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Quantum physics on manifolds with boundary brings novel aspects due to boundary conditions. One
important feature is the appearance of localized negative eigenmodes for the Laplacian on the boundary.
These can potentially lead to instabilities. We consider quantum field theories on such manifolds and
interpret these as leading to the onset of phase transitions.
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I. INTRODUCTION

In this paper, we consider the problem of general boundary
conditions for quantum fields defined on a manifold with a
boundary. Such manifolds are not only of mathematical
interest, but physically required in several condensed matter
systems as well as semiclassical gravity and string theory. For
simplicity, one might even start by considering a free scalar
field φ with a kinetic term which is given by the Laplacian
acting on φ. The choice of boundary conditions must be
consistent with the self-adjointness requirements on the
Laplacian and hence are generally described by the von
Neumann theory of self-adjoint extensions [1]. This theory
has recently been elegantly rephrased in [2] and has naturally
led to a framework for analyzing the effects of boundary
conditions which are more general than Neumann, Dirichlet.
Berry used general Robin boundary conditions to explain
novel behavior of the spectrum [3]. One of us used Robin
boundary conditions to obtain novel bound states localized on
the boundary to understand black hole entropy [4]. These
boundary conditions have effects on the Casimir energy and
this has been exhaustively analysed in [5,6]. There are a
number of related variants which have also been studied
before. Partially transparent boundaries for scalar fields [7]
and for the electromagnetic case [8] have been investigated.
The case when boundary conditions (which can also lead
to instabilities as explained below) can be modeled via
δ-functions has also been considered [9].
The set of boundary conditions is given by the choice of

a unitary operator U, or by the Hermitian operator K which
is its Cayley transform, on the boundary values of the fields
viewed as elements of a Hilbert space of L2-functions on
the boundary. (We emphasize that one could have more
general boundary values for fields which are not square-
integrable, singular charge distributions on the boundary
being one class of such examples. We will only consider
cases which are L2-functions.) Specifically, the most
general boundary conditions are given by

φþ i∂nφ ¼ Uðφ − i∂nφÞðφþ i∂nφÞðxÞ

¼
I
y
Uðx; yÞðφ − i∂nφÞðyÞ; (1)

where ∂nφ denotes the normal derivative of the field. The
alternate way to write this in terms of the Cayley transform
K is

∂nφ ¼ −i
�
U − 1

U þ 1

�
φ≡−Kφ: (2)

The simplest choices, K ¼ 0 and K → ∞, correspond to
Neumann and Dirichlet conditions, respectively. These are
special points in the space of boundary conditions. The
choice of K being proportional to the identity operator on
the Hilbert space of boundary values is the Robin con-
dition. One could choose more general ones with different
eigenvalues for K for different modes on the boundary.
The important point is that there are an infinity of choices
for K which leads to negative eigenvalues for Laplacian
associated with eigenmodes which are localized close to the
boundary. Such novel states have been exploited earlier in
several areas, like the quantum hall effect, topological
insulators and black hole physics [10]. Clearly such modes
will also be important for the Casimir effect and related
issues such as the pair production of particles. A point
worth emphasizing is that these modes of negative eigen-
values can occur infinitesimally close (in the space of
boundary conditions) to the “good choices” like Dirichlet
or Neumann. Generically, all such choices lead to insta-
bilities in many body physics. Our experience in physics is
that whenever instabilities arise, there is a way out, usually
via a phase transition or change of ground state. The classic
example is, of course, spontaneous symmetry breaking
where a negative ðmassÞ2 term signals the phase transition
to a new stable choice of ground state. The purpose of the
present paper is to ask to what extent a similar scenario can
work out for instabilities due to the boundary condition.
In most field-theoretic calculations, normally, the start-

ing point is to consider the theory at zero temperature. This
*trg@cmi.ac.in
†vpn@sci.ccny.cuny.edu

PHYSICAL REVIEW D 89, 025020 (2014)

1550-7998=2014=89(2)=025020(10) 025020-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.025020
http://dx.doi.org/10.1103/PhysRevD.89.025020
http://dx.doi.org/10.1103/PhysRevD.89.025020
http://dx.doi.org/10.1103/PhysRevD.89.025020


means that unless excitations are introduced via external
sources, the state of interest is the ground state. If needed
this can then be upgraded to finite temperature with all
states contributing, each weighted with the corresponding
Boltzmann factor. But in the present case, where the notion
of a ground state for the field theory is not clear, our basic
strategy will be to consider the partition function at finite
temperature and then ask whether it is possible to lower
the temperature to zero. We may view the partition function
as given by the functional integration over the fields in
Euclidean spacetime with periodicity along the imaginary-
time direction. We will then consider conditions under
which the Euclidean functional integral is well defined.
By considering the limit of this case where the instabilities
will begin to appear, we can get an understanding of how
the transition, if nay, should manifest itself.
In Sec. II, we will briefly consider a couple of examples

of how the negative eigenvalues arise. This is meant
primarily to set the framework. In Sec. III, we will present
Bose-Einstein condensation in terms of the Euclidean
functional integral at finite temperature and see that a
similar condensation is possible in the case of manifolds
with boundary due to the presence of negative eigenvalues
for −∇2. A key issue here is the existence of a conserved
charge (or particle number) with a corresponding chemical
potential. Since the particle number is fixed, an infinite
occupation number for the states of negative energy is not
possible and the theory has a many-body ground state.
In the following section (Sec. IV), we consider a real

massless scalar field. Since there is no conserved quantum
number in this case, the situation is different. We show how
a Euclidean functional can be defined if we impose a set of
restrictions on the theory. Effectively, at the level of free
particles, there is always a finite temperature, which will
play the role that the absolute zero of temperature does in
normal theories with no negative eigenvalues for the
Laplacian. There should also be an “unattainability rule”
for this value of temperature, just as the third law of
thermodynamics dictates for normal systems.
Once interactions are introduced, the story can change.

We show in Sec. V how corrections can be calculated in
the theory. The modes with negative eigenvalues lead to a
potential which is repulsive near the boundary and can alter
the eigenstates and eigenvalues. This gives a way of
removing singularities in the Euclidean functional integral.
Finally we end up with a discussion of the results and future
applications in Sec. VI.

II. EXAMPLES OF NEGATIVE EIGENVALUES

We will start by considering a couple of examples of
how negative eigenvalues can arise for −∇2. Normally this
is expected to be a positive definite operator. But with
boundary conditions which are motivated by physical
reasoning and generic, this character changes. This

discussion will help to give a concrete form to some of
the analysis later.
The first example corresponds to the space R2 from

which a circular disc of radius R has been excised. We
consider the eigenfunctions of the Laplace operator with
the boundary condition ð∂rψ þ κψÞ∣boundary ¼ 0 which is
known as the Robin boundary condition. In other words,
we chooseK to be the same for all eigenfunctions and equal
to a parameter κ. Here 1

κ has the dimensions of length. This
is the most general rotation-invariant boundary condition.
(Some clarification may be useful in this context. Quite
generally, with rotational symmetry, the boundary values
φþ i∂nφ may be considered as a linear combination of a
multiplet of functions corresponding to irreducible repre-
sentations of angular momentum of the appropriate dimen-
sion. (The present example is a bit too simple from this
point of view since the boundary is a circle and all
irreducible representations are one-dimensional.) The oper-
ator K would then have eigenvalues which are degenerate
for the members of the multiplet. More explicitly in
∂rφ ¼ −Kφ, we can expand φ in terms of angular
momentum eigenfunctions. The derivative, being radial,
does not mix these eigenfunctions, showing that K is
diagonal with the same eigenvalue for a given multiplet;
the eigenvalues of K could be different for different values
of the angular momentum for the multiplets. The simplest
case, namely, when K is independent of angular momen-
tum is when it is the same for all eigenfunctions. This is
what we consider. For more on this matter, but phrased
in the framework of heat kernel expansions, see [11].)
Physically a parameter such as κ can arise due to grainy
structure of the materials in condensed matter systems or
from Planck length which characterizes a fundamental
length scale in quantum geometry of spacetime.
The eigenvalue equation is written as

∇2ψ ¼ λ2ψ ; (3)

where we have introduced a minus sign so that negative
eigenvalues correspond to positive values of λ2. Separation
of variables in polar coordinates is straightforward and the
eigenfunctions are given by

ψnðr; θÞ ¼ CeinθKnðλrÞ: (4)

The required boundary condition becomes

κR ¼ zKn
0ðzÞ

KnðzÞ
; z ¼ λR: (5)

This equation can have solutions for negative values of κ, as
discussed in [4]. If z� is a solution of this transcendental
equation, the corresponding eigenvalue is λ2 ¼ ðz2�=R2Þ.
The largest negative eigenvalue is ∝ κ2. Typically one has a
finite number of such solutions given by the maximum
integer of κR. These are localized close to the boundary.
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For κ ¼ −∞, corresponding to Dirichlet conditions, these
are exactly on the boundary and decouples from functions
outside the boundary [12].
In Fig. 1 we display hrni; n ¼ 1; 2;…1000, the expect-

ation value of r for the nth eigenstate for κ ¼ −1000 and
R ¼ 1. It can be seen all the eigenstates are localized within
10−2% of the radius and all of them lie inside shell of
thickness of 10−5% of the radius of the disc. A similar
situation is obtained in three dimensions where a ball B3 is
excised. Now the number of negative energy states is ∝ R2.
The second example is obtained by the motivation to find

out the fate of bound states when the disc is squeezed. For
this purpose we consider the case of excising an elliptical
disc from R2. Separation of variables for the Laplacian is
possible if one uses elliptical coordinates which are given in
terms of the Cartesian ones by

x ¼ a cosh ρ cos θ; y ¼ a sinh ρ sin θ: (6)

Here ρ ¼ ρ0 corresponds to the elliptical boundary. In these
coordinates constant ρ curves are ellipses and constant θ
corresponds to hyperbolas orthogonal to the ellipses. Hence
ρ0 ≤ ρ < ∞ and 0 ≤ θ < 2π. The boundary condition is

ð∂ρψ þ κψÞjρ0 ¼ 0. (7)

Interestingly the number of bound states decreases as we
squeeze the circular disc and becomes ∝ a sinh ρ0, the
minor axis [13]. It is in fact possible to remove all the
bound states by squeezing sufficiently to lengths≤ 1

κ. Again
the bound states are localized near the boundary.

III. BOSE-EINSTEIN CONDENSATION

The negative energy bound states in the previous section
can create instabilities when a gas of particles at low
temperatures is considered in such a manifold. The

situation is similar to Bose-Einstein condensate where a
divergence in partition function and entropy are prevented
by a finite number of particles condensing at low temper-
atures. To bring out this comparison, we begin with a brief
discussion of Bose-Einstein condensation. Although this is
standard textbook material, we want to focus attention on
some points which can shed light on the problem at hand.
Consider a nonrelativistic gas of bosons, with energy

given by Ek ¼ k2=2m. The partition function is given
by Z ¼ Tre−βðH−μNÞ. Normally, we take the states to be
of the form

jn0; nk1 ; nk2 ; � � �i ¼
ða†0Þn0ffiffiffiffiffiffiffi
n0!

p ða†k1Þnk1ffiffiffiffiffiffiffiffi
nk1 !

p ða†k2Þnk2ffiffiffiffiffiffiffiffi
nk2 !

p � � � j0i: (8)

Writing z ¼ eβμ for the fugacity, we find

Z ¼
Y
k≠0

1

ð1 − zeβEkÞ
1

ð1 − zÞ : (9)

The fugacity is in the range 0 ≤ z ≤ 1. Notice that there is a
singularity in the partition function (and a corresponding
logarithmic singularity in the free energy) as z → 1. The
entropy may be evaluated as

S ¼ 5

2

V
λ3

g5
2
ðzÞ − logð1 − zÞ; gνðzÞ≡

X∞
1

zm

mν : (10)

Here λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=mT

p
is the thermal wavelength and V is the

volume of the system. There is a singularity in the entropy
as well, as z → 1. This singularity and the divergence of the
partition function as z → 1 is taken as the signal for a phase
transition. To understand the nature of this transition, we
restrict the total number of particles to be N. It is given in
terms of the average occupation numbers as

N ¼
X
k

z
eβEk − z

þ z
1 − z

¼
X
k

z
eβEk − z

þ n̄0; (11)

where n̄0 ¼ z=ð1 − zÞ is the average occupation number in
the lowest eigenstate of the single-particle Hamiltonian,
namely, k ¼ 0. Working out the integral over k, this
equation becomes

1 ¼ V
Nλ3

g3
2
ðzÞ þ n̄0

N
: (12)

As we lower the temperature, the thermal wavelength λ
increases, lowering the first term on the right-hand side,
namely, the contribution of the nonzero modes to this
equation. This can be compensated to some extent by an
increase of z, which also increases g3

2
ðzÞ. However, the

maximum value of g3
2
ðzÞ is at z ¼ 1, g3

2
ðzÞ ≤ g3

2
ð1Þ ≈ 2.612.

We see that, at temperatures lower than what is given by
this condition, the first term on the right-hand side of (12) is

FIG. 1. hrni vs n for κ ¼ −1000, R ¼ 1.
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less than 1 and the only way to satisfy (12) is then for n̄0=N
to be nonzero to make up the deficit. Thus even in the
thermodynamic limit of N → ∞, there is a nonzero fraction
(in other words a macroscopically significant number)
which must condense into the ground state. The signal
for this transition is the singularity in the partition function
Z as z → 1.
The new phase is determined by giving an expectation

value to a0, corresponding to the lowest energy eigenstate
(E ¼ 0). In other words, rather than states of the form (8),
we take them to be of the form

jα; nk1 ; nk2 ; � � �i ¼
ða†k1Þnk1ffiffiffiffiffiffiffiffi

nk1 !
p ða†k2Þnk2ffiffiffiffiffiffiffiffi

nk2 !
p � � � jα; 0i;

a0jα; nk1 ; nk2 ; � � �i ¼ αjα; nk1 ; nk2 ; � � �i: (13)

Now the partition function and the entropy become

log Z ¼ α�α log zþ V
λ3

g5
2
ðzÞ; S ¼ 5

2

V
λ3

g5
2
ðzÞ þ α�α log z:

(14)

The equation for the total number of particles is

1 ¼ V
Nλ3

g3
2
ðzÞ þ α�α

N
: (15)

This last equation determines α. We will get
α ∼

ffiffiffiffi
N

p
∼

ffiffiffiffi
V

p
, in the thermodynamic limit. We see that

there is no singularity in Z or S.
The field operator for the particles may be taken as

ψðxÞ ¼ 1ffiffiffiffi
V

p
X
k

ake−iEktþik⃗·x⃗;

ψ†ðxÞ ¼ 1ffiffiffiffi
V

p
X
k

akeiEkt−ik⃗·x⃗: (16)

With a0 ∼ α ∼
ffiffiffiffi
V

p
, we see that we get a nonzero value hψi

for the expectation value of ψ in the ground state of the
many-particle system.
It is also useful to consider this in terms of the Euclidean

functional integral. Writing

ψðxÞ ¼
X∞
−∞

eiωnτqnðx⃗Þ (17)

we find

Z ¼
Y
n;k

1

Ek þ iωn
: (18)

where Ek ¼ Ek − μ. The sum over Matsubara frequencies
in log Z is divergent. We introduce a Pauli-Villars regulator
to write

∂
∂Ek

log Z ¼ −
X
n

�
1

Ek þ iωn
− 1

Ek þMTiωn

�
: (19)

This is easily evaluated and leads to

log Z ¼ −
X
k

½logð1 − e−βEkÞ − logð1 − e−βðEkþMTÞÞ�:

(20)

When the regulator massM is taken very large, this reduces
to the expression corresponding to Z in (9); thus we may
start from the Euclidean functional integral, obtain (9) and
then carry out the rest of the analysis as done above. The
main point is that the signal for the transition is seen as a
singularity of the Euclidean functional integral. The
solution is also given by choosing conditions such that
the Euclidean functional integral is well defined.
Consider now the case where the Laplacian can have

negative eigenvalues. It is sufficient to consider just one
such mode to illustrate what happens. We denote the
corresponding energy eigenvalue as E ¼ −λ1. The partition
function Z is then given by

log Z ¼ −
X
k≠0

logð1 − ze−βEkÞ − logð1 − zÞ

− logð1 − zeβλ1Þ: (21)

We see that we get a singularity even before we get to
z ¼ 1, namely, at zeβλ1 ¼ 1. Once again, we can take this as
signaling a phase transition. In fact, taking the states to be
of the form

jα1; n0; nk1 ; nk2 ; � � �i ¼
ða†0Þn0ffiffiffiffiffiffiffi
n0!

p ða†k1Þnk1ffiffiffiffiffiffiffiffi
nk1 !

p ða†k2Þnk2ffiffiffiffiffiffiffiffi
nk2 !

p � � � jα1;0i

aλ1 jα1; n0; nk1 ; nk2 ; � � �i ¼ α1jα1; n0; nk1 ; nk2 ; � � �i (22)

we find

log Z ¼ α�1α1 logðzeβλÞ − logð1 − zÞ þ V
λ3

g5
2
ðzÞ;

1 ¼ V
Nλ3

g3
2
ðzÞ þ z

ð1 − zÞ þ
α�1α1
N

: (23)

The singularity is removed by going to the new phase.
We must also consider the value of the fugacity to be in the
range 0 ≤ z ≤ z1, z1eβλ1 ¼ 1.
Notice that the conservation of particle number is crucial

for this. The value of α1 has an upper bound by virtue
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of (23). Without such a constraint, or some such constraint
arising from a conserved quantum number (and a corre-
sponding fugacity), we can have an arbitrary number of
particles going into the negative energy state and creating a
theory with no ground state. This would be the case, for
example, for a relativistic massless scalar field. Further, in
the relativistic case, the Laplacian occurs under a square
root in the expression for the energy. So negative eigen-
values indicate imaginary energies, rather than negative
energies. The analysis in such cases will have similarities to
the present one, but there will also be differences. We now
turn to this problem.

IV. REAL SCALAR FIELD

We will start by considering a free scalar field theory for
which the equation of motion, in Euclidean spacetime, is
given by

□φ ¼ ∂2φ

∂τ2 þ∇2φ ¼ 0. (24)

Since boundary considerations are important, the first
question is to ask what the action is for which this is
the equation of motion. This is easily seen to be

S ¼ 1

2

Z
ð∂φÞ2 −

I
∂nφφ − 1

2

I
φKφ: (25)

The variation of this action gives

δS ¼
Z

δφð−□φÞ −
I

ð∂nδφþKδφÞφ ¼
Z

δφð−□φÞ;
(26)

where we have used the self-adjointness of K and
we also take fields and their variations to satisfy the
condition (2). This shows that S is indeed the correct
action for the variational derivation of the equations of
motion (24).
We can expand the field φ as

φðxÞ ¼
X
A

qAðτÞuAðx⃗Þ; (27)

where qA can depend on the imaginary time τ and the
modes uAðx⃗Þ are eigenfunctions of the spatial Laplacian,

−∇2uAðx⃗Þ ¼ ω2
AuAðx⃗Þ: (28)

The use of the mode expansion (27) reduces the cation to

S ¼ 1

2

X
A

ðq: 2A þ ω2
Aq

2
AÞ: (29)

All boundary terms cancel out in the simplification of this
expression.
The key point for our analysis is that the eigenvalues ω2

A
can be positive or negative. We separate them out as
fuAg ¼ ðfuαg; fuagÞ, with the first set corresponding
to positive eigenvalues and the second set to negative
eigenvalues,

−∇2uα ¼ ω2
αuα − ∇2ua ¼ −λ2aua (30)

with ω2
α and λ2a positive. The action S now becomes

S ¼ 1

2

X
α

ðq: 2α þ ω2
αq2αÞ þ

1

2

X
a

ðq: 2a − λ2aq2aÞ: (31)

The instability is manifest in the last term; the integration
of e−S over the variables qa can fail to converge. As
mentioned earlier, we will take the standpoint that the
theory must be defined by making the Euclidean functional
integral well defined. For this, consider periodic boundary
conditions in time τ with period β ¼ T−1, T being the
temperature. (We use units where the Boltzmann constant k
is set to 1.) Explicitly, we write

qαðτÞ ¼
1ffiffiffi
β

p
X
n

qαneiΩnτ; qaðτÞ ¼
1ffiffiffi
β

p
X
n

qaneiΩnτ;

(32)

whereΩn ¼ 2 πnT. Upon using this in (31), we see that the
first term of the action, namely S1, encounters no diffi-
culties. The second term S2 becomes

S2 ¼
X
a

X∞
1

q�anqanðΩ2
n − λ2αÞ þ

1

2

X
a

qa0qa0ð−λ2aÞ:
(33)

We see that we have stability if we make the restrictions
that qa0 ¼ 0 and that Ω2

1 ≥ Λ2, where −Λ2 is the lowest of
the negative eigenvalues. The last condition means that we
have stability only if

T ≥
Λ
2π

: (34)

With these conditions, we can have a well-defined func-
tional integral, the action being given by

S ¼ 1

2

X
α

X∞
0

q�αnqαnðΩ2
n þ ω2

αÞ

þ 1

2

X
a

X∞
1

q�anqanðω2
n − λ2αÞ: (35)

The functional integration is convergent. However, it is not
enough to ensure that the partition function is convergent to

QUANTUM FIELD THEORIES WITH BOUNDARIES AND … PHYSICAL REVIEW D 89, 025020 (2014)

025020-5



avoid pathologies. We have to make sure the propagators
are also well behaved. We will consider the calculation of
propagators and other correlators to see how a well-defined
theory can be obtained. The limit of T → Λ=2π can then be
examined to see if there is any phase change.
The propagator for the modes of positive eigenvalues is

straightforward and gives

hqαðτÞqβðτ0Þi ¼ δαβ
1

2ωα
½e−ωαðτ−τ0Þθðτ − τ0Þ

þ eωαðτ−τ0Þθðτ0 − τÞ
þ Nωðe−ωαðτ−τ0Þ þ eωαðτ−τ0ÞÞ�: (36)

This can be continued to Minkowski signature using
τ − τ0 → iðt − t0Þ to get the corresponding correlator in
Minkowski space as

hqαðtÞqβðt0Þi ¼ δαβ
1

2ωα
½e−iωαðt−t0Þθðt − t0Þ

þ eiωαðt−t0Þθðt0 − tÞ
þ Nωðe−iωαðt−t0Þ þ eiωαðt−t0ÞÞ�: (37)

In (36) and (37),

Nω ¼ 1

eβωα − 1
: (38)

These equations are standard, essentially textbook material.
We now turn to the negative eigenvalues for which we need
to evaluate

hqaðτÞq�bðτ0Þi ¼ δab
1

β

X∞
1

eiΩnðτ−τ0Þ 1

Ω2
n − λ2a

: (39)

Recall that the sum does not include the n ¼ 0 mode. This
expression can be converted to a contour integral, for
τ − τ0 > 0, as

hqaðτÞq�bðτ0Þi

¼ δab
1

2

�I
C

dz
2π

eizðτ−τ0Þ 1

ðz2 − λ2aÞðeiβz − 1Þ þ
1

βλ2a

�
; (40)

where the contour C must enclose all the poles of
ðeiβz − 1Þ−1 but not those which arise from ðz2 − λ2aÞ−1.
Unlike the case for the positive eigenvalues, we now

have additional poles on the real axis due to ðz2 − λ2aÞ−1.
Therefore we choose the contour as shown in Fig. 2.
The bold dots are the poles at z ¼ �λa, which must be
outside the contour. The dots at n ¼ 0;�1; � � �, are the
poles due to ðeiβz − 1Þ−1. We can now extend the contours
as much as we like into the imaginary directions, since
there are no further poles to worry about. Further, the factor
eizðτ−τ0Þ × ðeiβz − 1Þ−1 assures that the integrand falls off
exponentially along the imaginary axis. Therefore, we can
replace the contour C by the new one C1 as shown in
Fig. 3. The contribution is now from the poles at z ¼ �λa.
We then get (for τ − τ0 > 0)

hqaðτÞq�bðτ0Þi ¼ δab

�
i

4λa

�
e−iλaðτ−τ0Þ
e−iβλa − 1

− eiλaðτ−τ0Þ
eiβλa − 1

�
þ 1

2βλ2a

�
.

(41)

For τ − τ0 < 0, we do not obtain the needed falloff along
the imaginary directions using ðeiβz − 1Þ−1. Instead we
can use eiβz × ðeiβz − 1Þ−1 which has the same poles and
residues as ðeiβz − 1Þ−1. The rest of the analysis is similar
to the case of τ − τ0 > 0 and we get, for τ − τ0 < 0,

hqaðτÞq�bðτ0Þi¼δab

�
−

i
4λa

�
e−iλaðτ−τ0Þ
eiβλa−1

− eiλaðτ−τ0Þ
e−iβλa−1

�
þ 1

2βλ2a

�
.

(42)

The two cases (41) and (42) can be combined as

FIG. 2. The contour C for the integral in (40).

FIG. 3. The contour C1 for the integral which gives (41).
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hqaðτÞq�bðτ0Þi ¼ δab

�
1

2βλ2a

− 1

8λa sinðβλa=2Þ
½expð−iλaðτ − τ0Þ

� iβλa=2Þ þ expðiλaðτ − τ0Þ∓iβλa=2Þ�
�

(43)

where the upper sign applies to τ − τ0 > 0 and the lower
to τ − τ0 < 0. We may rewrite this also as

hqaðτÞq�bðτ0Þi ¼ δab

�
1

2βλ2a
− 1

8λa sinðβλa=2Þ

×

�Z
dp0e−ip0ðΔ−β=2Þðδðp0 − λaÞ

þ δðp0 þ λaÞÞ
��

; (44)

where Δ ¼ τ − τ0 and we have only written the case for
τ − τ0 > 0. We can continue this to Minkowski signature
by the replacements p0 → ip0, Δ → iðt − t0Þ. This leads
to the Minkowski space expression

hqaðtÞq�bðt0Þi ¼ δab

�
1

2βλ2a
− i
4 sinðβλa=2Þ

×

�Z
dp0eip0ðt−t0Þ∓p0β=2δðp2

0 þ λ2aÞ
��

:

(45)

We see that there is an exponentially growing part to this
and hence there is an instability in processes if we couple
this to external sources and consider, for example, a
scattering problem. This can be avoided if we make the
following additional rule:

Observer has access only to the modes qαn, corresponding
to the positive eigenvalues.

Thus in any Feynman diagram, we cannot have qan in the
external lines or coupling to sources.
We might also worry about possible singularities because

of the sinðβλa=2Þ in the denominator in (45). This can
happen for T ¼ λa=2 πn. All such values are excluded
already by (34), except for n ¼ 1 and λa ¼ Λ. This last
point is the limit of the inequality in (34). It is also excluded
if we postulate an unattainability rule that the inequality
in (34) cannot be saturated, something like a new third law
of thermodynamics. Our conclusion is that the Euclidean
functional is well defined and the Minkowski continuation
of correlators can be meaningfully interpreted if we make
the restrictions:

i. qa0 ¼ 0
ii. T > Λ

2π, with the limit T ¼ Λ
2π unattainable

iii. Observers have access only to the modes qα, not
to qa. However, qa can contribute to processes
via loops.

We now return to thermodynamic considerations,
calculating the free energy and the entropy due to the
unstable modes. For the contribution to the free energy, we
may write

βF ¼
X
a

X∞
1

logðΩ2
n − λ2aÞ: (46)

Differentiating with respect to λa we get a sum similar to
what was obtained for the propagators. Carrying out the
summation with the same contour integration techniques,
and integrating over λa, we find

βF ¼
X
a

½− log λa þ log ð2i sinðβλa=2ÞÞ

þ ðλa−independent termÞ� (47)

The constant term can be identified by looking at small
values of βλa. This leads to

F ¼ 1

β

X
a

log
�
sinðβλa=2Þ
ðβλa=2Þ

�
: (48)

The entropy can be calculated as

S ¼ 1þ
X
a

log
�
sinðβλa=2Þ
ðβλa=2Þ

�
−X

a

βλa
2

cotðβλa=2Þ:

(49)

In both the free energy and the entropy, there is a singularity
as βλa → 2π. For βλa ¼ 2ðπ − ϵÞ,

F →
1

β
logðϵ=πÞ; S →

π

ϵ
þ log ϵ: (50)

We take this as signaling a phase transition. We could
consider the field as developing an expectation value.
However, unlike the case discussed in Sec. II, we do not
have a conservation law for the particle number and hence
there is no equation which can serve to determine the
expectation value. This is the same problem as in the Bose-
Einstein condensation of a free relativistic massless scalar
field; the action is of the form S ¼ 1

2

R ð∂φÞ2and the theory
can exist in a phase with hφi ¼ any constant value. If there
are interactions, such as a φ4-term, then the interaction will
eventually serve to determine hφi. This is also the case for a
theory with a negative (mass)ðmassÞ2 term, which is closer
to the situation we have. Mass corrections can generically
boost the negative eigenvalues to positive or zero values. In
the context of the δ-function potentials mentioned in the
introduction, such a mechanism has been studied in [7] and
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also in [14]. (See also the added reference [15].) So to
analyze this possibility, we will now consider possible mass
corrections arising from a φ4-interaction.

V. THE INTERACTING THEORY

The action for the interacting theory will be taken to be

S ¼
X
α

X∞
1

q�αnqαnðΩ2
n þ ω2

αÞ þ
1

2

X
α

q2α0ω
2
α

þ
X
a

X∞
1

q�anqanðΩ2
n − λ2aÞ þ g

Z
φ4: (51)

We will separate out the unstable modes by writing
ϕ ¼ φþ η, where

φ ¼ 1ffiffiffi
β

p
X

qαneiΩnτuαðx⃗Þ;

η ¼ 1ffiffiffi
β

p
X

qaneiΩnτuaðx⃗Þ: (52)

The strategy is to integrate out the η’s to obtain an effective
action for the φ’s. This result can then be continued to
Minkowski space and real-time processes can be calcu-
lated. So long as there are no sources coupled to the
unstable modes, η’s only contribute in loops and this
process can be consistently implemented.
First of all, let us consider tree-graphs where the

η-propagator can occur. The question is whether these can
lead to new instabilities requiring new restrictions. Consider
as an example the term

R
ϕðxÞ3hηðxÞηðyÞiϕðyÞ3. Using the

expression for the propagator in ((44)), this can be evaluated
in a straightforward manner as

Z
ϕðxÞ3hηðxÞηðyÞiϕðyÞ3 ¼

Z
d4xd4yϕðxÞ3Vðx; yÞϕðyÞ3;

(53)

where

Vðx; yÞ ¼
X
a

uaðx⃗Þu�aðy⃗Þ
Z

dω
2π

dω0

2π
eiωx

0þiω0y0

×

�ð2πÞ2δðωÞδðω0Þ
2βλ2a

− 2 πδðωþ ω0Þ
2ðω2 þ λ2aÞ

�
: (54)

There is nothing pathological about this. Notice that the first
term in Vðx; yÞ is an instantaneous potential which is also
temperature dependent. It is confined to a region close to
the boundary since the uaðx⃗Þ fall off as we move away from
the boundary. Turning to loop corrections, the simplest one
we can evaluate is the one-loop mass correction due to the
unstable modes. This is easily seen to be given by

ΔS ¼ 1

2

Z
VðxÞϕ2ðxÞ;

VðxÞ ¼ 12g
X
a

uaðx⃗Þu�aðx⃗Þ
�

1

2βλ2a
− 1

4λa
cotðβλa=2Þ

�
:

(55)

Being a position-dependentmass term, this is really a single-
particle potential for theϕmodes.VðxÞ is again concentrated
near the boundary. It is positive for all values of βλa in the
range of interest. Thus ϕ’s experience a repulsive potential
near theboundaryhelping to avoid any further instabilities, at
least to this order.
Let us now consider the thermodynamic quantities. The

partition function will get contributions from diagrams of
the type shown in Fig. 4, where the propagators are those
corresponding to the unstable modes η. The first term is
the free part which gives the expressions (48) and (49). The
extra loops correspond to the modification of the propa-
gator via a mass correction for the η fields. So while this
does not have to be taken account of in external lines,
this mass correction does influence the thermodynamics.
Evidently, the mass correction for this is of the form
1
2

R
VðxÞη2. Thus the effect of the series is to change the

expression for the free energy to

βF ¼
X
a

X∞
1

logðΩ2
n − ~λ2aÞ; (56)

where ~λa are the eigenvalues of −∇2 þ VðxÞ,

ð−∇2 þ VðxÞÞ ~ua ¼ −~λ2a ~ua (57)

with VðxÞ as given in (55). This extra repulsive potential
can make the eigenvalues −~λ2a positive avoiding the
singularity as βλa → 2π. Unfortunately, an explicit calcu-
lation is rather difficult, since the potential VðxÞ diverges as
βλa → 2π, making any perturbative evaluation of correc-
tions inadequate. Nevertheless, it is useful to get an
estimate of the correction to the eigenvalues in perturbation
theory, say, to first order. For the example introduced in
Sec. II of R2 with a disc of radius R excised from it,
consider the case when we have only one eigenstate with
negative eigenvalue. This can be obtained for κR ¼ 0.5

FIG. 4. Diagrams involving the propagator of the unstable
modes which contribute to the partition function.
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for example. Taking this as an illustrative case, we find
z� ≈ 0.165725 and the eigenfunction is

uðxÞ ¼ ð2πR2IÞ−1=2K0ðz�r=RÞ; I

¼
Z

∞

1

dwwðK0ðz�wÞÞ2: (58)

The eigenvalue −z2�=R2, with the first correction included
becomes

−~λ2 ≈
z2�
R2

�
−1þ ð0.2102Þ × 3g

λ

�
1

ðβλ=2Þ − cotðβλ=2Þ
��

:

(59)

The correction is not small except for very small g and βλ, and
diverges as βλ → 2π, showing that the negative modes are
eliminated before we get to βλ ¼ 2π. As mentioned above,
perturbation theory is not adequate for this analysis;weplan to
explore a numerical approach to this question in the future.

VI. DISCUSSION

In this paper we have considered field theories on
manifolds with boundaries and for which the one-particle
kinetic energy operator, taken as the Laplacian, has
negative eigenvalues. The possibility of negative eigenval-
ues is related to the choice of boundary conditions. The
general theory shows that there is a large class of boundary
conditions, in fact infinitesimally close to standard and
well-known ones such as Dirichlet and Neumann, for
which the Laplacian can have negative eigenvalues.
Explicit illustrative examples were given in Sec. II. Our
strategy for analyzing such theories was to start with
defining the theory at finite and high enough temperature
for which we have a well-defined partition function and
then pose the question of whether we can lower the
temperature to zero. The analysis leads to three differ-
ent cases.
If we consider free field theories with a conserved particle

number operator, there is Bose-Einstein condensation as we
lower the temperature with a thermodynamically nontrivial
fraction condensing into the mode with the lowest (and
negative) eigenvalue for the Laplacian; the transition temper-
ature is related to this lowest eigenvalue. Stability in this case
is due to the total number of particles being fixed.
By contrast, if we consider a real scalar field, for which

there is no conserved number operator (and hence no
corresponding chemical potential), we find that a stable
theory is possible only if the temperature remains above a
certain value Λ=2π, where −Λ2 is the lowest eigenvalue of
the Laplacian. The temperature Λ=2π plays the role of
absolute zero for this case, with a corresponding unattain-
ability condition (as in the usual third law of thermody-
namics). Further, observers should have access only to the
modes with positive eigenvalues. These features, particularly

the fact that the system shows finite temperature and that
the modes of negative eigenvalues are localized near the
boundary, are very suggestive of what is observed in the
region outside the horizon of a black hole. At this point,
this is still an intriguing analogy; the possibility of a
deeper connection is worth exploring. As the temperature
approaches the value Λ=2π, thermodynamic quantities such
as the free energy and entropy diverge again suggesting a
phase transition. However, within the free theory, there is no
way to determine the expectation value for the field.
The third case of interest, which is also related to the

second case, is when we have an interacting scalar field
theory. We considered a simple example of a φ4-type
interaction. The modes with negative eigenvalues can
contribute in loops and the general effect is to create a
new repulsive potential near the boundary. We expect this
to eliminate the negative eigenvalues and lead to a stable
theory as the temperature approaches the critical value
Λ=2π. The extra potential diverges as this limit is
approached, making any perturbative analysis nonviable.
We plan to explore this question is more detail numerically
in future work.
The addition of “mass term” on the boundary would

presumably save the thermodynamic quantities such as the
free energy. But the negative energy modes localized at
the boundary remain as “zero energy” modes. The lesson is
there could be edge states localized at the boundary even in
conventional circumstances, but under perturbation through
interactions they will go away since there is “no gap” with
bulk modes. But with new boundary conditions which have
global origin they will remain stable. This will be seen in
the behavior of two-point functions of the edge modes.
Lastly we would like to remark about fermionic theories.

The Dirac operator on such manifolds have to be supple-
mented by Atiyah, Patodi and Singer global boundary
conditions [16] in order to be self adjoint. The square of the
Dirac operator is positive definite, but edge states localized
on the boundary persists, see for example [12]. This can
change thermodynamics, a question which we plan to
explore in the future.
After this paper was written, we became aware of [15]

where a specific realization of the negative eigenvalues is
used as a possible mechanism for breaking gauge sym-
metries. (We thank S. Ohya for bringing this work to our
attention.) Our analysis is quite different, even though there
are some points of overlap. We consider the question of
how the scalar field self-interactions affect the whole issue
of condensation to be not settled in that case as well.
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