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We study (2þ 1)-dimensional conformal field theories (CFTs) with a globally conserved U(1) charge,
placed in a chemical potential which is periodically modulated along the spatial direction x with zero
average: μðxÞ ¼ V cosðkxÞ. The dynamics of such theories depends only on the dimensionless ratio V=k,
and we expect that they flow in the infrared to new CFTs whose universality class changes as a function of
V=k. We compute the frequency-dependent conductivity of strongly coupled CFTs using holography of the
Einstein-Maxwell theory in four-dimensional anti–de Sitter space. We compare the results with the
corresponding computation of weakly coupled CFTs, perturbed away from the CFTof free, massless Dirac
fermions (which describes graphene at low energies). We find that the results of the two computations have
significant qualitative similarities. However, differences do appear in the vicinities of an infinite discrete set
of values of V=k: the universality class of the infrared CFT changes at these values in the weakly coupled
theory, by the emergence of new zero modes of Dirac fermions which are remnants of local Fermi surfaces.
The infrared theory changes continuously in holography, and the classical gravitational theory does not
capture the physics of the discrete transition points between the infrared CFTs. We briefly note implications
for a nonzero average chemical potential.
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I. INTRODUCTION

A powerful method of studying non-Fermi liquid
metallic systems is to apply a chemical potential to a
strongly coupled conformal field theory (CFT) with a
globally conserved U(1) charge; this allows use of the
AdS/CFT correspondence by applying the chemical poten-
tial to the dual gravitational theory [1–4]. The simplest
Einstein-Maxwell theory on AdS4 already captures many
key features of a (2þ 1)-dimensional correlated metal at
nonzero temperatures [1], although exposing its full low
temperature Fermi surface structure will likely require
quantum corrections from monopole operators [4,5].
In studying the charge transport properties of a correlated

metal, one immediately finds that the dc conductivity is
infinite [1], a consequence of momentum conservation in
the continuum theory: essentially all charge-current carry-
ing states also have a nonzero momentum which is
conserved, and so the current cannot decay. As some of
the most striking experimental signatures of non-Fermi
liquids are in the dc conductivity, it is important to add
perturbations to the holographic theory which allow
momentum fluctuations to relax to zero; such perturbations
are invariably present in all condensed matter systems. One
approach is to add a dilute random concentration of

impurities [1,6,7]: this is useful at nonzero temperatures,
but one faces the very difficult problem of understanding
disordered non-Fermi liquids at zero temperature. Another
recent idea has been to include a bulk graviton mass [8,9],
but the physical interpretation of this is not clear from the
perspective of the boundary field theory.
The present paper will focus on the idea of applying a

periodic potential on the continuum boundary field theory
[7,10–17]. This has the advantages of being physically
transparent and leaves open the possibility of understand-
ing the true infrared (IR) behavior of the system. Very
interesting numerical studies of the influence of such
potentials on bulk Einstein-Maxwell theories have been
carried out recently by Horowitz et al. [12,14,15] and Liu
et al. [16]. These papers refer to the periodic potential as a
“lattice,” but we will not do so. We believe the term lattice
should be limited to cases where there is a commensu-
rability relation between the period of the lattice and the
density of matter, so that there are integer numbers of
particles per unit cell. Such lattices do arise in holographic
studies [4,18–21] and are linked to the condensation of
monopole fields carrying dual magnetic charges [4]. We
will not consider such lattices here and will be able to freely
choose the period of the externally applied periodic
potential.
Horowitz et al. [12,14,15] studied systems with a

periodic chemical potential of the form
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μðxÞ ¼ μ0 þ V cosðkxÞ; (1)

where x is one of the spatial directions. Their average
chemical potential was nonzero, μ0 ≠ 0, and their dc
conductivity remains infinite at zero temperature (T) even
though translational symmetry is broken [1,6,7]. So they
had to turn on a nonzero T to obtain solutions with a finite
dc conductivity. Consequently, their system was charac-
terized by four energy scales: μ0, V, k, and T. There are
three dimensionless ratios one can make from these
energies, and each ratio can be taken independently large
or small. This makes identification of the true asymptotic
regimes of various observables a very challenging task.
They obtained some numerical evidence for non-Fermi
liquid scalings, but numerous crossovers have made it
difficult to precisely define the scaling regimes and to make
analytic progress.
This paper will focus on the case

μ0 ¼ 0; (2)

where the average chemical potential vanishes (but we will
note implications for μ0 ≠ 0 in Sec. IV). As we will argue
below, in this case we expect a flow from the underlying
ultraviolet (UV) CFT to an IR CFT, and the dc conductivity
is finite at T ¼ 0. Consequently, we are also able to
examine the limit T → 0. The resulting system is now
characterized by only two remaining energy scales, V and
k, and all physical properties are a function only of the
single dimensionless ratio V=k. It is our purpose here to
describe this universal crossover as a function of V=k.
It is useful to first discuss this crossover in the context of

boundary theory alone, without using holography. As a
paradigm, we will consider in Sec. III a theory of Nf Dirac
fermions ψα coupled to a SUðNcÞ gauge field aμ in the limit
of large Nf, as studied e.g. in Ref. [22], with the (2þ 1)-
dimensional Lagrangian

Lψ ¼
XNf

α¼1

ψ̄αγ
μð∂μ − iaμÞψα: (3)

Note that these fermions carry gauge charges, and so in the
holographic context they correspond to the “hidden”
fermions of Refs. [23–25] and not the gauge-neutral “bulk”
fermions of Refs. [16,26–31]. At Nf ¼ ∞, the gauge field
can be neglected, and then this is a model for the low
energy theory of graphene [32]. The chemical potential in
Eq. (1) couples to the globally conserved U(1) charge
density iψ̄γ0ψ. Our UV CFT is therefore described by Lψ,
and we are interested in the IR physics in the presence of a
nonzero V. In perturbation theory, we see that each action
of V transfers momentum k; all excitations of the UV CFT
with momentum k have an energy ω > k [33], and so the
perturbative expansion has positive energy denominators.
In the Nf ¼ ∞ theory, the spectrum of the fermionic

excitations can be computed explicitly using the standard
methods of solid state physics, and for small V=k we find
that the low energy massless Dirac spectrum is preserved.
However, these IR Dirac fermions are anisotropic in space;
i.e. their velocities are different along the x and y directions.
But this anisotropy is easily scaled away, and so we
conclude that for small V=k the IR CFT is identical to
the UV CFT.
The situation changes dramatically for larger V=k, as will

be described in Sec. III. As has been studied in the graphene
literature [34–41], and even observed in experiment [42],
new Dirac zero modes emerge at certain nonzero momenta
along the y direction. We will argue in Sec. III that these
emergent Dirac points are remnants of the local Fermi
surfaces that appear in the limit of small k, where we can
locally regard the chemical potential as constant (in a Born-
Oppenheimer picture). In general there are ND Dirac zeros
for a given V=k, where ND increases monotonically in
piecewise constant steps (and ND → ∞ as V=k → ∞). At
finite Nf, we have NDNf Dirac fermions interacting with
the gauge field aμ. Each of the ND nodes has its own
anisotropic velocity, and so this anisotropy cannot be scaled
by away by a change of coordinates. Nevertheless, we
expect that under RG induced by the aμ exchange, these
velocities will flow to a common velocity [43], and the
ultimate IR theory will be a CFT described by Eq. (3) but
now with NDNf Dirac fermions. So there is an infinite set
of possible IR CFTs, accessed with increasing V=k. The
discrete transition points between these IR CFTs are
described by separate low energy critical theories which
are not CFTs.
Incidentally, the UV to IR flow described above appears

to badly violate “c theorems” because forND > 1 are many
more low energy degrees of freedom in the IR than the UV.
However this is permitted because our model breaks
Lorentz invariance at intermediate scales [44].
Now let us consider the same physics for a strong-

coupled CFT, as described by holography, as will be
discussed in Sec. II. We use the simplest possible gravi-
tational model of a CFT with a conserved U(1) charge, the
Einstein-Maxwell theory in 3þ 1 dimensions:

L ¼ R − 2Λ
2κ2

− 1

4e2
FμνFμν; (4)

where Λ ¼ −3=L2 with L the AdS4 radius of the UV
theory, F ¼ dA is the U(1) field strength, and R is the Ricci
scalar. Note that here A is the gauge field dual to the
conserved boundary U(1) charge and is unrelated to aμ
above. We will solve for the IR geometry of this theory in
the presence of the boundary chemical potential Eq. (1), by
perturbative analytic methods for small V=k, and numeri-
cally for large V=k. We find perturbatively that the IR
geometry is a rescaled AdS4, with the rescaling factors
varying continuously as a function of V=k; the resulting IR

PAUL CHESLER, ANDREW LUCAS, AND SUBIR SACHDEV PHYSICAL REVIEW D 89, 026005 (2014)

026005-2



theory is a CFT, but with relative changes in the length
scales associated to space and time.
We computed the frequency-dependent conductivity

σðωÞ for charge transport along the x direction, in both
approaches. In the absence of a potential, we have
σðωÞ ¼ σ∞, a frequency-independent constant, which is
a property of all CFTs in 2þ1 dimensions. The notation σ∞
refers to the fact that σðω ≫ TÞ ¼ σ∞ at nonzero T, and we
will limit ourselves to the T → 0 limit in the present paper.
The Einstein-Maxwell holographic theory actually has
σðωÞ ¼ σ∞ at all T in the absence of a periodic potential,
and this is due to a particle-vortex self-duality [45,46]. This
self-duality is broken by the periodic potential.
Turning on a potential, we show the result at small V=k

for free Dirac fermions in Fig. 1 and that from holography
in Fig. 2.
Note the remarkable similarity in the basic features of the

frequency dependence. The correspondence for larger V=k
is not as complete, but the two methods do share the

common feature of having a peak in Re½σðωÞ� at ω ∼ k,
followed by a dip until ω ∼ V, as we will see in Secs. II and
III. A “resonance” at ω ∼ k also appeared in the μ0 ≠ 0
results of Ref. [14].
Another interesting comparison between the two theories

is in the V=k dependence of the dc conductivity σð0Þ. The
result of the free Dirac fermion computation is shown in
Fig. 3 (a similar plot has appeared earlier in the graphene
literature [38]), while the result of holography is in Fig. 4.
There are sharp peaks in σð0Þ in the Dirac fermion

computation at precisely the points where the universality
class of the IR CFT changes i.e. at the values of V=k where
ND jumps by 2. These transition points are described by a
nonrelativistic theory, where the Dirac fermion dispersion
has the form in Eq. (72). It is evident that the holographic
theory does not include the physics of the transition points
and the local Fermi surfaces of the Dirac theory, and its IR
theory evolves smoothly as a function of V=k. However, if
we smooth out the peaks in the Dirac fermion computation,
we see that their average resembles the evolution in the
holographic theory as a function of V=k.
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FIG. 1 (color online). Frequency-dependent conductivity at
V=k ¼ 0.5 for Nf Dirac fermions in a periodic chemical
potential. Here σ∞ ¼ σðω → ∞Þ and the Dirac CFT has
σ∞ ¼ Nf=16.

FIG. 2 (color online). A plot of the analytic solution from
holography for ReðσÞ vs ω in the perturbative regime V ≪ k,
normalized to emphasize the strength of the perturbations.
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FIG. 3 (color online). The dc conductivity for Nf Dirac
fermions in a periodic chemical potential as a function of V=k.

FIG. 4. We show the holographic computation of σð0Þ
[approximated by σð0.01Þ, as our numerics cannot compute
the dc conductivity directly] as a function of V=k. These data
were taken at k=T ¼ 8.
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II. HOLOGRAPHY

We begin by describing the simplest possible holo-
graphic description of a theory with a conserved U(1)
charge placed in a periodic potential: classical Einstein-
Maxwell theory with a U(1) gauge field. The metric is
subject to the boundary condition that it is asymptotically
AdS4 in the UV:

ds2 ¼ g0μνdxμdxν

¼ L2

z2
½dz2 − dt2 þ dx2 þ dy2�; as z → 0. (5)

For much of the discussion, we will choose to rescale to
L ¼ 1. The gauge field is subject to the UV boundary
condition

lim
z→0

Aμdxμ ¼ V cosðkxÞdt: (6)

It is clear that both V and k are the only dimensional
quantities in the problem which are relevant, and thus the
dynamics of the theory can only depend on the ratio V=k.
The equations of motion of the Lagrangian in Eq. (4) are

Einstein’s equation

Rμν − 1

2
Rgμν þ Λgμν ¼ κ2

e2
TðEMÞμν; (7)

where TðEMÞ
μν is the stress tensor of the U(1) field,

TðEMÞ
μν ¼ Fμ

ρFνρ − 1

4
gμνFρσFρσ; (8)

and Maxwell’s equations

∇μFμν ¼ 0. (9)

Note that the U(1) stress tensor is traceless, in addition to
having no divergence. We will typically set κ2 ¼ 1=2 and
e ¼ 1 as well for this paper. Note that technically γ ¼
2e2L2=κ2 [47] forms a dimensionless quantity, but as this is
usually O(1), we will content ourselves with the choice
γ ¼ 4 and neglect to include this factor in our calculations.
Let us briefly outline the remainder of this section. We

will begin by briefly describing our numerical methods,
which require us to extract zero temperature numerical
results from finite temperature. Then we will describe the
dynamics when V ≪ k: this corresponds to a limit where
the theory is described by small perturbations around
Einstein-Maxwell theory in a pure AdS4 background.
The final subsection describes the results when V ≫ k,
where we use simple scaling arguments and numerics to
understand the results.

A. Numerical methods

For our numerical analysis we employ a characteristic
formulation of Einstein’s equations. Diffeomorphism and
translation invariance in the transverse direction allow the
bulk metric to be written

ds2 ¼ −Adt2 þ 2Fdxdtþ Σ2ðeBdx2 þ e−Bdy2Þ − 2dzdt
z2

;

(10)

where the functions A, B, Σ and F all depend on the AdS
radial coordinate z, the spatial coordinate x and time t. The
spatial coordinate x is taken to be periodic with period
2π=k. In this coordinate system lines of constant time t
constitute radial infalling null geodesics affinely parame-
terized by 1=z. At the AdS boundary, located at z ¼ 0, t
corresponds to time in the dual quantum field theory. The
metric (10) is invariant under the residual diffeomorphism

1

z
→

1

z
þ ξðt; xÞ; (11)

where ξðt; xÞ is an arbitrary function.
For the gauge field we choose the axial gauge in which

Az ¼ 0. The nonvanishing components of the gauge field
are then given by

Aμdxμ ¼ Atdtþ Axdx: (12)

We therefore must solve the Einstein-Maxwell system (7)
and (9) for the six functions A, B, Σ, F, At and Ax.
At first sight the Einstein-Maxwell system (7) and (9)

appears overdetermined: there are ten equations of motion
for six functions A, B, Σ, F, At and Ax. However, four of
these equations are radial constraint equations and in a
sense redundant. The radial constraint equations are simply
the radial components of both Einstein’s equations (7) and
Maxwell’s equations (9) (with all indices raised) and are
first order in radial derivatives. Moreover, if the radial
constraint equations are satisfied at one value of z, then the
remaining equations imply they will be satisfied at all z.
Because of this, it is sufficient to impose the radial
constraint equations as boundary conditions on the remain-
ing equations of motion in the Einstein-Maxwell system.
We therefore take our equations of motion to be the
ðμ; νÞ ¼ ðt; tÞ, ðx; xÞ, ðy; yÞ and ð0; xÞ components of
Einstein’s equations (7) and the μ ¼ t and μ ¼ x compo-
nents of Maxwell’s equations (9), again with all indices
raised.
Upon suitably fixing boundary conditions our character-

istic formulation of the Einstein-Maxwell system yields a
well-behaved system of partial differential equations with
one important caveat. As is easily verified Einstein’s
equations become singular when Σ ¼ 0. This happens
when the congruence on infalling geodesics develop
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caustics. Indeed, Σ2 is the local area element of radial
infalling light sheets. Nevertheless this problem can be
ameliorated by introducing a small background temper-
ature T. By introducing a small temperature the geometry
will contain an black hole with finite area. By increasing T
the location of the black hole’s event horizon can be pushed
closer to the boundary and thereby envelop any caustics
that may exists. As the interior of the horizon is causally
disconnected from the near-boundary geometry, one need
only solve the Einstein-Maxwell system up to the location
of the horizon.
It is insightful to solve the Einstein-Maxwell system

with a power series expansion at the AdS boundary z ¼ 0.
In doing so we impose the boundary conditions that the
boundary geometry is that of flat Minkowski space and that
the gauge field asymptotes to limz→0Aνdxν ¼ μdtþ axdx,
where μ is given in Eq. (1) and ax is arbitrary. Imposing
these boundary conditions we find the following asymp-
totic forms: (13)

A ¼ 1

z2
ð1þ 2 ξzþ ðξ2 − 2∂tξÞz2 þ Að3Þz3 þOðz4ÞÞ;

B ¼ Bð3Þz3 þOðz4Þ; (13a)

F ¼ ∂xξþ Fð1ÞzþOðz2Þ; Σ ¼ 1

z
þ ξþOðz3Þ;

(13b)

At ¼ μþ Að1Þ
t zþOðz2Þ; Ax ¼ ax þ Að1Þ

x zþOðz2Þ;
(13c)

where Að3Þ, Fð1Þ, Að1Þ
t , and Að1Þ

x are undetermined and hence
sensitive to the bulk geometry. However, the aforemen-
tioned radial constraint equations imply that these coef-
ficients satisfy a system of constraint equations which are
most easily written in terms of the expectation value of the
boundary stress tensor and the expectation value of the
boundary current. In terms of these expansion coefficients
the expectation value of the boundary stress and current
operators read [48](14)

hTtti ¼ − 2

3
Að3Þ; hTtxi ¼ −Fð1Þ;

hTxxi ¼ − 1

3
Að3Þ þ Bð3Þ; hTyyi ¼ − 1

3
Að3Þ − Bð3Þ;

(14a)

hJ0i ¼ −Að1Þ
t ; hJxi ¼ Að1Þ

x þ ∂xμ; (14b)

with all other components vanishing. The radial constraint
equations then require

∂ihTiji ¼ 2κ2

3e2
hJiifij; ∂ihJii ¼ 0; (15)

where fij ≡ limz→0ð∂iAj − ∂jAiÞ is the boundary field
strength and all boundary indices are raised and lowered
with the Minkowski space metric ηij ¼ diagð−1; 1; 1Þ.
The expansion coefficient ξ is related to the residual
diffeomorphism invariance in Eq. (11) and is therefore
arbitrary.
To compute the conductivity we let ax ¼ ðEx=iωÞe−iωt

where the boundary electric field Ex → 0 and study
the induced current. In this case the fields reduce to
a static piece plus an infinitesimal time-dependent
perturbation:(16)

Aðt; x; zÞ ¼ ~Aðx; zÞ þ ExδAðx; zÞe−iωt;
Bðt; x; zÞ ¼ ~Bðx; zÞ þ ExδBðx; zÞe−iωt; (16a)

Σðt; x; zÞ ¼ ~Σðx; zÞ þ ExδΣðx; zÞe−iωt;
Fðt; x; zÞ ¼ ~Fðx; zÞ þ ExδFðx; zÞe−iωt; (16b)

Atðt; x; zÞ ¼ ~Atðx; zÞ þ ExδAtðx; zÞe−iωt;
Axðt; x; zÞ ¼ ~Axðx; zÞ þ ExδAxðx; zÞe−iωt: (16c)

We therefore have to solve two systems of equations. We
first solve the nonlinear but static Einstein-Maxwell system
for the tilded fields with ax ¼ 0. The static fields induce no
current. Next, we linearize the Einstein-Maxwell system in
Ex and solve the resulting linear system for the time-
dependent perturbations. Upon doing so and extracting
hJxi via 14 we define the conductivity by

σðωÞ≡ eiωt

Ex

k
2π

Z
π=k

−π=k
dxhJxðt; xÞi: (17)

We discretize both the static and linear Einstein-Maxwell
systems using pseudospectral methods. We decompose the
x dependence of all functions in terms of plane waves and
the radial dependence in terms of Chebyshev polynomials.
We solve the static Einstein-Maxwell system by employing
Newton’s method.

1. The static Einstein-Maxwell system

For the static Einstein-Maxwell system we choose to
impose the ðμ; νÞ ¼ ðx; zÞ; ðz; zÞ radial constraint compo-
nents of Einstein’s equations (7) as boundary conditions at
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the location of the event horizon. Likewise, we also choose
to impose the μ ¼ z radial constraint component of
Maxwell’s equations (9) as a boundary condition at the
horizon. Furthermore, we exploit the residual diffeomor-
phism invariance in Eq. (11) by fixing the location of the
event horizon to be at z ¼ 1. The ðμ; νÞ ¼ ðx; zÞ, ðz; zÞ
components of Einstein’s equations and the μ ¼ z compo-
nent of Maxwell’s equations are satisfied at the horizon
provided

~A ¼ 0; ∂z
~A ¼ 4πT; ~F ¼ 0; ~At ¼ 0; (18)

at z ¼ 1. The second boundary condition in (18) comes
from Hawking’s formula relating the local surface gravity
of the black hole to the temperature T of the black hole. We
choose to impose the remaining radial constraint equation
—the ðμ; νÞ ¼ ðt; zÞ components of Einstein’s equations—
as a boundary condition at z ¼ 0. Specifically, the ðμ; νÞ ¼
ðt; zÞ components of Einstein’s equations is satisfied at the
boundary provided

lim
z→0

ð ~A − ~Σ2Þ ¼ 0; (19)

which clearly the asymptotic expansions in Eq. 13 satisfy.
For our numerical analysis we choose to make the

following set of field redefinitions:

a≡ ~A − ~Σ2; b≡ ~B
z2
; s≡ ~Σ − 1

z
: (20)

From the asymptotic expansions Eqs. 13 and (19) we
therefore impose the boundary conditions

a ¼ 0; b ¼ 0; ∂zs ¼ 0;

∂z
~F ¼ 0; ~At ¼ μ; ~Ax ¼ 0; (21)

at z ¼ 0. Likewise we translate the boundary conditions at
z ¼ 1 in Eq. (18) into the variables a, b and s.
All told we impose a total of ten radial boundary

conditions for a set of six second-order partial differential
equations. Naively it might seem that two additional
boundary conditions are required. However, careful analy-
sis of Einstein’s equations and Maxwell’s equations show
that two of the equations become first order at the horizon.
Therefore only ten radial boundary conditions are required.

2. Linearized fluctuations

Following Eqs. (20) we choose to make the follow-
ing field redefinitions for the time-dependent linear
perturbations:

δa≡ δA − 2 ~ΣδΣ; δb≡ δB
z2

: (22)

In contrast to the static problem, where most of the radial
constraints were imposed as boundary conditions at the
horizon, for the linear perturbations we choose to impose
all the radial constraint equations as boundary conditions at
the AdS boundary. This is tantamount to demanding that
the asymptotic expansions (13) are satisfied near z ¼ 0 and
that the conservations equations (15) are satisfied. In the
Ex → 0 limit the asymptotic expansions (13) and the
conservation equations (15) yield the mixed boundary
conditions at z ¼ 0:(23)

2iω∂zδa − 3∂x∂zδF − 2κ2

e2
∂x

~At∂zδAx

− 2κ2

e2
iωð∂z

~Ax þ 2∂x
~AtÞδAx ¼ 0; (23a)

∂x∂zδa − 3∂x∂zδb − 3iω∂zδF − 2κ2

e2
∂x

~At∂zδAt

− iω
2κ2

e2
∂z

~AtδAx ¼ 0; (23b)

iω∂zδAt þ ∂x∂zδAx þ iω∂xδAx ¼ 0; (23c)

δa ¼ 0; δb ¼ 0; δΣ ¼ 0; ∂zδΣ ¼ 0;

δf ¼ 0; δAt ¼ 0; δAx ¼
1

iω
: (23d)

As above in Sec. II A 1, all told we impose a total of ten
radial boundary conditions for a set of six second-order
partial differential equations. Again, careful analysis of
linearized Einstein-Maxwell system shows that two of the
equations become first order at the horizon. Therefore only
then ten radial boundary conditions in Eq. (23) are required.

B. The perturbative regime: V ≪ k

When V ≪ k the geometry only slightly deviates from
AdS and the conductivity only slightly deviates from a
constant. We thus perform an analytic calculation of the
backreacted metric, and the longitudinal conductivity, to
lowest nontrivial order, ðV=kÞ2. Because the analytic
calculations are straightforward but cumbersome, we have
placed them in Appendix A. The results are outlined here,
along with a comparison to our numerics. For our analytic
calculation we employ coordinates where the unperturbed
metric is given by Eq. (5).
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1. Geometric results

It is trivial to compute the perturbative solution to
Maxwell’s equations around an AdS background geometry.
In AdS4, choosing the covariant Lorentz gauge ∇μAμ ¼ 0,
Eq. (9) simplifies to

∇ρ∇ρAμ ¼ 0. (24)

For the AdS4 geometry given by (5) the above wave
equation further simplifies to

0 ¼ ð∂2
z − ∂2

t þ ∂2
x þ ∂2

yÞAt: (25)

The static solution satisfying the boundary condition (6) is
then

Aμdxμ ¼ V cosðkxÞe−kzdt: (26)

To compute the perturbation in the geometry induced by the
above gauge field we decompose the metric as

gμν ¼ g0μν þ hμν; (27)

where g0μν is the pure AdS metric given by Eq. (5) and hμν is
the linearized metric response to lowest order. We compute
hμν by solving the graviton’s linearized equation of motion,
sourced by the stress tensor of the background gauge field
given by Eq. (26) . This is simple to find using a transverse
traceless gauge, and we simply cite the solution here: (28)

hzzðz; xÞ ¼ HzzðzÞ cosð2kxÞ; (28a)

hzxðz; xÞ ¼ HzxðzÞ sinð2kxÞ; (28b)

hxxðz; xÞ ¼ HxxðzÞ cosð2kxÞ; (28c)

hyyðz; xÞ ¼ GyyðzÞ þHyyðzÞ cosð2kxÞ; (28d)

httðz; xÞ ¼ GyyðzÞ −HyyðzÞ cosð2 kxÞ; (28e)

hxxðz; xÞ ¼ HxxðzÞ cosð2 kxÞ; (28f)

We know exactly(29)

GyyðzÞ ¼ V2
1 − e−2kzð1þ 2kzþ 2k2z2Þ

16k2z2
; (29a)

HzzðzÞ ¼
V2

16
½e−2kzð2þ ð1þ 2kzÞ logðkzÞÞ

þ ð2kz − 1Þe2kz Eið−4kzÞ�
þ V2ðlog 4þ γ − 2Þ

16
ð1þ 2 kzÞe−2kz; (29b)

and where

Hzx ¼ − 1

2k

�
d
dz

− 2

z

�
HzzðzÞ; (30a)

Hxx ¼
1

2k

�
d
dz

− 2

z

�
HzxðzÞ; (30b)

d2Hyy

dz2
þ 2

z

dHyy

dz
−
�
2

z2
þ 4k2

�
Hyy ¼ − 2Hzz

z2
: (30c)

The boundary conditions on Hyy are that it vanish at z ¼ 0
and z ¼ ∞, as do all perturbations. The UV asymptotic
behavior of this metric is simply that of AdS, with all
corrections to the UV metric of order r, while in the IR, it is
a rescaled AdS:

ds2ðz → ∞Þ ¼ 1

z2

�
dz2 þ dx2 þ

�
1þ

�
V
4k

�
2
�
dy2

−
�
1 −

�
V
4k

�
2
�
dt2

�
: (31)

The rescaling only affects the t and y directions—the
overall radius L of the AdS space has not renormalized.
Compared to the UV, we thus have the effective length
scale in the perpendicular direction to the spatial modula-
tion slightly larger:

LIR
y

LUV
y

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gyyðz ¼ ∞Þ
gyyðz ¼ 0Þ

s
≈ 1þ 1

2

�
V
4k

�
2

: (32)

Right away, we suspect that the resulting IR AdS geometry
implies that the IR effective theory is also conformal. We
will see evidence for this when we compute the
conductivity.
From the asymptotic of the gauge field and metric

perturbation we extract the expectation value of the charge
density and the stress tensor via Eq. (14). This requires a
trivial change of coordinates near the boundary to put the
AdS4 metric (5) into the form (10). From the asymptotics of
the gauge field we obtain the expectation value of the
charge density ρ:
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hρðxÞi ¼ Vk cosðkxÞ: (33)

From the asymptotic of the metric perturbation we
obtain(34)

hTxxðxÞi ¼
V2k
12

cosð2kxÞ; (34a)

hTyyðxÞi ¼
V2k
12

− V2k
24

cosð2kxÞ; (34b)

hTttðxÞi ¼ hTxxðxÞ þ TyyðxÞi; (34c)

hTtxðxÞi ¼ hTtyðxÞi ¼ hTxyðxÞi ¼ 0. (34d)

In Fig. 5 we compare the above analytic formulas to our
numerics at small V and find excellent agreement when
thermal contributions to the numerical stress tensor are
subtracted off. This is reasonable because in the T → 0 and

V → 0 limit the thermal and potential contributions to hTiji
do not mix. The thermal stress tensor is simply

2hT thermal
xx i ¼ 2hT thermal

yy i ¼ hT thermal
tt i ¼ 2

3

�
4πT
3

�
3

: (35)

2. Conductivity

To compute the conductivity σ we compute three Witten
diagrams, as shown in Fig. 6. In each Witten diagram, there
are two probe photons Ax, which are used to measure the
conductivity, which scatter at tree level off of two back-
ground photons At via a single graviton h. As is shown in
the figure, these diagrams break up into an elastic channel
where the probe gauge field scatters off of modified
geometry, and an inelastic channel where the probe gauge
field scatters off of the background gauge field. After a
cumbersome but straightforward calculation, one can find
that

σðωÞ ¼ σelðωÞ þ σinelðωÞ; (36)

where (37)

σelðωÞ ¼
V2k

32ðk − iωÞ3 ; (37a)

σinelðωÞ ¼ iV2k10
ðk − iωÞP1ð−iω=kÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ω2 − iϵ

p
P2ð−iω=kÞ

32ω3ðk2 − ω2 − iϵÞðk − iωÞ8 ; (37b)

where ϵ is an infinitesimal quantity, the principal square
root is taken, and P1ðxÞ and P2ðxÞ are large polynomials
defined as (38)

P1ðxÞ ¼ 2þ 14xþ 49x2 þ 119x3 þ 216x4 þ 313x5

þ 338x6 þ 313x7 þ 216x8 þ 119x9 þ 49x10

þ 14x11 þ 2x12; (38a)

P2ðxÞ ¼ 2þ 16xþ 62x2 þ 160x3 þ 310x4 þ 464x5

þ 532x6 þ 464x7 þ 310x8 þ 160x9 þ 62x10

þ 16x11 þ 2x12: (38b)

We note that both the elastic and inelastic channels
separately obey sum rules [49]:

0 ¼
Z

∞

0

dωReðσelÞ ¼
Z

∞

0

dωReðσinelÞ: (39)

Although it may not be obvious from Eq. (37), it is clear
physically (and true in perturbation theory) that for ω ≫ k,

we have σðωÞ ¼ 1, which is the pure AdS result.
Sometimes we will also refer to this value as σ∞, when
we wish to emphasize the relative scaling of the conduc-
tivity in various frequency regimes. At large energy scales,
the geometry has not deformed substantially and therefore
the perturbation lives in a pure AdS spacetime, which
explains the UV behavior. In the deep IR, the spacetime
again returns to AdS, but compared to the UVan anisotropy
has formed. We find that the dc conductivity becomes

σð0Þ ¼ 1þ 1

2

�
V
4k

�
2

: (40)

This can be explained given our previous results for the
geometry. In the IR, the relative anisotropy in the metric can
be rescaled away into t and y to give a pure AdS4 geometry,
but at the consequence of rescaling the length scales Lx and
Ly associated to the theory. This means that relative to the
UV CFT, the IR CFT conductivity will pick up a relative
rescaling factor of

a
σð0Þ
σ∞

¼ LIR
y

LIR
x

¼ 1þ 1

2

�
V
4k

�
2

; (41)
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using Eq. (32). Also, since the conductivity has not picked
up any overall extra scaling factors, the charge e associated
to the U(1) gauge field has not renormalized (at least to this
order in V=k).
A second interesting feature of the analytic result is a

singularity at ω ¼ k. For ω very close to k, we have

σðωÞ ∼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − ω − iϵ

p þ subleading terms: (42)

Note that for ω just larger than k, the perturbative
expression implies ReðσÞ < 0, suggesting that perturbation
theory has broken down. Physically, this singularity is due
to on-shell gravitons in scattering events where the probe
photon scatters off a background photon. We note that the
Euclidean time solution [see Eq. (A48)] is perfectly well
behaved, and this singularity comes from analytically
continuing a function with branch cuts.
The presence of this singularity makes a numerical

evaluation of the conductivity quite tricky at finite temper-
ature, which smooths out the singularity. We show our

results in Fig. 7. Although there are large quantitative
differences for ω < k between the analytical expression
and the numerical result, we do note that the qualitative
features, e.g. singular behavior at ω ¼ k and the dc
conductivity, do agree well, so we conclude that the finite
temperature numerics are perfectly adequate to determine
qualitative features of the conductivity.

C. The nonperturbative regime: V ≫ k

Let us now discuss the nonperturbative regime: V ≫ k.
This is substantially more challenging to understand
analytically, and indeed we will not be able to find an
analytic solution. Although the standard approach thus far
has been to simply use numerical methods, we will see that
simple heuristics also give us a surprising amount of insight
into the nature of the nonperturbative geometry and its
consequences on the conductivity.

1. Geometric results

As with the perturbative regime, let us begin by
describing the geometry when V ≫ k. As the geometry

FIG. 5 (color online). We compare the expectation values of simple operators in the CFT between our first-order perturbative
expressions and numerical results. In the numerical results, we have subtracted off the thermal contribution to the stress tensor given by
Eq. (35). As is clear, we find excellent agreement with the numerics.

FIG. 6 (color online). The three Witten diagrams required to compute the conductivity. (a) shows the elastic channel, and (b),(c) show
the inelastic channel. The internal momenta in the t, x direction carried by the graviton is also shown.
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encodes many features of the physics, making sure that we
have a good description of the nonperturbative geometry is
crucial to understanding the conductivity. In particular, we
will want to understand the scales at which the effects of the
periodic potential become nonperturbative in the geometry.
The typical approach which has been attempted in these
sorts of nonperturbative AdS problems is a matched
asymptotic expansion: see e.g. [50,51]. However, such
approaches are not applicable here because we do not
formally know the appropriate boundary conditions to
impose in the IR. Furthermore, even with a reasonable
guess, the intermediate scale at which the spatial modula-
tion significantly warps the geometry is mysterious. We
will have to resort to a more heuristic argument.
Let us consider the limit when k → 0 and consider the

geometry near x ¼ 0. On a length scale which is small
compared to 1=k, the geometry will look like an extremal
AdS4-Reissner-Nördstrom (AdS4-RN) black hole describ-
ing a CFT at chemical potential V. We know that the metric
undergoes nonperturbative corrections when placed in a
background with a constant At on the boundary [47,52]. Let
us make the ansatz that in the UV, the spatial modulation is
a minor correction, leading to a separation of length scales.
Such a separation of scales immediately allows us to write
down a guess for the metric:

ds2BO ¼ 1

z2
½−2dzdt − fðz; xÞdt2 þ dx2 þ dy2�; (43)

where

fðzÞ≡ 1 − 4

�
z

zþðxÞ
�

3

þ 3

�
z

zþðxÞ
�

4

(44)

and

zþðxÞ≡
ffiffiffiffiffi
12

p

Vj cosðkxÞj : (45)

We will refer to Eq. (44) as the Born-Oppenheimer metric
(note that this Born-Oppenheimer ansatz can also be
extended to the μ0 ≠ 0 case). We have used Eddington-
Finkelstein coordinates here, for reasons which will
become clear a bit later. Correspondingly, the gauge field
should be

Aμdxμ ¼ V cosðkxÞ
�
1 − z

zþðxÞ
�
dt: (46)

These are exact nonperturbative solutions to Einstein-
Maxwell theory so long as x derivatives can be ignored.
An analytic treatment of this problem when long-wave-
length deviations from a constant chemical potential are
perturbative can be found in [53], but in our situation the
deviations are nonperturbative as well, as we will see
below. Just as locally boosted black brane geometries serve
as a starting point for the fluid or gravity gradient
expansions in [54], Eq. (43) can serve as as starting point
for a gradient expansion solution the Einstein-Maxwell
system when ∂xμ → 0, or equivalently in our case when
k → 0. Just as in the case of the fluid or gravity gradient
expansion, a requirement for Eq. (43) to be a good starting
point for a gradient expansion solution to the Einstein-
Maxwell system is that there exists a wide separation of
scales and that the dimensionless expansion parameter

kzþðxÞ → 0: (47)

This condition is satisfied simply by taking k=V → 0, but it
fails in the vicinity of the “turning points” x ¼
ðnþ 1=2Þπ=k, where n is any integer. We will shortly
return to this point.
The Born-Oppenheimer ansatz can be quantitatively

checked in a gauge-invariant way by looking at the
expectation value of the stress tensor on the boundary.
Looking back to Eq. (14), we see that the leading order z3

term in fðz; xÞ corresponds to the term which will con-
tribute to the diagonal components of hTiji. Since the only
scale in a RN black hole is μ, we conclude that hTiji ∼ μ3; a
more precise check yields

FIG. 7 (color online). A plot of the analytic and numerical
solution for ReðσÞ vs ω in the perturbative regime V ≪ k. For the
numerical solution we took k ¼ 1, T ¼ 1=50, and V ¼ 1=4. At
these values the analytical and numerical values for hTiji agree to
3 orders of magnitude, placing us well in the perturbative regime.
The discrepancy at low frequencies is a consequence of the fact
the series expansion of σ in T is not expected to converge near
ω ¼ k due to a nonanalytic singularity; as such, we expect this
discrepancy to propagate an (Ok) distance in ω.
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hTttðxÞi ¼ 2hTxxðxÞi ¼ 2hTyyðxÞi

¼
�
1þ zþðxÞ2μðxÞ2

4

�
2

3zþðxÞ3
: (48)

At zero temperature we have zþðxÞμðxÞ ¼
ffiffiffiffiffi
12

p
, but for our

numerics which occur at finite temperature the distinction
matters. We show the results of a comparison of these three
stress tensors to the geometry when V ≫ k in Fig. 8.
Despite our simple separation of length scales ansatz, this
metric is quantitatively correct in the UV. Note that this
approximation only fails near points where cosðkxÞ ¼ 0.
For reasons which become clear in the next paragraph, this
region is dominated by different physics, and we will refer
to this as the “crossover region” in the UV geometry.
Of course, Eq. (43) fails whenever the separation of

length scales ansatz is no longer valid, near the points
where cosðkxÞ ¼ 0. In this crossover region (shifting x by
−π=2k), we have

lim
z→0

Aμdxμ ≈ Vkxdt: (49)

This turns out to be in many ways analogous to the AdS4-
RN solution with a background magnetic field, although of
course the “magnetic field” lies in the xt plane and is thus
an electric field on the boundary. Mathematically, a
solution obeying the UV boundary conditions, and neglect-
ing higher order terms in the expansion of sinðkxÞ, exists:

ds2CO ¼ 1

z2

�
dz2

uðzÞ − dt2 þ dx2 þ uðzÞdy2
�
; (50)

where

uðzÞ ¼ 1þ cðVkÞ3=2z3 − V2k2z4: (51)

Here c is an undetermined O(1) constant which is not
important for our aims here, which are strictly qualitative.
The key thing that we note about this metric is that it
becomes strongly anisotropic. Furthermore, in the magnetic

crossover regions, the only length scale is 1=
ffiffiffiffiffiffi
Vk

p
.

Although the parameter c is unknown and so we cannot
do as thorough a comparison as before, we can still check
that quantitatively the anisotropy in the crossover regimes
scales as V3=2 as we predict. This scaling law follows
directly from the fact that the leading order term in uðzÞ
contributes to the boundary expectation values of hTxxi and
hTyyi, and u can only depend on the combination

ffiffiffiffiffiffi
Vk

p
.

Furthermore, note from Eq. (14) that hTxx − Tyyi is
proportional to this leading order coefficient in u in the
crossover regions. We find numerically that this scaling is
quantitatively obeyed by the time we reach V=k ¼ 10 as we
show in Fig. 9.
Next, let us justify more carefully our argument that

Eq. (43) is valid away from the crossover regions and
precisely breaks down in these crossover regions.
Following earlier work from the fluid-gravity correspon-
dence [54], we have chosen to make a Born-Oppenheimer
ansatz which does not contain any coordinate singularities
at the “local horizon,” so that we remove artifact coordinate
singularities in the gradient expansion. In this gauge, we
can compute

Δμν ≡
�
Gμν½μðxÞ� − 3gμν½μðxÞ� − 1

2
Tμν½μðxÞ�

�
: (52)

Since obviously if we plug in the Born-Oppenheimer
metric with a constant μðxÞ, the expression for Δμν ¼ 0,
we see that Δμν will capture the deviations from Einstein’s
equations. So long as jΔμνj is much smaller than either
jGμνj or jTμνj,1 we trust the Born-Oppenheimer approxi-
mation, since the equations of motion are perturbatively
satisfied. In fact, for Eddington-Finkelstein coordinates,
there is only one nonzero component of this tensor:

FIG. 8 (color online). We show a comparison of the diagonal
components of the stress tensor on the boundary to the results
predicted by the Born-Oppenheimer approximation. Away from
the crossover regions, agreement between all curves is within
10%. Numerical data taken at T ¼ 1=8, k ¼ 1 and V ¼ 10.

FIG. 9 (color online). We show the anisotropy in the metric near
the crossover regions by looking at the stress tensor on the
boundary. Numerics were run at T ¼ 1=8, k ¼ 1 and varying V.

1Einstein’s equations for us read Gμν − 3gμν − Tμν=2 ¼ 0. At
least two of these terms must always be “large” and of the same
order to satisfy the equations. Thus, we can always ignore gμν
since either Gμν or Tμν must be large.
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Δrr ¼ k2V2z6
24 sin2ðkxÞ þ 2V2z2 cos2ðkxÞ − 4

ffiffiffi
3

p
Vz cosðkxÞð1þ sin2ðkxÞÞ

48
: (53)

For comparison, let us look at a “typical” term in the
Einstein equations, so that we may compare the sizes of the
two terms at various ðz; xÞ. One can easily check that all
tensor components in gμν, Gμν, and Tμν, evaluated on the
Born-Oppenheimer metric before taking spatial derivatives,
are of the form

Gμν; gμν; Tμν ∼ z2P

�
z

zþðxÞ
�
; (54)

where P is some polynomial function—of course, the
generic form expression also follows directly from dimen-
sional grounds, although explicit analysis shows us that P
is always finite. As much as we can below, we will absorb
all factors of Vz into a z=zþ, as this ratio is bounded and the
Born-Oppenheimer geometry is dependent only on this
ratio. Note that not all polynomials P vanish at the local
RN horizons, so in order for the spatial modulation to have
an important effect, we must therefore have Δrr ∼ z2. We
find that spatial modulation becomes a nonperturbative
correction when

Δrr

z2
∼ V2k2z4C

�
z
zþ

; x

�
: (55)

Here Cðx; z=zþÞ is some x-dependent bounded function
which only depends on the ratio z=zþ. Thus, we require that
z ≫ 1=

ffiffiffiffiffiffi
Vk

p
for nonperturbative effects to kick in—this is

allowed at Oð ffiffiffiffiffiffiffiffiffi
k=V

p Þ points in x near the turning points,
corresponding precisely to the crossover regions.
Let us also look at Maxwell’s equations. We find that the

nonzero components of ∇μFμν are given by

∇μFμx ∼
z
zþ

kVz3 sinðkxÞ;

∇μFμz ∼ k2z3
�
V2z2 þ z

zþ
þ z2

z2þ

�
: (56)

In the latter equation we are neglecting the O(1) coefficients
in the parentheses. For comparison, the nonzero “contri-
butions” to Maxwell’s equations for the Born-Oppenheimer
metric come solely from ∇μFμt ∼ ∂zFzt ∼ zðz=zþÞ2. We
see that once again, the corrections kick in at z ∼ 1=

ffiffiffiffiffiffi
Vk

p
.

We stress that it was crucial to work in a metric without
coordinate singularities for the above argument to be valid.
Working with a Born-Oppenheimer ansatz in the more
typical Fefferman-Graham coordinates, one will find that
the gradient expansion breaks down everywhere deep in the
IR, despite the fact that they are to leading order the same
metric. When we promote μðxÞ to have spatial dependence,
depending on the gauge in which we write the metric,

certain Oðk=μÞ terms will be included or suppressed.
Coordinate singularities can amplify such terms deep in
the IR and promote them to nonperturbative corrections,
which is why we chose Eddington-Finkelstein coordinates.
Let us conclude our discussion of the nonperturbative

geometry with some speculation on the IR geometry. In our
numerics, we imposed the requirement that the periodic
potential is an irrelevant deformation in the IR. At next-to-
leading order in the gradient expansion, this is a different
boundary condition than the boundary conditions of our
Born-Oppenheimer metric above. We should keep in mind
that the Einstein-Maxwell system is nonlinear and may
admit many interesting classes of solutions, some even with
identical boundary conditions, so this should not be seen as
problematic. For the geometry we studied numerically, as
we saw in Fig. 3, the dc conductivity is very close to σ∞, the
value it would take if the geometry was pure AdS in the IR,
with only a small relative rescaling, even for V ≫ k. We are
led to speculate that the geometry returns to AdS4 in the IR,
even when V ≫ k, in the regular solution to Einstein’s
equations with our UV boundary conditions, at T ¼ 0.
This means that the periodic potential is an irrelevant
operator in the IR, and the low energy effective theory
is again conformal, just as in the nonperturbative case.
Geometrically, this is the statement that the Born-
Oppenheimer ansatz breaks down at all spatial points x,
far enough in the bulk, due to corrections caused by the
breakdown of the gradient expansion. At V ∼ k, we are able
to perform a strong check of this claim by computing
geometric invariants, such as the Kretschmann scalar

K ¼ RμνρσRμνρσ: (57)

For the AdS black brane at temperature T, in our numerical
gauge, this takes the simple form

KT ¼ 24þ 12

�
z

3=4 πTþ ð1 − 3=4 πTÞz
�

3

: (58)

As we show in Figs. 11 and 10, we can use these invariants
to study the geometry in the deep IR in a gauge-invariant
way. The fact that K → KT in the deep IR beyond the
perturbative paradigm of the previous subsection is con-
sistent with the IR geometry being an AdS black hole
geometry, with the same AdS radius as the UV geometry.
Note that the black brane is a consequence of the finite
temperature numerics; this argument should hold over at
T ¼ 0. Note that most of the structure in these plots is
located near z ¼ 1. This is a consequence of our gauge
choice squeezing many points close to z ¼ 1 and should
not be interpreted as physical: momentum-carrying
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perturbations decay exponentially in an IR-asymptotically
AdS space. We also show the behavior of FμνFμν, a
geometric invariant which shows us that, as expected,
the gauge fields die off deep in the IR. Again, we have
not proven that the deep IR physics is conformal and
described by an AdS geometry, but we believe this is a
reasonable conjecture.

2. Conductivity

Now, let us ask what happens to the conductivity σðωÞ in
the nonperturbative regime. Our numerical results are
shown in Fig. 12. We see a couple dominant features.
Firstly, the dc conductivity is very close to σ∞, as we have
already seen in Fig. 3. The δ function peak in the
conductivity of the RN black hole has been smoothed
out, and most of the spectral weight lies at ω ∼ k, as we will
discuss more shortly. We then transition into a regime
where the conductivity dips below σ∞. At this point, the
conductivity is qualitatively approximated by the conduc-
tivity of a RN black hole, corresponding to a CFT with
chemical potential V=

ffiffiffi
2

p
. For ω ≫ V, the conductivity

returns to σ∞, as we expect.

We note that the study of Ref. [14] also found a
“resonance” peak in the conductivity at ω ∼ k, but this
appeared on top of stronger “Drude” peak at ω ¼ 0; the
latter appears because they had μ0 ≠ 0.
To understand the features of the conductivity from

first principles, let us begin by assuming that the Born-
Oppenheimer approximation is valid at the scale we are
studying. We then can approximate that the conductivity is
given by Eq. (17), which states that σðωÞ ∼ R

dxσðω; xÞ,
where σðω; xÞ is the local conductivity associated to the
local RN “black hole” at spatial point x. This is a valid
approximation because the probe field dies off very quickly
long before the effects of the background gauge field alter
the geometry significantly. Since the RN geometry has only
a single energy scale μ, we conclude that

σðω; xÞ ¼ Φ

�
ω

Vj cosðkxÞj
�
; (59)

where Φ is a universal function whose analytic form is
unknown (plots of this function can be found in [47], e.g.).
Combining Eqs. (17) and (59) we find

σðωÞ ≈ 2

Z
1

0

dζffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p Φ
�
ω

Vζ

�
: (60)

For ω ∼ V, this formula suggests that the conductivity
should roughly be RN conductivity, where a dip begins to
appear, an effect which we see in Fig. 12. Of course,
ΦðxÞ ∼ δðxÞ for small x, and so this approximation must
break down at some point.
We can use this argument to connect the scales at which

new physics appears in the conductivity to the scales at
which spatial modulation affects the geometry in an
important way. Let us consider the equation of motion
for the gauge field Ax more carefully. It is this equation
whose boundary behavior determines the universal func-
tion Φ. We are going to compute the conductivity by
considering the equation of motion where we treat μ as a

FIG. 10 (color online). A plot of the invariant FμνFμν at
T ¼ 0.0385 for V ¼ 1 and k ¼ 1.

FIG. 11 (color online). A plot of the invariant K=KT at T ¼
0.0385 for V ¼ 1 and k ¼ 1.

FIG. 12 (color online). A plot of σ vs ω for V=k ¼ 4, taken at
k=T ¼ 8.
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constant. Although obviously this approximation is not
appropriate for “small” frequencies, our goal is to
determine how the geometry determines what we mean
by the word small. If the function Ax is concentrated outside
a regime where spatial modulation alters the Born-
Oppenheimer ansatz, then we expect RN conductivity to
be a good approximation; otherwise, we conclude that the
striping has induced new behavior in the conductivity. The
equation of motion neglecting the striping is

∂zðfðzÞ∂zAxÞ ¼ − ω2

fðzÞAx þ 4μ2
�

z
zþ

�
2

Ax; (61)

where μ is the local chemical potential at the x coordinate
under consideration. Since we are looking at near horizon
physics, let us define w ¼ ffiffiffiffiffi

12
p − zμ to be a new coor-

dinate. Switching coordinates to u ¼ 1=w, we can show
that up to O(1) factors, for large u the gauge field equation
of motion reduces to

∂2
uAx ¼

�
1

u2
− ω2

μ2

�
Ax: (62)

Note this relies on fðwÞ ∼ w2 for small w. By rescaling to
u ¼ μU=ω,

∂2
UAx ¼

�
1

U2
− 1

�
Ax: (63)

So the behavior of the function Ax at low frequencies
should be universal and only depend on ω=μw, if the
Born-Oppenheimer geometry holds.
By far the dominant effect which is observed numeri-

cally is a strong peak which emerges at ω ∼ k. Remarkably,
the peak in σðωÞ at ω ∼ k is described by V=k times a
universal function once V ≫ k, as we show in Fig. 13. This
qualitative scaling in the conductivity is quite easy to
understand heuristically using a sum rule:

Z
∞

0

dωReðσðωÞ − σ∞Þ ¼ 0: (64)

We can break this integral into two pieces: one for ω < k,
and one for k < ω < V. The former regime is dominated by
the large peak at finite ω, and the latter regime is dominated
by the large dip in the conductivity associated with the RN
conductivity. We then have, heuristically,

σmaxkþ ð−σ∞ÞV ¼ 0; (65)

which implies that σmax, the maximal value of ReðσÞ,
should scale as

σmax ∼
V
k
σ∞: (66)

Geometrically, this peak can be interpreted as a quasinor-
mal mode of the black hole. In the field theory, we suspect
that this is a consequence of broken translational symmetry
and the presence of low-lying excitations at a finite
momentum.
Thus, if the conductivity experiences new physics when

ω ∼ k, it would suggest that the approximation of Eq. (60)
has broken down, at all points x, at a small distance w ∼
k=V from the horizon. Of course, perturbation theory may
still be quite good at describing the background geometry,
but the first-order perturbation might lead to nonperturba-
tive corrections to transport functions such as optical
conductivity, because turning on this perturbation couples
Ax to new graviton modes. Further analytic exploration of
transport in weakly inhomogeneous systems is worthwhile
to resolve this issue.

III. WEAKLY COUPLED CFTS

As discussed in Sec. I, a convenient paradigm for a
weakly coupled CFT is a theory of Nf Dirac fermions ψα

coupled to a SUðNcÞ gauge field aμ with Lagrangian as in
Eq. (3). To this theory we apply a periodic chemical
potential which couples to the globally conserved U(1)
charge

LV ¼ −V cosðkxÞi
XNf

α¼1

ψ̄αγ
0ψα: (67)

The essential structure of the influence of the periodic
potential is clear from a careful examination of the
spectrum of the free fermion limit. By Bloch’s theorem,
the fermion dispersion ω ¼ ϵðqx; qyÞ is a periodic function
of qx with period k:

ϵðqx þ k; qyÞ ¼ ϵðqxÞ: (68)

So we can limit consideration to the “first Brillouin zone”
−k=2 ≤ qx ≤ k=2. This spectrum has been computed in a

FIG. 13 (color online). This figure shows that for μ ≫ k, ReðσÞ
approaches a universal function ×V=k for ω < k. The deviations
for ω ∼ k demonstrate the transition into an intermediate regime
which transitions between the peak and the RN conductivity.
These data were taken at k=T ¼ 8.
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number of recent works in the context of applications
to graphene [34–41]. We show results of our numerical
computations in Figs. 14–16, obtained via diagonali-
zation of the Dirac Hamiltonian in momentum space
(see Appendix B for details). The periodic potential couples
together momenta, ðqx þ lk; qyÞ with different integers l,
and we numerically diagonalized the resulting matrix for
each ðqx; qyÞ.
For small V=k, the spectrum can be understood pertur-

batively. There is a Dirac cone centered at q⃗ ¼ ð0; 0Þ and
this undergoes Bragg reflection across the Bragg planes at
qx=k ¼ �1=2, resulting in band gaps at the Brillouin zone
boundary. See Figs. 14 and 16(a).
However, the evolution at larger V=k is interesting

and nontrivial. The spectrum undergoes an infinite set of
quantum phase transitions at a discrete set of values of V=k,
associated with the appearance of additional Dirac nodes
along the qy axis [34–41]. The first of these occurs at phase

transitions occurs at V=k ¼ 1.20241… [38]; for V=k just
above this critical value two additional Dirac nodes develop
along the qy axis and move, in opposite directions, away
from qy ¼ 0 with increasing V=k. This is illustrated by the
fermion spectrum at V=k ¼ 2.0 which is displayed in
Figs. 15 and 16(b).
Additional phase transitions appear at larger V=k,

each associated with an additional pair of Dirac nodes
emerging from qy ¼ 0. The second transition is at V=k ¼
2.76004… [38]. This is illustrated by the fermion spectrum
at V=k ¼ 4.0 which is displayed in Fig. 16(c), which has
five Dirac nodes. Subsequent phase transitions appear at
V=k ¼ J n=2, where J n is the nth zero of the Bessel
function J0 [38].
Some physical insight into these additional Dirac nodes

can be obtained by considering instead a simpler periodic
rectangular-wave potential, illustrated in Fig. 17. The
chemical potential is now piecewise constant, and in each
region there are electronlike or holelike Fermi surfaces of
radius kF ¼ V. It is a simple matter to include tunneling
between these regions as described in Appendix B1, and
the resulting spectrum is qualitatively similar to Fig. 16,
with an infinite number of quantum transitions associated
with the appearance of pairs of Dirac nodes. However, it is
now possible to write down a simple expression for the
positions of these nodes [39,40]: the nodes are at qx ¼ 0
and qy ¼ �qDðnÞ, where

FIG. 14 (color online). Plot of the lowest positive energy
eigenvalues ϵðqx; qyÞ for V=k ¼ 0.8. There is a single Dirac
node at (0, 0). The dispersion is periodic as a function of qx with
period k, and a full single period is shown. There is no periodicity
as a function of qy, and the energy increases as jqyj for large jqyj.

FIG. 15 (color online). As in Fig. 14, but for V=k ¼ 2.0. Now
there are three Dirac nodes: one at (0, 0), and a pair at ð0;�1.38Þ.
One of the latter pair is more clearly visible in Fig. 16(b).

FIG. 16 (color online). Contour plot of the lowest positive
energy eigenvalues ϵðqx; qyÞ for (a) V=k ¼ 0.8, (b) V=k ¼ 2.0,
and (c) V=k ¼ 3.6. All three plots show Dirac nodes at (0, 0).
However for larger V=k, additional Dirac nodes appear at (b)
ðqx=k ¼ 0; qy=k ¼ �1.38Þ and (c) ðqx=k ¼ 0; qy=k ¼ �1.75Þ,
ðqx=k ¼ 0; qy=k ¼ �3.06Þ.
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qDðnÞ ¼ �kF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2k2=V2

q
(69)

and n is a positive integer. Thus the Dirac node at qDðnÞ
appears for V=k > n, and so the nth quantum transition is
now at V=k ¼ n. See Fig. 18.
A graphical derivation of the positions of the Dirac

points is shown in Fig. 19, and this shows that they appear
precisely at the intersection points of the electron and hole
Fermi surfaces of Fig. 17, after they have been folded back
into the first Brillouin zone. Thus we may view these points
as the remnants of the local Fermi surfaces obtained in a
Born-Oppenheimer picture of the periodic potential.
We can also use the simpler rectangular-wave model

to compute the velocities vxðnÞ and vyðnÞ characteri-
zing the nth Dirac node at ð0; qDðnÞÞ. Their values are
[39] (see Appendix B1)

vxðnÞ ¼ 1 −
�
qDðnÞ
kF

�
2

; vyðnÞ ¼
�
qDðnÞ
kF

�
2

: (70)

So we see that the Dirac points with small jqDðnÞj move
predominantly in the x direction, while those with large
jqDðnÞj move predominantly in the y direction. This is also
consistent with our remnant Fermi surface interpretation:
the Fermi velocity for small qy is oriented in the x direction,
while the Fermi velocity for qy ≈ kF is oriented in the y
direction. Note also that the trends in the velocities for the
cosine potential, as deduced from the dispersions in Fig. 16,
are the same as that of the rectangular-wave potential.
We started here with a theory which had Nf massless

Dirac fermions. After applying a periodic potential, we end
up with a theory which is described by NDNf Dirac
fermions at low energies, where ND ≥ 1 is an integer.
For the periodic rectangular-wave potential

ND ¼ 2⌊V=k⌋þ 1. (71)

For the cosine potential, ND is a similar piecewise-constant
function of V=k, determined by the zeros of the Bessel
function [38]. We can now add interactions to the low
energy theory: by gauge invariance, the aμ gauge field will
couple minimally to each of the NDNf Dirac fermions, and
so the effective theory will have the same structure as the
Lagrangian in Eq. (3). A crucial feature of this theory is that
the number of massless Dirac fermions is stable to all
orders in perturbation theory, and so our picture of
emergent Dirac zeros continues to hold also for the
interacting theory. This stability of the Dirac zeros can
be viewed as a remnant of the Luttinger theorem applied to
the parent Fermi surfaces from which the Dirac zeros
descend (Fig. 19).
However, this low energy theory of NDNf Dirac fer-

mions is not, strictly speaking, a CFT. This is because the
velocities in (70) are a function of n, and it not possible to

FIG. 17. Dirac fermions in a periodic rectangular-wave
chemical potential. The regions alternate between local electron
and hole Fermi surfaces.

FIG. 18 (color online). Dirac points of the periodic rectangular-
wave potential in Fig. 17 obtained from Eq. (69). The Dirac
points are at ð0; qDÞ and move as a function of V=k as shown.
Two new zero energy Dirac points emerge at each integer V=k.
There is also a Dirac point at (0, 0) for all V=k.

FIG. 19 (color online). Illustration of the positions of the Dirac
points with positive qD for V=k ¼ 5.3. The dashed line is the
location of the electron and hole Fermi surfaces of Fig. 17. These
are folded back into the first Brillouin zone −k=2 < qx < k=2
and shown as the full lines. The Dirac points are the filled circles
at the positions in Eq. (69), and these appear precisely at the
intersection points of the folded Fermi surfaces in the first
Brillouin zone.
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set them all to unity by a common rescaling transformation.
However, once we include interactions between the Dirac
fermions from the SUðNcÞ gauge field in Eq. (3), there will
be renormalizations to the velocities from quantum cor-
rections. As shown in Ref. [43], such renormalizations are
expected to eventually scale all the velocities to a common
value (see Fig. 20). So the ultimate IR theory is indeed a
CFT of NDNf Dirac fermions coupled to a SUðNcÞ gauge
field. This is distinct from the UV theory, which had only
Nf Dirac fermions coupled to a SUðNcÞ gauge field.
Finally, we can also consider the transition points

between these IR CFTs, which appear at critical values
of V=k. Here we find [39] the fermion dispersion

ϵð0; qyÞ ∼ jqyj3; ϵðqx; 0Þ ∼ jqxj: (72)

This critical theory is evidently not relativistic, and it would
be interesting to compute the effects of interactions at such
a point.

A. Conductivity

This subsection will compute the frequency-dependent
conductivity σðωÞ of free Dirac fermions in the presence
of the cosine potential in Eq. (67). Previous results in
the graphene literature have been limited to the dc
conductivity σð0Þ.
We use the standard Kubo formula applied to the band

structure computed above, to compute σðωÞ directly at
T ¼ 0 (see Appendix B). In the absence of a periodic
potential, the free Dirac fermions yield the frequency-
independent result [55]

σðωÞ ¼ Nf

16
; V ¼ 0. (73)

For graphene, this is the conductivity measured in units of
e2=ℏ, and we have to take Nf ¼ 4.

We begin by examining the frequency dependence of the
conductivity at small V=k, in the regime where there is only
a single Dirac node, as in Fig. 16(a). The results were
shown in Fig. 2. At large ω, the result approaches the value
in Eq. (73), and this will be the case for all our results
below. At small ω there is interesting structure in the
frequency dependence induced by interband transitions in
the presence of the periodic potential, including a dip
centered at ω ¼ k. Notice the remarkable similarity of this
frequency dependence to that obtained in holography at
small V=k, as shown in Fig. 2.
Continuing on to large V=k, we consider the situation

when there are three Dirac nodes as in Fig. 16(b) at V=k ¼
2.0 in Fig. 21. Now there is a sharp interband transition
peak and additional structure at ω ∼ k; the situation bears
similarity to the holographic result in Fig. 12, including the
dip after the peak at ω ∼ k. At larger V=k, the peak at
ω ¼ k becomes sharper, as shown in Fig. 22 at V=k ¼ 6.0.
The reader will also notice a peak at ω ¼ 0 in Fig. 22. This
arises because V=k ¼ 6.0 is close to the transition point
where the number of Dirac nodes jumps from 7 to 9.
Finally, we also computed the V=k dependence of σð0Þ,

and results showing peaks at the transition points between

FIG. 20 (color online). Schematic of the expected renormali-
zation group flow (towards the IR) for the field theory in Eq. (3),
after we allow for velocity anisotropies, and a bare gauge kinetic
energy f2=ð4gÞ, where f ¼ da. The 1=Nf expansion of Ref. [22]
automatically places the theory at the fixed point g ¼ gc, even in
the absence of an explicit gauge kinetic energy.
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FIG. 21 (color online). Frequency-dependent conductivity at
V=k ¼ 2.0 for Nf Dirac fermions in a periodic chemical
potential.
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FIG. 22 (color online). As in Fig. 21, but with V=k ¼ 6.0.
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the IR CFTs were shown earlier in Fig. 4. These peaks are
at the points where ND jumps by 2 and the lowest energy
fermions have the dispersion in Eq. (72).

IV. CONCLUSIONS

The basic physics of 2þ 1-dimensional CFTs in a
periodic potential is elegantly captured by Figs. 17 and
19. As illustrated in Fig. 17, in each local region of the
potential, the CFT acquires a local Fermi surface deter-
mined by the local chemical potential. Each such region is
therefore described by the theory of a Fermi surface
coupled to a gauge field, as discussed recently in
Refs. [56–58]; holographically these are hidden Fermi
surfaces, in the language of Ref. [25]. Now we go beyond
the Born-Oppenheimer picture and stitch the regions
together. This by can be described by a “folding” of the
Fermi surfaces back into the first Brillouin zone with
jqxj < k=2, as shown in Fig. 19. Computations of the
fermion spectrum show that new zero energy Dirac points
emerge at the intersections of the folded Fermi surfaces,
represented by the filled circles in Fig. 19. So if we started
with aUVCFTwithNf Dirac fermions,we endupwith an IR
CFTwithNDNf Dirac fermions, whereND is an odd integer
which increases in steps with increasing V=k; for large V=k,
ND is linearly proportional to V=k. These emergent Dirac
points are stable under the gauge interactions, and this
stability can be regarded as a remnant of the Luttinger
theorem for the underlying Fermi surfaces. Note that any
possible c theorem is badly violated because the IR CFT has
many more gapless degrees of freedom; this is permitted in
systems which are not Lorentz invariant [44].
We computed the frequency-dependent conductivity

σðωÞ of CFTs in a periodic potential, both in the Dirac
fermion theory and in the Einstein-Maxwell holographic
theory. For small V=k, the forms of σðωÞ are remarkably
similar, as shown in Figs. 1 and 2. For large V=k, the
correspondence is not as good, but the most prominent
features of σðωÞ domatch: both the Dirac fermion theory (in
Figs. 21 and 22) and the holographic theory (in Fig. 12) have
a large peak in σðωÞ atω ∼ k, followed by a dip untilω ∼ V.
A similarω ∼ kpeakwas also present forμ0 ≠ 0, although in
this case there was also a larger Drude peak at ω ¼ 0 [14].
Also interesting was the dependence of the dc conduc-

tivity σð0Þ on V=k. This is shown in Figs. 3 and 4 for the
two approaches. While the background evolutions match,
the Dirac fermion result in Fig. 3 has sharp peaks at
precisely the values of V=k where the integer ND jumps
[38]. This discretely increasing ND, a signal of emergent
zero modes and underlying Fermi surfaces, is evidently not
captured by the holographic Einstein-Maxwell theory. It
has been argued [4,20,21] that monopole operators need to
be included in the Einstein-Maxwell theory to properly
quantize charge and to obtain signatures of the Fermi
surface: so it will be interesting to add monopole operators
to the present analysis and see if they complete the

correspondence between holography and field theory by
leading to peaks in σð0Þ as a function of V=k.
Finally, we note that the fermions dispersion spectra

shown in Figs. 14–16 apply unchanged for the case of a
nonzero average chemical potential, μ0 ≠ 0. The chemical
potential would then not lie precisely at the Dirac points but
away from it: so each Dirac point would have an associated
Fermi surface. The Fermi surface excitations remain
coupled to the gauge field aμ, and so these Fermi surfaces
are hidden [25] and theydo not annihilate intoDirac points at
μ0 ≠ 0. Thus the evolution of the low energy spectrum
involves discrete jumps in the number of Fermi surfaceswith
increasingV=k. This surely has significant consequences for
the charge transport. As was the case here for μ0 ¼ 0, we
expect that the holographic method smooths out the tran-
sitions between the changes in Fermi surface topology.
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APPENDIX A: RESULTS FROM PERTURBATIVE
HOLOGRAPHY

This Appendix collects the cumbersome calculations
required to derive the first-order perturbation to the
conductivity and to the geometry in the limit V ≪ k.

1. Geometry

We begin with the perturbation theory for the metric,
which we find by computing the solution to the linearized
graviton equation of motion. For simplicity, we do this
calculation in Euclidean time, and analytically continue at
the end, as we will do for much of this Appendix. In the
transverse traceless gauge (∇μhμν ¼ 0), higher spin equa-
tions of motion take a particularly elegant form [59], which
for spin 2 reads (using our conventions of L ¼ 1, etc.)

∇ρ∇ρhμν þ 2hμν ¼ −TðEMÞ
μν ; (A1)

where nowwe treatTðEMÞ
μν as the source term for the gravitons.

The traceless condition is allowed because electromagnetic
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fields in four dimensions have a traceless stress tensor.
We also note that the transverse gauge implies that�

∂z − 2

z

�
hzμ þ ∂ihiμ ¼ 0: (A2)

Let us first study the stress tensor. In Euclidean time, the
photon is A ¼ iVe−kz cosðkxÞdt. This leads to

F ¼ dA ¼ iVke−kz½cosðkxÞdx∧dt − sinðkxÞdz∧dt� (A3)

and correspondingly, the only nonzero components of the
stress tensor are(A4)

1

z2
TðEMÞ
zz ¼ − 1

z2
TðEMÞ
xx ¼ F2

zt − 1

2
F2
zt − 1

2
F2
xt ¼

F2
zt − F2

xt

2

¼ 1

2
V2k2 cosð2kxÞe−2kz; (A4a)

1

z2
TðEMÞ
tt ¼ − 1

z2
TðEMÞ
yy ¼ F2

xt þ F2
zt

2
¼ − 1

2
V2k2e−2kz;

(A4b)

1

z2
TðEMÞ
zx ¼ FztFxt ¼ − 1

2
V2k2 sinð2kxÞe−2kz: (A4c)

Then, using that (A5)

∇ρ∇ρhzz þ 2hzz ¼ ðz2∂2
z − 2z∂z þ z2∂2

kÞhzz; (A5a)

∇ρ∇ρhzi þ 2hzi ¼ ðz2∂2
z − 2þ z2∂2

kÞhzi − 2r∂ihzz;

(A5b)

∇ρ∇ρhij þ 2hij ¼ ðz2∂2
z þ 2z∂z − 2þ z2∂2

kÞhij
− 2z∂ihjz − 2z∂jhiz þ 2δijhzz (A5c)

along with the fact that the nonzero components of the
stress tensor are rr; rx; xx; tt; yy, we conclude that
htx ¼ hty ¼ hxy ¼ hzt ¼ hzy ¼ 0. Note that the boundary
conditions on the nonzero perturbations are that they vanish
on the conformal boundary of AdS (z ¼ 0;∞).
Now, let us turn to the solutions of these equations of

motion. By studying the stress tensor, one concludes that
the solutions to the equations of motion with the proper
boundary conditions will be of the form

hzzðz; xÞ ¼ HzzðzÞ cosð2kxÞ; (A6a)

hzxðz; xÞ ¼ HzxðzÞ sinð2kxÞ; (A6b)

hxxðz; xÞ ¼ HxxðzÞ cosð2kxÞ; (A6c)

hyyðz; xÞ ¼ GyyðzÞ þHyyðzÞ cosð2kxÞ; (A6d)

httðz; xÞ ¼ −GyyðzÞ þHyyðzÞ cosð2kxÞ: (A6e)

Furthermore, since these are linear equations, Gyy
decouples from the rest. We note from Eq. (A5) that Hzz

will act as a source for Hzx and Hyy; we will find Hxx by
a trick.
Let us begin with GyyðzÞ, which obeys the equation of

motion

−V2k2

2
e−2kz ¼ d2Gyy

dz2
þ 2

z

dGyy

dz
− 2Gyy

z2
; (A7)

which has the exact solution

GyyðzÞ ¼ V2
1 − e−2kzð1þ 2kzþ 2k2z2Þ

16k2z2
: (A8)

Equation (A8) has asymptotic behavior in the UV:

GyyðrÞ ≈
V2kz
12

; (A9)

which we will find to be a useful fact later.
The next step is to compute HzzðzÞ, which obeys an

independent equation:

−V2k2

2
e−2kz ¼ d2Hzz

dz2
− 2

z
dHzz

dz
− 4k2Hzz: (A10)

The boundary conditions are that Hzzð0Þ ¼ Hzzð∞Þ ¼ 0.
The solution to this differential equation may be found
exactly:

HzzðzÞ ¼
V2

16
½e−2kzð2þ ð1þ 2kzÞ logðkzÞÞ

þ ð2kz − 1Þe2kzEið−4kzÞ�
þ V2ðlog 4þ γ − 2Þ

16
ð1þ 2kzÞe−2kz; (A11)

where γ ≈ 0.577 is the Euler-Mascheroni constant and

EiðxÞ≡−
Z

∞

−x
dt
e−t
t
: (A12)

Note that Eið−4kzÞ ∼ e−4kz up to polynomial size correc-
tions, at large z, and so we have Hzz ∼ e−2kz in the IR as
expected. In the UV, we have

HzzðzÞ ≈
V2k2z2

4
: (A13)

Now let us turn toHzx andHxx. We can actually compute
these very “efficiently” using the transverse gauge con-
dition Eq. (A2). We will not bother writing down the exact
solution, but we will extract the leading order behavior at
small r, which requires the next order in the asymptotic
expansion of HzzðzÞ, which is of order z3 logðkzÞ. One can
show that
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HzxðzÞ ≈
V2k2

6
z2 logðkzÞ: (A14)

A second application of Eq. (A2) immediately leads to
asymptotic behavior:

HxxðzÞ ≈
V2kz
12

: (A15)

The traceless condition then leads to

HyyðzÞ ≈ −V2kz
24

: (A16)

This concludes the derivation of the first-order perturbation
to the metric.

2. Geometry in numerics gauge

One of the major checks of the numerics is to compare
the geometry to this perturbative answer, and more impor-
tantly the expectation value of the stress tensor, which is
gauge invariant. To show how this can be done, let us
describe explicitly a sequence of gauge transformations
which will take us from the equations of the previous
subsection to a metric of the form Eq. (8).
Since we are looking for a perturbative geometry around

AdS, let us expand the above metric to lowest order about
AdS, where B0 ¼ F0 ¼ 0, A0 ¼ Σ2

0 and Σ0 ¼ r−1. If we let
A ¼ Σ2 þ A1, B ¼ r2B1, F ¼ F1 and Σ ¼ Σ0 þ Σ1, we
find

ds2 ¼ −
�
1

z2
þ 2Σ1

z
þ A1

�
dt2 − 2dzdt

z2
þ 2F1dxdtþ

�
1

z2
þ 2Σ1

z
þ B1

�
dx2 þ

�
1

z2
þ 2Σ1

z
− B1

�
dy2: (A17)

The first thing we can do is make the simple coordinate change t → it (back to real time) and t → tþ z to put the metric in
the form

ds2 ¼ ððHzz −HyyÞ cosð2kxÞ þ GyyÞz2dz2 − ð1 − z2Gyy þ z2Hyy cosð2kxÞÞðdt2 þ 2dzdtÞ
z2

þ 2Hzx sinð2kxÞz2dxdzþ ð1þGyyz2 þHyyz2 cosð2kxÞÞdy2 þ ð1þHxxz2 cosð2kxÞÞdx2
z2

: (A18)

Up to OðV2Þ terms, this is of the form of the numerical
metric. So our remaining task will be to find the OðV2Þ
diffeomorphism to get the rest right—we will drop all
higher terms.
Let us begin by shifting t again to remove the dr2 term.

Let a ð−1Þ superscript represent integration of a function
multiplied by r2: e.g. dHð−1Þ=dz ¼ z2H; then we find that if
we choose

t → tþ ðHð−1Þ
zz −Hð−1Þ

yy Þ cosð2kxÞ þ Gð−1Þ
yy

2
; (A19)

we can set gzz ¼ 0 and shift

z2gzt ¼ 1þ ðHrr þHyyÞ cosð2kxÞ −Gyy

2
z2; (A20)

z2gtx ¼ kðHð−1Þ
zz −Hð−1Þ

yy Þ sinð2kxÞ: (A21)

Next we remove gxz by shifting x (which must remain
periodic with period 2π=k) by a periodic function:

x → x −Hð−1Þ
zx sinð2kxÞ (A22)

which removes gxr and changes

z2gxx ¼ 1þ ð2kHð−1Þ
zx þ z2HxxÞ cosð2kxÞ: (A23)

The final step is to change gzt ¼ 1. To do this we perform
a coordinate shift on z so that

d
1

z0
¼ z2gztd

1

z
: (A24)

Since to lowest order we can set z ¼ z0 in z2gzt, we find that

1

z
→

Z
z

0

dz0

z02z2gzt

≈
Z

∞

z

dz0

z02

�
1 − z2

ðHzz þHyyÞ cosð2kxÞ −Gyy

2

�

¼ 1

z
þ ðH½−1�

rr þH½−1�
yy Þ cosð2kxÞ −G½−1�

yy

2
; (A25)

where dG½−1�=dz ¼ G (note the sign on the last term to
ensure that the derivative factor works out right). This sets
gzt ¼ 1, and it will also multiply all other metric compo-
nents by the factor corresponding to the shift in 1=z2:
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1

z2
→

1

z2
− ðH½−1�

zz þH½−1�
yy Þ cosð2kxÞ −G½−1�

yy

z
: (A26)

Straightforward manipulations then give (A27)

B1 ¼
gxx − gyy

2
¼ 1

2
½
�
1

z2
− ðH½−1�

zz þH½−1�
yy Þ cosð2kxÞ −G½−1�

yy

z
þ
�
Hxx þ

2kHð−1Þ
rx

z2

�
cosð2kxÞ

�

−
�
1

z2
− ðH½−1�

rr þH½−1�
yy Þ cosð2kxÞ −G½−1�

yy

z
þGyy þHtt cosð2kxÞ

��

¼ −Gyy þ ðHxx þ 2z−2kHð−1Þ
zx −HyyÞ cosð2kxÞ

2
; (A27a)

F1 ¼ gtx ¼
kðHð−1Þ

zz −Hð−1Þ
yy Þ sinð2kxÞ
z2

; (A27b)

Σ1 ¼
zðgxx þ gyy − 2z−2Þ

4
¼ z

4

��
1

z2
− ðH½−1�

zz þH½−1�
yy Þ cosð2kxÞ −G½−1�

yy

z
þGyy þHyy cosð2kxÞ

�

þ
�
1

z2
− ðH½−1�

zz þH½−1�
yy Þ cosð2kxÞ −G½−1�

yy

z
þ
�
Hxx þ

2kHð−1Þ
zx

z2

�
cosð2kxÞ

�
− 2

z2

�

¼ − ðH½−1�
zz þH½−1�

yy Þ cosð2kxÞ −G½−1�
yy

2
þ z
4

��
Hxx þHyy þ

2k
z2

Hð−1Þ
zx

�
cosð2kxÞ þ Gyy

�
; (A27c)

A1 ¼ −gtt − 1

z2
− 2Σ1

z

¼ 1

z2
− ðH½−1�

zz þH½−1�
yy Þ cosð2kxÞ −G½−1�

yy

z
−Gyy þHyy cosð2kxÞ − 1

z2
þ ðH½−1�

zz þH½−1�
yy Þ cosð2kxÞ −G½−1�

yy

z

− 1

2

��
Hxx þHyy þ

2k
z2

Hð−1Þ
zx

�
cosð2kxÞ þ Gyy

�

¼ − 1

2

��
Hxx −Hyy þ

2k
z2

Hð−1Þ
zx

�
cosð2kxÞ þ 3Gyy

�
.

3. Conductivity

In this subsection we compute σelðωÞ and σinelðωÞ. As
before, it will be easier to perform this calculation in
Euclidean time, when all integrals are well behaved and
convergent. At the end of the calculation, we will do an
analytic continuation ω → −iω to extract the real time
conductivity.
The strategy will be to compute the three Witten

diagrams of Fig. 6. The photon and graviton propagators
and vertices for an AdS4 background can be found in [60],
in real time. Let us begin by reviewing them in Euclidean

time. For the probe Ax field, normalized to 1 on the
boundary so we are computing the conductivity, we have

hAxðω; zÞAxð−ω; 0Þi ¼ e−jωjz; (A28)

hAtðk; zÞAtð−k; 0Þi ¼ i
V
2
e−jkjz; (A29)

and for the graviton we have, in the axial gauge where
hzμ ¼ 0,
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hhijðqx; qt; z1Þhklð−qx;−qt; z2Þi
¼ − 1

8

Z
∞

0

dxffiffiffiffiffiffiffiffiffi
z1z2

p J3=2ð
ffiffiffi
x

p
z1ÞJ3=2ð

ffiffiffi
x

p
z2Þ

xþ q2x þ q2t

× ðT ikT jl þ T ilT jk − T ijT klÞ; (A30)

where J3=2 is a Bessel function and

T ij ¼ δij þ
qiqj
x

: (A31)

The interaction vertex comes from the terms in the action

1

2
½FμρFν

ρhμν − 1

4
hμμFρσFρσ�: (A32)

The factor of 1=2 comes from the fact that the usual
definition of the stress tensor is 2g−1=2δS=δgμν. Using the
background metric of AdS given by Eq. (5), we can
simplify the interaction vertex to (now there are no metric
factors in summation convention: simply sum)

z2

2

�
FμρFνρhμν − 1

4
hμμFρσFρσ

�
: (A33)

Let us begin with the elastic channel: AtAth → AxAxh
(here h represents a generic graviton). In this case, the
graviton carries no internal momentum, so qt ¼ qx ¼ 0 and
the vertex will be a bit simpler. What are the possible
internal modes of the graviton? At the AtAth vertex, we
have Fzt ¼ −jkjAt and Fxt ¼ ikAt. Now since we have
AtðkÞAtð−kÞ, the only surviving terms are

z2

2

�
FtzFtzhtt þ FtxFtxhtt þ FtxFtxhxx

− 1

2
ðhtt þ hxx þ hyyÞðF2

xt þ F2
ztÞ
�
: (A34)

We need to take into account a symmetry factor of 2
because there are two photons in the same direction, so we
will for simplicity add that to the vertex factor now. We find

z2k2AtAt

�
2htt þ hxx − 2

2
ðhtt þ hxx þ hyyÞ

�

¼ z2k2AtAtðhtt − hyyÞ: (A35)

It should be clear that this calculation is exactly the same
for AxAxh, with an appropriate exchange of the t and x
labels, as well as the ω and k factors:

z2ω2AxAxðhxx − hyyÞ: (A36)

Now, let us look at the total T ij-dependent factor—let us
call it α. We will also include in this polarization factor the
vertex coefficients. In this case, it is quite simple:

α ¼ αtt;xx þ αyy;xx þ αtt;yy þ αyy;yy; (A37)

where αtt;xx corresponds to AtAthtt → AxAxhxx, e.g.

αtt;xx ¼ ð2T 2
xt − T ttT xxÞ × ω2 × k2 ¼ −k2ω2; (A38a)

αyy;xx ¼ ð−1Þ × −ω2 × k2 ¼ k2ω2; (A38b)

αyy;yy ¼ ð2 − 1Þ × −ω2 × −k2 ¼ ω2k2; (A38c)

αtt;yy ¼ ð−1Þ × −ω2 × k2 ¼ ω2k2: (A38d)

So we find the polarization or vertex reduces to

α ¼ 2ω2k2: (A39)

So now we simply attach the boundary-bulk propagators
and account for a remaining symmetry factor of 2 because
either At can be treated as incoming. A remaining factor of
2 is needed due to the normalization of the diagram with
four external legs. Thus we find our first correction to the
conductivity:

ωσel ¼ − 1

8

Z
dxdz1dz2ðz1z2Þ3=2ði2V2e−2ωz1e−2kz2Þ

× ð2ω2k2Þ J3=2ð
ffiffiffi
x

p
z1ÞJ3=2ð

ffiffiffi
x

p
z2Þ

x
: (A40)

Now, we use the integral

Z
∞

0

dzz3=2J3=2ðazÞe−bz ¼
ffiffiffi
8

π

r
a3=2

ða2 þ b2Þ2 (A41)

and find

σel ¼
2

π
V2ωk2

Z
∞

0

dx
x3=2

xðxþ 4ω2Þ2ðxþ 4k2Þ2

¼ V2k
32ðkþ ωÞ3 : (A42)

Analytic continuation is straightforward and gives the first
half of Eq. (37).
Next we compute σinel, which corresponds to

AxAth → AxAth. This one is more subtle because of the
graviton polarization factor. To begin, let us analyze the
vertex:

r2

2

�
2hxtFxzFtz þ ðhxx þ httÞF2

xt − 1

2
ðhxx þ htt þ hyyÞF2

xt

�
:

(A43)
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Now since Fxt ¼ iqxAt þ iqtAx, we extract −2qxqtAxAt
from F2

xt (remember we need an Ax and an At). This turns
the vertex into

z2

2
½2hxtωkAxAt þ ðhyy − hxx − httÞqxqtAxAt�: (A44)

Note that qx ¼ �k and qt ¼ �ω, but it will be very
convenient to not plug in yet.
Now let us look at the polarization factor α. There are a

lot of terms to take into account, but we can eliminate some
early. Suppose we take a term of the form ωkqxqt. We have
two diagrams to sum over, one where the photons on one
side have þω and þk and one where the photons have þω
and −k. (Flipping the sign on both ω and k just means
flipping the diagram, and this does not count as a separate
diagram.) So anything odd in qx (or qt) vanishes under the
sum of these two diagrams.
This means we only have to consider hxt → hxt and then

the mixing of the diagonal h’s. We have (A45)

αxt;xt ¼ 2ðT xxT tt þ ð1 − 1ÞT 2
xtÞ × ωk × ωk

¼ 2ω2k2
�
1þ k2

x

��
1þ ω2

x

�
; (A45a)

αxx;xx ¼
1

2
T 2

xx × ð−qxqtÞ2 ¼ 1

2
ω2k2

�
1þ k2

x

�
2

; (A45b)

αtt;tt ¼
1

2
T 2

tt × ð−qxqtÞ2 ¼ 1

2
ω2k2

�
1þ ω2

x

�
2

; (A45c)

αxx;tt ¼ ð2T 2
xt − T ttT xxÞð−qxqtÞ2

¼ ω2k2
�
ω2k2

x2
− 1 − ω2 þ k2

x

�
; (A45d)

αyy;yy ¼
1

2
T 2

yy × ðqxqtÞ2 ¼
1

2
ω2k2; (A45e)

αyy;xx ¼ ð−T xxT yyÞ × qxqt × −qxqt ¼ ω2k2
�
1þ k2

x

�
;

(A45f)

αyy;tt ¼ ð−T ttT yyÞ × qxqt × −qxqt ¼ ω2k2
�
1þ ω2

x

�
:

(A45g)

Note when the gravitons have two different components,
there is an extra factor of 2 by symmetry (which side has
which component). We get

α ¼ 1

2

�
9þ 6

ω2 þ k2

x
þ ðω2 þ k2Þ2

x2
þ 4

ω2k2

x2

�
ω2k2:

(A46)

We find the diagram, accounting for symmetry factors
similarly to before:

ωσinel ¼
V2ω2k2

4

Z
∞

0

dxdz1dz2ðz1z2Þ3=2e−ðkþωÞðz1þz2Þ

×
J3=2ð

ffiffiffi
x

p
z1ÞJ3=2ð

ffiffiffi
x

p
z2Þ

xþ ω2 þ k2
αðxÞ; (A47)

which leads to

σinel ¼
2

πω
V2k2

Z
∞

0

dx
x3=2

ðxþω2 þ k2Þðxþ ðωþ kÞ2Þ4 αðxÞ:
(A48)

This integral can be done with the aid of symbolic
manipulators (MATHEMATICA) and the result, appropriately
analytically continued, is the second half of Eq. (37). Note
that the rightmost term in Eq. (A46) is responsible for the
singularity in the real-time σinel.

APPENDIX B: DIRAC FERMIONS IN A
PERIODIC POTENTIAL

We describe the numerical computation of the conduc-
tivity of a single Dirac fermion in a periodic potential.
We write the “reciprocal lattice vector” of the periodic

potential as K ¼ ðk; 0Þ. We introduce two canonical fer-
mions cAðqþ lKÞ and cBðqþ lKÞ, where l is an integer
and q is restricted to the “first Brillouin zone,” jkxj < k=2.
We discretized the momenta q ¼ ðk=NÞðnx; nyÞ, where nx,
ny, and N are integers, with jnxj < N=2, jnyj < Ny, and
jlj < L. The continuum answers are obtained in the limit
where N, Ny, and L all become very large.
The Hamiltonian of the Dirac fermions in a periodic

potential now takes the form

H ¼
X
l¼0

X
q

�
ðTðqþ lKÞc†Aðqþ lKÞcBðqþ lKÞ þ c:c:Þ

þ V
2
ðc†Aðqþ ðlþ 1ÞKÞcAðqþ lKÞ þ c†Bðqþ ðlþ 1ÞKÞcBðqþ lKÞÞ þ c:c:

�
: (B1)
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The bare kinetic energy term is

TðqÞ ¼ qx − iqy; (B2)

obtained from the Pauli matrices acting as the Dirac
matrices. We diagonalize this Hamiltonian by the unitary

cσðqþ lKÞ ¼
X
n

Uσnðqþ lKÞγnðqÞ; (B3)

where σ ¼ A;B, UσnðqÞ is a unitary matrix and ϵnðqÞ are
the corresponding eigenvalues.

To obtain the conductivity, we need the current operator

j ¼
X
l

X
q

c†Aðqþ lKÞJðqþ lKÞcBðqþ lKÞ þ c:c:;

(B4)

where

J ¼ ð1;−iÞ (B5)

is obtained from the Dirac matrices. We introduce the
matrix element of the current operator

J i;nmðqÞ ¼
X
l

½U�
Anðqþ lKÞJiðqþ lKÞUBmðqþ lKÞ þU�

Bnðqþ lKÞJ�i ðqþ lKÞUAmðqþ lKÞ
�
; (B6)

and the final expression for the conductivity is

σiiðωÞ ¼ lim
η→0

lim
N;Ny;L→∞

ik
4π2N2ω

½ΛðωÞ − ReðΛð0ÞÞ� with ΛðωÞ ¼
X
q

X
n;m

jJ i;nmðqÞj2
ðfðϵnðqÞÞ − fðϵmðqÞÞÞ
ω − ϵmðqÞ þ ϵnðqÞ þ iη

; (B7)

where fðϵÞ is the Fermi function. Here η is small energy
broadening parameter, and the order of limits above is
important. Our use of a sharp momentum space cutoff Ny
requires the subtraction scheme in Eq. (B7) to eliminate
cutoff dependence. With a gauge-invariant cutoff we would
have Λð0Þ ¼ 0, but instead we obtain a real part which
diverges linearly with the cutoff momentum. This cutoff
dependence only influences ImðσÞ, and cutoff-independent
results are obtained after the subtraction.

1. Emergence of Dirac zeros

This Appendix will review the arguments [39,40] for the
appearance of the additional Dirac zeros for the case of the
periodic rectangular-wave potential in Fig. 17.

It is useful to first tabulate some properties of the Dirac
equation for the case of a piecewise-constant potential. In
any given constant potential region a solution with energy
E ¼ ðk2x þ k2yÞ1=2 will be a superposition of plane waves
with wave vectors ðkx; kyÞ and ð−kx; kyÞ (the wave vector
ky is conserved because the potential is independent of y).
By working with the most general linear combination of
such waves, we can relate the two components of the wave
function ðψAðxÞ;ψBðxÞÞ between two x locations by a
linear transfer matrix of the form

ψðx1Þ ¼ T þðx1 − x2; kx; kyÞψðx2Þ: (B8)

It is easy to compute that the explicit form of this transfer
matrix is

T þðx; kx; kyÞ ¼
�
cosðkxxÞ þ ðky=kxÞ sinðkxxÞ ið1þ ðky=kxÞ2Þ1=2 sinðkxxÞ
ið1þ ðky=kxÞ2Þ1=2 sinðkxxÞ cosðkxxÞ − ðky=kxÞ sinðkxxÞ

�
: (B9)

Similarly, for the solution with energy E ¼ −ðk2x þ k2yÞ1=2 the transfer matrix is

T −ðx; kx; kyÞ ¼
�

cosðkxxÞ þ ðky=kxÞ sinðkxxÞ −ið1þ ðky=kxÞ2Þ1=2 sinðkxxÞ−ið1þ ðky=kxÞ2Þ1=2 sinðkxxÞ cosðkxxÞ − ðky=kxÞ sinðkxxÞ
�
: (B10)

Turning to the potential in Fig. 17, the solution with wave vector ky, has a negative (positive) energy solution in the region
with VðxÞ ¼ V [VðxÞ ¼ −V]. The corresponding values of kx in the two regions are kx ¼ ððV − EÞ2 − k2yÞ1=2 and
kx ¼ ððV þ EÞ2 − k2yÞ1=2. So the complete transfer matrix across one period of the potential is

T ¼ T þðπ=k; ððV þ EÞ2 − k2yÞ1=2; kyÞT −ðπ=k; ððV − EÞ2 − k2yÞ1=2; kyÞ: (B11)
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Finally, by Bloch’s theorem, this transfer matrix can only
be a phase factor ei2πkx=k, where now kx is the wave vector
of the Bloch eigenstates along the x direction. So we obtain
the eigenvalue condition, which is detðT − ei2πkx=kÞ ¼ 0.
Evaluating this determinant, we find the condition for a
zero energy eigenvalue E ¼ 0 at kx ¼ 0 is

sinðπðV2 − k2yÞ1=2=kÞ ¼ 0; (B12)

which leads immediately to Eq. (69) for the Dirac nodes.
For small kx and E, and with ky ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 − n2k2

p
þ δky, the

condition becomes

E2 ¼
�
nk
V

�
4

k2x þ
�
1 − n2k2

V2

�
2

ðδkyÞ2; (B13)

which yields the velocities in Eq. (70)).
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