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We examine the high energy (Regge) limit of gravitational scattering using a Wilson line approach
previously used in the context of non-Abelian gauge theories. Our aim is to clarify the nature of the
Reggeization of the graviton and the interplay between this Reggeization and the so-called eikonal phase
which determines the spectrum of gravitational bound states. Furthermore, we discuss finite corrections to
this picture. Our results are of relevance to various supergravity theories, and also help to clarify the
relationship between gauge and gravity theories.
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I. INTRODUCTION

The structure of scattering amplitudes in both gauge and
gravity theories continues to attract significant attention,
due to a wide variety of phenomenological and formal
applications. Although superficially very different from
each other, there is mounting evidence that gauge and
gravity theories may be related to each other in intriguing
ways. Such developments motivate the need to study
aspects of amplitudes in a variety of theories using a
common language, and to compare and contrast phenom-
ena in gauge theories with their gravitational counterparts.
This paper studies one such phenomenon, that of four-

point scattering of massive (and massless) particles in the
so-called Regge limit, in which the center-of-mass energy
far exceeds the momentum transfer. The properties of
amplitudes in this limit have been studied for a long time,
for example in the context of strong interactions predating
the advent of QCD (see e.g. Refs. [1–3] and references
therein). Their asymptotic high energy behavior is dictated
by singularities in the complex angular momentum plane,
which may take the form of poles or cuts. Simple poles give
rise to a powerlike growth of scattering amplitudes with the
center-of-mass energy:

A ∼
�

s
−t

�
αðtÞ

; (1.1)

where we have defined the Mandelstam invariants1

s ¼ ðp1 þ p2Þ2; t ¼ ðp1 − p3Þ2;
u ¼ ðp1 − p4Þ2:

(1.2)

These satisfy the momentum conservation constraint

sþ tþ u ¼
X4
i¼1

m2
i (1.3)

in terms of the particle momenta fpig and masses fmig,
and we label particles as shown in Fig. 1. The function αðtÞ
in Eq. (1.1) is known as the Regge trajectory, whose
physical origin is the exchange of a family of particles in
the t-channel. Reggeization has also been studied within
the context of perturbative quantum field theory, for both
scalar and (non)-Abelian gauge theories [4–28]. There,
Regge behavior of amplitudes follows after first demon-
strating that elementary constituents themselves Reggeize.
For, example, one may show in QCD that the Feynman
gauge propagator in the Regge limit is dressed according to

− ημν
k2

→ − ημν
k2

�
s
−t

�
~αðtÞ

; (1.4)

where ~αðtÞ is related in a straightforward way to the Regge
trajectory αðtÞ. The gluon and quark trajectories in QCD are
known to two-loop order [22–27]. At one-loop order, they
are given by

~αð1ÞðtÞ ¼ αsðμ2Þ
2π

�
μ2

−t
�

ϵ CR

ϵ
; (1.5)

in d ¼ 4 − 2ϵ dimensions, where CR is the quadratic
Casimir operator in the appropriate representation, and μ
the renormalization scale. Note that this is purely infrared
singular (up to scale-related logarithms). Apart from the
particle-dependent Casimir, there is a universal coefficient,
which may be written in terms of the one-loop cusp
anomalous dimension [29,30]. The latter quantity controls
the ultraviolet renormalization of Wilson line operators,
and this connection will become clear in what follows. At1In this paper, we use the metric convention ðþ;−;−;−Þ.
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two-loop order, the Regge trajectories of the quark and
gluon are no longer purely infrared singular, also involving
finite terms.
A convenient formalism for studying Reggeization was

introduced in Refs. [29,30], and is based upon the fact that
in the Regge limit of 2 → 2 scattering, the incoming
particles glance off each other, such that the outgoing
particles are highly forward, and essentially do not recoil.
They can therefore only change by a phase, and for this
phase to have the right gauge-transformation properties to
form part of a scattering amplitude, it must correspond to a
Wilson line operator. Thus, scattering in the forward limit
can be described as two Wilson lines separated by a
transverse distance (or impact parameter) z⃗, a situation
depicted in Fig. 2. The ultraviolet behavior of the Wilson
line correlator reproduces the infrared singularities of the
scattering amplitude, and thus the infrared singular parts of
the gluon Regge trajectory. Ultraviolet renormalization of
Wilson lines is governed by the cusp anomalous dimension,
hence the connection between this quantity and the Regge
trajectory noted above.
The relationship between infrared singularities and the

Regge limit was studied further recently in Refs. [31,32],
which used a conjectured formula for the all-order infrared
(IR) singularity structure of QCD (the dipole formula of
Refs. [33–35], itself motivated by explicit two-loop calcu-
lations [36–38]) to show that Reggeization occurs generi-
cally up to next-to-leading logarithmic order in s=ð−tÞ, for
any allowable t-channel exchange. The corresponding
Regge trajectory is dictated by the cusp anomalous dimen-
sion, as already noted in Refs. [29,30], and involves
the quadratic Casimir operator in the representation of the
exchanged particle. Beyond this logarithmic order, the
authors of Refs. [31,32] noted a breakdown of simple
Regge pole behavior, associated with a color operator which
has also been linked to the breakdown of collinear factori-
zation in certain circumstances [39–41]. A breakdown of
simple Regge pole behavior at this order is consistent with
previous two-loop calculations of quark andgluon scattering
[42], and is likely to signal the appearance of Regge cuts
associated with multi-Reggeon exchange [18,43]. The
analysis of Refs. [31,32] also used the Regge limit to
constrain possible corrections to the QCD dipole formula
(known to break already for massive particles [44–46]).
Such corrections may potentially occur at three-loop order,
and have also been investigated inRefs. [35,47–50] (see also

Refs. [51–58] for recent work on understanding IR singu-
larities at higher orders).
Although much is known about the Regge limit of gauge

theories in perturbative gauge theory, the situation in
gravity is more confused2. The one-loop Regge trajectory
of the graviton was first derived in Refs. [59–61], within the
context of both Einstein-Hilbert gravity and its super-
symmetric extensions. One of the authors of the present
paper (H. J. S.) argued in Ref. [62] (based on earlier studies
employing analyticity arguments [63–67]) that Reggeiza-
tion of the graviton in N ¼ 8 supergravity follows from
that of the gluon inN ¼ 4 super-Yang-Mills theory [68,69]
(see also Refs. [42,70]) as a consequence of the well-
known Kawai-Lewellen-Tye relations [71] relating scatter-
ing amplitudes in the two theories. This was considered
from a Feynman diagrammatic point of view in Refs. [72–
74], which also discussed the potential structure of Regge
cut contributions in supergravity.
There has recently been a rekindled interest in the Regge

limit of gravity. A chief motivation is the study of
gravitational scattering in the transplanckian regime [75]
(see also Refs. [76–81]). This regime allows one to explore
conceptual questions of quantum gravity, such as the
existence, or otherwise, of a gravitational S-matrix
[82,83]. An interesting feature is that high energy scattering
in gravity is dominated by long-distance rather than short-
distance behavior, a fact which is ultimately traceable to the
dimensionality of the gravitational coupling constant, and
the masslessness of the graviton. The lack, or otherwise, of
ultraviolet renormalizability ceases to be problematic in this
limit, and one may show that the long-distance behavior is
insensitive to the amount of supersymmetry. However,
some confusion remained in Ref. [75] about the role of
graviton Reggeization, and the interplay between this and
the so-called eikonal phase which appears at high energy
[84], and which is associated with the formation of
gravitational bound states. This confusion is in part related
to the fact that the graviton Regge trajectory is linear in the
squared momentum transfer t [59–62,72], and thus
becomes kinematically subleading in the strict Regge limit
s=ð−tÞ → ∞. The issue of graviton Reggeization is also
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FIG. 1. Particle labels used throughout for 2 → 2 scattering.
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FIG. 2. The Regge limit as two Wilson lines separated by a
transverse distance z⃗.

2Throughout this paper, we use the term gauge theory to refer
only to Abelian and non-Abelian gauge symmetries acting on
internal degrees of freedom, rather than on spacetime degrees of
freedom as in gravity.
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complicated by double logarithmic contributions in s=ð−tÞ,
which have been discussed at length in Ref. [85].
The Regge limit has also been the focus of studies which

aim to relate the properties of gauge and gravity theories.
Examples include Refs. [86,87], which use the high energy
limit to probe the all-order validity of the proposed double
copy structure between gauge and gravity theories [88–90].
As the work of Refs. [29,30] (and, subsequently,
Refs. [31,32]) makes clear, the Regge limit can be at least
partially understood in terms of soft gluon physics and
Wilson lines. The soft limit of gravity was first considered
in Ref. [91], and has recently been more extensively studied
in Refs. [92–98]. The latter papers seek to cast the
gravitational behavior in terms of contemporary gauge
theory language, and thus to expose common physics in the
soft limits of both theories. This includes the introduction
of Wilson line operators for soft graviton emission [92,93],
whose vacuum expectation values give rise to a gravita-
tional soft function, the UV singularities of which corre-
spond to the IR singularities of a scattering amplitude. As in
QCD, this function exponentiates. Unlike QCD, however,
the gravitational soft function has the special property of
being one-loop exact, meaning that there are no higher loop
corrections to the exponent [92–94].
The aim of this paper is to examine the Regge limit of

(super-)gravity usingWilson lines, using a similar approach
to the QED/QCD case of Refs. [29,30]. There are a number
of motivations for doing so. First, the analysis presents an
interesting application of the gravitational Wilson line
operators of Refs. [92,93]. Second, the calculation provides
a common language for Reggeization in both gauge and
gravity theories, which is particularly elegant in revealing
common features of the two cases (such as the appearance of
relevant quadratic Casimir operators in Regge trajectories).
Third, the Wilson line calculation ties together a number of
previous results in gravity in a particularly transparent
fashion, and helps to clarify some of the confusions inherent
in the existing literature (such as the interplay between the
eikonal phase and Reggeization of the graviton). We will
also discuss the impact of infrared-finite corrections to the
scattering amplitude, using one- and two-loop results in a
variety of supergravity theories [99–106].
The structure of the paper is as follows. In Sec. II, we

review the approach of Refs. [29,30] to the Regge limit in
terms of Wilson lines, with some slight differences to which
we draw attention. In Sec. III we carry out a similar
calculation in quantum gravity, using the Wilson line
operators of Refs. [92,93], and compare the results with
the QCD case. In Sec. IV, we examine the impact of finite
terms in various supergravity theories on the interpretation
of the scattering amplitude in the Regge limit. In Sec. V, we
apply the Wilson line approach to multigraviton scattering,
for any number of gravitons. Finally, in Sec. VI we discuss
our results before concluding. Certain technical details are
collected in the appendices.

II. WILSON LINES AND REGGEIZATION IN QCD

In this section, we review the approach of Refs. [29,30]
for describing the forward limit of 2 → 2 scattering in QCD
in terms of a pair of Wilson lines separated by a transverse
distance. Much of this calculation is very similar to the
gravity case considered in the next section, and thus
examining the QCD case first allows a detailed comparison
between gauge and gravity theories. Unless otherwise
stated, we will consider the scattering of massive particles,
where for convenience we assume a common mass m. The
Regge limit we consider is then given by

s ≫ −t ≫ m2: (2.1)

Note that one has to make a choice here as to how to order
the scales t and m2, as is inevitable when one introduces a
mass scale. It is useful to have such a mass scale, however,
especially when we consider the gravity case.
The Regge limit corresponds to a high center-of-mass

energy, with comparatively negligible momentum transfer.
This corresponds to highly-forward scattering, such that the
incoming particles barely glance off each other. Using the
momentum labels of Fig. 1, the Mandelstam invariants are
given by Eq. (1.2), and momentum conservation can be
expressed by Eq. (1.3). It is clear that in the forward limit
the incoming particles do not recoil in the transverse
direction, and thus can only change by a phase due to
their interaction. As remarked in the introduction, this
suggests that one may model the two incoming particles
(together with their outgoing counterparts) by Wilson lines,
which are separated by a transverse distance z⃗. The latter is
a two-vector which is orthogonal to the beam direction,
corresponding to the impact parameter or distance of
closest approach. This setup is shown in Fig. 2. In principle
we need only specify a single direction for each Wilson
line. However, it is useful to keep the notion of which part
of each Wilson line is incoming and which outgoing, and
thus we keep labels for each particle as shown in the figure.
Let us now consider the quantity3

~M ¼
Z

d2z⃗e−iz⃗·q⃗h0jΦðp1; 0ÞΦðp2; zÞj0i; (2.2)

where we define the Wilson line operator

Φðp; zÞ ¼ P exp

�
igspμ

Z
∞

−∞
dsAμðspþ zÞ

�
: (2.3)

The argument ofΦ describes the contour of the Wilson line,
in terms of a momentum p and a constant offset z. The
exponent contains the non-Abelian gauge field Aμ, where
the P symbol denotes path ordering of color generators

3Note that we use a tilde to denote the momentum-space
Fourier transform of a position-space amplitude.
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along the Wilson line contour. We then see that Eq. (2.2)
involves a vacuum expectation value of two Wilson lines
along directions p1 and p2, separated by the 4-vector z. As
discussed above, this separation will only have nonzero
transverse components, such that z2 ¼ −z⃗2. Were this
separation to be absent, the vacuum expectation value in
Eq. (2.2) would correspond exactly to the Regge limit of the
soft function. As is well known, this soft function is exactly
zero in dimensional regularization, as it involves cancella-
tions between UV and IR poles. The former are associated

with shrinking gluon emissions toward the cusp formed by
theWilson lines at the origin. The presence of the separation
vector z⃗ thus means that the UV poles are absent (i.e. there is
then no cusp). In other words, z⃗ acts as a UV regulator (see
Ref. [29] for a prolonged discussion of this point).
Equation (2.2) constitutes a two-dimensional Fourier

transform of the Wilson line expectation value, from
position to momentum space. The two-momentum q⃗ is
conjugate to the impact parameter z⃗, and in fact satisfies
q⃗2 ¼ −t in the center-of-mass frame. This is because in the
extreme forward limit, the 4-momentum transfer

q ¼ p1 − p3 (2.4)

(which will be conjugate to the 4-separation z) has zero
light-cone components

q� ¼ 1ffiffiffi
2

p ðq0 � q3Þ; (2.5)

so that q ¼ ð0; q⃗; 0Þ. Our task is now to calculate the
quantity of Eq. (2.2), and show that it indeed contains
known properties of the eikonal scattering amplitude.
The full set of one-loop diagrams to be calculated is

shown in Fig. 3. In the following, we will use the Catani-
Seymour notation Ti to denote a color generator on leg i
[107,108]. Using the position space gluon propagator (see
e.g. Ref. [109])

Dμνðx − yÞ ¼ −ημν Γðd=2 − 1Þ
4πd=2

½−ðx − yÞ2�1−d=2 (2.6)

in d ¼ 4 − 2ϵ dimensions, diagram (a) gives

Mð1Þ
a ¼ g2sΓð1−ϵÞμ2ϵ

4π2−ϵ
T1 ·T2ðp1 ·p2Þ

Z
0

−∞
ds

Z
0

−∞
dt½−ðsp1− tp2Þ2þ z⃗2�ϵ−1

¼ g2sΓð1−ϵÞμ2ϵ
4π2−ϵ

T1 ·T2 cosh γ12

Z
∞

0

ds
Z

∞

0

dt½−s2− t2þ2st cosh γ12þ z⃗2�ϵ−1 (2.7)

where p2
i ¼ m2, the cusp angle γij is defined via

cosh γij ¼
pi · pj

m2
(2.8)

and in the second line of Eq. (2.7) we redefined s → −s=m, t → −t=m. We also introduced the dimensional regularization
scale μ. Next, one may set s →

ffiffiffiffiffi
z⃗2

p
s, t →

ffiffiffiffiffi
z⃗2

p
t, followed by t → st, so that Eq. (2.7) becomes

Mð1Þ
a ¼ g2sΓð1 − ϵÞ

4π2−ϵ
T1 · T2ðμ2z⃗2Þϵ cosh γ12

Z
∞

0

ds
Z

∞

0

dts½s2ð−1 − t2 þ 2t cosh γ12Þ þ 1�ϵ−1

¼ g2sΓð1 − ϵÞ
4π2−ϵ

T1 · T2ðμ2z⃗2Þϵ cosh γ12

Z
∞

0

dt

�½s2ð−1 − t2 þ 2t cosh γ12Þ þ 1�ϵ
2ϵð−1 − t2 þ 2t cosh γ12Þ

�∞
0

: (2.9)

We see that this result is well defined for ϵ < 0. This is to be expected, given that the transverse separation z⃗ acts as a UV
regulator, and ϵ acts as an IR regulator, leaving

4
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3

(a) (b) (c)

(d) (e) (f)

FIG. 3. One-loop diagrams entering the calculation of the
Wilson line vacuum expectation value of Eq. (2.2).
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Mð1Þ
a ¼ g2sΓð1 − ϵÞ

4π2−ϵ
T1 · T2ðμ2z⃗2Þϵ

1

2ϵ
cosh γ12

×
Z

∞

0

dt
1þ t2 − 2t cosh γ12

: (2.10)

Completing the square in the denominator and substituting
t ¼ u sinh γ12 þ cosh γ12, one obtains

Mð1Þ
a ¼ g2sΓð1 − ϵÞ

4π2−ϵ
T1 · T2ðμ2z⃗2Þϵ

1

2ϵ
coth γ12

×
Z

∞

− coth γ12

du
u2 − 1

: (2.11)

Carefully implementing the iϵ prescription in the propa-
gator, one evaluates the integral to obtainZ

∞

− coth γ12

du
u2 − 1

¼ iπ − γ12; (2.12)

yielding

Mð1Þ
a ¼ g2sΓð1 − ϵÞ

4π2−ϵ
T1 · T2ðμ2z⃗2Þϵ

1

2ϵ
ðiπ − γ12Þ coth γ12:

(2.13)

The calculation of diagram (b) in Fig. 3 is very similar, and
yields

Mð1Þ
b ¼ g2sΓð1 − ϵÞ

4π2−ϵ
T3 · T4ðμ2z⃗2Þϵ

1

2ϵ
ðiπ − γ34Þ coth γ34:

(2.14)

Diagrams (c) and (d) are different, because they involve the
exchange of a gluon between an incoming and outgoing
leg, rather than between a pair of both ingoing (or both
outgoing) legs. It is relatively straightforward to trace the
effect of this in the above calculation; the effect is to switch
the sign of the lower limit of the u integral in Eq. (2.12),
which then evaluates to γij. Thus

Mð1Þ
c ¼ g2sΓð1 − ϵÞ

4π2−ϵ
T1 · T4ðμ2z⃗2Þϵ

1

2ϵ
γ14 coth γ14; (2.15)

Mð1Þ
d ¼ g2sΓð1 − ϵÞ

4π2−ϵ
T2 · T3ðμ2z⃗2Þϵ

1

2ϵ
γ23 coth γ23: (2.16)

Diagram (e) yields

Mð1Þ
e ¼ g2sΓð1 − ϵÞμ2ϵ

4π2−ϵ
T1 · T3ðp1 · p3Þ

×
Z

0

−∞
ds

Z
∞

0

dt½−ðsp1 − tp3Þ2�ϵ−1; (2.17)

which can be obtained from Eq. (2.7) by relabeling of
external momenta and setting the transverse separation z⃗ to
zero. Setting s → −s=m and t → t=m, this becomes

Mð1Þ
e ¼ g2sΓð1 − ϵÞμ2ϵ

4π2−ϵ
T1 · T3 cosh γ13

×
Z

∞

0

ds
Z

∞

0

dt½−s2 − t2 − 2st cosh γ13�ϵ−1

¼ g2sΓð1 − ϵÞμ2ϵ
4π2−ϵ

T1 · T3 cosh γ13

×
Z

∞

0

ds s2ϵ−1
Z

∞

0

dt½−1 − t2 − 2t cosh γ13�ϵ−1;

(2.18)

where in the second line we have rescaled t → ts. One sees
that the s integral contains both a UVand an IR pole. This is
to be expected, given that there is no transverse separation
between particles 1 and 3, which acted as a UV regulator in
the previous diagrams. One must introduce a counterterm
for the UV pole, which amounts to keeping only the IR
pole in Eq. (2.18). Alternatively, onemay simply introduce a
UV cutoff, and herewewill use the same cutoff that we have
already used, returning to this point later. Noting that, after
the various rescalings we have performed, s has dimensions
of length, we may define the s-integral above via

Z
∞

0

ds s2ϵ−1 →
Z

∞ffiffiffi
z⃗2

p ds s2ϵ−1 ¼ − ðz⃗2Þϵ
2ϵ

: (2.19)

Then Eq. (2.18) becomes

Mð1Þ
e ¼ −

g2sΓð1 − ϵÞ
4π2−ϵ

T1 · T3ðμ2z⃗2Þϵ
1

2ϵ
cosh γ13

×
Z

∞

0

dt½−1 − t2 − 2t cosh γ13�ϵ−1: (2.20)

The remaining integral over t is finite as ϵ → 0, inwhich case
it is evaluated similarly to Eq. (2.10) above to give4

Mð1Þ
e ¼ g2sΓð1 − ϵÞ

4π2−ϵ
T1 · T3ðμ2z⃗2Þϵ

1

2ϵ
γ13 coth γ13 þOðϵ0Þ:

(2.21)

Likewise, diagram (f) gives

Mð1Þ
f ¼ g2sΓð1 − ϵÞ

4π2−ϵ
T2 · T4ðμ2z⃗2Þϵ

1

2ϵ
γ24 coth γ24 þOðϵ0Þ:

(2.22)

Let us now combine all diagrams and take the Regge limit
(2.1). In this limit, we have

4Here and in subsequent equations, we keep an overall ϵ-
dependent factor, which contributes finite terms that are removed
upon renormalizing the Wilson line correlator in the MS scheme.
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γij ¼ cosh−1
�
pi · pj

m2

�
⟶

pi·pj≫m2
log

�
2pi · pj

m2

�
; (2.23)

and thus, also approximating ðpi þ pjÞ2 ≃ 2pi · pj,

γ12; γ34 → log

�
s
m2

�
; γ14; γ23 → log

�
− u
m2

�
;

γ13; γ24 → log

�
− t
m2

�
: (2.24)

Furthermore, in the Regge limit one has s≃−u,
so that

γ12; γ34; γ14; γ23 → log

�
s
m2

�
;

γ13; γ24 → log

�
− t
m2

�
: (2.25)

Finally, cothðγijÞ → 1, so that the Regge limit of the sum of
diagrams (a)-(f) gives

X
i

Mð1Þ
i ¼ g2sΓð1 − ϵÞ

4π2−ϵ
ðμ2z⃗2Þϵ
2ϵ

�
iπ½T1 · T2 þ T3 · T4� þ log

�
s
m2

�
½−T1 · T2 − T3 · T4 þ T1 · T4 þ T2 · T3�

þ log

�
− t
m2

�
½T1 · T3 þ T2 · T4�

�
þOðϵ0Þ: (2.26)

We may simplify this expression further by introducing the color operators

T2
s ¼ ðT1 þ T2Þ2; T2

t ¼ ðT1 − T3Þ2 (2.27)

whose eigenstates are pure s- and t-channel exchanges, and the corresponding eigenvalue in each case is the quadratic
Casimir operator appropriate to the representation of the exchanged particle. Using these, together with color conservation
T1 þ T2 ¼ T3 þ T4, we obtain

T1 · T2 þ T3 · T4 ¼
1

2

�
ðT1 þ T2Þ2 þ ðT3 þ T4Þ2 −

X4
i¼1

Ci

�
¼ T2

s − 1

2

X4
i¼1

Ci; (2.28)

−T1 · T2 − T3 · T4 þ T1 · T4 þ T2 · T3 ¼ ðT1 − T3Þ · ðT4 − T2Þ ¼ T2
t ; (2.29)

T1 · T3 þ T2 · T4 ¼ − 1

2

�
ðT1 − T3Þ2 þ ðT2 − T4Þ2 −

X4
i¼1

Ci

�
¼ −T2

t þ
1

2

X4
i¼1

Ci; (2.30)

where Ci is the quadratic Casimir operator in the representation of external particle i. Using these in Eq. (2.26) yields

X
i

Mð1Þ
i ¼ g2sΓð1 − ϵÞ

4π2−ϵ
ðμ2z⃗2Þϵ
2ϵ

�
iπT2

s þ T2
t log

�
s
−t

�
þ 1

2

�
log

�
− t
m2

�
− iπ

�X4
i¼1

Ci

�
þOðϵ0Þ: (2.31)

Note that we have not included self-energy diagrams
associated with any of the incoming or outgoing particles.
These would contribute constant terms which will not
concern us in what follows.
Some further comments are in order regarding the above

calculation, and how it differs from that presented in
Refs. [29,30]. Here, we separated the incoming and out-
going branch of each Wilson line, and included diagrams in
which a gluon is absorbed and emitted from the same line,
using the same ultraviolet cutoff as for the diagrams in
which a gluon spans both Wilson lines. Had we used a
different cutoff, this would have contributed an additional
logarithmic dependence, beginning only at Oðϵ0Þ level.

Our motivation for including the additional diagrams was
so as to be able to combine terms to generate logarithms of
s=ð−tÞ, as opposed to the calculation of Refs. [29,30],
which instead considers5 logarithms of s=m2. The choice
made here allows us to more easily make contact with the
case of massless external particles studied in Refs. [31,32],
as the mass dependence has canceled in the color non-
diagonal terms. As m → 0, an additional (collinear)

5References [29,30] also consider the alternative Regge limit
s; m2 ≫ jtj, rather than the choice made in Eq. (2.1). The
diagrams which we include here do not contribute logarithms
of s=m2 in that paper, so they can be neglected.
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singularity appears in Eq. (2.31), here appearing as a
logarithm of the mass. Were one to use dimensional
regularization to regulate both soft and collinear singular-
ities, Eq. (2.31)would have a double pole in ϵ in themassless
limit. Because the above calculation includes soft informa-
tion only, it also misses hard collinear contributions, which
appear in the full amplitude as (hard) jet functions divided by
eikonal jets [110–113]. Such contributions are irrelevant to
the discussion of the Regge trajectory [31,32], and will not
bother us in gravity, where collinear singularities are absent
[91,94]. Apart from the different collinear regulator, and the
lack of hard collinear terms, Eq. (2.31) agrees with the result
found in Refs. [31,32] by taking the Regge limit of the QCD
dipole formula at one loop.
Note that only the first two contributions in the square

bracket of Eq. (2.31) have a nontrivial color structure when
acting on the color structure of the hard interaction. The
final term is color-diagonal, involving only quadratic
Casimir operators. Let us interpret the various contributions
in more detail. We know that the soft function exponen-
tiates. Thus, we may exponentiate Eq. (2.31) to obtain

exp

�
g2sΓð1 − ϵÞ

4π2−ϵ
ðμ2z⃗2Þϵ
2ϵ

�
iπT2

s þ T2
t log

�
s
−t

�

þ 1

2

�
log

�
− t
m2

�
− iπ

�X4
i¼1

Ci

��
: (2.32)

In the Regge limit, the term involving logðs= − tÞ domi-
nates, and the above combination reduces to

�
s
−t

�
KT2

t

; K ¼ g2sΓð1 − ϵÞ
4π2−ϵ

ðμ2z⃗2Þϵ
2ϵ

: (2.33)

For a Born interaction dominated by a t-channel exchange
in the Regge limit (which is usually the case), this operator
acts to Reggeize the exchanged particle. That is, it leads to
an amplitude with the behavior

�
s
−t

�
JþKCR

; (2.34)

where CR is the quadratic Casimir associated with the
exchanged particle, in representation R of the gauge group,
and J is the spin of the particle [which leads to an
appropriate power of ðs=− tÞ in the Born amplitude].
However, there are cases in which CR ¼ 0. An example

is electron scattering in QED, in which the Born amplitude
is dominated by t-channel exchange of the photon, which
has zero squared charge. Then the iπ terms in Eq. (2.32)
give

exp

�
iα
ϵ
ðμ2z⃗2Þϵ

�
; α ¼ e2Γð1 − ϵÞ

4π1−ϵ
coth γ12; (2.35)

where e is the electron charge, and we have restored the full
dependence on the cusp angle γ12 ¼ γ34. Since

coth γ12 ¼ coth

�
cosh−1

�
p1 · p2

m2

��
¼ s − 2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2Þ
p ;

(2.36)

one has

α ¼ e2

4π

s − 2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p þOðϵÞ: (2.37)

Equation (2.35) constitutes the QED equivalent of the
gravitational eikonal phase discussed in Ref. [84].
Expanding in ϵ gives

exp

�
iα
ϵ
ðμ2z⃗2Þϵ

�
¼ exp

�
i
α

ϵ
þ iα logðμ2z2Þ þOðϵÞ

�

¼ ðμ2z⃗2Þiαeiα=ϵ: (2.38)

One can then carry out the Fourier transform of Eq. (2.2) to
obtain (at this order)

~M ¼
Z

d2z⃗e−iq⃗·z⃗ðμ2z⃗2Þiαeiα=ϵ

¼ 4πiα
t

eiα=ϵ
�−t
4μ2

�−iα Γð1þ iαÞ
Γð1 − iαÞ (2.39)

where we have taken a Hankel transform of order zero, and
recalled that t ¼ −q⃗2. This has poles in the plane of the
Mandelstam invariant s, stemming from the Γ function in
the numerator i.e. when

iα ¼ −N; N ¼ 1; 2;… (2.40)

Then Eq. (2.37) implies that the physical poles of the
scattering amplitude are at

s ¼ 2m2

�
1 −

�
1þ e4

16π2N2

�−1=2�
: (2.41)

Given that poles in s of a scattering amplitude represent
bound states, Eq. (2.41) represents the spectrum of
s-channel states produced in electron scattering (i.e. pos-
itronium). Indeed, the above calculation reproduces
Eq. (17) of Ref. [114].
In this section, we have introduced the Wilson line

formalism of Ref. [29] for examining the Regge limit in
QCD and QED. In particular, we have seen two effects
emerge:
(i) If the Born interaction is dominated by a t-channel

exchange in the Regge limit, then this particle Re-
ggeizes at leading log order, with a trajectory which
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depends on the quadratic Casimir in the appropriate
representation of the gauge group.

(ii) There is a pure phase term, the eikonal phase, which is
associated with the formation of s-channel bound
states.

As is well known, the first of these contributions arises at the
Feynman diagram level from vertical ladder graphs, and the
second arises from horizontal ladder graphs. Which of these
is kinematically leading in the Regge limit depends in the
present case on the squared charge of the particle being
exchanged in the t-channel. If this is nonzero, the
Reggeization term dominates. If, however, the squared
charge is zero (as in the case of the photon), then the eikonal
phase is the dominant effect.
Things get more complicated beyond leading logarith-

mic order in ðs=− tÞ. One must include higher order
contributions to the soft function, as well as include the
possibility of cross talk between the eikonal phase and
Reggeization terms. This becomes especially cumbersome
in QCD, due to the fact that the color operators associated
with the eikonal phase and Reggeization terms do not
commute. This has already been noted in Refs. [31,32],
where it was identified with a lack of simple Regge pole
behavior at next-to-next-to-leading-log order.
Having seen how things work in QED and QCD, we

examine the case of gravity in the following section.

III. WILSON LINE APPROACH FOR GRAVITY

In the previous section, we have reviewed the Wilson
line approach for examining the Regge limit of gauge
theory scattering amplitudes in some detail. The case of
gravitational scattering can be obtained quite straightfor-
wardly from the above results. Note that we here discuss
explicitly the case of Einstein-Hilbert gravity. As we will
see, this will also have features in common with super-
symmetric extensions.
Let us first recall the form6 of the gravitational Wilson

line operator [92,93] (see also Ref. [104])

Φgðp; zÞ ¼ exp

�
i
κ

2
pμpν

Z
∞

−∞
ds hμνðspþ zÞ

�
; (3.1)

where κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
in terms of Newton’s constantGN . We

will use the de Donder gauge graviton propagator7

Dμν;αβðx−yÞ¼Pμν;αβ
Γðd=2−1Þ

4πd=2
½−ðx−yÞ2�1−d=2;

Pμν;αβ ¼
1

2

�
ημαηνβþηναημβ− 2

d−2
ημνηαβ

�
: (3.2)

By analogy with the gauge theory case, we now wish to
calculate the amplitude

~Mg ¼
Z

d2z⃗e−iz⃗·q⃗h0jΦgðp1; 0ÞΦgðp2; zÞj0i; (3.3)

i.e. a pair of gravitational Wilson lines separated by a
transverse distance z⃗. The diagrams will be the same as
those of Fig. 3. Given that the denominator structure of the
propagator (3.2) is the same as that of (2.6), we do not have
to recalculate any of the kinematic integrals. All that
changes in each diagram is the overall prefactor of
pi · pj, obtained by contracting two eikonal Feynman rules
with the gluon propagator. In the gravity case this will be
replaced by

pμ
i p

ν
i Pμν;αβpα

jp
β
j ¼ ðpi · pjÞ2 − 1

d − 2
m4: (3.4)

The result for diagram (a) is then

Mð1Þ
g;a ¼−

�
κ

2

�
2Γð1− ϵÞ

4π2−ϵ
ðμ2z⃗2Þϵ

×

�
p1 ·p2− m4

2ð1− ϵÞ
1

p1 ·p2

�
1

2ϵ
ðiπ− γ12Þcoth γ12:

(3.5)

In the Regge limit, neglecting terms ofOðm2=s;m2=tÞ, this
may be obtained from Eq. (2.13) by replacing

gs →
κ

2
; Ti → pi (3.6)

and switching the overall sign. The other diagrams are
similar, so the sum of gravitational diagrams in the Regge
limit may be obtained by making the replacements (as
m → 0)

gs→
κ

2
; T2

s → s; T2
t → t; Ci → 0 (3.7)

and switching the overall sign in Eq. (2.31), yielding

X
i

Mð1Þ
g;i ¼ −

�
κ

2

�
2 Γð1 − ϵÞ

4π2−ϵ
ðμ2z⃗2Þϵ
2ϵ

×

�
iπsþ t log

�
s
−t

��
þOðϵ0Þ (3.8)

wherewe have dropped theOðm2Þ termswhich vanish in the
Regge limit. Note that the logarithmic dependence on the
mass has completely canceled in the sum over diagrams due
to the absence of collinear divergences in gravity [91]. Thus
onewould expect the same result for the scattering of strictly
massless particles. Furthermore, one-loop exactness tells us
that there are no perturbative corrections to Eq. (3.8).

6The factor of two error in Eq. (3.2) of Ref. [92] has been
corrected in v3.

7Note that this differs by a factor of −2 from that used in
Ref. [96], which can be traced to our use of κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32πGN
p

and metric ðþ;−;−;−Þ in the present paper, rather than κ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGN

p
and metric ð−;þ;þ;þÞ in Ref. [96].
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Two terms occur in the soft function in the Regge limit:
an iπs eikonal phase term and a t logðs= − tÞ term, which
will Reggeize the graviton. Expanding Eq. (3.8) in ϵ and
exponentiating the result gives

e−iπsKg=ϵ

�
s
−t

�−Kgt=ϵðμ2z⃗2Þ−Kg½iπsþt logðs=−tÞ�;

Kg ¼
�
κ

2

�
2 Γð1 − ϵÞ

8π2−ϵ
: (3.9)

When acting on the Born interaction [which is Oðs2Þ], the
powerlike term in ðs= − tÞ corresponds to Reggeization of
the graviton with a trajectory

αgðtÞ ¼ 2 − tKg

ϵ
: (3.10)

We see that the one-loop perturbative Regge trajectory in
gravity is infrared singular (up to scale logarithms), as is
known to be the case in QCD and QED. However, this
trajectory is linear in the Mandelstam invariant t, repro-
ducing the results of Refs. [59–62,72]. In the present
approach, however, the comparison with QCD appears in
a particularly elegant fashion. As discussed in Refs. [31,32],
we expectReggeization to occur at leading logarithmic order
if the tree-level interaction is dominated by the t-channel
exchange of a particle with a nonvanishing squared charge.
The Regge trajectory is then infrared singular at one loop,
and contains the quadratic Casimir associated with the
exchanged particle. Here exactly the same mechanism
occurs for the graviton, and the relevant gravitational
quadratic Casimir is the squared four-momentum, which
in this case is simply the Mandelstam invariant t.
The eikonal phase term, which in QCD involved a

quadratic Casimir operator for s-channel exchanges, now
contains the Mandelstam invariant s. This in turn implies
that Reggeization of the graviton is kinematically sup-
pressed with respect to the eikonal phase in the strict Regge
limit of s=ð−tÞ → ∞. In Feynman diagram terms: hori-
zontal ladders and crossed ladders (which build up the
eikonal phase as discussed in Ref. [84]) win out over
vertical ladders (which build up the Reggeized graviton).
Nevertheless, both effects are present and clearly show up
in the Wilson line calculation.
As has already been commented above, in hindsight we

could have obtained the gravity result of Eq. (3.8) from the
QCD case of Eq. (2.31) without detailed calculation, by the
simple replacements of Eq. (3.7). The final replacement
corresponds to the setting to zero of quadratic Casimir
operators associated with the external legs, here a conse-
quence of having considered massless particles in the
gravity case (indeed, as discussed in Ref. [97], this is
one way of appreciating the cancellation of collinear
divergences in gravity). The replacements (3.7) are con-
sistent, at least in general, with what one would expect from

the double copy procedure of Refs. [88–90]. In addition to
the coupling constant replacement, color operators are
replaced by their momentum counterparts which, in
Feynman diagram language, is equivalent to the replace-
ment of color factors by kinematic numerators. The double
copy was considered in more detail in this context in
Ref. [86], which also discussed the relationship between
shock waves in both gauge and gravity theories. The latter
point can also be understood in the language of Wilson
lines, as we briefly describe in Appendix A.
As in the QED case, one may carry out the Fourier

transform over the impact parameter. After substituting
Eq. (3.9) into Eq. (3.3), one obtains (at this order)

~Mg ¼
−4πKge−iπsKg=ϵ

t

�
s
−t

�−Kgt=ϵ

×
�
iπsþ t log

�
s
−t

��
×
�−t
4μ2

�
Kg½iπsþt logðs=−tÞ�

×
Γ½1 − Kgðiπsþ t logðs= − tÞÞ�
Γ½1þ Kgðiπsþ t logðs= − tÞÞ� : (3.11)

The ratio of Euler gamma functions no longer constitutes a
pure phase. Also, it now gives rise to cuts in the s plane,
rather than poles. By standard Regge theory arguments, the
high-energy behavior of an amplitude Aðs; tÞ is related to
its analytically continued partial wave coefficients Fðt; jÞ,
where the angular momentum j has become a complex
variable, by (see e.g. Ref. [115])

Fðt; jÞ ¼
Z

∞

1

ds s−j−1Aðs; tÞ: (3.12)

Thus, cuts in the s-plane give rise to Regge cuts in the
complex angular momentum plane. Note that such cuts will
only appear if both the Reggeization and eikonal phase
term are kept, thus they are due to a cross talk between
these two contributions. This is consistent with the results
of Refs. [31,32], which demonstrated a breakdown of
Regge pole behavior at three loop order in QCD, associated
with the presence of both a Reggeization and an eikonal
phase term. This was assumed to herald the arrival of Regge
cut contributions at this order in perturbation theory. For
example, the color factor associated with the non-Regge-
pole-like contribution was nonplanar, and consistent with
Feynman diagrams which lead to cuts [4]. Here we see
directly that cross talk between the eikonal phase and
Reggeization terms leads to cutlike behavior. It is interest-
ing to remark that gravity theories provide a simpler testing
ground for such ideas, lying somewhere between Abelian
and non-Abelian gauge theories in terms of complication:
although multigraviton vertices are present (unlike an
Abelian gauge theory), there is no noncommuting color
structure. There may well be other problems in QCD whose
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conceptual structure is simplified by examining a gravita-
tional analogue.
If we neglect the Reggeization term, and restore full

mass dependence in the eikonal phase term, Eq. (3.11)
becomes

~Mg¼ − 4πiGðsÞ
t

e−iGðsÞ=ϵ
�−t
4μ2

�
iGðsÞΓ½1− iGðsÞ�

Γ½1þ iGðsÞ� ; (3.13)

where8

GðsÞ ¼ GN

�
s2 − 4m2sþ 2m4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2Þ
p

�
(3.14)

which essentially agrees with the eikonal amplitude in
Refs. [76,84]. The Euler gamma function then gives rise to
poles in the amplitude, corresponding to the spectrum of
bound states discussed in Sec. IV of Ref. [84].
In this section, we have seen that both a Reggeization

term and an eikonal phase term are present in gravity.
However, the Regge trajectory of the graviton is linear
in t, and hence the eikonal phase dominates in the strict
Regge limit. Cross-talk between the eikonal phase and
Reggeization terms is associated with Regge cut behavior.
The above analysis was carried out in Einstein-Hilbert

(nonsupersymmetric) gravity. However, it also applies to
the four-graviton amplitude in supergravity, if one dresses
only the tree-level hard interaction with the eikonal
calculation discussed here. This is because the leading
infrared singularity at each order in perturbation theory
arises from the Born amplitude dressed only by graviton
emissions between the external legs (the highest spin
objects in the theory). There are no corrections to the
gravitational soft function, as dictated by one-loop exact-
ness [91–94]. However, subleading IR singularities (and
infrared finite parts) will arise in the amplitude from higher
order contributions to the hard interaction, which are
sensitive to the additional matter content, and hence the
degree of supersymmetry.
The only information that we have used about the hard

interaction in the above calculation is that the Wilson lines
are separated by a transverse distance. This means that we
have no control over finite parts of the amplitude. One
would think this is irrelevant to the issue of graviton
Reggeization at one-loop order, as the perturbative
Regge trajectory is purely infrared singular at this order.
However, the finite terms do lead to complications, as we
discuss in the following section.

IV. INFRARED-FINITE CONTRIBUTIONS IN
SUPERGRAVITY

In the previous sections, we have reviewed the Regge
limit of QCD from a Wilson line point of view, and applied

this same reasoning to gravity. Use of this common language
showed a number of similarities between the two theories:
namely the presence of both a Reggeization and eikonal
phase term, and an infrared singular Regge trajectory at one
loop that contained the relevant quadratic Casimir operator.
These facts, by themselves, lead to the fact that the eikonal
phase is kinematically dominant in gravity, and subdomi-
nant in QCD. In this section, we discuss another important
difference between the QCD and gravity cases: in the latter,
Reggeization is interrupted even at one loop by the presence
of double log terms of the same order in x≡−t=s in the
infrared finite part of the amplitude. Let us begin by
considering the one-loop amplitude.

A. One-loop results

We here consider N ¼ M supergravity, where
4 ≤ M ≤ 8. One-loop results were obtained in
Refs. [99–101,105]. Following Ref. [106], we write the
one-loop four-graviton amplitude as

Mð1Þ;N¼M
4 ¼

�
κ

8π

�
2
�
4πe−γEμ2

jsj
�

ϵ

Mtree
4

×

�
2

ϵ
½s logð−sÞþ t logð−tÞþu logð−uÞ�

þFð1Þ;N¼M
4

�
; (4.1)

where κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
, γE is Euler’s constant, and Fð1Þ;N¼M

4

is an IR-finite contribution dependent on the degree of
supersymmetry.
The infrared-singular part of Eq. (4.1), as remarked in the

previous section, is universal at one-loop order. In the
physical region s > 0; t, u < 0, it is given by

Mð1Þ;N¼M
4

����
IR−divergent

¼
�

κ

8π

�
2

Mtree
4

2

ϵ
½s log s − iπs

þ t logð−tÞ þ u logð−uÞ�; (4.2)

where logð−sÞ ¼ log jsj − iπ. Setting u ¼ −s − t, and
expanding about the Regge limit s ≫ −t, one obtains

Mð1Þ;N¼M
4 jIR−divergent ¼ −

κ2

32π2ϵ

�
iπsþ t log

�
s
−t

�

þ tþO
�
t2

s

��
Mtree

4 : (4.3)

As expected, this agrees with the result (3.8) obtained from
the Wilson line calculation [up to the nonlogarithmic OðtÞ
term neglected in the latter].
Next we consider the IR-finite part of the amplitude in

the Regge limit. The Regge limit corresponds to x → 0with
s fixed, where8Note that the quantity GðsÞ is referred to as αðsÞ in Ref. [84].
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x≡−t
s
: (4.4)

The various remainder terms Fð1Þ
4 for different supergravity theories are collected in the appendix of Ref. [106]. We

substitute these into Eq. (4.1), set u ¼ −t − s, and keep the first two terms in the expansion about x ¼ 0 to obtain (for s > 0,
t < 0)

Mð1Þ;N¼8
4 ¼

�
κ

8π

�
2
�
4πe−γEμ2

−t
�

ϵ

Mtree
4

�
s
ϵ
½−2iπ þ 2xðLþ 1Þ� þ sx½−2L2 þ 2iπL�

�
;

Mð1Þ;N¼6
4 ¼

�
κ

8π

�
2
�
4πe−γEμ2

−t
�

ϵ

Mtree
4

�
s
ϵ
½−2iπ þ 2xðLþ 1Þ� þ sx½−L2 þ 2iπLþ π2�

�
;

Mð1Þ;N¼5
4 ¼

�
κ

8π

�
2
�
4πe−γEμ2

−t
�

ϵ

Mtree
4

�
s
ϵ
½−2iπ þ 2xðLþ 1Þ� þ sx

�
−L2

2
þ 2iπLþ 3π2

2

��
;

Mð1Þ;N¼4
4 ¼

�
κ

8π

�
2
�
4πe−γEμ2

−t
�

ϵ

Mtree
4

�
s
ϵ
½−2iπ þ 2xðLþ 1Þ� þ sx½2πiL − Lþ 2π2 þ 1�

�
; (4.5)

where for convenience we define L ¼ logðs= − tÞ. These results may be compactly summarized as

Mð1Þ;N¼M
4 ¼

�
κ

8π

�
2
�
4πe−γEμ2

−t
�

ϵ

Mtree
4

�
s
ϵ
½−2iπ þ 2xLþ 2x� þ sx

��
4 −M

2

�
L2 þ

�
8 −M

2

�
π2 þ 2iπL

þ δM4ð1 − LÞ
�
þOðsx2Þ þOðϵÞ

�
; (4.6)

which makes clear the dependence on the degree of supersymmetry M.

The first two terms in the infrared-singular part of
Eq. (4.6), as discussed at length in the previous section,
correspond to the eikonal phase and Reggeization of the
graviton respectively, where the latter is kinematically
suppressed (OðxÞ in the present notation). However, the
first term of the infrared-finite part contains the double log
contribution (ignoring prefactors)

sx

�
4 −M

2

�
L2 ¼

�
M − 4

2

�
t log2

�
s
−t

�
(4.7)

as observed in Ref. [85]. This does not correspond to
Reggeization of the graviton which, as we have already
seen, is purely infrared singular at this order and can involve
only a single log. Nevertheless, the double logarithmic
contribution is of the same order (linear in x) as the
Reggeization term, and in fact superleading (logarithmically
in x) with respect to the Regge logs. The fact that the
coefficient of the double logarithmic contribution is sensi-
tive to the additional matter content of the theory (via the
degree of supersymmetryM) tells us that one is not sensitive
to this contribution in theWilson line approach, which picks
up only graviton-related contributions at one loop (this also
explains why the double log is in the infrared finite part).
Another way to see that the double logs at one loop are

not associated with Reggeization is to examine their origin
in terms of the Feynman diagrams contributing to the
amplitude. Taking the example of N ¼ 8 supergravity, the
one-loop amplitude may be written as [102]

Mð1Þ;N¼8
4 ¼ −i

�
κ

2

�
2

stu½I ð1Þ
4 ðs; tÞ þ I ð1Þ

4 ðt; uÞ

þ I ð1Þ
4 ðs; uÞ�Mtree

4 ; (4.8)

where

I ð1Þ
4 ðs;tÞ

¼μ4−d
Z

ddk
ð2πÞd

1

k2ðk−p2Þ2ðk−p2−p1Þ2ðkþp4Þ2
(4.9)

is the first scalar box integral shown in Fig. 4. The terms
I ð1Þ
4 ðt; uÞ and I ð1Þ

4 ðs; uÞ then correspond to the second and
third box diagrams in the figure. The result for the integral
may be written [116]

I ð1Þ
4 ðs; tÞ ¼ ie−ϵγEð4πÞϵ−2

st

�
4

ϵ2
− 2

ϵ
log

�−s
μ2

�

−
2

ϵ
log

�−t
μ2

�
þ 2 log

�−s
μ2

�
log

�−t
μ2

�

− 4π2

3
þOðϵÞ

�
(4.10)

in d ¼ 4 − 2ϵ dimensions in the region s, t < 0. From this
result, we see that the double logarithmic contribution
comes from I ð1Þ

4 ðs; uÞ, corresponding to the third diagram
in Fig. 4. This is neither a ladder nor a crossed ladder, and
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thus is responsible neither for the eikonal phase, nor for the
Reggeization of the graviton.
The question then arises how to interpret the additional

double logarithmic contributions, and whether or not they
exponentiate. This has been discussed in Ref. [85], which
argues for two sources of double logarithms. The first is
from ladder contributions, including infrared-finite effects
of the graviton Regge trajectory [59–61]. The second is that
backward-scattering contributions are important at this
order in t=ð−sÞ, an observation corroborated by the fact
that such contributions arise from the dressed u-channel
diagram, the third in Fig. 4. The authors of Ref. [85] write
an evolution equation for the leading partial wave contrib-
uting to the amplitude in the limit in which double
logarithms are important, whose solution is argued to
resum these contributions. Note, however, that such con-
tributions become more and more kinematically suppressed
at higher orders in perturbation theory, giving rise to terms

�
κ2tlog2

�
s
−t

��
n
∼ κ2nsnxnL2n; (4.11)

which are OðxnÞ.

B. Two-loop results

In the previous section, we have seen that the interpre-
tation of Reggeization of the graviton is interrupted at
one-loop order by the presence of double logarithmic
contributions in the infrared finite part of the amplitude,
which are the same order in t=s as the Reggeization terms.
This motivates an examination of the four-graviton ampli-
tude at two loops, with a view to seeing which structures
exponentiate, and which do not.
Following Ref. [106], we write the two-loop amplitude

as

Mð2Þ;N¼M
4 ðϵÞ
Mtree

4

¼ 1

2

�
Mð1Þ;N¼M

4 ðϵÞ
Mtree

4

�2

þ
�

κ

8π

�
4

Fð2Þ;N¼M
4 þOðϵÞ; (4.12)

where the IR-finite remainder function Fð2Þ;N¼M
4 corre-

sponds to the part of the two-loop result that is not
generated by exponentiation of the one-loop result9. The
remainder function for N ¼ 8 supergravity was computed

in Refs. [103,104] using the results of Refs. [102,117,118],
and for N ¼ M < 8 supergravity in Ref. [106]. Again
defining x ¼ −t=s and expanding about the Regge limit
x → 0 (keeping terms up to linear in x), one finds that the
behavior of each remainder function is

Fð2Þ;N¼8
4 ¼ s2x

�
−2π2log2x − 4π2 log xþ π4 þ 4π2

þ iπ

�
4

3
log3xþ 4log2x −

�
8þ 8π2

3

�
log x

þ 16ζ3 þ
8π2

3
þ 8

��
þ � � � (4.13)

Fð2Þ;N¼6
4 ¼ s2x

�
−2π2log2x − 4π2 log xþ 59π4

90
þ 4π2

þ iπ

�
2

3
log3xþ 4log2x −

�
8þ 6π2

3

�
log x

þ 4ζ3 þ
16π2

3
þ 8

��
þ � � � (4.14)

Fð2Þ;N¼5
4 ¼ s2x

�
−2π2log2x − 4π2 log xþ 2π4

3
þ 4π2

þ iπ

�
1

3
log3xþ 4log2x −

�
8þ 5π2

3

�
log x

þ 4ζ3 þ
20π2

3
þ 8

��
þ � � � (4.15)

Fð2Þ;N¼4
4 ¼ s2x

�
−2π2log2x − 4π2 log xþ 13π4

30

þ 22π2

3
− 1þ iπ

�
3log2x −

�
14þ 4π2

3

�
log x

− 4ζ3 þ
71π2

9
þ 32

3

��
þ � � � : (4.16)

Note that the IR-finite remainder functions vanish in the
strict Regge limit x → 0. This is because the amplitude in
this limit is dominated by the eikonal phase dressing the
tree-level result. The eikonal phase contribution exponen-
tiates (at least) up to this order, and thus the remainder must
vanish in the limit.
One may summarize the logarithmic terms of the

remainder function, for general M, as

Fð2Þ;N¼M
4 ¼ s2x

�
−2π2log2x − 4π2 log x

þ iπ

��
M − 4

3

�
log3xþ ð4 − δM4Þ log2x

−
�
8þMπ2

3
þ 6δM4

�
log x

��
þ � � � (4.17)

1

2

3

4

FIG. 4. Diagrams contributing to the one-loop four-graviton
amplitude in N ¼ 8 supergravity.

9As the notation in Eq. (4.12) suggests, in constructing
the remainder one must be mindful of terms generated due to
the cross talk between OðϵÞ and Oðϵ−1Þ terms when squaring the
one-loop result.
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where, as in the one-loop amplitude, M ¼ 4 is a somewhat
exceptional case, due presumably to the decreasing amount
of supersymmetry as one counts down fromM ¼ 8. In both
the one- and two-loop amplitudes, a number of terms are
independent of M, and thus are common to all the super-
gravity theories considered here. Such terms presumably
arise from finite contributions involving the graviton alone.
At two loops such contributions would be ultraviolet
divergent in pure Einstein-Hilbert gravity. Here, the results
are made finite by the additional matter content of the
various supergravities.
In Eqs. (4.13)–(4.16), we have not displayed terms of

Oðs2x2Þ, but as noted in Ref. [85], the remainder function
can contain quartic logarithms at this order

Fð2Þ;N¼M
4 ¼ � � � þ cMs2x2log4

�
s
−t

�
þ � � � ;

where

8>>><
>>>:

c8 ¼ − 1
3

c6 ¼ 0

c5 ¼ 1
24

c4 ¼ 0

(4.18)

showing that, for M ¼ 5 and M ¼ 8, the one-loop double
logarithmic terms do not formally exponentiate. The
authors of Ref. [85] argue that these terms can be
resummed to all orders. In any case, Eq. (4.17) makes
clear that there is a more dominant source of IR-finite
corrections at two-loop order, namely those which
are Oðs2xÞ.
These Oðs2xÞ terms also threaten a simple interpretation

of Reggeization at this order, as they introduce a depend-
ence on s=ð−tÞ which is kinematically enhanced relative to
the Reggeization of the graviton at this order. It is
interesting to ponder whether any of the terms in the above
remainders can be shown to exponentiate, or be resum-
mable in some other form. It is known, for example, that
t=ð−sÞ corrections to the eikonal phase should come into
play in describing black-hole formation [75,80]. That such
features are suppressed in this manner is partly due to the
fact that they are not described by the eikonal approxima-
tion, which reproduces the bound states associated with
only the perturbative (Coulomb-like) part of the gravita-
tional potential. Black holes should be associated with
nonperturbative dynamics, as discussed in Ref. [84].
Because the two-loop remainder functions vanish in the

strict Regge limit x → 0 for arbitrary degrees of super-
symmetry, the four-graviton scattering amplitude is repro-
duced exactly in this limit by the exponentiation of the
one-loop result at two-loop order. One may wonder
whether this remains true at higher orders. To this end,
it is interesting to note that the eikonal result itself does not
satisfy this requirement at three-loop order and beyond. To
see this, note that the ratio of Euler gamma functions in
Eq. (3.13) can be expanded to give

Γ½1 − iG�
Γ½1þ iG� ¼ e2iγEG

�
1þ i

3
Ψð2Þð1ÞG3 þOðG4Þ

�
; (4.19)

whereΨðnÞðxÞ is the nth derivative of the digamma function

ΨðxÞ ¼ d
dx

log ΓðxÞ: (4.20)

Equation (4.19) does not have a purely exponential form,
and shows that one-loop exactness of the Regge limit of the
amplitude may be broken at three-loop level and beyond by
infrared-finite contributions. This is not a firm conclusion,
given that there may be infrared-finite corrections to the
amplitude which are not captured by the eikonal approxi-
mation which leads to Eq. (4.19). However, the ratio of
gamma functions resums contributions of known physical
origin (the formation of bound states in the s-channel), and
so presumably describes genuine behavior to all orders in
perturbation theory.

V. THE REGGE LIMIT OF MULTIGRAVITON
AMPLITUDES

In previous sections, we have considered the four-
graviton scattering amplitude, consisting of 2 → 2 scatter-
ing dressed by virtual graviton exchanges. The Regge limit
has also been widely studied for the case of general L-point
scattering, with L > 4 (for a pedagogical review in a QCD
context, see Ref. [119]). This was studied from an infrared
point of view in Refs. [31,32], which confirmed the result
that in the high energy limit, scattering is dominated by
multiple t-channel exchanges, as shown in Fig. 5, where
each strut of the ladder is dressed by a Reggeized
propagator involving the relevant quadratic Casimir for
the exchanged object.
Given the results of Sec. III for the 2 → 2 scattering in

gravity, it is instructive to examine the high energy limit of

FIG. 5. A general L-parton scattering process in the MRK limit,
consisting of strongly ordered rapidities in the final state. Here
Tti is a quadratic Casimir operator associated with a given strut of
the ladder.
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multigraviton scattering using the Wilson line approach. As
for the four-point amplitude, this provides an interesting
comparative study with respect to non-Abelian gauge
theory. Furthermore, it is useful to clarify the role of the
eikonal phase in this context.
First, let us briefly review the QCD case, differing from

Refs. [31,32] in that we use aWilson line calculation, rather
than the dipole formula [33–35] as a starting point. We will
consider massive particles, keeping a mass m only when
regulating collinear singularities [as is done in e.g.
Eq. (2.26)]. For ease of comparison with Refs. [31,32]
(and also for the sake of brevity in the following formulas),
we will reverse the sign of the color generators associated
with the incoming legs i.e. T1;2 → −T1;2. Treating each
external leg of the amplitude as a separate Wilson line, the
set of all contributing one-loop diagrams consists of gluon
emissions between pairs of external lines. From Eq. (2.26),
one infers that the sum of these diagrams gives (including
the color adjustment mentioned above)

Mð1Þ
L ¼ g2sΓð1−ϵÞ

4π2−ϵ
ðμ2Λ2

UVÞϵ
2ϵ

�
iπ

�
T1 ·T2þ

XL−1
i¼3

X
j>i

Ti ·Tj

�

−T1 ·T2 log

�
s
m2

�
−XL−1

i¼3

X
i>j

Ti ·Tj log

�
sij
m2

�

−
XL
i¼3

�
T1 ·Ti log

�
−s1i
m2

�
þT2 ·Ti log

�
−s2i
m2

���

(5.1)

where

s¼ðp1þp2Þ2; sij¼ðpiþpjÞ2;
s1i¼ðp1−piÞ2; s2i¼ðp2−piÞ2; i;j>3; (5.2)

and Λ2
UV is an ultraviolet regulator, which we have chosen

to be the same for all diagrams. We may now use the fact
that the high energy limit of multiparton scattering corre-
sponds to the multi-Regge-kinematic (MRK) regime in
which the outgoing particles are widely separated in
rapidity. One may then replace the various invariants
appearing in Eq. (5.1) with (see e.g. Ref. [119])

s≃ jk3⊥jjkL⊥jey3−yL ;
−s1i ≃ jk3⊥jjki⊥jey3−yi ;
−s2i ≃ jkL⊥jjki⊥jeyL−yi ;
sij ≃ jki⊥jjkj⊥jeyi−yj ; 3 ≤ i < j ≤ L; (5.3)

where yi and ki⊥ are the rapidity and transverse momentum
of parton i, respectively. Furthermore, given that the
separation between all pairs of consecutive final state
particles is asymptotically approaching infinity, this sug-
gests that one may identify the common ultraviolet cutoff

(motivated by the 2 → 2 case) with the impact parameter z⃗
corresponding to the distance of closest approach of the
incoming particles. In any case, different cutoff choices will
not affect the infrared behavior, only contributing addi-
tional logarithms in the infrared finite part of Eq. (5.1).
Substituting Eq. (5.3) into Eq. (5.1), one may rewrite the

latter as

Mð1Þ
L ¼ g2sΓð1 − ϵÞ

4π2−ϵ
ðμ2z⃗2Þϵ
2ϵ

�
−XL−1

i¼1

X
j>i

jyi − yjjTi · Tj

þ iπ

�
T1 · T2 þ

XL−1
i¼3

X
j>i

Ti · Tj

�

þ
XL
i¼1

Ci log

�jki⊥j
m

��
; (5.4)

where Ci ¼ T2
i is the quadratic Casimir in the representa-

tion of leg i, and we made repeated use of the color
conservation equation

XL
i¼1

Ti ¼ 0. (5.5)

Also in Eq. (5.4), we have introduced the (unphysical)
rapidities y1 ≡ y3, y2 ≡ yL, in order to simplify the
notation. Introducing the s-channel quadratic Casimir

T2
s ¼ ðT1 þ T2Þ2 ¼

�XL
i¼3

Ti

�2

; (5.6)

one may also write Eq. (5.4) as

Mð1Þ
L ¼ g2sΓð1 − ϵÞ

4π2−ϵ
ðμ2z⃗2Þϵ
2ϵ

�
−XL−1

i¼1

X
j>i

jyi − yjjTi · Tj

þ iπT2
s þ

XL
i¼1

Ci

�
log

�jki⊥j
m

�
− iπ

2

��
: (5.7)

One may now use the identity, proven in Ref. [32],

XL−1
i¼1

X
j>i

jyi − yjjTi · Tj ¼ −XL−1
k¼3

T2
tk−2Δyk; (5.8)

where Tti is a quadratic Casimir operator for a given strut of
the t-channel ladder in Fig. 5, and Δyk ¼ yk − ykþ1 the
associated rapidity difference. Equation (5.7) then becomes

Mð1Þ
L ¼ g2sΓð1 − ϵÞ

4π2−ϵ
ðμ2z⃗2Þϵ
2ϵ

�XL−1
k¼3

T2
tk−2Δyk þ iπT2

s

þ
XL
i¼1

Ci

�
log

�jki⊥j
m

�
− iπ

2

��
; (5.9)
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which differs from the result in Refs. [31,32] owing to the
use of a mass regulator for collinear singularities adopted
here. As usual, one may exponentiate the one-loop soft
function to obtain

exp

�
g2sΓð1 − ϵÞ

4π2−ϵ
ðμ2z⃗2Þϵ
2ϵ

�XL−1
k¼3

T2
tk−2Δyk þ iπT2

s

þ
XL
i¼1

Ci

�
log

�jki⊥j
m

�
− iπ

2

���
; (5.10)

which acts on the hard interaction consisting of L-point
scattering undressed by virtual emissions. The leading high
energy behavior (corresponding to leading logarithms in
rapidity) is given by the first term in the exponent acting on
the hard function, and produces a tower of Reggeized gluon
exchanges, each dressed by the appropriate quadratic
Casimir. The analysis is in fact more general than this—
even if the struts of the ladder have different exchanges,
each will Reggeize separately given that the t-channel
operators for different struts commute with each other [32].
Note that an eikonal phase term remains present, weighted
as in the 2 → 2 case by the quadratic Casimir operator for
s-channel exchanges. This has the same physical meaning
in the present context—it is associated with the formation
of s-channel bound states.
Having reviewed the QCD case, let us now return to

gravity. As may be confirmed by more detailed calculation,
the latter case is easily obtained from the former using the
replacements of Eq. (3.7), so that the exponentiated
gravitational soft function is

exp

�
−
�
κ

2

�
2 Γð1 − ϵÞ

4π2−ϵ
ðμ2z⃗2Þϵ
2ϵ

�XL−1
k¼3

tk−2Δyk þ iπs

��
:

(5.11)

Here tk is the squared momentum transfer flowing in the
kth strut of the ladder, as labeled in Fig. 5. Here one sees a
similar story to the QCD case, namely the presence of both
a Reggeization and an eikonal phase term. The former is
now itself a series of terms, each of which Reggeizes
the graviton in a given strut of the ladder. However, as in the
2 → 2 case, the Reggeization term in gravity involves
the squared momentum transfer by virtue of its being the
appropriate quadratic Casimir, and thus is kinematically
subleading in the strict Regge limit of s=jtj → ∞. Thus,
multigraviton scattering for any number of gravitons is
dominated by the eikonal phase term, hinting at the
production of bound states in the s-channel.
It would be interesting to consider the impact of infrared

finite corrections on this result. By analogy with the four
point amplitude, one would expect additional logarithms to
appear in the finite part, which disrupt the interpretation of
graviton Reggeization. It is worth noting here also that the

Regge limit of multiparticle scattering has been widely
investigated in the context of the BDS conjecture [116], an
all-order ansatz for the form of planar amplitudes inN ¼ 4
super-Yang-Mills theory. This conjecture is known to break
down for six-point amplitudes at two loops, as first shown
by considering the Regge limit in an unphysical region
[120]. One might expect similar structures to occur in
(super)-gravity theories, using double copy [88–90]
considerations.

VI. CONCLUSIONS

In this paper, we have considered the Regge limit of
gravity from a Wilson line point of view, adopting an
approach first used for Abelian and non-Abelian gauge
theories [29,30]. Our motivation was to provide a common
way of looking at Reggeization in different theories, and to
clarify the role of graviton Reggeization as presented in the
literature.
The Wilson line approach reveals the presence of both an

eikonal phase and a Reggeization term in the soft function
at one-loop, where the former is associated with the
formation of s-channel bound states due to the perturbative
part of the potential. In QCD, the Reggeization term
dominates at leading logarithmic order, leading to auto-
matic Reggeization of arbitrary t-channel exchanges, as
discussed in Refs. [31,32], where the Regge trajectory is
purely infrared singular at one-loop order, and involves
the quadratic Casimir operator associated with a given
t-channel exchange. Beyond this logarithmic order, cross
talk occurs between the two contributions, leading to a
breakdown of simple Regge pole behavior. The situation is
further complicated in QCD, even for the purely infrared
singular parts of the amplitude, by the presence of
corrections to the exponent of the soft function.
Our gravity calculation used the Wilson line operators of

Refs. [92,93], and confirmed the presence of both an
eikonal phase and Reggeization term at one-loop in gravity.
Here the soft function is one-loop exact, receiving no
perturbative corrections in the exponent [91–94]. The
eikonal phase and Regge trajectory, as expected from the
QCD calculation, contain quadratic Casimir operators
associated with s- and t-channel exchanges. In the gravity
case, these are the Mandelstam invariants s and t them-
selves, and thus one finds a particularly elegant explanation
for the fact that the gravitational Regge trajectory is linear
in t, and thus kinematically-subleading in the Regge limit
with respect to the eikonal phase iπs. We saw that cross talk
between the two contributions leads to Regge cut behavior,
clarifying the QCD discussion of Refs. [31,32]. We also
examined Reggeization in multigraviton scattering, finding
again that graviton Reggeization is subdominant with
respect to the eikonal phase. The story of Reggeization
in gravity is further complicated, even at one-loop order, by
the presence of IR-finite log2s contributions. Such double-
log terms arise in explicit one-loop calculations in N ¼ 5,
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N ¼ 6, and N ¼ 8 supergravity [85]. Although these
terms are kinematically-suppressed with respect to the
eikonal phase term, they are of the same order as the
Reggeization term and therefore mix with the Reggeization
of the graviton.
Using known results for the two-loop amplitude in in

N ¼ 4, N ¼ 5, N ¼ 6, and N ¼ 8 supergravity, we
computed the Regge limit of the two-loop contribution to
the logarithmof the amplitude,whichmeasures the failure of
the one-loop result to exponentiate. These correction terms
are of OðstÞ and therefore kinematically-subleading with
respect to theOðs2Þ exponentiation of the eikonal phase (and
hence vanish in the strict Regge limit). They are, however,
kinematically-superleading with respect to the Oðt2Þ expo-
nentiation of the one-loop Reggeization term and also with
respect to the Oðt2 log4sÞ terms computed in Ref. [85].
Although the strict Regge limit of the two-loop ampli-

tude was shown to be one-loop-exact for N ≥ 4 super-
gravity, it remains an open question whether this continues
to hold at three loops and beyond, i.e. whether the strict
Regge limit of the L-loop result is given by the exponential
of the one-loop eikonal phase. The resolution of this
question awaits the evaluation of the contributing non-
planar integrals.
It is fair to say that the higher-loop contributions to the

Regge limit of gravity are still not fully understood.
Investigation of these contributions in more detail may
shed light on a number of unresolved issues in quantum
gravity, including issues of black hole formation and
unitarity (see e.g. Refs. [75,82,83] and references therein).
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APPENDIX A: WILSON LINES AND
SHOCKWAVES

The authors of Ref. [86] examined the Regge limit of
quantum gravity from the point of view of the double copy
procedure of Refs. [88–90], which posits that gravitational
scattering amplitudes can be obtained from gauge theory
counterparts, by replacements of kinematic numerators by
color factors (together with relevant coupling constants).
That paper also pointed out that shockwave solutions—
namely gauge field configurations corresponding to a
single massless particle—can also be related by the double

copy. In this appendix, we briefly state how shockwaves are
connected to the Wilson line language.
Consider first a QED Wilson line operator

exp

�
ie
Z

dxμAμðxÞ
�
; (A1)

with the contour chosen to be the classical straight-line
trajectory of a hard emitting particle

xμ ¼ uμτ; (A2)

where τ is a parameter along the contour (with units of
length), and uμ ¼ pμ=E the 4-velocity of a massless
particle with energy E. We may rewrite Eq. (A1) in terms
of a current density sourcing the gauge field, by introducing
a three-dimensional delta function as follows:

exp

�
ie
Z

dxμAμðxÞ
�
¼exp

�
ieuμ

Z
d4xδð3Þðx⃗ÞAμðxÞ

�

≡exp

�
−i

Z
d4xjμðxÞAμðxÞ

�
; (A3)

where

δð3Þðx⃗Þ ¼ δðz − tÞδðxÞδðyÞ; (A4)

and without loss of generality we have taken the Wilson
line to be in the þz direction. We then see that the current
due to the Wilson line operator is

jμ ¼ −euμδðz − tÞδðxÞδðyÞ: (A5)

As pointed out in Ref. [86], this is precisely the source that
gives rise to a QED shockwave, upon solving the field
equations for the gauge field AμðxÞ.
A similar argument may be made for gravity, and one

starts by rewriting the Wilson line operator of Eq. (3.1) as10

exp

�
i
κ

2
pμ

Z
dxμhμνðxÞ

�

¼ exp

�
i
κ

2
Euμuν

Z
d4xδð3Þðx⃗ÞhμνðxÞ�

¼ exp

�
−i

Z
d4xjμνðxÞhμνðxÞ

�
: (A6)

We recognize the source current in this case as

jμνðxÞ ¼ − κ

2
Euμuνδðz − tÞδðxÞδðyÞ≡− κ

2
Tμν; (A7)

10Strictly speaking, in gravity there should be factors of
ffiffiffiffiffiffi−gp

in the volume measure, where g is the determinant of the metric
tensor. However, these can be ignored in Rq. (A6) due to the fact
that we are only expanding to first order in the graviton field.
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where we have introduced the conventional energy-
momentum tensor in the last term. This can be recog-
nized as the energy-momentum tensor for a massless

particle quoted in Ref. [86], so that solution of the field
equations for hμνðxÞ gives the Aichelberg-Sexl (shock-
wave) metric.
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