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Schwinger-Dyson equations are used to study the chiral phase diagram of QED in three dimensions. This
computation is made with full frequency dependence in the two-point function gap equations for the first
time. We also demonstrate that reliable results are attainable in spite of an infrared divergence that is
endemic to the theory. A theoretically sound method for dealing with cutoff ultraviolet regulators is
presented. Finally, it is shown that the quenched and instantaneous approximations often used in the
literature are inaccurate.
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I. INTRODUCTION

A number of novel features of QED in three dimensions
(QED3) has attracted attention to this theory. For example,
high temperature QCD can be represented as the dimen-
sionally reduced QCD3. If the number of quark flavors is
large, the non-Abelian behavior of the theory is suppressed
and it may be approximated as QED3 [1]. Massless QED3
in the large Nf limit generates dynamical fermion masses
that are suppressed exponentially in the fermion number.
Thus this theory illustrates how large mass hierarchies can
be dynamically generated [2], which is of interest in the
construction of model field theories.
More recently, QED3 has been used as a model for three-

dimensional condensed matter systems. Examples include
applications to high Tc superconductors, where the relevant
dynamics is thought tobe isolated tocopper-oxygenplanes in
the cuprate [3]. It is also considered as a gauge formulation of
the ð2þ 1Þ-dimensional Heisenberg spin model [4] and a
possible model for graphene [5] or spin ice [6].
It is possible to introduce a topological Chern-Simons-

like photon mass term to the theory in three dimensions [7].
This term breaks parity and time reversal symmetries. A
nonzero photon mass induces a finite fermion mass at one
loop (and vice versa) [8,9]. This raises the interesting
possibility that parity symmetry can be spontaneously
broken in the massless theory. This question was first
examined by Appelquist et al. many years ago [8]. They
concluded that a finite fermion mass was dynamically
generated, but that these masses appear in pairs of opposite
sign, thereby maintaining the parity symmetry of the
vacuum and a massless photon. This issue was recently
reexamined with numerical solutions to the Schwinger-
Dyson equations (SDEs), which demonstrated a surprising
parity-breaking solution [10].
The application of QED3 to problems in condensed

matter naturally raises the issue of determining its

properties at finite temperature and density. Here, we will
focus on computing the dynamical fermion mass, photon
self-energy, and the phase diagram for spontaneous chiral
symmetry breaking.
Unfortunately, solving SDEs at finite temperature (or

density) represents a formidable technical problem being
equivalent to solving tens or hundreds of coupled zero-
temperature SDEs. Thus, previous work in this area has
employed a number of simplifying assumptions. Chief
among these is the instantaneous approximation, where
frequency dependence in the fermionic interaction is
neglected [11]. This permits exact evaluation of the temper-
ature dependence and a subsequent reduction of the
numerical task by an order (or two) of magnitude. Since
no small parameter underpins the accuracy of the instanta-
neous approximation, it must be justified a posteriori. We
make this comparison here for the first time, and find that
the instantaneous approximation is not reliable.
Another technical issue bedevils the study of QED3 at

finite temperature; namely, an infrared divergence appears
in the SDE for the fermion propagator. This occurs because
perturbative diagrams are dominated in the infrared limit by
the lowest available Matsubara frequency, which is zero in
bosonic sums. Thus, even though QED3 is infrared finite at
zero temperature, problems may arise again at nonzero
temperature. This issue has engendered some confusion in
the literature. Some authors have noted that an infrared
divergence exists, but have ignored it [12], or imposed an
infrared cutoff [13], or assumed that higher order correc-
tions remove the divergence [14]. We have previously
shown that, in fact, the infrared divergence is endemic to
the theory, but that it does not affect observables if a gauge-
invariant computation is made [15].
In summary, this paper attempts to utilize the finite

temperature Schwinger-Dyson equations to compute the
phase diagram for spontaneous chiral symmetry breaking
in QED3. For the most part, the computation will be made
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in the rainbow-ladder approximation in Landau gauge, but
will include, for the first time, the full effect of vacuum
polarization. We also address, again for the first time, the
infrared divergence problem. The result is a phase diagram
for QED3 that we believe is reasonably robust and is
numerically quite different from that obtained with the
instantaneous or quenched approximations.

II. QED3 AND THE SCHWINGER-DYSON
EQUATIONS

We begin with a review of the zero-temperature formal-
ism to set notation and to establish zero-temperature limits
for the subsequent finite temperature numerical work. We
also discuss renormalization in a non-gauge-invariant
framework and how this differs from a prescription that is
often employed.

A. Zero-temperature equations and renormalization

We only consider fermions in the four-dimensional
representation of the Clifford algebra and thus do not
introduce the photon Chern-Simons term. Because truncat-
ing SDEs in a gauge-invariant manner is an unresolved
problem at present [16], we will include a photon mass term
in the Lagrangian written in Bogoliubov-Parasiuk-Hepp
(BPH) form:

L ¼ −ZA

4
F2 þ ZFψ̄ði∂ þ e0Z

1=2
A AÞψ þm2

0

2
ZAA2

− 1

2ξ2
ð∂ · AÞ2: (1)

Recall that the presence of the photon mass term does not
jeopardize renormalizability or masslessness of the physi-
cal photon, but is required to restore gauge invariance if
symmetry breaking regulators are employed.
The vacuum polarization tensor can be parametrized in

terms of scalar form factors as

ΠμνðpÞ ¼ gμνΠ1ðpÞ þ PμνΠðpÞ; (2)

where

Pμν ¼ gμν − pμpν

p2
(3)

is the transverse projection tensor. This expression then
leads to the following exact form for the (Landau gauge)
photon propagator:

DμνðpÞ ¼
−iPμν

ZAp2 − ZAm2
0 − ΠðpÞ − Π1ðpÞ

: (4)

Finally, the fermion propagator is written in terms of wave
function and mass scalar functions as

SðpÞ ¼ i
Ap − B

: (5)

The scalar functions are obtained by solving the SDEs
illustrated in Fig. 1. As is well known, these equations
couple to higher n-point functions and thus must be
truncated in some way to yield a tractable problem. A
traditional truncation involves using model vertex func-
tions, which we use here. Most of the following results will
be in the rainbow-ladder truncation where the vertices are
taken to be their bare counterparts. A more sophisticated
vertex model called the Ball-Chiu vertex obtaining minimal
gauge invariance (i.e., it is necessary but not sufficient) is
written as

iΓμ
BCðk; pÞ ¼ Āγμ þ ΔAðkþ pÞμðkþpÞ − ΔBðkþ pÞμ;

(6)
where

Ā ¼ 1

2
ðAðkÞ þ AðpÞÞ; (7)

ΔA ¼ AðkÞ − AðpÞ
k2 − p2

; (8)

and

ΔB ¼ BðkÞ − BðpÞ
k2 − p2

: (9)

We call iΓμ ¼ Āγμ the “central Ball-Chiu vertex.”
Regulating numerical SDEs is somewhat problematic

because it is not possible to find a simple translationally and
gauge-invariant regulator. This implies that the vacuum
polarization will take on the form shown in Eq. (2).
Typically this implies (as it does here) that Π1 is divergent,
while Π is finite. It has been common to avoid this
divergence in numerical work by simply projecting it
away [17]

ΠBP ¼
1

2
ðgμν − dp̂μp̂νÞΠμνðpÞ; (10)

where p̂μ ¼ pμ=
ffiffiffiffiffi
p2

p
and d is the spacetime dimension.

This is called “Brown-Pennington projection.” One then
uses the “usual” photon propagator proportional to
ðp2 − ΠBPÞ−1 in subsequent work. However, it is not
necessary to follow this, rather ad hoc, procedure since
traditional renormalization methods can be used to elimi-
nate the divergence. In this case one projects as

=

−1 −1

−

−1

=

−−1

−

FIG. 1. Schwinger-Dyson equations. Solid circles represent full
propagators. The open circles represent model vertices.
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Π1 ¼ p̂μp̂νΠμν (11)

and

Π ¼ 1

2
ðgμν − dp̂μp̂νÞΠμνðpÞ: (12)

Notice that the Brown-Pennington and formal expressions
for Π coincide, but the photon propagator does not.
Specifically, requiring that the pole of the photon propa-
gator lies at zero momentum gives ZAm2

0 þ Π1ð0Þ ¼ 0 and
hence

Dμν ¼
−iPμν

ZAp2 − ΠðpÞ − ðΠ1ðpÞ − Π1ð0ÞÞ
; (13)

which is not the same form as the Brown-Pennington (BP)
method yields. We will examine the differences between
the BP prescription and BPH renormalization below.
The Schwinger-Dyson equations are obtained by evalu-

ating the diagrams of Fig. 1 along with the definitions of
Eqs. (1)–(6). After rotating to Euclidean space and pro-
jecting one obtains

BðpÞ ¼ 2Z2
FZAe20

Z
d3qE
ð2πÞ3 BðqÞ

Āðp; qÞ
A2q2 þ B2

×
1

ZAK2 þ ΠðKÞ þ Π1ðKÞ − Π1ð0Þ
; (14)

where we show the result with the central Ball-Chiu vertex
and K2 ¼ ðp − qÞ2 (recall that all momenta are Euclidean).
Also

AðpÞ ¼ ZF þ 2Z2
FZAe20
p2

Z
d3qE
ð2πÞ3 AðqÞ

Āðp; qÞ
A2q2 þ B2

×
K̂ · pK̂ · q

ZAK2 þ ΠðKÞ þ Π1ðKÞ − Π1ð0Þ
: (15)

Since the integrals in these expressions are finite one can
set Z2

FZAe20 ¼ 4πα. It is convenient to choose momentum-
type (MOM) renormalization conditions in the Euclidean
regime; thus we set AðMÞ ¼ 1 and BðMÞ ¼ 0 where p2

E ¼
M2 is a Euclidean mass renormalization scale. Again, the
integrals are convergent, so it is possible to send M → ∞.
Lastly, ΠðpÞ þ Π1ðpÞ − Π1ð0Þ is finite so there is no need
to set the photon propagator residue and we can simply
take ZA ¼ 1. The net result is the renormalixed zero-
temperature gap equations:

BðpÞ ¼ 8πα

Z
d3qE
ð2πÞ3 BðqÞ

Āðp; qÞ
A2q2 þ B2

1

K2 þ ΠtotðKÞ
;

(16)

AðpÞ ¼ 1þ 8πα

p2

Z
d3qE
ð2πÞ3 AðqÞ

Āðp; qÞ
A2q2 þ B2

K̂ · pK̂ · q
K2 þ ΠtotðKÞ ;

(17)

and

ΠtotðpÞ≡ ΠðpÞ þ Π1ðpÞ − Π1ð0Þ

¼ −16πα
Z

d3qE
ð2πÞ3

×

�
Āðq;QÞ BB0 þ AA0p̂ · qp̂ ·Q

ðA2q2 þ B2ÞðA02Q2 þ B02Þ

− dittoðp ¼ 0Þ
�
: (18)

In the last expression Qμ ¼ ðpþ qÞμ, B ¼ BðqÞ, and B0 ¼
BðQÞ (with similar expressions for A and A0). For com-
parison, we quote the Brown-Pennington form of the
vacuum polarization:

ΠBPðpÞ¼16πα

Z
d3qE
ð2πÞ3 Āðq;QÞ AA0ðq ·Q−3p̂ ·qp̂ ·QÞ

ðA2q2þB2ÞðA02Q2þB02Þ:
(19)

In the following all results will be presented in units of α.
Although there is no reason for the two expressions for

the vacuum polarization to coincide, surprisingly, they are
very similar. Thus, at least in this case, the Brown-
Pennington prescription and standard renormalization give
nearly identical results for the propagator scalar functions
and the chiral condensate. In the rainbow-ladder approxi-
mation the condensate is hψ̄ψi ≈ 0.133, while in the central
Ball-Chiu approximation hψ̄ψi ≈ 0.104.
The quenched approximation, in which vacuum

polarization is ignored, often appears in the literature.
We chose to implement this with a constant polarization
denoted ζ2. In this case the condensate in the rainbow-
ladder approximation is

hψ̄ψi ≈ 0.376 − 0.06 · ζ2; (20)

and with the central Ball-Chiu vertex is

hψ̄ψi ≈ 0.346 − 0.15 · ζ2: (21)

These equations are accurate for ζ2 larger than about 0.1.
Remarkably, for very small regulator, both results approach
the same value, hψ̄ψi ≈ 0.365.

B. Finite temperature formalism

We employ the imaginary time formalism and choose to
work covariantly, which necessitates introducing a three-
vector, nμ, that represents the heat bath. Thus the full
fermion propagator is
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S ¼ i
Cnþ Aq − B

≡ i
A0n · qn − Aγ⃗ · q⃗ − B

: (22)

Here μ is the fermion chemical potential,

pμ ¼ ðiωn þ μ; p⃗Þ; (23)

where ωn ¼ ð2nþ 1ÞπT is a fermionic Matsubara fre-
quency, and A, B, and C are functions of pμ.
The presence of the heat bath generalizes the structure of

the vacuum polarization tensor because it is possible to
construct a new vector that is orthogonal to p:

p⊥
μ ¼ pμ − nμ

p2

n · p
: (24)

Thus there are two transverse tensors:

PL
μν ¼ p̂⊥

μ p̂⊥
ν (25)

and

P⊥
μν ¼ Pμν − PL

μν: (26)

The longitudinal and transverse tensors are projections and
are orthogonal.
With these definitions and a cutoff regulator one has

Πμν ¼ Π1gμν þ ΠLPL
μν þ Π⊥P⊥

μν: (27)

Thus

Π1 ¼ p̂μp̂νΠμν; (28)

Π⊥ ¼ ðP⊥
μν − p̂μp̂νÞΠμν; (29)

and

ΠL ¼ ðPL
μν − p̂μp̂νÞΠμν: (30)

Finally, the photon propagator is (Landau gauge again)

iDμν ¼
−iP⊥

μν

p2 − Π⊥ðpÞ − Π1ðpÞ þ Π1ð0Þ

þ −iPL
μν

p2 − ΠLðpÞ − Π1ðpÞ þ Π1ð0Þ
: (31)

We remind the reader that renormalization for the finite
temperature theory is fixed by the zero-temperature limit.
Thus we have adopted the same renormalization conven-
tions as went into deriving Eq. (13).
Notice also that the Ball-Chiu vertex is also generalized in

the finite temperature case. Enforcing the Ward-Takahashi
identity with a propagator parametrized as in Eq. (22)
implies that the vertex must contain at least four terms:

iΓμðp; qÞ ¼ Āγμ þ ΔAðpþ qÞμðpþqÞ − ΔBðpþ qÞμ
þ ΔCðpþ qÞμn: (32)

See Ref. [18] for a more detailed discussion of the
generalized Ball-Chiu vertex.
Explicit expressions for the polarization scalar functions

are (p2 ¼ ω2 þ p⃗2)

Π1¼
16πα

p2
T
X
ν

Z
d2q
ð2πÞ2

Ā
D
½2ðA0 ~νωþAq⃗ · p⃗ÞðA0

0ωðωþ ~νÞ

þA0Q⃗ · p⃗Þ−p2ðA0A0
0 ~νðωþ ~νÞþAA0q⃗ · Q⃗Þ−BB0p2Þ�;

(33)

Π⊥ ¼ −16παTX
ν

Z
d2q
ð2πÞ2

Ā
D

×

�
−2AA0q⃗ · Q⃗þ 2AA0p̂ · q⃗p̂ · Q⃗

þ 2

p2
ðω~νA0 þ p⃗ · q⃗AÞðωðωþ ~νÞA0

0 þ p⃗ · Q⃗A0Þ
�
;

(34)

and

ΠL ¼ −16παTX
ν

Z
d2q
ð2πÞ2

Ā
D

�
4

p2
ðω~νA0 þ p⃗ · q⃗AÞ

× ðωðωþ ~νÞA0
0 þ p⃗ · Q⃗A0Þ − 2A0A0

0 ~νðωþ ~νÞ

− 2AA0p̂ · q⃗p̂ · Q⃗

�
; (35)

where ~ν≡ ν − iμ and

D ¼ ðA2
0 ~ν

2 þ A2q⃗2 þ B2ÞðA02
0 ðωþ ~νÞ2 þ A02Q⃗2 þ B02Þ:

(36)

The behavior of the electric and magnetic screening
masses is crucial to specifying the properties of the theory.
These are defined as

m2
el ¼ lim

p→0
Πtot

L ð0; pÞ≡ lim
p→0

ðΠLð0; pÞ − Π1ð0; pÞÞ (37)

and

m2
mag ¼ lim

p→0
Πtot⊥ ð0; pÞ≡ lim

p→0
ðΠ⊥ð0; pÞ − Π1ð0; pÞÞ: (38)

As noted above, in practice it is found that Π1ðpÞ − Π1ð0Þ
is very nearly zero, we thus ignore this contribution to the
photon propagator in the following discussion. In this case
it is simple to show that

m2
mag ¼ 0 (39)
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for the rainbow-ladder and central Ball-Chiu vertices
considered here. In the perturbative limit where A → 1
and B → m one obtains

m2
el ¼ 4αNfT

�
2 log 2þ log

�
cosh

�
mþ μ

2T

��

þ log

�
cosh

�
m − μ

2T

��
− m
2T

�
tanh

�
mþ μ

2T

�

þ tanh

�
m − μ

2T

���
: (40)

Furthermore, one can show that

lim
T→0

m2
el ¼ 0 (41)

in the casewith general fermion dressing. Lastly, it is possible
to formally show that the perturbative expressions forΠL and
Π⊥ approach the perturbative zero-temperature result

Πpert ¼ 4αp2
E

Z
1

0

dx
xð1 − xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ xð1 − xÞp2
E

p ; (42)

as desired.
The equations for the fermion dressing functions are

obtained as in the zero-temperature case and are

Bðω; p⃗Þ ¼ mþ 4παT
X
ν

Z
d2q
ð2πÞ2 Āðp; qÞ

Bðν; q⃗Þ
Fðν; q⃗Þ

×

�
1

K2 þ Π⊥ðKÞ þ
1

K2 þ ΠLðKÞ
�
; (43)

A0ðω; p⃗Þω ¼ ω− 4παT
X
ν

Z
d2q
ð2πÞ2

Āðp;qÞ
Fðν; q⃗Þ

×

�
1

K2
ð−2Aðω− νÞq⃗ · K⃗

− A0 ~νððω− νÞ2 − K⃗2Þ 1

K2 þΠL
− A0 ~ν

K2 þΠ⊥

�
;

(44)

Aðω; p⃗Þp⃗2 ¼ p⃗2þ 4παT
X
ν

Z
d2q
ð2πÞ2

Āðp;qÞ
Fðν; q⃗Þ

×

�
1

K2
ð2A0p⃗ · K⃗ ~νðω− νÞþAp⃗ · q⃗K2

− 2K̂ · p⃗K̂ · q⃗ðω− νÞ2Þ 1

K2þΠLðKÞ

−Aðp⃗ · q⃗− 2K̂ · p⃗K̂ · q⃗Þ 1

K2þΠ⊥ðKÞ
�
: (45)

The notation

K2 ¼ ðω − νÞ2 þ ðp⃗ − q⃗Þ2 (46)

and

Fðν; q⃗Þ ¼ A2
0ðν − iμÞ2 þ A2q⃗2 þ B2 (47)

has been adopted in these expressions.
Examination of Eq. (43) reveals an important compli-

cation in the formalism, namely when ν ¼ ω a logarithmic
infrared divergence occurs in the integral over q⃗. This
divergence is regulated by the electric screening mass in the
second term of Eq. (43); however, the first term is not
regulated by an analogous magnetic screening mass and a
divergence must necessarily arise. It is possible to show that
this divergence is endemic to the theory at all orders [15].
However, if a gauge-invariant computation is made, the
divergence does not affect observables. Since we must deal
with truncated Schwinger-Dyson equations this represents
a substantial obstacle to obtaining reliable results. One of
our major conclusions will be that it is indeed possible to
make robust statements about QED3 in the finite temper-
ature Schwinger-Dyson formalism.

1. Instantaneous approximation

As mentioned in the Introduction, the instantaneous
approximation is often used to simplify the analysis of
field theories at finite temperature and density. We imple-
ment this by neglecting the frequency dependence in the
dressed photon propagator and the vertex model. This
permits the evaluation of the remaining frequency depend-
ence, yielding the following thermodynamic function:

ΘðT; μ; EÞ≡ T
X
ν

1

ðν − iμÞ2 þ E2

¼ 1

4E

�
tanh

E − μ

2T
þ tanh

Eþ μ

2T

�
: (48)

The fermionic gap equations simplify (we specialize to
rainbow-ladder approximation) to

A0 ¼ 1; (49)

BðpÞ ¼ 4πα

Z
d2q
ð2πÞ2 BðqÞ

�
1

K⃗2 þ ΠLðK⃗Þ þ
1

K⃗2 þ Π⊥ðK⃗Þ

�

× Θ
�
T; μ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2A2 þ B2

q �
; (50)

and
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AðpÞp⃗2 ¼ p⃗2 þ 4πα

Z
d2q
ð2πÞ2 AðqÞ

×

�
p⃗ · q⃗

K⃗2 þ ΠLðK⃗Þ
− p⃗ · q⃗ − 2K̂ · p⃗K̂ · q⃗

K⃗2 þ Π⊥ðK⃗Þ

�

× Θ
�
T; μ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2A2 þ B2

q �
: (51)

Notice that the dressing functions are no longer functions of
Matsubara frequencies.
The efficacy of this approximation will be tested in the

next section. For now we remark that the neglect of
frequency dependence implies that it is impossible to
recover the low temperature limit.

III. THE QED3 PHASE DIAGRAM

QED3 at finite temperature is a computationally inten-
sive problem because the Matsubara sums do not converge
quickly; thus it is equivalent to a large collection (approx-
imately 100) of coupled zero-temperature problems.
Perhaps more vexing is that the gap equations and the
vacuum polarization functions are sensitive to cutoff and
other numerical choices (such as momentum grids and
interpolation methods).
We have numerically confirmed that the zero-temperature

limit is recovered by a sufficiently large Matsubara cutoff.
We found that it was crucial to use anOð3Þ-invariant cutoff
when evaluating frequency andmomentum sums if the zero-
temperature limit was to be recovered:

Z
Λ
d3q → iT

XΛ=2πT
n¼−Λ=2πT

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−νn

p
d2q: (52)

Furthermore, one requires Λ≳ 100T. We also confirmed
that perturbative expressions are recovered and that an
Oð3Þ-invariant functional dependence is seen at low
temperature.

As will be shown, the value of the electric screening
mass is particularly important to chiral symmetry breaking.
It is also sensitive to numerical truncations and therefore we
found it convenient to evaluate the screening mass sepa-
rately. Because it is not practical to choose large Matsubara
cutoffs we found it useful to add the value of the
perturbative screening mass [Eq. (40)] evaluated outside
of the cutoff Λ and subtract its value inside the cutoff. This
extends the effective integration region to infinity and
proved quite accurate because the dressing functions A0,
A, and B approach their perturbative limits rapidly in the
Euclidean momentum. As with the screening mass, it was
useful to extend the region of integration beyond the cutoff
when evaluating the (subtracted) photon dressing functions.
This was achieved with the ansatz

Πðω; pÞ → αNfπ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ p2

q
; (53)

which was confirmed to work well. Evaluation of the
photon dressing functions is very time consuming. We
therefore precomputed these functions and iterated the
fermionic gap equations until convergence was achieved,
recomputed the photon dressing functions, and iterated
until the global error dropped below a fixed tolerance.
Finally, a useful approximation to the electric screening

mass is obtained if one employs Eq. (40) with
m ¼ Bð0; 0Þ=Að0; 0Þ. This is especially helpful when
computational constraints prevent an accurate estimate of
the screening mass (often at low temperatures).

A. Quenched QED3

The simplest numerical case is quenched QED3 wherein
we let Π⊥ → ζ2mag and ΠL → ζ2el. Results for the chiral
condensate with μ ¼ 0.4 and ζ2el ¼ ζ2mag ¼ 0.05 are shown
in Fig. 2 (left) as a function of temperature (recall that all
dimensionful quantities are measured in units of α). One
sees an apparent rapid crossover near T ¼ 0.82. As is
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typically the case, convergence is slow near critical points
and one must be careful in judging the order of phase
transitions. The figure shows additional computations with
a larger number of iterations and an extrapolation to the
infinite limit. We have found that an approach proportional
to 1=

ffiffiffiffiffiffiffi
Nit

p
for T < Tc fit the data quite well. Above the

critical temperature the approach was exponential in the
number of iterations. It is evident that a second order chiral
restoration phase transition is occurring at Tc ≈ 0.8. We
have also confirmed that the zero-temperature condensates
of Eqs. (20) and (21) are reproduced at better than the
1% level.
The phase diagram for quenched QED3 with ζ2mag ¼

ζ2el ¼ 0.05 is shown in Fig. 2 (right). The transition is
second order everywhere but becomes sharper as the
chemical potential rises. The region is bounded by
Tcðμ ¼ 0Þ ≈ 0.89 and μcðT ¼ 0Þ ≈ 1.4.
Recall that an infrared divergence is exposed as

ζmag → 0 (since this is the quenched case, ζel → 0 is also
problematic). We have argued that the divergence does not
affect observables, such as the chiral restoration temper-
ature, if a gauge-invariant truncation is made [15].
However, the quenched approximation does not respect
gauge invariance and one expects significant infrared
cutoff dependence in the phase diagram. That this is
indeed the case is shown in Fig. 3 where the variation in
the phase boundary is shown for ζ2el ¼ ζ2mag ¼ 0.05, 0.1,
and 0.2.

B. Instantaneous QED3

The instantaneous approximation is often justified by
noting that it represents the leading infrared behavior of the
theory. However, this does not guarantee that it is numeri-
cally accurate. Accuracy can be simply checked in the
quenched case by comparing to the full formalism.We have
found a drastic difference from the results of the preceding

section. For example, the condensate for ζ2 ¼ 0.05 and for
low temperature is hψ̄ψi ≈ 4.5, which should be compared
to the full quenched results of hψ̄ψi ≈ 0.365 (rainbow-
ladder approximation was used in both cases). The
critical temperature in this case was determined to be
Tcðμ ¼ 0Þ ≈ 2.6 (to be compared with 0.89 in the full case)
and μcðT ¼ 0Þ ≈ 3.3 (1.4 in the full case).
It is thus clear that the instantaneous approximation,

while a useful computational tool, is numerically unreli-
able. Perhaps this should not be surprising, the instanta-
neous approximation is useful in the nonrelativistic weak
binding limit where the large scale-separation between the
fermion kinetic energy and the photon energy permits
integrating out the photon degrees of freedom and leaves a
potential interaction. But we are concerned with sponta-
neous chiral symmetry breaking and massless fermions—a
situation far removed from that being considered in the
instantaneous approximation.

C. Screened QED3

We now turn to the case of screened QED3, where the
fermion is permitted to feed back into the photon propa-
gator. In this case the electric screening mass prevents
divergences in the longitudinal portion of the gap equa-
tions. We thus set ζel ¼ 0 in the following. The magnetic
portion requires infrared regulation and we retain ζmag > 0.
In a gauge-invariant computation observables such as the
transition temperature would not depend on the value of
ζmag. The sensitivity of the transition temperature to the
cutoff then serves as a useful diagnostic for the efficacy of
the truncations employed in this work.
The condensate is shown as a function of temperature

and chemical potential in Fig. 4 for ζ2mag ¼ 0.05 for the
rainbow-ladder case. One observes a much-reduced con-
densate, as is expected from the zero-temperature results of
Sec. II.A. Furthermore the region of chiral symmetry
breaking is substantially smaller than that of the compa-
rable quenched case. We find Tcðμ ¼ 0Þ ≈ 0.14 and
μcðT ¼ 0Þ ≈ 0.6. Although it is difficult to be definitive,
it also appears that the phase transition is now first order.
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The central question is whether this result is stable under
variations in the infrared cutoff, ζmag. The dependence of
the critical temperature on the cutoff is shown in Fig. 5.
As can be seen the critical temperature appears to be
approaching a stable value as the cutoff is removed. In
contrast, the value of the condensate depends on the cutoff.
For example

hψ̄ψiðT ¼ 0.05; μ ¼ 0Þ ≈ 0.058
ðζ2magÞ0.153

: (54)

Because of the stability of the critical temperature with
respect to removing the infrared cutoff, it is possible to
construct a reliable phase diagram shown in Fig. 5 (right).
The error bars in this figure incorporate uncertainty in
extrapolating to the critical temperature and in send-
ing ζ2mag → 0.

The sudden transition seen in Fig. 4 is strongly correlated
with the electric screening mass, which is very small
below the critical temperature and jumps to a large value
above it (see Fig. 6). It is evident that the transition
sharpens rapidly as the infrared cutoff is reduced and it
is likely that m2

el undergoes a phase transition itself. Since
the polarization tensor is gauge invariant for Abelian gauge
theories, the screening mass should be independent of the
cutoff as ζmag → 0. While it is possible that the screening
mass is stabilizing above the transition temperature, we
judge that the rather large cutoff dependence evident in the
figure is a reflection of the truncations made in this study.

IV. DISCUSSION AND CONCLUSIONS

To our knowledge, this work represents the first com-
putation of the fermion and gauge boson dressing functions
with full frequency dependence in the Schwinger-Dyson
equations. Furthermore, it is the first computation that
seriously addresses the infrared divergence that must
appear in QED in three dimensions. We have shown that,
even in rainbow-ladder approximation, the residual gauge
dependence is not sufficient to invalidate the zero infrared
cutoff limit. Thus a reasonably reliable phase diagram is
obtained. Of course, more accurate vertex models or
extending the computation to higher n-point functions is
required to assess the accuracy of our result.
We have also determined that the quenched approxima-

tion to the photon propagator drastically changes the
characteristics of the theory. The condensate and fermion
mass function are much larger, the chiral symmetry
restoration transition becomes second order, and of course,
the observables are sensitive to the infrared cutoff.
Similarly, the oft-used instantaneous approximation has

been shown to be inaccurate. Again, this is not surprising
since this approximation is only appropriate in the weak
coupling, heavy fermion limit.
Finally, we have examined the issue of gauge non-

invariance induced by using a cutoff regulator. Simply
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projecting onto the transverse structure of the vacuum
polarization tensor has been suggested, and is often used, as
a resolution of this problem. We have shown that this is not
necessary, and that following the standard renormalization
procedure (with a suitably generalized Lagrangian) is
sufficient to avoid any problems.
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