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We discuss a mechanism for the apparently universal scaling in the high-multiplicity tail of charged
particle distributions for high-energy nuclear collisions. We argue that this scaling behavior originates from
rare fluctuations of the nucleon density. We discuss a pair of simple models of proton shape fluctuations. A
“fat” proton with a size of 3 fm occurs with observable frequency. In light of this result, collective flow
behavior in the ensuing nuclear interaction seems feasible. We discuss the influence of these models on the
large-x structure of the proton and the likely influences on the distribution of initial-state spatial
eccentricities ϵn.
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I. INTRODUCTION

We seek to understand high multiplicity events in pþ Pb
collisions at the LHC for which flow-like properties have
recently been observed [1,2]. The properties of events in the
large Npart tails of these multiplicity distributions resemble
in many respects those of Pbþ Pb events at the same
multiplicity. We propose that the tail of the pþ Pb multi-
plicity distribution arises from long-lived (on the collision
time scale) quantum fluctuations in the colliding proton’s
wave function, as opposed to fluctuations in the Pb nucleus
or fluctuations in the final-state particle production process.
Our argument is based on the hypothesis that the wave

function of the nucleon includes configurations that are so
spatially extended that their inelastic cross section is much
larger than the average. These fluctuations correspond to
relatively low-energy excitations of the proton in the
comoving frame, which are vastly time dilated in the
reference frame of the Pb nucleus. As such they can
be considered as approximately frozen during the entire
pþ Pb collision, except for perturbations caused by the
interactions with nucleons in the Pb nucleus.
Having a larger geometric size, it is natural to expect that

the incident proton will have a much larger cross section
with the nucleus when it finds itself in one of these
configurations. As a result, more energy will be deposited
and more particles will be produced. Such cross-section
fluctuations in hadron collisions have a relatively long
history of study [3–7]. What is most important for the
interpretation of the observed collective flow-like proper-
ties of the high-multiplicity events, however, is that the
energy will be deposited over a much larger transverse area,
which makes the validity of a hydrodynamical description
[8–12] of the following expansion more credible.

In the following, we will consider two alternative models
for the spatial structure of the large-size configurations of a
highly boosted nucleon. The first model is based on the
flux-tube model of quark confinement (we call this the
“stringy” nucleon). The second is a pion-cloud model, in
which the nucleon is surrounded by one or several soft
virtual pions (we call this the “cloudy” nucleon). We will
argue on the basis of existing data for the antiquark
distribution in the nucleon that the probability of finding
the nucleon surrounded by a cloud of four pions is of
the order of Pð4πÞ ∼ 10−6 and thus should be abundantly
sampled in the CMS experiment, which recorded an event
sample corresponding to 6 × 1010 minimum bias events.
We start with a discussion of multiplicity fluctuations

induced by fluctuations in the nucleon-nucleon cross
section, introduce two physical models for these fluctua-
tions and finally develop models of the spatial eccentricities
arising from them.

II. MULTIPLICITY FLUCTUATIONS

In the recent papers [13,14] the authors considered
fluctuations in the total nucleon-nucleon cross section
σNN arising from color fluctuations in the initial nuclear
densities along with the usual contributions from the
varying number of participating nucleons.
We reproduce some simple arguments which show that

large geometric cross sections favor a large number of
nucleon-nucleon interactions. We shall set aside impact
parameter fluctuations in Npart and only consider contri-
butions arising from a fluctuating nucleon cross section σ.
Following the optical Glauber model we consider the
incident proton as a cookie-cutter punching out a tube of
cross-sectional area σ from the target nucleus. We define
Npart as the number of nucleons in this tube and take it to be
Poisson distributed with mean

n̄ðσÞ ¼ σρL; (1)
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where ρ ¼ 0.138 fm−3 is the nucleon density per unit
volume and L ≈ 10 fm is the length of the nucleus as
seen by the incident proton in a central pþ Pb collision.
Then the probability of observing a given Npart is

pðNpartÞ ¼
ðσρLÞNpart

Npart!
expð−σρLÞ: (2)

Taking the average value of hσi ¼ σNN ¼ 4.803 fm2 [15]
then E½Npart� ¼ n̄ðσNNÞ ¼ 6.73. Let us consider distribu-
tional forms for σ along with that presented in
Refs. [13,16]: we fix the mean of the proposed distributions
to the average hσi ¼ σNN ¼ 4.803 fm2. We pick two
probability distributions to model the fluctuations of the
cross section: a gamma distribution and a log normal
(see Fig. 1). The densities are

pAlvioliðσÞ¼ρ
σ

ðσþσ0Þ
exp

�
−ðσ=σ0−1Þ2

Ω2

�
;

ρ¼0.363; Ω¼0.69; σ0¼4.80 fm2; (3)

pgammaðσÞ ¼
σk−1 exp ð− σ

θÞ
θkΓðkÞ ;

θ ¼ hσNNi
k

; k ¼ 4.0; (4)

plog normalðσÞ ¼
1

σδ
ffiffiffiffiffiffi
2π

p exp

�
− ðlogðσÞ − σNNÞ2

2δ2

�
;

δ ¼ 0.428: (5)

We fix the values of k and δ in the gamma and log-
normal distributions so that both of the proposed distribu-
tions have the same variance. The Miettenen-Pumplin
relation [17] connects the scaled variance of PðσÞ to the
ratio of single inelastic and elastic cross sections at t ¼ 0,

Z
PðσÞ

�
σ

σNN
− 1

�
2

dσ ≡ ωσ

¼ dσðpþ p → X þ pÞ=dt
dσðpþ p → Pþ pÞ=dt

����
t¼0

: (6)

Our proposed distributions have ωσ ¼ 0.25 which is
consistent with current experimental results.
The joint probability distributions of Npart and σ are

shown for some fixed values of Npart in Fig. 2. From these
figures it is clear that large fluctuations in the cross section
σ are more likely to contribute at larger values of Npart.
We compute the average cross section σ̂ðNpartÞ for each of
the proposed distributions,

σ̂ðNpartÞ ¼
R∞
0 σpðσ; NpartÞdσR∞
0 pðσ; NpartÞdσ

: (7)

These effective cross sections are shown in Fig. 3 as a
function of the number of participants. The effective cross
section grows roughly linearly with the number of partic-
ipants. Events with large Npart are more likely to be events
with a large cross section and thus a large effective proton
area. We show the influence of the variance of the proposed
cross-section distributions in Fig. 4: a larger variance
enhances the effective cross section for a given number
of participants.
Having established that fluctuations in the cross section

can be selected by requiring large fluctuations in the
number of participants, let us now consider some simple
models of these fluctuations.
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FIG. 1 (color online). Proposed probability distributions for
fluctuations in the total cross section σNN .
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FIG. 2 (color online). Joint probability distributions for σ and Npart at values of fixed Npart. From left to right the Alvioli, gamma and
Gaussian distributions are shown. These results do not include the effects of impact parameter fluctuations or nucleon-nucleon
correlations.
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III. THE STRINGY MODEL

In the stringy model we model the fat proton as three
valence quarks connected by color flux tubes. This phe-
nomenological model is inspired by results from quenched
lattice QCD which show that at even relatively modest
valence-quark separations the gluon field in a nucleon
localizes into flux tubes [18,19]. In three-body problems it
is often convenient to use Jacobi coordinates,

u ¼ x2 − x1; pu ¼
1

2
ðp1 − p2Þ;

v ¼ ðx2 þ x1Þ=2 − x3; pv ¼
1

3
ðp1 þ p2 − 2p3Þ;

w ¼ ðx1 þ x2 þ x3Þ=3; pw ¼ p1 þ p2 þ p3: (8)

In the center-of-mass (c.m.) frame pw ¼ w ¼ 0. Neglecting
spin effects, we can write a wave equation for this system as

½p2
1 þ p2

2 þ p2
3 þ Vðx1; x2; x3Þ2�Ψ ¼ E2Ψ; (9)

where Vðx1; x2; x3Þ is the interquark potential [20]. Here we
approximate this potential as a linear confinement potential
with string constant k in the limit of very spatially extended
configurations. We assume a star-like configuration of flux
tubes converging on the c.m. of the quark configuration,

Vðx1; x2; x3Þ ¼ k

����� u2 þ
v
6

����þ
���� u2 −

v
6

����þ
���� 2v3

����
�
: (10)

Neglecting cross terms in the large spatial extent regime we
approximate the potential for convenience as

Vðx1; x2; x3Þ2 ¼ k2ðu2 þ v2Þ: (11)

The wave equation then takes the form

��
2p2

u þ
3

2
p2
v

�
þ k2ðu2 þ v2Þ

�
Ψ ¼ E2Ψ: (12)

The solution for the wave function is

Ψðu; vÞ ¼ N exp

�
− ku2

2
ffiffiffi
2

p − kv2ffiffiffi
6

p
�
: (13)

From the normalization requirement

1 ¼
Z

∞

0

Ψ2u2v2dudv; (14)

we obtain N2 ¼ 16
π33=4

k3. The mass of the nucleon in this
simple model is

E2 ¼
� ffiffiffi

2
p

þ
ffiffiffiffiffiffiffiffi
3=2

p �
k ¼ 0.53 GeV2: (15)

The mean square radius of the system is

hr2i ¼
Z

u2v2Ψ2
1

6
ð3u2 þ 4v2Þdudv;

¼
31=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 7

ffiffi
3

p
2

q
2k

¼ 2.28541
k

: (16)

Taking a string constant k ¼ 1 GeV=fm we obtain the
root-mean-square (rms) radius of these configurationsffiffiffiffiffiffiffiffi
hr2i

p
¼ 0.674 fm. The fraction of configurations of

radius ρðrÞ can be computed from

ρðr2Þ ¼
Z

Ψ2δ

�
r2 −

�
u2

2
þ 2v2

3

��
u2v2dudv: (17)

This is plotted in Fig. 5.
The fraction ρ of configurations with total flux-tube

length L ¼ uþ v,

ρðLÞ ¼
Z

Ψ2δðuþ v − LÞu2v2dudv; (18)

is shown in Fig. 6. The average total flux-tube length is
hLi ¼ 1.155 fm. The probability of the total flux-tube
length exceeding a certain value of L,
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FIG. 3 (color online). The average cross section as a function of
the number of participants for each of the proposed cross-section
distributions. These results do not include the effects of impact
parameter fluctuations or nucleon-nucleon correlations.
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FIG. 4 (color online). The average cross section as a function
of the number of participants for the gamma cross-section
distribution with constant mean and increasing variance.
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P>ðLÞ ¼
Z

∞

L
ρðL0ÞdL0; (19)

is shown in Fig. 7. Configurations with very long flux
tubes occur with observable frequency; for instance, we
would expect there to be approximately 104 events with
L > 2.8 fm in the CMS pþ Pb data.

IV. THE CLOUDY MODEL

There is a nonvanishing probability for a proton to
produce a virtual pion via the transition p → nπþ or
p → pπ0. Isospin symmetry dictates that Pðp → nπþÞ ¼
2Pðp → pπ0Þ. The proton can also produce a virtual pion
and simultaneously excite itself into one of the states of the

Δ resonance: p → Δπ. As this transition requires an
additional 300 MeVof energy, we neglect this contribution
here, but it would need to be taken into account in a more
complete treatment.
Since the configuration with a single virtual pion

contains either a neutron or a proton, it can spawn another
virtual pion by the same mechanism. Assuming that the
consecutive pion production processes are independent
then the number of virtual pions Nπ accompanying the
proton is given by a Poisson distribution with mean given
by the average number of virtual pions hnπi. The proba-
bility of finding the incident nucleon accompanied by a
cloud of Nπ pions is thus

PðNπÞ ¼
hnπiNπ expð−hnπiÞ

Nπ!
: (20)

Experimental information about the virtual pion cloud of
the nucleon is obtained, e.g. from exclusive pion produc-
tion in electron scattering off the nucleon, or the measure-
ment of the isovector component of the antiquark
distribution in the nucleon [21–23]. Here we focus on
the second method.

A. The d̄=ū asymmetry

Parton distribution functions fiðx;Q2Þ (PDFs) [24]
give the unnormalized probability of finding a parton
of species i with a given momentum fraction x in a
proton at a given scale Q. The distributions are normal-
ized so that Z

1

0

fuðxÞ − fūðxÞdx ¼ 2; (21)

Z
1

0

fdðxÞ − fd̄ðxÞdx ¼ 1; (22)

Z
1

0

xfqðxÞ þ xfq̄ðxÞ þ xfgðxÞdx ¼ 1: (23)

The first two integrals fix the number of valence
quarks of each flavor in the proton, and the third sum
ensures conservation of the total momentum of the
proton.
The Gottfried sum rule is given in terms of the second

nucleon structure function FN
2 ðx;Q2Þ ¼ P

axfaðx;Q2Þ,

Sg ¼
Z

1

0

ðFp
2 − Fn

2Þ
dx
x

¼ 1

3
þ 2

3

Z
1

0

½fūðxÞ − fd̄ðxÞ�dx: (24)

The naive value for this sum would beSg ¼ 1
3
, based on the

notion that sea quarks arise from the splitting of gluons,
implying that the antiquark distribution functions in the
nucleon are flavor symmetric. However several experiments
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FIG. 5 (color online). The probability distribution for the mean
square radius of the extended nucleon ρðrÞ.
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FIG. 6 (color online). The probability distribution for the total
flux-tube length in the limit of a very extended proton.
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FIG. 7 (color online). The probability for the total flux-tube
length to be greater than L in the limit of a very extended proton.
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have found a nonvanishing net flavor asymmetry in the
distribution of sea quarks [25]. A review of the theory of this
asymmetry can be found in Ref. [26]. We shall pursue the
idea that the asymmetry is the consequence of the presence
of a cloud of virtual pions as developed in Refs. [27,28].
The E866 results [25] give

R
1
0 ½fd̄ðxÞ − fūðxÞ�dx ¼

0.118� 0.012. If we interpret the asymmetry as arising
solely from the production of virtual pions we can set
Pðp → nπþÞ ¼ 0.118. Considering isospin symmetry, this
leads to the conjecture hnπi ¼ 3

2
× 0.118 ¼ 0.177.

B. Antiquark distribution in the nucleon

Following Refs. [27,28] we can write down the con-
tribution to the overall proton light-antiquark PDF of a
single virtual pion. This is given in terms of the convolution
of the light-cone momentum distribution of a virtual pion
fπ;N , the probability of finding a pion with momentum
fraction y, and the pion antiquark PDF gq̄ðx=y;QÞ,

xfð1Þq̄ ðx;QÞ ¼ C2
Z

1

x
dyfπ;NðyÞ

x
y
gq̄

�
x
y
;Q

�
; (25)

where C is the associated isospin Clebsch-Gordan
coefficient,

fπ;NðyÞ ¼ − g2πNN

16π2
y
Z

tm

−∞
−t

ðt −m2
πÞ2

jFπNNðtÞj2; (26)

FπNNðtÞ is the nucleon-nucleon-pion form factor and
tmðyÞ ¼ −M2

N
y2

ð1−yÞ is the maximum invariant momentum
transferred to the pion. In the literature the following form
factors are suggested [26,29]:

Fmonopole
πNN ¼ Λ2

m −M2
π

Λ2
m − t

;

Fdipole
πNN ¼

�
Λ2
d −M2

π

Λ2
m − t

�
2

;

Fexp
πNN ¼ exp

�
t −M2

π

Λ2
e

�
: (27)

Setting Λd ¼ 0.8, Λm ¼ 0.62Λd and Λe ¼ 1.28Λm as
suggested by Kumano [26] we obtain the pion distribution
shown in Fig. 8. Here we have chosen gπNN such that the
distribution fπ;NðyÞ is normalized to 1. This allows us to
interpret fπ;NðyÞ as the probability for finding a pion at a
given momentum fraction y given that there is a pion
present in the nucleon as opposed to setting the value from
experimental data and interpreting it as the unconditional
probability of finding a pion with momentum fraction x in
the nucleon. As can be seen, the choice of form factor does
not have a significant influence on the pion momentum
distribution. From here on we use the dipole form as it is the
median curve in Fig. 8. The average pion momentum is
relatively independent of the form factor,

hxπi ¼
R
1
0 xfπ;NðxÞdxR
1
0 fπ;NðxÞdx

¼ 0.234: (28)

Let us consider the probability of observing a light
antiquark conditioned on the number of pions present in the
system. The conditional probability of observing a light
antiquark given that there are no pions, Pq̄ðx;QjNπ ¼ 0Þ, is

xPq̄ðx;QjNπ ¼ 0Þ ¼ xfq̄ðx;QÞPðNπ ¼ 0Þ; (29)

where for simplicity we are taking the nucleon PDF
fq̄ðx;QÞ as being defined in the absence of virtual pions.
The conditional probability for observing a light antiquark
with momentum fraction x given that there is a single pion
accompanying the proton is

xPq̄ðx;QjNπ ¼ 1Þ ¼
Z

1

x
dyfπ;NðyÞ

	
x
y
gq̄

�
x
y
;Q

�

þ x
1 − y

fq̄

�
x

1 − y
;Q

�

PðNπ ¼ 1Þ:

(30)

The probability for finding a light antiquark with momen-
tum fraction x and there being a single pion in the system is
the sum of terms representing the probability of finding the
light antiquark within the pion and the probability of
finding the light antiquark in the proton given that the
pion has taken away a fraction y of the proton’s total
momentum. Similarly we can write down the conditional
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FIG. 8 (color online). The virtual pion momentum distribution
function fπ;N computed for each of the form factors.
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FIG. 9 (color online). The Glück et al. [30] Harmonic Oscillator
pion PDFs evaluated at Q ¼ 10 GeV, for valence and sea quarks
and gluons. The average momentum fractions for each species
are, respectively, 0.155, 0.023 and 0.511.
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probabilities for configurations with more virtual pions.
As an example, we give the result for Nπ ¼ 2,

xPq̄ðx;QjNπ ¼ 2Þ

¼
Z

1

x
dy1

Z
1−y1

x
dy2fπ;Nðy1Þfπ;N

�
y2

1 − y1

�

×

	
x
y1

gq̄

�
x
y1

; Q

�
þ x
y2

gq̄

�
x
y2

; Q

�

þ x
1 − y1 − y2

fq̄

�
x

1 − y1 − y2
; Q

�


× PðNπ ¼ 2Þ: (31)

In our evaluation of these expressions we use the
parametrization given by Glück et al. [30] for the pion
PDF gq̄. For these PDFs, at Q ¼ 10 GeV the average
valence-antiquark momentum fraction is hxq̄iπ ¼

R
1
0 xgq̄ðx;QÞdx ¼ 0.155. For reference we plot the valence, sea

and gluon PDFs of the pion in Ref. 9.
We tabulate the probabilities of finding n pions in the

physical proton along with the integral of the modified
PDF in Table I. The contributions from configurations with
different numbers of virtual pions to the antiquark distri-
bution are shown in Fig. 10. The contributions die off
quickly with Nπ: the higher-order terms contribute to
successively smaller ranges in x due to the conservation
of the total momentum of the proton. The modified PDF
including effects from up to three pions,

x ~fq̄ðx;QÞ ¼
X3
n¼0

xPq̄ðx;QjNπ ¼ nÞ; (32)

is shown in Fig. 11.

V. PHENOMENOLOGY

A. Effects on hard scattering

An observable consequence of the stringy proton model
would be an enhancement of gluon jet production over
quark jets in high-multiplicity pþ Pb events. We expect
that the gluon density in a “fat” nucleon will be enhanced at
moderate to large x, as almost all of the energy in the proton
now resides in the gauge field contained in the flux tubes.
This implies that the momentum fraction carried by the
valence quarks must be shifted to smaller values of x. We
expect that the localization of the valence quarks and the
enhanced large-x gluon distribution will have a nontrivial
feed-down to saturation physics at small x. However a
more detailed calculation is needed to address the small-x
physics associated with a high-multiplicity pþ Pb event.
We expect that the total cross-section fluctuations arising
from this model would scale like fluctuations in the total
area of the nucleon; this is set by r2 ¼ 1

6
ð3u2 þ 4v2Þ,

p

�
σ

σNN

�
∝ p

�
r2

hr2i
�
; (33)

where pðrrmsÞ is plotted in Fig. 5.
In the case of the cloudy proton model, the presence of

virtual pions in the “fat” proton serves to enhance the

TABLE I. The probability of finding n pions along with
the integrated light-quark PDF, computed at Q ¼ 10 GeV.
The integral over the PDF is cut off at xmin ¼ 0.001.

Nπ PðNπÞ
R
dxPq̄ðx;QjNπÞ

0 0.889 2.292
1 0.104 0.747
2 0.00618 0.068
3 0.00024 0.0027
4 7.17 × 10−6
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FIG. 10 (color online). The contribution to the light-antiquark
parton distribution functions from configurations with a given
definite number of pions. The number of pions ranges from 0 to 3,
computed at Q ¼ 10 GeV.
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FIG. 11 (color online). (Top) The modified light-antiquark PDF
plotted with the unmodified PDF. (Bottom) The ratio of the
modified light-antiquark PDF to the unmodified case, computed
at Q ¼ 10 GeV.
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antiquark PDF at large values of x. This enhancement must
be accompanied by a shift of the light-quark distribution to
smaller values of x. This could lead to an observable
enhancement of hard quark-antiquark annihilation,
expressed as enhanced Drell-Yan pair production or as
enhanced W-boson production in high-multiplicity events
relative to a minimum bias baseline.
We note that in both models the valence-quark

distribution will be shifted to lower values of x, implying
reduced production of very hard jets initiated by valence-
quark scattering. As a consequence, in the cloudy nucleon
model the gluon sea, and as a secondary effect the isoscalar
quark sea will be much enhanced, while in the stringy
nucleon model the isovector quark sea will be enhanced
with little or no increase in the gluon sea. This difference
should, in principle, serve as an observable distinction
between the two models. Of course, in reality, both
mechanisms may contribute to the “fat” proton
configurations.
To estimate the significance of these modifications we

consider the cloudy nucleon model. We can compare the
average momentum fraction carried by an antiquark in the
modified and unmodified situations,

hxq̄i ¼
R
1
xmin

xfq̄ðxÞdxR
1
xmin

fq̄ðxÞdx
; (34)

we use a lower cutoff of xmin ¼ 0.001. In terms of the
antiquark distribution inside the virtual pion we can
estimate

hxπq̄i≃ hxπihxq̄iπ ¼ 0.234 × 0.168 ¼ 0.0393; (35)

using data from Fig. 8 and Fig. 9. Directly integrating
the Martin-Stirling-Thorne-Watt PDFs for nucleon sea
antiquarks we find

hxNq̄ i ¼ 0.0119: (36)

This means that the antiquarks contributed by virtual pions
carry, on average, three times the longitudinal momentum
than the antiquarks contained in the parton sea of an average
proton. This difference should be possible to observe if the
population of protons with a virtual pion can be significantly
enhanced by selecting high-multiplicity pþ Pb events. The
fully modified PDF (32) including the effects of up to three
virtual pions gives

hxN;Mod
q̄ i ¼ 0.0173; (37)

a value 3=2 times larger than the unmodified case. The
virtual pions make a significant contribution to the nucleon
PDF. We can expect some modification to hard processes as
a result.

We refrain here from making quantitative predictions for
hard scattering phenomena accompanying high-multiplic-
ity pþ Pb events, because these will certainly depend
sensitively on the possible trigger conditions, which are not
known to us. We also are concerned that the sophistication
of the models of the “fat” proton explored here, especially
the “stringy” proton model, is insufficient to make reliable
quantitative predictions for the effective parton distribu-
tions associated with a given multiplicity window.

B. Eccentricity distributions

How else can we physically distinguish between these
two toy models? By considering their influence on the
parton distributions we have examined the fat proton in a
longitudinal section. We now attempt to build models of the
transverse structure of the portly proton. We numerically
sample the spatial eccentricity coefficients ϵ2, ϵ3 from
density distributions generated in the spirit of each of the
models. If the energy deposited in a proton-nucleus
collision thermalizes and the tiny fireball expands hydro-
dynamically, these spatial eccentricities may reasonably be
expected to be reflected in the Fourier coefficients vn of
the final-state flow.
We compute the eccentricities for an event with a

transverse density profile ρ as

εn ¼
R
ρðr;ϕÞr2 cosðnϕ − nΦnÞrdrdϕR

ρðr;ϕÞr3drdϕ ; (38)

where the event-plane angle Φn for the nth moment is

Φn ¼
1

n
arctan

�R
ρðr;ϕÞr2 sinðnϕÞrdrdϕR
ρðr;ϕÞr2 cosðnϕÞrdrdϕ

�
: (39)

We generate events for the pion cloud model with N
pions as follows, where N is drawn from the Poisson
distribution (20). For each event we sample the radial
locations of the N pions about the proton from an
exponential distribution. The pion angular positions are
sampled uniformly. The exponential radial distribution is
motivated by the Yukawa model; we consider several
values of the rate constant λ for this distribution. In
Ref. [27] the authors carried out a more advanced calcu-
lation along the same lines as our cloudy model, including
the effects of the Δπ channel. The dominant contribution of
the pion cloud to the antiquark distribution arises from
pions with an average momentum of hPπi≃ 0.8 GeV,
although this calculation is carried out at a slightly lower
virtuality scale Q2 ¼ 1 GeV2; this result provides a rea-
sonable estimate for the mean radial position of pions
around the proton. We set our average pion radial position
to be λ ¼ 1

hPπi.
A Gaussian kernel with width σπ ¼ 1=

ffiffiffi
6

p
fm is con-

volved against the resulting points. This kernel width is
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chosen so that rπ ¼
ffiffi
2
3

q
rp. We take the radius of the proton

as defining the 2σ distance from the center, i.e. the
probability of finding any density outside of this radius
is < 5%. Finally a density representing the proton is placed
at the origin with a smearing kernel width of σp ¼ 0.5 fm.
Density plots of a few typical events from the pion

model are shown in Fig. 12; here the plots have a width of
3=2 fm. The central proton tends to dominate the density
but the effects of the outlying pions are visible. We consider
one ensemble with the average number of pions set to the
physical value of hNπi ¼ 0.1778 and one with hNπi ¼ 4 to
illustrate the effects of large fluctuations.
For the stringy model we sample the absolute values

of the Jacobi parameters u; v normally with some width
σstring such that the average total flux-tube length is
hρi ¼ 1.009 fm, to match the values we computed above.
The angles made by u; v in the transverse plane are sampled
uniformly: the positions of the three quarks can then be

reconstructed. The flux-tube density profile is generated by
convolving the resulting line segments with a Gaussian
profile. We consider two ensembles, a “thin” and “fat” set
of events with widths wstring ¼ 0.1, 0.3 fm, respectively.
Some typical events are shown in Fig. 13. These plots are
3 fm in width; long two-legged configurations tend to
dominate.
Histograms of the ε2=ε3 distributions for the pion cloud

and stringy models are shown in Fig. 14 and Fig. 15,
respectively. The pion model with a realistic average
number of pions per nulceon gives an appreciably nonzero
eccentricity distribution; this is strongly enhanced for the
large pion cloud case.
Either choice of flux-tube width leads to strong enhance-

ments in the ϵ2 spectrum at large eccentricities and to a
nontrivial ϵ3 spectrum: the wider string model shows less
dramatic results as the smearing reduces the geometric
influence of the string profile.

FIG. 12 (color online). Contour distributions of the proton and pion-cloud density (arbitrary scale) in the transverse plane. The width
of each plot is 3 fm. Each plot is a single event sampled from the ensemble. The top row shows events with hNπqi ¼ 0.1778
(the calculated value), while the bottom row shows events with hNπi ¼ 4.

FIG. 13 (color online). Distributions of the stringy density (arbitrary scale) in the transverse plane. The width of each plot is 2 fm.
The top row shows strings with a width 0.1 fm, while the bottom row shows strings with a width 0.3 fm.
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VI. SUMMARY AND OUTLOOK

Fluctuations in the nucleon-nucleon cross section can
induce large fluctuations in the number of participants in a
central pþ Pb event. The apparent universality of the large
Npart tails of pþ Pb, Pbþ Pb and pþ p collisions suggests
these fluctuations arise from a spatially over-extended, or
“fat,” proton wave function. A natural consequence of this
extended proton size and its concomitant large cross section
is an enhanced collision volume in such pþ Pb events. The
larger volume reduces spatial density gradients and thus
makes a hydrodynamical description of the evolution of the
reaction more likely to be valid.
We have proposed two phenomenological models for the

large-size configurations of the proton, one based on color
flux tubes and one on virtual pion production. Each model
leads to modified large-x physics in the initial state of the
pþ Pb collision relative to minimum bias events.
Qualitatively, the stringy proton model predicts enhance-
ment of the gluon PDF, while the cloudy proton model
predicts an enhancement of the light-antiquark PDFs. It
would be interesting to view these models as different

initial seeds for small-x saturation physics. The stringy
model’s extended “valence” gluon configuration is likely to
give rise to a substantially different color glass than that
arising from the pion cloud which effectively has many
more valence (anti)quarks.
In proton-nucleus collisions the conjectured “fat” proton

configurations have obvious consequences for the trans-
verse energy density distribution in the initial state and its
Fourier moments ϵn. The much enhanced initial transverse
extent of the fireball makes the application of hydrody-
namical models for its expansion more credible, because it
implies a larger Knudsen number. Since the distribution of
eccentricities is significantly different for the two models
considered here, measurements of final-state “flow” coef-
ficients vn for high-multiplicity pþ Pb events will shed
some light upon which of these models is more realistic.
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FIG. 14 (color online). Distributions of ε2; ε3 for 500 events generated from the pion cloud. The left figure shows the results for the
physical value hNπi ¼ 0.1778, while the right figure shows the results for hNπi ¼ 4. Note that impact parameter fluctuations are not
included.
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FIG. 15 (color online). Distributions of ε2; ε3 for 1000 events generated from the stringy models. The string width is 0.1 fm in the left
figure (thin) and 0.3 fm in the right figure (fat). Note that impact parameter fluctuations are not included.
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