Gaberdiel, R. Gopakumar, T. Hartman, and S. Raju, J.

High Energy Phys. 08 (2011) 077.
[19] N. Boulanger, D. Ponomarev, E. Skvortsov, and M. Taronna,

arXiv:1305.5180.
[20] A. Sagnotti, J. Phys. A 46, 214006 (2013).
[21] A. Sagnotti and M. Taronna, Nucl. Phys. B842, 299 (2011).
[22] E. S. Fradkin and M. A. Vasiliev, Nucl. Phys. B291, 141

(1987).

[23] E. S. Fradkin and M. A. Vasiliev, Phys. Lett. B 189, 89
(1987).

[24] M. A. Vasiliev, Yad. Fiz. 32, 855 (1980) [Sov. J. Nucl. Phys.
32, 439 (1980)].

[25] V. E. Lopatin and M. A. Vasiliev, Mod. Phys. Lett. A 03,
257 (1988).

[26] E. S. Fradkin and M. A. Vasiliev, Mod. Phys. Lett. A 3, 2983
(1988).

[27] M. A. Vasiliev, Nucl. Phys. B616, 106 (2001).
[28] D. Francia, J. Mourad, and A. Sagnotti, Nucl. Phys. B804,

383 (2008).
[29] E. Buchbinder and A. Tseytlin, J. High Energy Phys. 08

(2010) 057.
[30] S. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).
[31] R. Haag, J. Lopuszanski, and M. Sohnius, Nucl. Phys. B88,

257 (1975).
[32] S. Giombi and X. Yin, J. High Energy Phys. 09 (2010) 115.
[33] D. Polyakov, Phys. Rev. D 82, 066005 (2010).
[34] D. Polyakov, Phys. Rev. D 83, 046005 (2011).
[35] A. M. Polyakov, Nucl. Phys. B486, 23 (1997).
[36] A. M. Polyakov, Nucl. Phys. B, Proc. Suppl. 68, 1 (1998).
[37] A. M. Polyakov, Int. J. Mod. Phys. A 14, 645 (1999).
[38] E. D. Skvortsov and M. A. Vasiliev, Nucl. Phys. B756, 117

(2006).
[39] M. A. Vasiliev, Nucl. Phys. B862, 341 (2012).
[40] E. Skvortsov, J. Phys. A 42, 385401 (2009).
[41] N. Boulanger, D. Ponomarev, E. Skvortsov, and M. Taronna,

arXiv:1305.5180.
[42] S. Lee and D. Polyakov, Phys. Rev. D 85, 106014 (2012).
[43] C. Fronsdal, Phys. Rev. D 20, 848 (1979).
[44] D. Polyakov, J. Phys. A 46, 214012 (2013).
[45] A. Sen and B. Zwiebach, J. High Energy Phys. 03 (2000)

002.
[46] D. Polyakov, Int. J. Mod. Phys. A 24, 113 (2009).

DIMITRI POLYAKOV PHYSICAL REVIEW D 89, 026010 (2014)

026010-16

http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://dx.doi.org/10.1088/1126-6708/2005/07/044
http://dx.doi.org/10.1088/1126-6708/2005/07/044
http://arXiv.org/abs/1308.2337
http://dx.doi.org/10.1088/0264-9381/30/10/104006
http://dx.doi.org/10.1088/1751-8113/46/21/214013
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.012
http://dx.doi.org/10.1007/JHEP09(2010)115
http://dx.doi.org/10.1007/JHEP04(2011)086
http://dx.doi.org/10.1103/PhysRevD.83.071701
http://dx.doi.org/10.1103/PhysRevD.83.071701
http://dx.doi.org/10.1088/0264-9381/30/10/104003
http://dx.doi.org/10.1088/0264-9381/30/10/104003
http://dx.doi.org/10.1088/1751-8113/46/21/214011
http://dx.doi.org/10.1088/1751-8113/46/21/214011
http://dx.doi.org/10.1007/JHEP12(2010)007
http://dx.doi.org/10.1007/JHEP12(2010)007
http://dx.doi.org/10.1007/JHEP09(2011)113
http://dx.doi.org/10.1007/JHEP09(2011)113
http://dx.doi.org/10.1007/JHEP05(2011)031
http://dx.doi.org/10.1007/JHEP05(2011)031
http://dx.doi.org/10.1007/JHEP08(2011)077
http://dx.doi.org/10.1007/JHEP08(2011)077
http://arXiv.org/abs/1305.5180
http://dx.doi.org/10.1088/1751-8113/46/21/214006
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.019
http://dx.doi.org/10.1016/0550-3213(87)90469-X
http://dx.doi.org/10.1016/0550-3213(87)90469-X
http://dx.doi.org/10.1016/0370-2693(87)91275-5
http://dx.doi.org/10.1016/0370-2693(87)91275-5
http://dx.doi.org/10.1142/S0217732388000313
http://dx.doi.org/10.1142/S0217732388000313
http://dx.doi.org/10.1016/S0550-3213(01)00433-3
http://dx.doi.org/10.1016/j.nuclphysb.2008.04.023
http://dx.doi.org/10.1016/j.nuclphysb.2008.04.023
http://dx.doi.org/10.1007/JHEP08(2010)057
http://dx.doi.org/10.1007/JHEP08(2010)057
http://dx.doi.org/10.1103/PhysRev.159.1251
http://dx.doi.org/10.1016/0550-3213(75)90279-5
http://dx.doi.org/10.1016/0550-3213(75)90279-5
http://dx.doi.org/10.1007/JHEP09(2010)115
http://dx.doi.org/10.1103/PhysRevD.82.066005
http://dx.doi.org/10.1103/PhysRevD.83.046005
http://dx.doi.org/10.1016/S0550-3213(96)00601-3
http://dx.doi.org/10.1016/S0920-5632(98)00135-2
http://dx.doi.org/10.1142/S0217751X99000324
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.019
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.019
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.012
http://dx.doi.org/10.1088/1751-8113/42/38/385401
http://arXiv.org/abs/1305.5180
http://dx.doi.org/10.1103/PhysRevD.85.106014
http://dx.doi.org/10.1103/PhysRevD.20.848
http://dx.doi.org/10.1088/1751-8113/46/21/214012
http://dx.doi.org/10.1088/1126-6708/2000/03/002
http://dx.doi.org/10.1088/1126-6708/2000/03/002
http://dx.doi.org/10.1142/S0217751X09042657

