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We compute the vacuum energy for Kerr black holes with anti–de Sitter (AdS) asymptotics in dimen-
sions 5 ≤ D ≤ 9 with all rotation parameters. The calculations are carried out employing an alternative
regularization scheme for asymptotically AdS gravity, which considers supplementing the bulk action with
counterterms which are a given polynomial in the extrinsic and intrinsic curvatures of the boundary (also
known as Kounterterms). The Kerr-Schild form of the rotating solutions enables us to identify the vacuum
energy as coming from the part of the metric that corresponds to a global AdS spacetime written in oblate
spheroidal coordinates. We find that the zero-point energy for higher-dimensional Kerr-AdS reduces to one
of a Schwarzschild-AdS black hole when all the rotation parameters are equal to each other, a fact that is
well known in five dimensions. We also sketch a compact expression for the vacuum energy formula in
terms of asymptotic quantities that might be useful to extend the computations to higher odd dimensions.
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I. INTRODUCTION

In general relativity, black hole solutions play a
fundamental role in the description and the understanding
of the gravitational interaction at both macroscopic and
microscopic scales. These objects can be described by a
given set of parameters, namely, mass, angular momentum,
and electric charge. Our interest lies in Kerr solutions,
which have mass and angular momentum, i.e., are free
to rotate.
From the astrophysics point of view, the observable

Universe is made of countless rotating objects, whose
geometry is given in a good approximation by a Kerr
spacetime. Even though the first black hole solution was
proposed in 1916 by Schwarzschild, it took more than
40 years to generalize it to a rotating case. The main diffi-
culty for that was the lack of spherical symmetry and the
nondiagonal elements in the metric tensor.
In higher dimensions, the situation is far more compli-

cated. In fact, the number of rotation parameters increases
in one every two additional dimensions. For this reason,
any type of calculation in this geometry quickly turns very
involved as we go up in the spacetime dimension.
Rotating solutions with anti–de Sitter (AdS) asymptotics

have become relevant in the context of anti–de Sitter/
conformal field theory (AdS/CFT) correspondence [1–3].
Examples of holographic studies which consider this type
of solution can be found [4–7]. In all the cases, the proper-
ties of the holographic stress tensor in the gravity side (e.g.,
Weyl anomalies) are matched with the ones defined in a

boundary CFT which lives on a rotating Einstein universe.
In the same vein, further insight on this problem was
provided in Refs. [8–11].
Quasinormal modes for rotating solutions were studied

in Refs. [12,13]. Perturbations of the black hole metric are
equivalent to the perturbation of a thermal state on the
boundary CFT. The time evolution of the perturbed
solution is dual to the time evolution of the thermal state
state fluctuations.
Other theoretical developments that involve Kerr

solutions identify Hawking-Page transitions [14] with
confinement/deconfinement transitions in the strongly
coupled regime of the boundary gauge theory [15]. The
system also exhibits a gap between the transition lines in
both sides of the duality. In Ref. [16] a phase diagram struc-
ture similar to a Weiss ferromagnetic system and a van der
Waals liquid/gas system for certain critical temperature was
found. Sonner studied in Ref. [17] the rotating extension of
the idea of a holographic superconductor, in which the
model features a superconducting phase transition on the
boundary of a Kerr-Newman black hole.
Nonlinear spinning solutions to fluid mechanics were

constructed in Refs. [18,19]. The duality is realized through
the identification of the stress tensor and the thermody-
namic quantities in the fluid side with the boundary stress
tensor and thermodynamics of large rotating black holes in
the gravity sector.
Thermodynamic instabilities in Kerr solutions from

quantum corrections in the partition function were found
in Refs. [20–22], as the action and the heat capacity can
turn negative.
Extracting holographic quantities from the conformal

boundary in AdS gravity requires one to write down the
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Einstein equations for an asymptotic form of the metric
[23]. Solving order by order in powers of the radial coor-
dinate, the divergences in the variation of the action are
canceled by the addition of local (intrinsic) counterterms.
The procedure proves to be satisfactory in many cases but,
however, the method in higher dimensions becomes far
more involved. As a consequence, there is no general
expression for the counterterm series in an arbitrary dimen-
sion. The background independence of the counterterm
method is reflected in a nonzero value for the energy
of the AdS vacuum Evac in odd spacetime dimensions
[24]. The total energy E ¼ M þ Evac, where M is the
Hamiltonian mass, appears also in thermodynamic relations
that involve the evaluation of the Euclidean action, in
whichever method that does not use background subtrac-
tion [25]. The zero-point energy for asymptotically AdS
(AAdS) black holes can be identified, within the framework
of AdS/CFT, with the Casimir energy of the conformal
theory. In particular, in five dimensions, matching the vac-
uum energy Evac ¼ 3l2=32πG of Schwarzschild-AdS
black holes with the Casimir energy of N ¼ 4 super
Yang-Mills theory on the boundary provided one of the first
realizations of the gauge/gravity correspondence.
Similar computations have been performed for rotating

AAdS solutions [4–7].
The value of the vacuum energy also plays a role in

the proof of positivity of energy for asymptotically AdS
spacetimes in odd dimensions [26,27].
In this article, we extend the results for the vacuum

energy in Refs. [4–7] to Kerr-AdS black holes with a maxi-
mal number of rotation parameters up to nine spacetime
dimensions, using Kounterterm regularization for AdS
gravity [28] and exploiting the Kerr-Schild form of the
metric for rotating solutions.
This paper is organized as follows: in Sec. II we review

Kounterterm regularization for AdS gravity. Once the
extrinsic counterterms have been introduced, conserved
quantities derived within this regularization scheme are
revised in Sec. III. In particular, we made use of the sepa-
rability of the Kounterterm charges in a part that gives the
black hole mass and angular momentum, and another one
that produces the vacuum energy. In Sec. IV, the metric of
Kerr-AdS black holes is cast in Kerr-Schild form in order to
isolate the part that contributes to the vacuum energy of
rotating solutions. In Sec. V, explicit results up to nine
dimensions are shown. Some properties of the zero-point
energy for Kerr-AdS are discussed. Finally, the last section
is devoted to conclusions and prospects.

II. KOUNTERTERM REGULARIZATION
IN ADS GRAVITY

For more than a decade, the AdS/CFT correspondence
[1–3] has provided a concrete realization of the long-standing
idea of holographic principle. This form of gauge/gravity
duality has triggered a growing interest in the community,

as a useful tool to describe strongly coupled systems.
Maldacena’s conjecture has gone beyond string theory to
be applied in areas as diverse as relativistic hydrodynamics,
condensed matter, and quantum chromodynamics.
This duality postulates the equivalence between the par-

tition function of AdS gravity and the one of a boundary
CFT, i.e., ZAdSðϕÞ ¼ ZCFTðϕ0Þ. Here, we understand that
the field ϕ, which lives in the bulk of the spacetime, takes
the value ϕ0 as one approaches the boundary. In the boun-
dary theory, ϕ0 is interpreted as a source for a pointlike
operator O. In the low-energy limit, the classical gravita-
tional action can be used to compute the partition function
of the CFT. Also, physical quantities defined in a finite-
temperature field theory can be understood in terms of
thermodynamic properties of black holes in the bulk.
For a suitable realization of the gauge/gravity duality, it

is necessary to render the gravitational action finite. Within
this framework, the convergence of the gravity action for
asymptotically AdS spacetimes is achieved carrying
out the holographic renormalization program [29–31],
which results in the addition of the original action of local
(intrinsic) counterterms [24,25] on top of a Gibbons-
Hawking term [32,33].
Because of the fact that there is no closed formula for the

counterterms in an arbitrary dimension, an alternative series
was given in Refs. [28,34]. This proposal, valid for all
dimensions, considers the addition of boundary terms
which are a polynomial in the extrinsic curvature Kij
and the boundary Riemman tensor. By adding this structure
at the boundary, one gets a regularized Euclidean action and
is able to reproduce the correct black hole thermodynamics
in AAdS gravity.
Conserved quantities derived within this framework are

particularly useful to deal with solutions with a more com-
plicated structure in the metric, which is the case under
investigation in this paper. This is especially relevant in
high enough dimensions, as we shall discuss below.
Let us take the action for Einstein gravity with a negative

cosmological constant in D ¼ dþ 1 dimensions

I ¼ − 1

16πG

Z
M
ddþ1x

ffiffiffiffiffiffi−gp ðR − 2ΛÞ þ cd

Z
∂M

ddxBd;

(1)

where Λ ¼ − dðd−1Þ
2l2 and R is the spacetime Ricci scalar. The

boundary term Bd is added for the purpose of finiteness of
the conserved quantities and, at the same time, it produces a
well-posed action principle for AAdS spacetimes.
The spacetime geometry can be described in terms of

Gaussian coordinates

ds2 ¼ gμνdxμdxν ¼ N2ðrÞdr2 þ hijðr; xÞdxidxj; (2)

where r is the radial coordinate. The manifoldM possesses
a single boundary ∂M, which is located at radial infinity.
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Indeed, for r ¼ ∞, the metric hij accounts for the intrinsic
properties of the boundary, which is parametrized by the
coordinates fxig. In turn, the extrinsic properties are given
in terms of an outward-pointing spacelike unit normal
nμ ¼ ðnr; niÞ ¼ ðN; 0⃗Þ, as the extrinsic curvature is defined
as the Lie derivative of the boundary metric along n, that is,

Kij ¼ Lnhij: (3)

In a more explicit form, the extrinsic curvature is given by

Kij ≔ − 1

2N
h0ij; (4)

where prime denotes radial derivative.
For the case of the odd dimensions (D ¼ 2nþ 1) we are

interested in, the boundary term adopts a compact form
when expressed with the help of two parametric integra-
tions

B2n ¼ 2n
ffiffiffiffiffiffiffi−hp Z

1

0

du
Z

u

0

dsδ½j1…j2n�
½i1…i2n�

× Ki1
j1
δi2j2

�
1

2
Ri3i4

j3j4
− u2Ki3

j3
Ki4

j4
þ s2

l2
δi3j3δ

i4
j4

�

× � � � ×
�
1

2
Ri2n−1i2n

j2n−1j2n − u2Ki2n−1
j2n−1K

i2n
j2n

þ s2

l2
δi2n−1j2n−1δ

i2n
j2n

�
;

(5)

where h is the determinant of the boundary metric, Rij
kl

is the boundary Riemman tensor and δ½j1…j2n�
½i1…i2n� is a totally

antisymmetric product of 2n Kronecker deltas (for conven-
tions, see Appendix A). When expanded, the above expres-
sion can be seen as a polynomial in the extrinsic and
intrinsic curvatures, where the coefficients are obtained
once the integrations in s and u are performed. In that
respect, the use of parametric integrations is not a mere for-
mality, but provides an operational tool to derive general
expressions for the conserved quantities, regardless of
the spacetime dimension. In particular, Kounterterm regu-
larization leads to the only formula for the vacuum energy
for AAdS spaces in all odd dimensions, which is covariant
with respect to the boundary metric hij.
The finiteness of the conserved quantities is achieved

once the coupling constant of B2n is chosen as

c2n ≔
1

16πG
ð−1Þnl2n−2

22n−2nðn − 1Þ!2 : (6)

The above value is singled out by the cancellation of lead-
ing-order terms in the asymptotic expansion of the surface
term produced by the variation of the action. It is a remark-
able fact that this choice of c2n also eliminates the rest of
the divergences that appear in the surface term and, sub-
sequently, in the conserved charges. There is no other
explanation for this property, other than saying that in

Kounterterm regularization the boundary terms are related
to well-known mathematical structures as topological
invariants and Chern-Simons densities. Therefore, it is hard
to think of a more geometric object that can be added to the
gravity action for the purpose of regularization.
In addition, there is a partial proof (in even space-

time dimensions) that Kounterterms are able to generate
the standard counterterm series upon a suitable expansion
of the extrinsic curvature [35]. This conclusion is quite
remarkable: holographic renormalization is equivalent to
the addition of topological invariants in even dimensions.
This also means that the extrinsic regularization scheme
can be converted into an intrinsic one, which is necessary
to recover standard holographic quantities in AAdS gravity.

III. KOUNTERTERM CHARGES IN
ODD DIMENSIONS

Provided the boundary coincides with the asymptotic
region, the Noether procedure leads to conserved quantities
associated to a set of asymptotic Killing vectors fξig. The
conservation of the Noether current ∂μJμ ¼ 0 implies that J
can be written locally as a total derivative which, in turn,
implies the existence of a conserved quantity

Q½ξ� ¼
Z
∂M

ddx
1

N
nμJμðξÞ: (7)

Altogether, it was shown in Ref. [28] that the radial com-
ponent of the Noether current Jr ¼ 1

N nμJ
μ is globally a

total derivative on ∂M, that is,

Q½ξ� ¼
Z
∂M

ddx∂jð
ffiffiffiffiffiffiffi−hp

ξiðqji þ qjð0ÞiÞÞ: (8)

Using the Stokes theorem, the above quantity can be
written as a surface integral in (d − 1) dimensions. In order
to do so, we foliate the boundary ∂M in Arnowitt-Deser-
Misner form with the coordinates xi ¼ ðt; ymÞ

hijdxidxj ¼ − ~N2ðtÞdt2 þ σmnðdym þ ~NmdtÞðdyn þ ~NndtÞ;
(9)

ffiffiffiffiffiffiffi−hp
¼ ~N

ffiffiffi
σ

p
: (10)

The lapse function ~N appears in the timelike normal ui
(that generates the foliation) as ui ¼ ðut; umÞ ¼ ð− ~N; 0⃗Þ.
The tensor σmn represents the metric of the spatial section
at constant time. We denote this surface by the symbol Σ∞.
The Noether charge in odd spacetime dimensions is

expressed as the sum of two parts

Q½ξ� ¼ q½ξ� þ qð0Þ½ξ�; (11)
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where the first integral

q½ξ� ¼
Z
Σ∞

d2n−1y
ffiffiffi
σ

p
ujq

j
iξ

i (12)

produces the mass and angular momentum for AAdS spacetimes, with an integrand given by

qji ¼ − 1

2n−2
δ½jj1���j2n−1�½ki1���i2n−1�K

k
i δ

i1
j1

�
1

16πGð2n − 1Þ! δ
½i2i3�
½j2j3� × � � � × δ½i2n−2i2n−1�½j2n−2j2n−1�

þ nc2n

Z
1

0

du

�
Ri2i3
j2j3

þ u2

l2
δ½i2i3�½j2j3�

�
× � � � ×

�
Ri2n−2i2n−1
j2n−2j2n−1 þ

u2

l2
δ½i2n−2i2n−1�½j2n−2j2n−1�

��
:

(13)

On the other hand, the second part

qð0Þ½ξ� ¼
Z
Σ∞

d2n−1y
ffiffiffi
σ

p
ujq

j
ð0Þiξ

i (14)

is given in terms of the tensor

qjð0Þi ¼ 2nc2nδ
½jj1���j2n−1�
½ki1���i2n−1�

Z
1

0

duuðKk
i δ

i1
j1
þ Kk

j1
δi1i Þ

�
1

2
Ri2i3

j2j3
− u2Ki2

j2
Ki3

j3
þ u2

l2
δi2j2δ

i3
j3

�

× � � � ×
�
1

2
Ri2n−2i2n−1

j2n−2j2n−1 − u2Ki2n−2
j2n−2K

i2n−1
j2n−1 þ

u2

l2
δi2n−2j2n−2δ

i2n−1
j2n−1

�
: (15)

Properties of the above formulas are extensively employed in Sec. V, where we compute the vacuum energy for Kerr-AdS
metric in odd spacetime dimensions.
In the next section, we review the construction of the Kerr-AdS metric in D ¼ 2nþ 1 dimensions.

IV. KERR BLACK HOLE METRIC IN
ODD SPACETIME DIMENSIONS

The asymptotically flat Kerr spacetime in four
dimensions [36] can be obtained as a perturbation to the
Minkowski metric that is linear in the parameterM (related
to the black hole mass) [37]. The resulting line element
adopts the form

ds2 ¼ ημνdxμdxν þ
2M
U

ðkμdxμÞ2; (16)

where kμ is a null geodesic vector for the seed metric ημν as
for the full metric gμν, and the function U is given by

U ¼ rþ a2z2

r3
; (17)

where r ¼ ð0;∞Þ, z is the axis around which the rotation
will be defined, and a is a parameter that represents the
squashing of the sphere.
In Cartesian coordinates, the explicit form of the

deformation k ¼ kμdxμ is

k ¼ dtþ rðxdxþ ydyÞ þ aðxdy − ydxÞ
r2 þ a2

þ zdz
r

; (18)

and r is defined by the ellipsoidal hypersurface

x2 þ y2

r2 þ a2
þ z2

r2
¼ 1: (19)

In a similar way, if one includes a cosmological constant Λ
into the gravitational action, the metric takes a linearized
form around de Sitter or anti–de Sitter backgrounds ḡμν
(see, e.g., Ref. [38]),

gμν ¼ ḡμν þ
2M
U

kμkν: (20)

Once again, kμ is a null vector for both metrics.
The generalization of the Kerr metric to higher dimen-

sions makes use of the same properties seen above [39–41].
In particular, in odd spacetime dimensions (D ¼ 2nþ 1)

we consider the parametrization for the unit sphere S2n−1,
which considers n two-planes, with 2n coordinates sub-
jected to a constraint. The coordinates of the ith plane
are ðui; viÞ, whose polar form is given by

ui þ ivi ¼ μ̂ieiϕi ; (21)

where we have introduced n azimuthal angles ϕi and n
direction cosines μ̂i, which satisfy the constraint
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Xn
i¼1

μ̂2i ¼ 1: (22)

Adding up the time and radial directions in the line element,
the global AdS metric in this coordinate set adopts the form

ds̄2 ¼ −
�
1þ y2

l2

�
dt2 þ dy2

1þ y2

l2

þ y2
Xn
i¼1

ðdμ̂2i þ μ̂2i dϕ
2
i Þ:

(23)

If the dimension of the spacetime is dþ 1, the number N of
independent rotation parameters faig corresponds to the
number of Casimir invariants of SOðdÞ, that is, N ¼ ½d

2
�.

Then, we pass from the sphere parametrization in
Eq. (21) to a new set of spheroidal coordinates defined
by the transformation

�
1 − a2i

l2

�
y2μ̂2i ¼ ðr2 þ a2i Þμ2i ; (24)

where, once again, the variable μi is constrained by the
equation

X
i

μ2i ¼ 1: (25)

With this transformation replaced in the metric of global
AdS, we can express the line element in terms of the
new variables ðr; μiÞ, such that the vacuum spacetime
(23) is written as

ds̄2 ¼ −W
�
1þ r2

l2

�
dt2 þ Fdr2

þ
Xn
i¼1

r2 þ a2i
Ξi

ðdμ2i þ μ2i dφ
2
i Þ

− 1

Wð1þ r2

l2Þl2

�Xn
i¼1

ðr2 þ a2i Þμidμi
Ξi

�
2

; (26)

where

Ξi ¼ 1 − a2i
l2

: (27)

The functions W and F that appear in the metric are
given by

W ≡Xn
i¼1

μ2i
Ξi

; F≡ r2

1þ r2

l2

Xn
i¼1

μ2i
r2 þ a2i

: (28)

This metric obtained as the deformation of global AdS
geometry will be used to find the vacuum energy of

Kerr-AdS in the next section. This is justified by the fact
that the black hole massM does not appear in ds̄2 but only
in the full metric as ds2 ¼ ds̄2 þ 2M

U ðkμdxμÞ2.
Finally, the explicit form of the perturbation to the

deformed vacuum metric ds̄2 is

kμdxμ ¼ Wdtþ Fdr −Xn
i¼1

aiμ2i
Ξi

dϕi; (29)

and where

U ¼
Xn
i¼1

μ2i
r2 þ a2i

Yn
j¼1

ðr2 þ a2i Þ: (30)

The full Kerr-AdS metric is usually expressed in terms
of Boyer-Lindquist coordinates which eliminate the
components gμr with μ ≠ r, i.e., no cross terms between
dr and the other coordinate differentials. Indeed, it would
be convenient, putting the metric in the Gaussian form (2),
e.g., to evaluate the mass and angular momenta [42] for
rotating black holes from Eqs. (12) and (13). However,
in the next section it is argued that, for the purpose of vac-
uum energy computation, it is enough to consider just the
deformation induced by the rotation parameters on the
global AdS spacetime, i.e., the line element (26).
In addition, the Kerr-AdS metric can be expressed in

Kerr-Schild form, which splits it in two sectors. The first
one is the rotating version of global AdS space and the sec-
ond, a part proportional to the mass parameter. In this way,
we can be sure that there will not be missing contribu-
tions to the vacuum energy once we switch off the mass.
This justifies the fact that, in order to perform the calcula-
tions relevant for this paper, we can restrict ourselves to the
rotating global AdS metric.

V. VACUUM ENERGY IN KERR-ADS

The deformation of the AdS vacuum defined by
Eqs. (26) and (28) preserves the constant-curvature prop-
erty of global AdS spacetime. This means that the global
transformations performed in order to obtain the metric
(26) do not modify the local condition

Rαβ
μν þ 1

l2
δ½αβ�½μν� ¼ 0: (31)

From the argument that follows it is evident that the
conserved quantities associated to this part of the metric
are identically zero. Indeed, it can be shown that the
part qðξÞ of the total charge (11) that produces the mass
and angular momentum for AAdS black holes can have
its integrand factorized as
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qji ¼
nc2n
2n−2

δ½jj2…j2n�
½i1i2…i2n�K

i1
i δ

i2
j2

�
Ri3i4
j3j4

þ 1

l2
δ½i3i4�½j3j4�

�
Pi5…i2n

j5…j2n
ðR; δÞ: (32)

Here, PðR; δÞ is a polynomial of (n − 2) degrees in the spacetime Riemann tensor Rij
kl (its projection at the boundary) and

the antisymmetrized Kronecker delta δ½ij�½kl�

Pi5…i2n
j5…j2n

ðR; δÞ ¼
Xn−2
p¼0

Dp

l2p R
i5i6
j5j6

…R
i2ðn−pÞ−1i2ðn−pÞ
j2ðn−pÞ−1j2ðn−pÞδ

½i2ðn−pÞþ1i2ðn−pþ1Þ�
½j2ðn−pÞþ1j2ðn−pþ1Þ�…δ½i2n−1i2n�½j2n−1j2n�; (33)

with the coefficients of the expansion given by

Dp ¼
Xp
q¼0

ð−1Þp−q
2qþ 1

�
n − 1

q

�
: (34)

Therefore, any space satisfying the condition (31) globally
will posses vanishing charges.
From the explicit form of the full metric, we can notice

that M does not appear in ds̄2 in Eq. (20). That means that
the parameter M cannot affect the value of the vacuum
energy (which is obvious when we think that the vacuum
state corresponds to a vanishing mass).
On the other hand, it can be seen that the electric part of

the Weyl tensor Ei
j ∼ nμnνW

μi
νj of the full Kerr-AdS metric

is always proportional to M. In this way, it correctly repro-
duces the mass and angular momentum from the Ashtekar-
Magnon-Das charge definition for AAdS [6,43,44].
Furthermore, the Weyl tensor is—on shell—proportional
to the right-hand side of Eq. (31) and, therefore, M should
not enter into the expression of qð0Þ.
In summary, we only need the sector in the metric that

corresponds to the deformation of global AdS spacetime in
order to compute the zero-point energy (14). As the above
integral is defined in the limit for r → ∞, we shall consider
the asymptotic expansion of the intrinsic and extrinsic
curvatures.
Taking the metric of global AdS in oblate coordinates in

Eqs. (26) and (28) and writing down the direction cosines in
terms of polar angles (see Appendix C), we see that the
squared root of the determinant of the boundary metric
behaves as

ffiffiffiffiffiffiffi−hp
¼ ~N

ffiffiffi
σ

p
∼r2n þOðr2n−2Þ; (35)

where the function ~N appears in the Arnowitt-Deser-Misner
foliation (9).
From explicit computations in the oblate-AdS sector of

the Kerr-AdS metric in an arbitrary dimension, one can see
that the asymptotic expansion of the extrinsic curvature is

Ki
j ¼ − δij

l
þ lAi

jðθ;ϕÞ
r2

þO
�
1

r4

�
; (36)

whereas the intrinsic curvature behaves as

Rij
kl ∼

Bij
klðθ;ϕÞ
r2

þO
�
1

r4

�
; (37)

where Ai
j and Bij

kl are tensor coefficients which do not have
radial dependence.
In the expression (15), we have (n − 1) terms of the form

Rij
kl − u2ðKi

kk
j
l −Ki

lK
j
kÞ þ

u2

l2
δ½ij�½kl�

∼
1

r2
½Bij

kl þ u2ðδikAj
l þ δjlA

i
k − δilA

j
k − δjkA

i
lÞ� þO

�
1

r4

�
:

(38)

In general, the integration in the continuous parameter u
present in the formula for vacuum energy is quite compli-
cated to solve.
However, in any dimension, from explicit computations in

the Kerr-AdS metric, one can notice that the leading-order
term in the expansion of the intrinsic curvature is the skew-
symmetric product of Ai

j with a Kronecker delta, that is,

Bij
kl ¼ −ðδikAj

l þ δjlA
i
k − δilA

j
k − δjkA

i
lÞ: (39)

The above reasoning allows us to factorize the expression
(38) in terms of the next-to-leading order in the expansion
of the extrinsic curvature as

Rij
kl − u2ðKi

kk
j
l − Ki

lK
j
kÞ þ

u2

l2
δ½ij�½kl�

∼
ðu2 − 1Þ

r2
ðδikAj

l þ δjlA
i
k − δilA

j
k − δjkA

i
lÞ þO

�
1

r4

�
:

(40)

The formula for the zero-point energy (15) also involves the
combination

Kk
i δ

i1
j1
þ Kk

j1
δi1i ¼ − 1

l
ðδki δi1j1 þ δkj1δ

i1
i Þ

þ l
r2
ðAk

i δ
i1
j1
þ Ak

j1
δi1i Þ þO

�
1

r4

�
; (41)

which, when multiplied by the totally antisymmetric
Kronecker delta, produces the identical cancellation of
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its first term. Just by a simple power-counting argument in the radial coordinate, the formula of the vacuum energy for Kerr-
AdS reduces to

qjð0Þi ¼ ð−2Þn−1c2nδ½jj1���j2n−1�½ki1���i2n−1� ðAk
i δ

i1
j1
þ Ak

j1
δi1i ÞAi2

j2
δi3j3 × � � � × Ai2n−2

j2n−2δ
i2n−1
j2n−1 (42)

after performing a trivial integration in the parameter u.
Then, the vacuum energy formula (14) in the limit r → ∞ is written as

Evac ¼ −
Z
Σ∞

d2n−1y
ffiffiffiffiffiffiffi−hp

qtð0Þt;

¼ − l2n−1
2nþ3πGn!

δ½n1n2���nn�½p1p2���pn�

Z
Σ∞

d2n−1y
ffiffiffiffiffiffiffi−hp 1

r2n
ðAp1

n1 − At
tδ

p1
n1 ÞAp2

n2 × � � � × Apn
nn ; (43)

in terms of the of the next-to-leading order quantities in the
expansion of both the extrinsic and intrinsic curvatures.
Here, the indices fni; pig are restricted to the angular part
of the boundary metric, that is, the angles of the sphere
S2n−1 (see Appendix C). Explicit results up to nine dimen-
sions are given below [45].

A. Five dimensions

As awarm-upwe evaluate the five-dimensional version of
the rotatingAdSvacuumspacetime (26)–(28), andweobtain

Eð5Þ
vac ¼ 3πl2

32G

�
1þ ðΞa − ΞbÞ2

9ΞaΞb

�
; (44)

which is already a standard result in the literature [7,9,10].

We stress the fact that Evac reduces to the one of a static
black hole with R × S3 topology at the boundary, either
when the rotation parameters vanish or when they equal
(a ¼ b). As we shall show below, this feature is also
present in higher odd-dimensional Kerr-AdS black
holes.

B. Seven dimensions

The sector withM ¼ 0 of the Kerr-AdS metric in seven
dimensions considers the deformation of global AdS
spacetime by the action of three rotation parameters.
The formula for the vacuum energy, Eqs. (14) and (15),
produces

Eð7Þ
vac ¼ − 5π2l4

128G

�
1þ 1

50ΞaΞbΞc
ððΞa − ΞbÞðΞa − ΞcÞð3Ξb þ 3Ξc − ΞaÞ

þ ðΞb − ΞcÞðΞb − ΞaÞð3Ξc þ 3Ξa − ΞbÞ þ ðΞc − ΞaÞðΞc − ΞbÞð3Ξa þ 3Ξb − ΞcÞÞ
�
: (45)

The above expression for the zero-point energy can be rewritten in a more compact way as

Eð7Þ
vac ¼ − 5π2l4

128G

�
1þ 1

100
Q

lΞl

X
i

X
j

X
k≠j

ðΞi − ΞjÞðΞi − ΞkÞð3Ξ − 4ΞiÞ
�
; (46)

where Ξ ¼ P
lΞl.

In the absence of previous results in the literature to compare with, we take the single-parameter limit in the above
expression (Myers-Perry)

Eð7Þ
vac ¼ − π2

1280l2Gð1 − a2

l2Þ
ð50l6 − 50l4a2 þ 5l2a4 þ a6Þ; (47)

from where we see that it coincides with the value computed using a quasilocal stress tensor—properly regularized using
counterterm method—by Das and Mann [6], and Awad and Johnson [7].
It is clear that the vacuum energy for Schwarzschild-AdS [46]

Evac ¼ − 5π2l4

128G
(48)
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is degenerated because it is the same for seven-dimensional
Kerr-AdS with all rotation parameters equal,
i.e., Ξa ¼ Ξb ¼ Ξc.

C. Nine dimensions

Evaluating the expression of the vacuum energy for a
nine-dimensional black hole with the maximal number
of rotation parameters is quite demanding from a

computational point of view. Because the formula involves
a totally antisymmetric Kronecker delta, the number of
calculations increases drastically with the dimension.
However, from the discussion above, we notice that
Eq. (43) must be integrated only in angular variables,
reducing the problem in two dimensions with respect to
the one of the spacetime. The result for the zero-point
energy in Kerr-AdS in nine dimensions is then given by

Eð9Þ
vac ¼ π3l6

322560GΞaΞbΞcΞd
ð15Ξ4

a þ 15Ξ4
b þ 15Ξ4

c þ 15Ξ4
d − 55Ξ3

aΞb − 55Ξ3
aΞc − 55Ξ3

aΞd

− 55Ξ3
bΞa − 55Ξ3

bΞc − 55Ξ3
bΞd − 55Ξ3

cΞa − 55Ξ3
cΞb − 55Ξ3

cΞd − 55Ξ3
dΞa − 55Ξ3

dΞb

þ 55Ξ3
dΞc þ 211Ξ2

aΞbΞc þ 211Ξ2
aΞbΞd þ 211Ξ2

aΞcΞd þ 211Ξ2
bΞaΞc þ 211Ξ2

bΞaΞd

þ 211Ξ2
bΞcΞd þ 211Ξ2

cΞaΞb þ 211Ξ2
cΞaΞc þ 211Ξ2

cΞbΞd þ 211Ξ2
dΞaΞb þ 211Ξ2

dΞaΞc

þ 211Ξ2
dΞbΞc þ 29Ξ2

aΞ2
b þ 29Ξ2

aΞ2
c þ 29Ξ2

aΞ2
d þ 29Ξ2

bΞ
2
c þ 29Ξ2

bΞ
2
d þ 29Ξ2

cΞ2
d

þ 1569ΞaΞbΞcΞdÞ: (49)

The reader may check, in a straightforward way, that for the case a ¼ b ¼ c ¼ d, the above expression has the same
property as in five and seven dimensions, as it reduces to the vacuum energy of static spherical black hole

Eð9Þ
vac ¼ 35π3l6

3072G
: (50)

It is evident that there is an equivalent form to Eq. (49) that makes this feature more manifest. Indeed, using all the
symmetries under the exchange of rotation parameters, the vacuum energy can be written as

Eð9Þ
vac ¼ 35π3l6

3072G

�
1þ 1

176400
Q

lΞl

X
i

X
j

X
k≠j

ðΞi − ΞjÞðΞi − ΞkÞ

× ð120Ξ2
i − 366ðΞ2

j þ Ξ2
kÞ þ ðΞj þ ΞkÞð−2646Ξi þ 2106ðΞ − Ξj − ΞkÞÞÞ

�
: (51)

When we take the limit of a single-parameter rotating black hole (b ¼ c ¼ d ¼ 0), Evac adopts the form

Eð9Þ
vac ¼ π3

21504l2Gð1 − a2

l2Þ
ð245l8 − 245l6a2 þ 21l4a4 þ 7l2a6 þ a8Þ: (52)

At once we notice a different value with respect to the one
found for the same solution in Ref. [6]. The origin of
this mismatch may be, in fact, that in order to obtain a
quasilocal stress tensor, the authors of Ref. [6] performed
an integration by parts in the highest-derivative terms of the
counterterm series in nine dimensions. This may lead to
finite contributions to the vacuum energy that different
from ours.

VI. CONCLUSIONS AND PROSPECTS

We have obtained explicit expressions for the vacuum
energy for Kerr-AdS black holes, geometry that admits
a maximal number of [ðD − 1Þ=2] commuting axial

symmetries. The expression up to nine dimensions exhibits
an interesting property: the zero-point energy reduces to
the one of a static AAdS black hole when all rotation
parameters are taken as equal to each other. It would be
interesting to understand the implications in the boundary
CFT of this vacuum energy degeneracy. It is likely that
this fact can be related to a symmetry enhancement that
the vacuum solution metric should exhibit in that case
(the deformation induced by the rotation parameters is
the same in all azimuthal directions).
We have not been able to identify a pattern in Evac for

Kerr-AdS, which would allow us to pass from the particular
results of the last section to a general formula, valid in any
odd dimension. We believe that the explicit expressions we
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found can be cast in a more compact form using parametric
integrations.
On the other hand, the agreement between the results

from Kounterterm charges and the ones obtained by holo-
graphic techniques in AdS gravity suggests that Eq. (15)
should be a part of the stress tensor Tij½h� ¼
ð2= ffiffiffiffiffiffiffi−hp ÞδIren=δhij, defined upon the addition of local
counterterms. A direct comparison between both formulas
would require, in general, converting extrinsic quantities
into intrinsic ones. This can be done considering the expan-
sion of the extrinsic curvature for AAdS spacetimes and
noticing that all terms in Eq. (15) up to the relevant order
can be expressed as contractions between the Riemann and
the Schouten tensors of the boundary metric [47].
A nonzero value for Evac modifies the derivation of the

positivity of energy for asymptotically AdS spacetimes, as
it has been emphasized in Ref. [27]. The existence of glob-
ally defined Killing spinors in a supersymmetry extension
of AdS gravity results in a vacuum energy formula given in
terms of the coefficients of the Fefferman-Graham expan-
sion of the metric [23]. We hope that the ongoing efforts to
compare the Cheng-Skenderis formula to ours are able to
provide an answer to this issue.
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APPENDIX A: KROMECKER DELTA OF RANK p

Many of the formulas in this paper are written in a more
compact form thanks to the use of the totally antisymmetric
Kronecker delta. Such an object of rank p is defined as the
determinant

δ
½ν1���νp�
½μ1���μp� ≔

���������

δν1μ1 δν2μ1 � � � δ
νp
μ1

δν1μ2 δν2μ2 δ
νp
μ2

..

. . .
.

δν1μp δν2μp � � � δ
νp
μp

���������
: (A1)

A contraction of k ≤ p indices in the Kronecker delta of
rank p produces a delta of rank p − k,

δ
½ν1���νk���νp�
½μ1���μk���μp�δ

μ1
ν1 � � � δμkνk ¼

ðN − pþ kÞ!
ðN − pÞ! δ

½νkþ1���νp�
½μkþ1���μp�; (A2)

where N is the range of indices.

APPENDIX B: GAUSS-NORMAL
COORDINATE FRAME

For most of the discussions in the present paper, the rel-
evant components of the Christoffel connection Γα

μν are
expressed in terms of the extrinsic curvature and radial
derivatives of the lapse function N as

Γr
ij ¼

1

N
Kij; Γi

rj ¼ −NKi
j; Γr

rr ¼
N0

N
: (B1)

In our conventions, the Riemann tensor is defined as

Rα
μβν ¼ ∂βΓα

νμ − ∂νΓα
βμ þ Γα

βγΓ
γ
νμ − Γα

νγΓ
γ
βμ; (B2)

which leads to the well-known Gauss-Codazzi relations

Rjr
kl ¼

1

N
ð∇lKi

k − ∇kKi
lÞ; (B3)

Rir
kr ¼

1

N
ðKi

kÞ0 − Ki
lK

l
k; (B4)

Rij
kl ¼ Rij

klðhÞ − Ki
kK

j
l þ Ki

lK
j
k; (B5)

where ∇l ¼ ∇lðΓÞ denotes the covariant derivative defined
in terms of the Christoffel symbol of the boun-
dary Γi

jk ¼ Γi
jkðhÞ.

APPENDIX C: PARAMETRIZATION
OF THE SPHERE S2n−1

In D ¼ 2nþ 1 dimensions we have n − 1 polar angles
θi, where 0 ≤ θi ≤ π

2
. Altogether, we have n azimuthal

angles, 0 ≤ ϕi ≤ 2π. The polar angles are related to the
direction cosines as

μi ¼
Yi−1
j¼1

cos θj sin θi; (C1)

or, more explicitly

μ1 ¼ sin θ1
μ2 ¼ cos θ1 sin θ2
μ3 ¼ cos θ1 cos θ2 sin θ3
..
.

μn−1 ¼ cos θ1 cos θ2 � � � cos θn−2 sin θn−1
μn ¼ cos θ1 cos θ2 � � � cos θn−2 cos θn−1:

: (C2)
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