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A new class of conserved currents, describing nongravitational energy-momentum density, is presented.
The proposed currents do not require the existence of a (timelike) Killing vector, and are not restricted to
spherically symmetric spacetimes (or similar ones, in which the Kodama vector can be defined). They are
based instead on almost-Killing vectors, which could in principle be defined on generic spacetimes. We
provide local arguments, based on energy density profiles in highly simplified (stationary, rigidly rotating)
star models, which confirm the physical interest of these almost-Killing currents. A mass function is
defined in this way for the spherical case, qualitatively different from the Hernández-Misner mass function.
An elliptic equation determining the new mass function is derived for the Tolman-Bondi spherically
symmetric dust metrics, including a simple solution for the Oppenheimer-Snyder collapse. The equations
for the nonsymmetric case are shown to be of a mixed elliptic-hyperbolic nature.
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I. INTRODUCTION

In a previous paper [1], we studied the role of the
ergosphere in the Blandford-Znajeck mechanism. The
essential tool for to identify jet formation in our numerical
simulations was the energy flux density of the electromag-
netic field. The spacetime geometry was given by a family
of stationary and axisymmetric star models [2,3]. This
allowed us to use the timelike Killing vector for construct-
ing the energy-momentum conserved current of the electro-
magnetic field. The energy flux density could then be
identified in a physically sound way. Extending this
approach to dynamical (non stationary) cases is a chal-
lenge, because of the lack of a well defined conserved
current for generic spacetimes.
Energy conservation is one of the most outstanding

physical paradigms. In General Relativity, it can be for-
mulated through the covariant equation

∇bTab ¼ 0; (1)

where the stress-energy tensor contains all forms of energy
of nongravitational origin: it vanishes in vacuum, even
if gravitational waves can propagate there. Gravitational
energy is not included because in General Relativity,
gravitation is rather described by the curvature of space-
time. Nevertheless, the gravitational field gets coupled to
the matter fields and this coupling does not allow us to write
down (1) as an integral conservation law. Tab is indeed a
two-tensor and the vanishing of its covariant divergence
contains source terms in curved spacetimes. Conserved
quantities, such as energy and momentum, cannot be
properly defined in the standard way (by means of the
divergence theorem) because the source terms turn the
required integral conservation law into a balance law, with a

bulk contribution depending on the (noncovariant) con-
nection coefficients.
A conserved current can be obtained, however, when the

spacetime admits a continuous symmetry, associated to
some Killing vector field (KV) ζ. In this case, the vector
current,

Ja ¼ Ta
bζ

b; (2)

is conserved, allowing for the Killing equation, that is
∇aJa ¼ 0. The divergence theorem allows to obtain an
integral conservation law. Note that the gravitational field
is still coupled to the matter fields, but this coupling is
encoded here through the Killing vector ζ. When it is
timelike, we can interpret the current (2) as the energy-
momentum density current associated to a freely falling
observer which is momentarily at rest with respect to the
stationary fleet of observers. Let us stress that we are still
dealing with nongravitational energy, which for short we
will call mass in what follows, as the current (2) vanishes
in vacuum.
Note also that the current (2) is not the only one that can

be useful in the KV case; the related current

Ra
bζ

b (3)

is also conserved. Modulo a global factor, which could
always be used for rescaling any KV, this alternative
conserved current differs from the usual choice (2) by a
term proportional to the KV itself, namely,

ΔJa ¼ T=2ζa: (4)

In stationary spacetimes, where ζ ¼ ∂t can be interpreted as
representing the comoving fleet of observers, the difference
between (2) and (3) can be understood just as an energy
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density redefinition, not affecting the energy flux. The
results obtained in [1] with the current (2) would not
change if we had used (3) instead.
The (nongravitational) energy density E and the energy

flux density Si can be identified by considering a 3þ 1
decomposition of the spacetime such that the metric can be
written as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; (5)

so we get

ffiffiffi
γ

p
E ¼ − ffiffiffiffiffiffi−gp

J0;
ffiffiffi
γ

p
Si ¼ − ffiffiffiffiffiffi−gp

Ji; (6)

where
ffiffiffi
γ

p
is the space volume element. In adapted

coordinates, where the timelike KV of stationary space-
times can be written as ζa ¼ δaðtÞ, the differential current (4)
would contribute to the resulting energy density but not to
the energy-flux density. Note that although it could be
useful in some cases to include the geometrical factor

ffiffiffi
γ

p
into the energy density definition, we rather prefer to work
here with a quantity which is independent of the space
coordinates system, namely,

E ¼ −naJa ¼ −αJ0; (7)

where na ¼ αδðtÞa stands for the future pointing timelike
unit normal (up to a sign, it can be interpreted as the four-
velocity of a nonrotating fiducial observer).
The extension of the conserved current (2) to dynamical

spacetimes can be done in some special cases. In the
spherically symmetric case, the warped structure of the
spacetime allows the use of the Kodama vector K as a
replacement for the missing KV [4]. The resulting Kodama
current,

JaKodama ¼ Ta
bKb; (8)

is still conserved and leads to a definition of mass
which allows to recover the Hernández-Misner mass
function [5,6] (see Sec. III for details). In the vacuum
(Schwarzschild) case, the Kodama vector K coincides with
the standard KV. Also, in dust-filled spacetimes, the
matter current,

Jadust ¼ Ta
bub; (9)

is conserved, where u is the four-velocity of the particles.
Unfortunately, these ideas do not work for generic

dynamical scenarios, where one has to deal with different
types of matter and fields in nonsymmetric spacetimes. In
these cases, the idea of approximate symmetry, or the
almost-Killing vector fields (AKV), could be a starting
point to build up conserved currents, which could have then
some physical interest. In this paper we propose to consider
the almost-Killing (AK) current

JaAK ¼ 1

4π
Ra

bξ
b; (10)

which is conserved if ξ is an almost-Killing vector field, as
we will show in the next section (the 1=4π factor is
introduced for further convenience). We provide local
arguments, based on the energy density profiles of some
simple star models, supporting the choice of the almost-
Killing current (10), rather than the standard choice (2), for
describing mass conservation in many physical scenarios.
Spherically symmetric metrics are considered in Sec. III,

either in the static case (the Schwarzschild constant density
star) or in the dynamical one (Tolman-Bondi dust solu-
tions). A mass function can be defined due to the essentially
one-dimensional character of the problem. In the static
case, we show that it coincides with the standard
Hernández-Misner mass function. This is no longer true
in the dynamical (dust) case, where we provide a single
elliptic-type equation determining the mass-energy func-
tion obtained from the AK current JAK. The space-
homogeneous (Friedmann-Robertson-Walker) case is
considered in the Oppenheimer-Snyder collapse scenario.
A solution is obtained for the mass function which is
qualitatively different from the Hernández-Misner mass.
This function may be of interest in studying local density
perturbations in a cosmological background.
Nonspherical spacetimes are finally considered in

Sec. IV. In the stationary case, more specifically for rigidly
rotating axially symmetric star models, our results confirm
the advantage of taking the almost-Killing current JaAK as
the starting point for physical applications. In the generic,
nonsymmetric case, we write down the full set of equations,
which has a mixed elliptic-hyperbolic character. We discuss
all these results in the final section.

II. ALMOST-KILLING VECTOR FIELDS

Spacetimes with continuous symmetries can be charac-
terized by the fact that they admit nontrivial solutions to the
Killing equation (KE), namely,

Lζgab ¼ ∇aζb þ∇bζa ¼ 0: (11)

Since most astrophysical scenarios do not satisfy the above
requirement, there has been a considerable amount of work
on constructing intrinsic ways of characterizing almost-
symmetric spacetimes. A precise implementation of the
concept of almost-symmetry has been provided by Matzner
[7]. Starting from a variational principle, it defines a
measure of the symmetry deviation of any given spacetime.
This idea has been used by Isaacson to study high
frequency gravitational waves in which, by defining a
steady coordinate system, the radiation effects can be easily
separated from the background metric [8]. Zalaletdinov
related this symmetry deviation with a measure of the
inhomogeneity of the spacetime which can be related with
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some entropy concept [9]. More recently Bona et al. have
shown that harmonic almost-Killing motions provide a
convenient generalization of the standard harmonic
motions [10].
Vector fields verifying the almost-Killing equation

(AKE)

∇b½∇aξb þ∇bξa − μð∇ · ξÞgab� ¼ 0; (12)

with μ a given constant, provide an interesting generali-
zation of the KV [10,11]. Of course, any solution of KE is
also a solution of the AKE. Moreover, as pointed out by
York [12], any vector field that asymptotically satisfies
the KE is, in general, asymptotically a solution of Eq. (12).
The AKE can be obtained by minimizing, on a fixed
background, the Lagrangian density [10]

L ¼ ∇ðaξbÞ∇ðaξbÞ − μ

2
ð∇ · ξÞ2; (13)

which can be interpreted as a generic invariant measure of
the deviation from the strict Killing symmetry condition.
The parameter μ measures the relative weight of the two
quadratic scalars in the Lagrangian.
Notice that, by commuting the covariant derivatives in

(12), the AKE can also be expressed as a generalized wave
equation, namely

□ξa þ Ra
bξ

b þ ð1 − μÞ∇að∇ · ξÞ ¼ 0: (14)

It follows that, for any given spacetime, the initial value
problem of the above equation is a standard Cauchy
problem in the generic case μ ≠ 2 (i.e., a second-order
partial-differential-equation system for the four vector
components). In particular, if μ ¼ 1, the principal part of
the AKE is harmonic which, in adapted coordinates,
implies [10]

gbc∂tΓa
bc ¼ 0: (15)

In asymptotically flat spacetimes, this condition asymp-
totically coincides with the so-called minimal distortion
shift condition used in numerical relativity to minimize
changes in the shape of volume elements of the spacetime
during evolution [13].

A. Almost-Killing mass function

Allowing for (14), the AKE can be also interpreted as
providing an explicit expression for the almost-Killing
current JAK, associated with the AKV field ξ, namely,

4πJaAK ≡ Ra
bξ

b ¼ ∇b∇½aξb� − ð1 − μ=2Þ∇að∇ · ξÞ: (16)

This current is identically conserved if and only if the
divergence of the AKV verifies

□ð∇ · ξÞ ¼ 0; (17)

as it is the case for both KVand homothetic vectors, which
are just particular AKE solutions.
If this is not the case, only quasilocal quantities could be

obtained from (16), unless we take the parameter choice
μ ¼ 2 (notice that the value of the parameter μ is irrelevant
if ξ is actually a KV or an homothety). Therefore, in what
follows we will take

JaAK ≡ 1

4π
Ra

bξ
b ¼ 1

4π
∇b∇½aξb� (18)

unless otherwise stated.
The current defined by the right-hand side of (18) is

actually the Komar current associated to the vector field ξ
[14,15] and, by construction, it is divergence-free. The total
massM contained in a closed space volume V on a constant
time slice Σ is given by

M ¼
Z
Σ
EdV ¼ −

Z
Σ
α

ffiffiffi
γ

p
J0d3x: (19)

Allowing for (18), the above expression can be written as a
surface integral by means of the divergence theorem,
namely,

MAK ¼ 1

4π

Z
∂Σ

nb∇½aξb�dσa; (20)

where dσb is the oriented area element for the spacelike
surface limiting the volume V. We have seen how the
almost-Killing approach allows to define conserved cur-
rents and quasi-local quantities such as MAK in Eq. (20).
However, there is an issue of choice. There are infinitely
many AK currents, one for every choice of the seed vector
field ξ. The resulting conserved current represents the
energy-momentum density associated to the fleet of observ-
ers with worldlines aligned with the selected AKV vector
field. A judicious choice of the seed AKV is then required
in order to get a physically sound interpretation. If the
spacetime admits either a timelike KV (or homothetic
vector), the physical meaning is clear, but additional criteria
must be considered otherwise.

III. SPHERICALLY SYMMETRIC SPACETIMES

The line element of a spherically symmetric spacetime
can always be written as

ds2 ¼ −Aðr; tÞ2dt2 þ Bðr; tÞ2dr2 þ Yðr; tÞ2dΩ2; (21)

which shows a warped-product structure. If we restrict
ourselves to transformations preserving spherical sym-
metry, the area radius Yðr; tÞ becomes an invariant scalar.
Therefore, it is possible to obtain from its gradient a second
invariant scalar, given by
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gab∂aY∂bY ≡ 1 − 2m
Y

; (22)

which can be considered as a definition of the Hernández-
Misner mass function mðr; tÞ. In Schwarzschild coordi-
nates, where the radial coordinate is chosen such that
Yðr; tÞ ¼ r, then

ds2 ¼ −Aðr; tÞ2dt2 þ dr2

1 − 2mðr; tÞ=rþ r2dΩ2: (23)

In the stationary case, scalar invariants must be preserved.
It means that the associated KV ζ must be orthogonal to
the gradient of the area radius Y and therefore, in
Schwarzschild coordinates, one can take ζ ¼ ∂t.
On the other hand, in the nonstationary case, it is

possible to define the Kodama vector K in an invariant
way [4]: it must be orthogonal to the gradient of Y, and
normalized such that its squared norm coincides with (22).
A simple calculation shows that, in Schwarzschild coor-
dinates, the Kodama vector is given by

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðr; tÞ=rp

Aðr; tÞ ∂t: (24)

The associated conserved current can be expressed in
Schwarzschild coordinates as

JaKodama ¼ Ta
bK

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðr; tÞ=rp

Aðr; tÞ Ta
bζ

b; (25)

which can be related with the Hernández-Misner mass
function through the Einstein field equations as

JaKodama ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðr; tÞ=rp
4πr2Aðr; tÞ ð−m0; m

:
; 0; 0Þ (26)

(here, and in what follows, we use a prime to indicate
a radial derivative while the time derivative is denoted by
an upper dot). According to (7), the associated energy
densities are therefore given by

ET ¼ m0Aðr; tÞ
4πr2

; EKodama ¼
m0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2mðr; tÞ=rp
4πr2

;

(27)

where ET stands for the energy density associated to the
standard current (2). It turns out that, by integrating the
above densities over a sphere of area radius r, the resulting
mass functions we obtain are, respectively,

MT ¼
Z
Σ

m0AðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðr; tÞ=rp dr; MKodama ¼ mðr; tÞ:

(28)

We then recover, in the generic case, the well-known
Hernández-Misner mass for the Kodama definition, but
not for the standard one, derived from the KV.
We can repeat the previous calculation for a generic

almost-Killing vector ξ. If we consider adapted coordinates
(non-Schwarzschild ones in the generic case) where the
AKV is ξ ¼ ∂t then it is straightforward to show that

EAK ¼ 1

4πBY2
∂r

�
Y2

B
A0
�
: (29)

The corresponding mass function is then given by

MAK ¼ Y2

B
A0; (30)

which could be also obtained directly from (20). The
physical meaning of this expression follows from a
straightforward calculation of the acceleration of the
AKV observers in their rest frame (the opposite of the
gravitational pull),

u
: a ¼ A

MAK

Y2
r̂a; (31)

where r̂ stands for the unit normal in the radial direction. As
the mass function MAK amounts to the mass contained
inside the spherical surface of area radius Y, we can see that
the gravitational pull (the opposite of u

:
) coincides, up to the

Lorentz factor A, with the Newtonian expression derived
from Kepler’s law. This is an important result that strongly
supports the use of almost-Killing currents in physical
applications.

A. The Schwarzschild constant-density interior solution

Perhaps the simplest geometry associated with a matter
distribution is the Schwarzschild star which corresponds to
the interior solution for a relativistic star with constant
density. This solution is the simplest analytic interior model
for a relativistic star. The assumption ρ ¼ const:, which
would correspond to an ultrastiff equation of state, corre-
sponds to an incompressible fluid, with an infinite
sound speed.
The metric of a static spherically symmetric star with a

constant matter distribution can be written in the form (23),
where the metric coefficients A ¼ AðrÞ and mðrÞ are only
functions of the area radius r, that is

AðrÞ ¼ ρ

ρþ 3p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðrÞ=r

p
; (32)

where p ¼ pðrÞ is the pressure profile, which is given by

pðrÞ ¼ ρ

2A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Msr2=R3

q
− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Ms=R
p �

; (33)
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with R andMs the radius and total mass of the star, whereas
the mass function mðrÞ is given by

mðrÞ ¼
(

4
3
πρr3; for r ≤ R;

Ms ¼ 4
3
πρR3; for r ≥ R:

(34)

Since the spacetime is both spherical and static, one can
define conserved currents associated to either the Kodama
or the Killing vector as in the last section. So, the
corresponding energy densities are in these cases,

EKodama ¼ Aðρþ 3pÞ; ET ¼ Aρ: (35)

Notice that the positivity of EKodama and ET imply the strong
and the weak energy conditions, respectively. The mass
contained over a sphere of area radius r is then given
by (28), namely,

MKodama ¼ mðrÞ; MT ¼ 4π

Z
R

0

ρr2Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðrÞ=rp dr:

(36)

Alternatively, we can use the KV field ζ ¼ ∂t to compute
the conserved AK current and the corresponding energy
density. Thus, according to (7), we obtain

EAK ¼ − 1

4π
Ra

bnaζb ¼ Aðρþ 3pÞ; (37)

which coincides in this particular case with the Kodama
result (35). Note that the mass values obtained from these
two definitions are also different. Only through the
Kodama/AK choice is it possible to recover the
Hernández-Misner mass function.
These energy densities are compared in Fig. 1 for a

Schwarzschild star with compactness M=R ¼ 1=3. The
energy density EAK (continuous line), computed from
either the Kodama or the almost-Killing currents, leads
to a more natural energy distribution, with a maximum at
the star center and monotonically decreasing as one
approaches to the surface of the star. In contrast, the energy
density ET has the opposite and counterintuitive behavior,
which corresponds to an increasing function that reaches
the maximum value at that surface (dashed line). The
geometric factor coming from the space volume element is
not included in the plots.

B. Tolman-Bondi dust metrics

The line element of a generic (spherically symmetric)
dust-filled spacetime in comoving coordinates can be
written as [16,17]

ds2 ¼ −dt2 þ Y 0ðr; tÞ2
1 − kfðrÞ2 dr

2 þ Y2ðr; tÞdΩ2: (38)

The area radius Yðr; tÞ verifies, according to (22), the
Friedmann-like equation,

Y
:
2 − 2mðrÞ

Y
¼ −kfðrÞ2; (39)

where both the Hernández-Misner mass function mðrÞ and
fðrÞ are arbitrary functions, although the choice of fðrÞ is
restricted by the regularity requirements of the metric. It
follows from the field equations that the density ρ is
given by

4πρ ¼ m0

Y2Y 0 : (40)

The vacuum case (Schwarzschild spacetime) is then
recovered where m0 ¼ 0.
For any dust-filled spacetime, the conservation of the

stress-energy tensor implies the conservation of the matter
current,

Jadust ¼ ρua; (41)

where ua stands for the fluid four-velocity. The corre-
sponding mass density is actually the matter density ρ. Note
that the resulting mass function Mdust is time independent
(comoving coordinates) and verifies indeed,

M0
dust ¼

m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfðrÞ2

p ; (42)

which differs from the Hernández-Misner mass function
unless k ¼ 0.

0 0.5 1 1.5 2 2.5 3
r

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ne

rg
y 

de
ns

ity ε
T

ε
Kodama/AKK

FIG. 1 (color online). Energy densities for a Schwarzschild star.
The energy distribution computed from either the Kodama or the
almost-Killing current (continuous line), has a maximum at the
center of the star that monotonically decreases until the star
surfacer. In contrast, the energy density ET (dashed line) is an
increasing function that reaches the maximum value at that
surface.
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Even if there is no timelike KV in the generic case, we
can define other conserved currents via either the Kodama
vector or the AKV. On one hand, in comoving coordinates,
the Kodama vector can be brought into the form

Ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfðrÞ2

q
ð1;−Y: =Y 0; 0; 0Þ: (43)

The conserved Kodama current is then

JaKodama ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfðrÞ2

q
Jadust; (44)

so that the Kodama energy density can be expressed as

EKodama ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfðrÞ2

p
4πY2Y 0 m0ðrÞ; (45)

which allows us to recover the Hernández-Misner mass
functionmðrÞ by integrating over a sphere, as we have seen
before (28).
On the other hand, according to (18), the conserved AK

current is given by

JaAK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfðrÞ2

p
4πY2Y 0 ð−M0;M

:
; 0; 0Þ; (46)

where we have introduced the potential Mðr; tÞ which
coincides, up to a constant, with the mass function (20)
associated to the AKV ξ, namely,

MAK ¼ Y2Y 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfðrÞ2

p ∇½rξt�: (47)

The energy density associated with the AKV can be then
expressed as

EAK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfðrÞ2

p
4πY2Y 0 M0: (48)

Note that, allowing for (16), the AK current can also be
expressed as

JaAK ¼ 1

4π
Ra
bξ

b ¼ ρðξa þ 2u · ξuaÞ: (49)

In the nonvacuum case, the above expression can be
inverted in order to obtain the components of the AKV
in terms of the potential M, which are given by

ξa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfðrÞ2

p
m0 ðM0;M

:
; 0; 0Þ: (50)

Plugging this result back into Eq. (47), we obtain a second-
order elliptic partial differential equation (PDE) for the
potential Mðr; tÞ that ensures that ξ is a true AKV in the
nonvacuum case, that is

M −Ms ¼
Y2

2Y 0

�
∂t

�
Y 02M

:

m0

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfðrÞ2

q
∂r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfðrÞ2

p
m0 M0

��
; (51)

where Ms is an integration constant. Notice that the
expression (50) is undetermined in the vacuum case. For
the Schwarzschild metric, however, a Killing vector exists,
which actually coincides with the Kodama vector (43).
The time dependence in Mðr; tÞ is essential. The ansatz

M
: ¼ 0 is not compatible with Eq. (51) in the generic case.
Then, it follows from (50) that the AKV fleet of observers
is tilted with respect to the comoving (geodesic) observers.
The static value of both the “number-of-particles” mass
(42) and the Hernández-Misner mass function mðrÞ indi-
cates that these are concepts associated with the comoving
observers. From the point of view of a quasistationary
observer, however, particles in a collapsing ball of dust are
gaining kinetic energy, meaning that their mass must
increase. Let us illustrate this point with a simple example.

1. Oppenheimer-Snyder collapse

Let us consider now the case in which the matter density
distribution ρ is homogeneous. This can be interpreted
as a cosmological solution, the pressureless case of the
Friedmann-Robertson-Walker (FRW) metrics such that

Y ¼ RðtÞfðrÞ; mðrÞ ¼ 2

9
fðrÞ3: (52)

If one considers the metric (38) with the parameter k ≠ −1,
the resulting spacetime corresponds to the collapse of a
homogeneous ball of incoherent matter, with a vacuum
exterior metric (Oppenheimer-Snyder collapse). On the
other hand, the value k ¼ þ1 allows us to choose initial
data for the collapse which correspond to a momentarily
static configuration. We will rather consider here for
simplicity the k ¼ 0 case, such that RðtÞ ¼ ðt0 − tÞ2=3,
where t0 is the time label for the collapse to the final
singularity. This allows us to obtain an explicit solution
of (51), which can be written as

Mðr; tÞ ¼ Ms þ λðrÞðt − t0Þ; (53)

where the function λðrÞ is linear in mðrÞ, as it follows
from (51).
The FRW dust interior can be matched to the vacuum

exterior metric (Schwarzschild spacetime) at the radius of
the star r ¼ rs. We can adjust the linear relation between λ
and mðrÞ in order to match the AK mass function (53) with
the Hernández-Misner mass at the surface, namely,

Mðr; tÞ −Ms ¼ ð1 − t=t0Þ½mðrÞ −Ms�: (54)
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This implies M
: ∣rs ¼ 0. Therefore, according to Eq. (46),

there is no energy flux at the surface. This means that the
resulting AKV (50) is comoving at the surface.
Figure 2 displays the evolution of the mass function

Mðr; tÞ, normalized to the constant Ms, which corresponds
to the mass of the Schwarzschild spacetime (we have taken
fðrÞ ¼ r for simplicity). We can see the expected growing
behavior in time, as discussed before. The distribution in
the inner region, where the FRWmetric is valid, flattens out
with time meaning that energy density is concentrating at
the star center. At the final singularity (t ¼ t0), the mass
function is constant everywhere.

IV. BEYOND SPHERICAL SYMMETRY

In the following, we will explore how our AK-current
approach can be used to construct conserved quantities in
generic spacetimes. We begin by considering the case of
rigidly rotating neutron stars, which allows to compare the
resulting definition of mass obtained through either the
current JaT or the almost-Killing current JaAK. Finally, we
will consider here the generic case, in which the problem to
find out a suitable AKV for the current JaAK is analyzed as a
Cauchy problem.

A. Rigidly rotating stars

The spacetime of stationary and axisymmetric
(uniformly rotating) stars can be obtained by solving the
hydro-Einstein equations through a multidomain spectral
code, as described in [2,3]. The spacetime may contain
or not an ergoregion depending on the compactness of the
star. The corresponding Lewis-Papapetrou coordinates are
uniquely determined by the matching conditions at the
surface (see [2,18] for a detailed description). In the interior
region we can write

ds2 ¼ −e2Uðdtþ adϕÞ2
þ e−2U½e2kðdρ2 þ dξ2Þ þW2dϕ2�; (55)

where we have used a comoving coordinates system.
In this comoving frame, the stress-energy tensor is given

by

Tab ¼ ðμþ pÞuaub þ pgab; ua ¼ e−Uδat; (56)

where μ ¼ ρð1þ εÞ is the energy density and p is the
pressure. It turns out that, given a particular equation of
state, the conservation of the stress-energy tensor (56)
yields

eU exp

�Z
p

0

dp
μþ p

�
¼ eV0 ¼ const: (57)

The compactness of the star is therefore controlled through
the parameter V0. We have constructed several solutions
with an equation of state for homogeneous matter with
constant density μ ¼ const. For all the stars the value of the
spin parameter is a ¼ J=M2 ≈ 0.9. The mass, rotation
frequency Ω and other parameters of the solutions can
be found in table I of Ref. [1].
Here again, since the resulting spacetime is axisymmet-

ric and stationary, we can define the conserved currents JaT
and JaAK as before. Note however that the choice of the seed
KV is not unique, as any linear combination of the two KVs
is indeed a KV. The resulting conserved quantities would
depend then on the selected combination. We will choose
here the KV which is aligned with the fluid worldlines,
so that in comoving coordinates, it can be expressed as
ξa ¼ eUua ¼ δaðtÞ. Therefore, according to (2) and (16), the
conserved currents are

JaT ¼ Ta
bξ

b ¼ −μeUua; (58)

JaAK ¼ 1

4π
Ra

bξ
b ¼ −ðμþ 3pÞeUua: (59)

The associated energy densities are, therefore,

ET ¼ −naJaT ¼ μAeU; (60)

EAK ¼ −naJaAK ¼ ðμþ 3pÞAeU; (61)

where A ¼ n · u is the Lorentz factor.
In Fig. 3 we compare the resulting mass-energy densities

on a vertical plane for the two cases V0 ¼ −0.8 and V0 ¼−1.25 (see Table I of Ref. [1]). The configuration displayed
in the left panel corresponds to a standard neutron star with
constant density while the configuration displayed in the
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FIG. 2 (color online). Time evolution of the mass function
Mðr; tÞ normalized to the constant Ms for a FRW collapsing
homogeneous ball of dust in the flat case k ¼ 0. The surface is
located rs ¼ 1.0, where a matching with the Schwarzschild
spacetime is enforced. The initial mass distribution evolves
towards a constant value.
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right panel corresponds to a neutron star with a torus-
shaped ergoregion (signaled by a dotted line). The ET
energy density is displayed on the negative x axis, while
that EAK energy density is plotted on the positive side.
Notice that in both star models (with and without ergo-
sphere) the ET energy density has lower values close to the
axis that increases towards the surface of the star whereas
the AK energy density has a maximum at the center that
decreases monotonically outward until the surface. This is
the same behavior as the one obtained in Sec. III for the
spherical case. The conclusion is again that the energy
density EAK matches the physically expected profile
whereas ET has a counterintuitive behavior.

B. Generic spacetimes

As we have seen in Sec. II, the AKE (12) can always
be solved in a generic spacetime provided that μ ≠ 2.
Nevertheless, in this paper we are considering precisely the
special case μ ¼ 2 because just in this case we obtain a
suitable energy current JAK.
Let us look now at the definition of the current JAK

which is given in Eq. (18). It can be interpreted as the AKV
differential equation for the μ ¼ 2 case, namely,

∇b∇½aξb� ¼ Ra
bξ

b: (62)

It is easy to show that the time derivative of the time
component of the vector field ξ does not appear in the
above system. Only the antisymmetric combination of
first derivatives is involved. Therefore, the principal symbol
becomes singular in Fourier space [10]. Although we have
four second order equations for the four ξa components,
only the space components ξi of the AKV can be computed
from their evolution equations in a straightforward way.
This opens the door to consider the time component

of (14) as a constraint, in the same spirit as in the
free evolution approach in numerical relativity. Let us

consider the quantities Ca representing deviations from
the Eq. (62),

∇b∇½aξb� ¼ Ra
bξ

b þ Ca: (63)

If we take now the divergence of this vector relation, we
obtain

∇aCa ¼ −∇aðRa
bξ

bÞ ¼ −4π∇aJaAK: (64)

Therefore, the conservation of the AK current amounts to
the conservation of the deviations Ca, that is

∂0ð
ffiffiffi
g

p
C0Þ þ ∂ið

ffiffiffi
g

p
CiÞ ¼ 0: (65)

In the vacuum case, where JAK vanishes, it would be
enough to impose the constraint C0 ¼ 0 in the initial data in
order to ensure that it will hold during the whole evolution,
provided that we enforce Ci ¼ 0 by computing the space
components ξi in the right way, namely,

∇b∇½bξi� þ Ri
bξ

b ¼ 0: (66)

At the same time, one would get the some gauge freedom
for choosing ξ0. Notice that in vacuum, the expression (62)
is equivalent to the first set of Maxwell equations, in which
the vector field ξ would play the role of the electromagnetic
potential. Nevertheless, in the nonvacuum case the problem
becomes circular since the conservation of JAK is not
granted unless ξ is a true AKV and this requires indeed
C0 ¼ 0. There is no simple alternative to using the elliptic-
type equation,

∇a∇½aξ0� þ R0
aξ

a ¼ 0; (67)

for computing the ξ0 component. This (partially) elliptic
nature of the problem showed up yet in the spherical dust
case (see Sec. III), where we used the mass function as a
sort of potential for ξ, leading to the elliptic equation (51).
In the generic (nonspherical) case, the system of AKV
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FIG. 3 (color online). Comparison between the energy densities ET and EAK for a rapidly rotating neutron stars with and without
ergosphere (right and left panel, respectively) on the vertical plane. The dotted line corresponds to the ergosphere surface, which has a
toruslike shape. In both configuration, the energy density ET is displayed on the negative x axis, while that AK energy density is plotted
on the positive side. The EAK distribution has a maximum at the center of the star that monotonically decreases until the surface of the
star while the ET distribution corresponds to a increasing function that reaches its maximum value at the surface of the star.
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equations is of a mixed elliptic-hyperbolic nature, like the
ones considered in recent numerical relativity develop-
ments [19]. Studying the mathematical properties of this
system is beyond the scope of this work.

V. CONCLUSIONS

We have proposed a new conserved current, describing
energy densities of nongravitational origin, namely,

JaAK ¼ 1

4π
Ra

bξ
b:

We called it the almost-Killing current because it requires
(a particular case of) a timelike almost-Killing vector ξ in
order to ensure conservation. The physical meaning of such
current is of course related to the physical meaning of the
AKV itself.
As a first instance, we have explored the stationary/static

case, in which the AKV can be chosen to be a Killing
vector, which allows us to obtain the well-known current

JaT ¼ Ta
bξ

b:

Our results show that the energy density profiles obtained
with JAK are the expected ones: the profile reaches a
maximum value at the center of the star and decreasing
outwards until the surface of it. In strong contrast, the
energy associated with JT corresponds to an increasing
function which reaches its maximum value at the surface of
the star. We have shown these opposed behaviors for the
Schwarzschild (constant-density) star, as well as for rigidly
rotating stationary stars which can contain an ergoregion
[2]. The unphysical behavior of JT is not a surprise. It is
well known that, in order to recover the Hernández-Misner
mass function [5], the Killing vector must be rescaled in a
nontrivial way (Kodama vector). Our results confirm that
the proposed current JAK provides a possible solution for
that problem in both the static and the stationary cases.
Of course, there is an inherent ambiguity in our approach,

as any AKV can be used as a seed for generating the
corresponding conserved current. The stationary case pro-
vides a good reference in this sense, because the ambiguity
in the choice of the seed AKV is solved by selecting

precisely the timelike KV. In the stationary axisymmetric
case, however, some ambiguity reappears since the choice of
the KV is not unique. This ambiguity problem grows in the
generic nonstationary case, which is a bigger challenge in
many respects. Note however that in the spherical case,
where a mass functionMAK can be explicitly computed, one
gets a simple generalization of the Kepler law (31), strongly
supporting the physical interpretation of our results, and this
is so for any selection of the seed AKV.
We have considered the whole class of Tolman-Bondi

solutions for spherical balls of dust [17]. In comoving
coordinates, the Hernández-Misner mass function for this
case is time-independent,m ¼ mðrÞ, suggesting a baryonic
mass interpretation, although it is different from the
standard result for dust, obtained from the matter current

Jadust ¼ ρua:

The mass function Mðr; tÞ associated to the proposed
current JAK depends instead on time in the generic case,
which is the expected behavior for the energy density in a
dynamical collapse scenario, where the kinetic energy of
particles is varying in time. The static character of the
Hernández-Misner mass suggests that it is linked to the
comoving observers, which are not quasistationary in
the generic case. We have shown that the proposed mass
function can be used as a potential, so that the AKV
equations can be expressed as a single elliptic-type equa-
tion for Mðr; tÞ.
In the generic, nonspherical case, the AKV set of

equations is of a mixed elliptic-hyperbolic type, like the
ones considered in recent numerical relativity develop-
ments [19]. We are currently working on the properties of
this system with a view to devising suitable coordinate
systems, adapted to the type of conservation laws consid-
ered in the paper.
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