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We find the general solution to the time-dependent Hartree-Fock problem for scattering solutions of the
Gross–Neveu models, with both discrete (GN2) and continuous (NJL2) chiral symmetry. We find new
multibreather solutions both for the GN2 model, generalizing the Dashen–Hasslacher–Neveu breather sol-
ution, and also new twisted breathers for the NJL2 model. These solutions satisfy the full time-dependent
Hartree-Fock consistency conditions, and only in the special cases of GN2 kink scattering do these con-
ditions reduce to the integrable Sinh–Gordon equation. We also show that all baryons and breathers are
composed of constituent twisted kinks of the NJL2 model. Our solution depends crucially on a general class
of transparent, time-dependent Dirac potentials found recently by algebraic methods.
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I. INTRODUCTION

The Gross–Neveu (GN2) and Nambu–Jona-Lasinio
(NJL2) models in 1þ 1-dimensional quantum field theory
describe N species of massless, self-interacting Dirac
fermions with Lagrangians [1]:

LGN ¼
XN
k¼1

ψ̄ki∂=ψk þ
g2

2

�XN
k¼1

ψ̄kψk

�2

(1.1)

LNJL ¼
XN
k¼1

ψ̄ki∂=ψk

þ g2

2

��XN
k¼1

ψ̄kψk

�2

þ
�XN

k¼1

ψ̄kiγ5ψk

�2�
: (1.2)

These models serve as soluble paradigms for symmetry
breaking phenomena in both strong interaction particle
physics and condensed matter physics [2,3]. We consider
these models in the ’t Hooft limit, N→∞, with
Ng2 ¼ constant, where semiclassical methods become
exact. Classically, the GN2 model has a discrete chiral
symmetry, while the NJL2 model has a continuous chiral
symmetry. At finite temperature and density, these models
exhibit a rich structure of phases with inhomogeneous
crystalline condensates in the large N limit, these phases
being directly associated with chiral symmetry breaking
[4]. Such self-interacting fermion models also have numer-
ous applications to a wide variety of phenomena in particle,
condensed matter, and atomic physics [5–21].
In the ’t Hooft limit, N → ∞, Ng2 ¼ constant, we use

semiclassical techniques pioneered in this context by

Dashen, Hasslacher, and Neveu (DHN) [22]. This can
either be understood in functional language as a gap equa-
tion, or as a Hartree-Fock (HF) problem in which one
solves the Dirac equation subject to constraints on the sca-
lar and pseudoscalar condensates. Here we use the time-
dependentHartree-Fock (TDHF) formalism,which involves
solving the following constrained Dirac equations:

GN2∶ ði∂=−Sðx;tÞÞψα¼0; S¼−g2Xocc
β

ψ̄βψβ (1.3)

NJL2∶ ði∂= − Sðx; tÞ − iγ5Pðx; tÞÞψα ¼ 0;

S ¼ −g2Xocc
β

ψ̄βψβ; P ¼ −g2Xocc
β

ψ̄βiγ5ψβ: (1.4)

For NJL2 it is convenient to combine the scalar and pseudo-
scalar condensates into a single complex condensate:

Δ ¼ S − iP: (1.5)

All static solutions to these HF problems have been found
and used to solve analytically the equilibrium thermody-
namic phase diagrams of these models in the large N limit,
at finite temperature and nonzero baryon density [3,4].
These static solutions reveal a deep connection to integrable
models, in particular the modified Korteweg-de Vries sys-
tem for the GN2 system and Ablowitz-Kaup-Newell-
Segur for the NJL2 system [4,23]. In this paper we present
a significant extension of these results, by finding the full set
of time-dependent solutions to the TDHF equations in
Eqs. (1.3) and (1.4) [24]. We solve these problems in
generality, describing the time-dependent scattering of
nontrivial topological objects such as kinks, baryons, and
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breathers. Some special cases have been solved previously,
but here we present several entirely new classes of solutions
to the TDHF problem. Surprisingly, we have found that the
most efficient strategy is to solve the (apparently more com-
plicated) NJL2 model first and then obtain GN2 solutions by
imposing further constraints on these solutions. For exam-
ple, we show that the GN2 baryons found by Dashen,
Hasslacher, and Neveu [22] can be thought of as bound
objects of twisted NJL2 kinks and furthermore that the scat-
tering of the GN2 baryons can be deduced from the scatter-
ing of twisted kinks, a problem the solution of which we
present here. Breathers are somewhat more involved, but
again we give a complete and constructive derivation of
all multibreather solutions, also in terms of constituent
twisted kinks. This includes new breather and multibreather
solutions in NJL2 as well as new multibreather solutions in
the GN2 model.
We stress that, while it is well known that the classical

equations of motion for the GN2 and NJL2 models are
closely related to integrable models [25–27], this fact is only
directly useful for the solution of the time-dependent
Hartree-Fock problem for the simplest case of kink scatter-
ing in the GN2 model, where the problem reduces to solving
the integrable nonlinear Sinh–Gordon equation [28–30].
The more general self-consistent TDHF solutions that we
find here do not satisfy the Sinh–Gordon equation or any
simple general bosonic nonlinear equation. Instead we shall
make use of the transparent, time-dependentDirac potentials
derived recently by solving a finite algebraic problem [31].
We also emphasize that these more general solutions require
a self-consistency condition relating the filling fraction of
valence fermion states to the parameters of the condensate
solution, as for the static GN2 baryon [22], the static twisted
kink [32], and the GN2 breather [22]. For our time-
dependent solutions, this important fact means that during
scattering processes there is nontrivial backreaction between
fermions and their associated condensates and densities
[33]. Kink scattering in the GN2 model, described by
Sinh–Gordon solitons [28–30], is much simpler because
there is no fermion filling-fraction self-consistency condi-
tion, nor backreaction.

A. Basic building blocks

The known Hartree-Fock solutions are characterized by
several basic building blocks: kinks, baryons, and breath-
ers. We briefly review these solutions below. In fact we
show in this paper that the general solutions are all built
out of one basic unit, the twisted kink. To simplify the nota-
tion, we henceforth set m ¼ 1, measuring dimensional
quantities in terms of the dynamically generated fermion
mass m.

1. Real CCGZ kink for GN2

The most familiar HF solution for the GN2 model is the
static Coleman–Callan–Gross–Zee (CCGZ) kink [22].

Since we can restrict ourselves to potentials which go to
1 for x → −∞ without loss of generality, we quote the
“antikink”:

condensate∶ SðxÞ¼− tanh x ¼ 1−e2x

1þe2x

fermion filling-fraction consistency condition∶ none: (1.6)

We have expressed the usual tanh form as a ratio of
polynomials of exponentials, as this is the basic form of
the more general solutions. The fermion number is
Nðν − 1=2Þ, where ν ∈ ½0; 1�, the filling fraction of the
zero energy bound state, is not constrained by the self-
consistency requirement for the scalar condensate hψ̄ψi.
This static kink can be boosted with some velocity to
produce a simple time-dependent solution.

2. Complex twisted kink for NJL2

The corresponding kinklike solution for the NJL2 model,
Shei’s twisted kink [32], can be expressed in terms of the
complex condensate Δ defined in Eq. (1.5):

condensate∶ΔðxÞ¼1þe−2iθe2x sinθ
1þe2x sinθ

fermion filling-fraction consistencycondition∶ν¼θ

π
: (1.7)

For θ > 0 this kink rotates through an angle −2θ in the
chiral ðS; PÞ plane as x goes from −∞ to þ∞. Notice that
both the magnitude, jΔðxÞj, and the phase, arg ΔðxÞ, vary
with x. When θ ¼ π=2, the twisted kink becomes real and
reduces to the GN2 kink in Eq. (1.6). As in Eq. (1.6), the
solution can be expressed as a rational function of simple
exponentials. This twisted kink solution reveals a new level
of complexity, as the self-consistency of the HF solution
requires a relation between the chiral angle parameter θ
and the fermion filling fraction of the valence bound state
[32]. This fact is responsible for more intricate scattering
dynamics of twisted kinks, as there is a backreaction from
the bound fermions during scattering processes, a phe-
nomenon that does not occur for scattering of CCGZ kinks
in the GN2 model. The difference between the twisted kink
and the CCGZ kink is due to the fact that there is no self-
consistency condition for the pseudoscalar condensate
hψ̄iγ5ψi in the GN2 model. This is discussed in detail
below. Note that the single twisted kink in Eq. (1.7) can
also be boosted with some velocity to produce a simple
time-dependent solution.

3. Real DHN baryon for GN2

DHN found a self-consistent static baryon solution for
the GN2 model that looks like a bound kink and antikink,
at locations x ¼ �c0=y [22]:
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condensate∶ SðxÞ ¼ 1þ y½tanhðyx − c0Þ − tanhðyxþ c0Þ� ¼
1þ 2 cos 2θ

cos θ e2yx þ e4yx

1þ 2
cos θ e

2yx þ e4yx
; y ¼ sin θ;

c0 ¼
1

2
ar tanh y; fermion filling-fraction consistency condition∶ νþ − ν− ¼ 2θ

π
− 1: (1.8)

The filling fractions νþ, ν− refer to the positive and negative energy bound states, respectively. As y → 1, one or the other of
the kink or antikink decouples, leaving a single CCGZ kink or antikink. For this solution, self-consistency requires a
relation between the parameter y and the fermion filling fractions of the valence bound states [22]. This means that
the physical size (∼c0) of the baryon is directly related to the number of valence fermions that it binds and results in
intricate fermion dynamics during the scattering of DHN baryons [33]. This static baryon solution can also be boosted
to a given velocity. In this paper we present the apparently new result that the DHN baryon can be expressed as a bound pair
of twisted kinks, where the twist parameters are directly related to the baryon parameter y; see below, Sec. III B.

4. Real DHN breather for GN2

DHN also found in the GN2 model an exact time-dependent self-consistent HF solution that is periodic in time in its rest
frame (known as the “breather”) [22]:

condensate∶ Sðx; tÞ ¼ 1þ bð2 − K2ÞeKx − 2aeKx cosðΩtÞ þ e2Kx

1þ 2beKx þ 2aeKx cosðΩtÞ þ e2Kx

Ω ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p ; K ¼ ϵΩ; a ¼ ϵ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2 − 4 − K2b2

p

filling-fraction consistency condition∶ b ¼ ðν− − νþÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p

1 − ð2=πÞ arctan ϵ
:

(1.9)

The DHN breather has two parameters, ϵ and b, character-
izing the frequency and the amplitude of its oscillation. The
breather also requires a self-consistency relation between
the valence fermion filling fractions and the breather
parameters [22,34].

B. Building multiple-object solutions

The aforementioned exact solutions have been general-
ized in various ways. First, as mentioned already, it is clear
that each can be boosted from its rest frame. What is less
clear is that they can be boosted independently, to describe
scattering processes of independent objects.We show in this
paper how this can be done in a fully self-consistent manner:

1. The real CCGZ kinks for GN2 can be combined
into static multikink solutions [35] and also kink-
antikink crystals [3]. Exact solutions can also be
given describing the scattering of arbitrary combina-
tions of kinks and antikinks, with arbitrary veloc-
ities. This construction is based on the fact that
the logarithm of the scalar condensate S satisfies
the Sinh–Gordon (ShG) equation [28,29], so these
solutions can be constructed from the correspond-
ing ShG solitons [30]. No fermion filling-fraction
self-consistency condition is required.

2. Takahashi et al. [36] have recently presented an alge-
braic construction for static multi-twisted-kink solu-
tions for the NJL2 model, and twisted crystalline
solutions were constructed in Ref. [37]. In the present
paper, we give new results for the time-dependent
scattering of arbitrary combinations of twisted kinks,

with arbitrary velocities. Note that the twisted kinks
do not satisfy the Sinh–Gordon equation, so the con-
struction uses other methods. We find a simple
closed-form solution as a ratio of determinants, for
both the static and time-dependent multi-twisted-
kink solutions.

3. The scattering of two DHN baryons for the GN2

model was solved in Ref. [33], and an algorithmic
procedure for the description of multi-DHN-baryon
scattering was presented in Ref. [38]. In this paper
we show that DHN baryons can be constructed as
bound twisted kinks, and therefore the scattering
of DHN baryons can be described as special cases
of the scattering of twisted kinks, for which we have
a closed-form solution.

4. Our construction leads to two new results concern-
ing breathers. First, we find twisted breather solu-
tions for the NJL2 model, and we find solutions
describing the scattering of any number of these
twisted breathers. Second, as a consequence, we find
the general solution for the scattering of any number
of GN2 breathers. This is consistent with the partial
results of Ref. [34]. Indeed, our general construction
describes the scattering of any number of any of
these objects: real kinks, twisted kinks, DHN GN2

baryons and breathers, and NJL2 breathers.

C. Dirac equation and kinematic notation

We consider the TDHF problem (1.4) for the NJL2

model, and later we specialize to solutions of the GN2
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model. We work with the following representation of the
Dirac matrices:

γ0 ¼ σ1; γ1 ¼ iσ2; γ5 ¼ γ0γ1 ¼ −σ3; (1.10)

and it is convenient to adopt light-cone coordinates
(note that z̄ is not the complex conjugate of z),

z¼x− t; z̄¼xþ t; ∂0¼ ∂̄ −∂; ∂1¼ ∂̄þ∂: (1.11)

The energy E and momentum k can be written in terms of
the light-cone spectral parameter ζ,

k ¼ 1

2

�
ζ − 1

ζ

�
; E ¼ − 1

2

�
ζ þ 1

ζ

�
; (1.12)

where we measure energies and momenta in units of m, the
dynamically generated fermion mass. We have included a
minus sign in the definition of E since for the consistency
condition we will be summing over negative energy states
in the Dirac sea. The various regions of the spectral plane,
with corresponding energy and momentum, are shown
in Fig. 1.
The boost parameter η, rapidity ξ, and velocity v are

related by

η ¼ eξ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ v
1 − v

r
; v ¼ η2 − 1

η2 þ 1
: (1.13)

Under a Lorentz boost, the light-cone variables transform
as

z → ηz; z̄ → η−1z̄; ζ → ηζ; (1.14)

and the Lorentz scalar argument of a plane wave is
written as

kμxμ ¼ − 1

2

�
ζz̄ − z

ζ

�
: (1.15)

In terms of these variables, and in terms of the complex
condensate (1.5), the Dirac equation for the two-component
spinor (ψ1 ¼ ψL, ψ2 ¼ ψR) reads

2i∂̄ψ2 ¼ Δψ1; 2i∂ψ1 ¼ −Δ�ψ2: (1.16)

II. GENERAL TDHF SOLUTION

A. Transparent potential

In a recent paper, a large class of transparent, time-
dependent, scalar-pseudoscalar Dirac potentials was con-
structed [31]. The method used was a generalization of
the method invented by Kay and Moses for finding all
static, transparent Schrödinger potentials [39]. We collect
the main results, referring to Ref. [31] for proofs and more
details. We make the following ansatz for the continuum
spinor:

ψζ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ζ2
p �

ζχ1−χ2
�
eiðζz̄−z=ζÞ=2; (2.1)

where χ1 and χ2 approach some constant for x → ∞. In that
case, the continuum spinor behaves like a plane wave trav-
eling to the right for x → −∞, as well as for x → ∞ (for
k > 0); hence, it is manifestly reflectionless.
The basic ingredients in the construction of Δ and ψζ are

N “plane wave” factors en, fn, with complex spectral
parameters ζn,

en ¼ eiðζ�nz̄−z=ζ�nÞ=2; fn ¼
en
ζ�n

; n¼ 1;…;N: (2.2)

N is the number of bound states. The reduced spinor com-
ponents χ1;2 in Eq. (2.1) are written as finite sums with N
poles:

χ1 ¼ 1þ i
XN
n¼1

1

ζ−ζn
e�nφ1;n; χ2¼ 1− i

XN
n¼1

ζ

ζ− ζn
e�nφ2;n:

(2.3)

Here φ1;n and φ2;n are 2N functions defined as the solutions
of the following systems of linear, algebraic equations,

XN
m¼1

ðωþBÞnmφ1;m¼en;
XN
m¼1

ðωþBÞnmφ2;m¼−fn:
(2.4)

Here, ω is a constant, Hermitian, but otherwise arbitrary
N × N matrix, and B is an N × N matrix constructed from

FIG. 1 (color online). The spectral ζ plane, indicating the re-
gions of positive and negative energy and momentum. We have
set the mass scalem ¼ 1. Note that for ζ outside the unit circle the
boost has a positive velocity, negative inside the unit circle.
Bound states, having jEj < 1, correspond to a ζ of magnitude
1, lying on the unit circle.
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the basis functions, enðz; z̄Þ, and spectral parameters, ζn, as
follows:

Bnm ¼ i
ene�m

ζm − ζ�n
: (2.5)

The ζn can be identified with the positions of the bound
state poles of ψζ in the complex ζ plane; see Eq. (2.3).
To simplify the notation, we denote by e, f, φ1, φ2 the
N-dimensional vectors with components en, fn, φ1;n,
φ2;n, respectively, whereas ω and B denoteN × N matrices.
Equation (2.4) becomes

ðωþ BÞφ1 ¼ e; ðωþ BÞφ2 ¼ −f: (2.6)

As shown in Ref. [31], the φn are N bound state spinors,
and ψζ is the continuum spinor belonging to the transparent
Dirac potential

Δ ¼ 1 − ie†φ2 ¼ 1þ iφ†
1f ¼ 1þ ie†

1

ωþ B
f: (2.7)

The three different expressions for Δ given here are equiv-
alent owing to Eq. (2.6). Let us introduce a third vector g in
addition to e, f defined in Eq. (2.2), with components

gn ¼
en

ζ − ζ�n
: (2.8)

This yields more compact expressions for χ1, χ2 as well,

χ1 ¼ 1þ ig†φ1; χ2 ¼ 1 − iζg†φ2: (2.9)

Furthermore, simple expressions in terms of determinants
were presented in Refs. [24,31] for the condensate Δ and
the spinor components χ1;2.
The bound state spinors φn are in general neither

orthogonal nor normalized. A set of properly orthonormal-
ized spinors can be constructed via

φ̂n ¼
XN
m¼1

Cnmφm;
Z

∞

−∞
dxφ̂†

nφ̂m ¼ δn;m: (2.10)

As shown in Ref. [31], the matrix C then satisfies the
condition

2Cω−1C† ¼ 1: (2.11)

This was derived under the assumption that Im kn > 0,
where

kn ¼
1

2

�
ζn − 1

ζn

�
(2.12)

is the complex momentum belonging to the nth bound
state. The following asymptotic behavior of the potential
was found in Ref. [31]:

lim
x→−∞Δ ¼ 1; lim

x→∞
Δ ¼

YN
n¼1

ζn
ζ�n

¼ eiΘ: (2.13)

This shows that Δ has a chiral twist eiΘ, where the chiral
twist angle Θ can be computed by simply adding up the
phases of all bound state pole parameters ζn,

Θ ¼ 2
XN
n¼1

θn; ζn ¼ jζnjeiθn : (2.14)

The spinor components have the asymptotic behavior

lim
x→−∞χ1 ¼ 1; lim

x→∞
χ1 ¼

YN
n¼1

ζ − ζ�n
ζ − ζn

; (2.15)

lim
x→−∞χ2 ¼ 1; lim

x→∞
χ2 ¼

YN
n¼1

ζn
ζ�n

ζ − ζ�n
ζ − ζn

: (2.16)

From Eq. (2.15) we can read off the fully factorized,
unitary transmission amplitude TðζÞwith the expected pole
structure,

TðζÞ ¼
YN
n¼1

ζ − ζ�n
ζ − ζn

; jTðζÞj ¼ 1: (2.17)

The extra factors in the product in Eq. (2.16) are due to the
chiral twist of the potential Δ, which also affects the
spinors.

B. Self-consistency

Wenow show that this solution also gives a self-consistent
solution to the fully quantized TDHF problem (1.4), pro-
vided certain filling-fraction conditions are satisfied by
the combined soliton-fermion system, generalizing the con-
ditions already found by DHN and Shei [22,32]. The TDHF
potentialΔ receives contributions from theDirac sea and the
valence bound states,

Δ ¼ −2Ng2ðhψ�
1ψ2isea þ hψ�

1ψ2ibÞ; (2.18)

with

hψ�
1ψ2isea ¼ − 1

2

Z
Λ

1=Λ

dζ
2π

1

ζ
χ�1χ2; (2.19)

hψ�
1ψ2ib ¼

X
n

νnφ̂
�
1;nφ̂2;n: (2.20)

The integration limits in Eq. (2.19) correspond to a symmet-
ric momentum cutoff �Λ=2 in ordinary coordinates.
We insert the expressions for χ1, χ2 fromEq. (2.9) and isolate
the ζ dependence of the integrand in the continuum
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part (2.19). The integrand contains only simple poles in
the complex ζ plane, so that the integration over dζ with
a cutoff can easily be performed. The pole at ζ ¼ 0 yields
the divergent contribution

hψ�
1ψ2iseajdiv ¼ − Δ

2π
ln Λ: (2.21)

If one inserts this into Eq. (2.18) and uses the vacuum gap
equation

Ng2

π
ln Λ ¼ 1; (2.22)

one finds that this part gives self-consistency by itself.
Requiring that the convergent part of the sea contribution
cancels the bound state contribution should give us the rela-
tionship between the bound state occupation fractions νn and
the parameters of the solution, provided the solution is self-
consistent. The computation of the convergent part of the sea
contribution is straightforward. To present the result in a
concise form, we introduce a diagonal matrix M,

Mnm ¼ −iδnm lnð−ζ�nÞ: (2.23)

(Logarithms of ζn appear if one integrates overdζ, as a result
of the simple poles in the complex ζ plane.) The convergent
part of Eq. (2.19) can then be simplified to

hψ�
1ψ2iseajconv ¼ − 1

4π
φ†
1ðωM† þMωÞφ2: (2.24)

The bound state contribution (2.20) is evaluated with
the help of Eq. (2.11). After introducing another diagonal
matrix N,

Nnm ¼ 4πδnmνn; (2.25)

it can be written as

hψ�
1ψ2ib ¼

1

4π
φ†
1ðC†NCÞφ2: (2.26)

Expressions (2.24) and (2.26) cancel if we require that

ωM† þMω ¼ C†NC: (2.27)

This is the self-consistency relation determining the bound
state occupation fractions. It can be cast into a more conven-
ient form by combining Eqs. (2.11) and (2.27) as follows.
From our experience with concrete applications of this
formalism, it appears that ω should be chosen as a positive
definite matrix to avoid singularities in Δ as a function of
ðx; tÞ. Assuming that ω is positive definite, it has the unique
Cholesky decomposition

ω ¼ LL†; (2.28)

where L is a lower triangular matrix. From Eq. (2.11) we
conclude that the matrix

V ¼
ffiffiffi
2

p
C

1

L† (2.29)

is unitary. The self-consistency condition (2.27) can then be
transformed into the final form

2

�
L†M† 1

L† þ
1

L
ML

�
¼ V†NV: (2.30)

Thus, the eigenvalues of the matrix on the left-hand side of
Eq. (2.30) determine the diagonal entries of the matrix N,
which yield the fermion filling fractions νn in Eq. (2.25).
To test whether a given candidate solution is self-consistent,
one has to confirm that all eigenvalues are between 0 and 4π,
thereby satisfying the self-consistency conditionwith physi-
cal occupation fractions νn ∈ ½0; 1�. As an alternative to the
Cholesky decomposition, Eq. (2.30) remains valid if one
replacesL by

ffiffiffiffi
ω

p
, which can be computed by diagonalizing

ω first.

C. Vanishing fermion density

Because of strong constraints from chiral symmetry in
1þ 1 dimensions, the massless NJL2 model does not allow
any localized fermion density or current [40]. Similarly,
there is no localized energy or momentum density [41].
This follows from the conservation laws

∂μj
μ
V ¼ 0; ∂μj

μ
A ¼ 0; ∂μT μν ¼ 0 (2.31)

together with the fact that

j0V ¼ j1A ¼ ψ†ψ ; j1V ¼ j0A ¼ ψ†γ5ψ

T 00 ¼ T 11 ¼ H; T 01 ¼ T 10 ¼ P (2.32)

in the massless NJL2 model. The conservation laws (2.31)
remain valid in TDHF approximation. Since the bound
states carry lumps of localized fermions, there must be
an exact cancellation between continuum states and bound
states for all of these densities. As a consistency test of the
above TDHF solution, let us check this cancellation explic-
itly for the simplest case, the fermion density ρ ¼ j0V.
The induced fermion density in the Dirac sea is

ρind ¼
Z

∞

0

dζ
2π

ζ2 þ 1

2ζ2
ðψ†

ζψζ − 1Þ

¼ 1

2

Z
∞

0

dζ
2π

�
jχ1j2 − 1þ 1

ζ2
ðjχ2j2 − 1Þ

�
: (2.33)

If we replace χ1, χ2 by the expressions given in Eq. (2.9),
we can simplify the result after some straightforward com-
putations to

ρind ¼ ∂x

Z
∞

0

dζ
2π

g†
1

ωþ B
g: (2.34)
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Inserting the g’s and performing the integration over dζ, the
result can be written as

ρind ¼
1

2π
Tr

�
ðωM† þMωÞ∂x

1

ωþ B

�
: (2.35)

The density from the bound states with occupation
fractions νn yields [31]

ρb ¼
X
n

νnφ̂
†
nφ̂n ¼ − 1

2π
Tr

�
ðC†NCÞ∂x

1

ωþ B

�
: (2.36)

If the self-consistency condition (2.27) is satisfied, the
bound state density (2.36) and the induced fermion density
in the sea (2.35) cancel exactly. The vanishing of the current
density j1V can be proven in a similar manner, the only
difference being that ∂x gets replaced by ∂t everywhere.

D. Time delays and masses

In standard soliton theory, the outcome of a scattering
process is expressed via the time delay experienced by
the solitons during the collision. As already discussed in
Ref. [38], the situation is more complicated if multisoliton
bound states are involved. In this case the shape of the
bound state may be affected as well. In the present work,
we face the additional complication that the phases entering
the breather oscillation may be changed during the scatter-
ing process. The best way to define the outcome of such a
scattering process of composite multisoliton objects is to
compare the potential Δ for a cluster of kinks moving with
a common velocity v0 before and after the collision.
Inspection of a few cases with small number of kinks shows
the following general pattern: The change in Δ for a cluster
involving K kinks consists of an overall twist factor τ and
rescalings of all the elementary functions en by complex
numbers λn,

Δoutðei1 ;…; eiK Þ ¼ τΔinðλi1ei1 ;…; λiKeiK Þ; (2.37)

with

τ ¼
Y

nðvn<v0Þ

ζn
ζ�n

Y
mðvm>v0Þ

ζ�m
ζm

;

λn ¼
Y

mðvm<v0Þ

�
ζ�n − ζ�m
ζ�n − ζm

� Y
kðvk>v0Þ

�
ζ�n − ζk
ζ�n − ζ�k

�
: (2.38)

Alternatively, one could interpret the rescalings of the en as
a modification of the matrix ω0 of the cluster (one block out
of the full, block-diagonal matrix ω),

ω0
nmjout ¼

ω0
nmjin
λnλ

�
m

: (2.39)

The twist factor τ can readily be understood in terms of
the chiral twists of the solitons involved in the scattering

process. The elementary factors entering the expression
for λn also have a simple interpretation. The transmission
amplitude of a fermion with spectral parameter ζ scattering
off soliton m is

TmðζÞ ¼
ζ − ζ�m
ζ − ζm

: (2.40)

Hence, the factor λn in Eq. (2.38) can be expressed in terms
of transmission amplitudes of a fermion on all solitons not
belonging to the cluster, evaluated at the complex spectral
parameter ζ�n, the complex conjugate of the bound state pole
position,

λn ¼
Y

mðvm<v0Þ
Tmðζ�nÞ

Y
kðvk>v0Þ

1

Tkðζ�nÞ
: (2.41)

Another question of interest concerns the masses of clusters
of solitons. In Ref. [41], a formula for the mass of TDHF
solutions of the NJL2 model was derived. Starting from
Eqs. (2.31) and (2.32) for the energy momentum tensor,
it was found that the mass can be expressed in terms of
the asymptotic behavior of the fermion phase shift for
k → ∞,

M ¼ N
π
lim
k→∞

kδðkÞ: (2.42)

Here, δðkÞ is the phase of the (unimodular) fermion trans-
mission amplitude TðkÞ. For a single twisted kink, this
reproduces the original result of Shei [32]:

M1 ¼
N
π

sin ϕ1; ζ1 ¼ −e−iϕ1 : (2.43)

According to Eq. (2.17), the full transmission amplitude
factorizes into fermion-kink transition amplitudes; hence,
the phase shifts are additive, as expected for integrable sys-
tems. This holds independently of whether the solitons form
static bound states or breathers. Consequently, the mass of
any compound of n solitons is just the sum of the masses of
the constituents—the binding energy vanishes. This is con-
sistent with what has already been known for static bound
states since Ref. [32] but generalizes to the breather case
as well.
An interesting spinoff results if we apply these insights

to real Δ, i.e., TDHF solutions of the GN model. A 2-kink
bound state has the mass

Mkinkðϕ1Þ þMkinkðπ − ϕ1Þ ¼
2N
π

sin ϕ1: (2.44)

This relates the mass of the DHN baryon (or breather, for
that matter) to the mass of the Shei kink (sin ϕ1 is the
parameter y in DHN). This is perhaps the most conspicuous
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manifestation of the long-overlooked fact that twisted kinks
are the (hidden) constituents of the DHN baryon.

III. EXPLICIT EXAMPLES

In this section we illustrate the general solution to the
TDHF problem (2.7), (2.9), (2.30) with several examples.
We classify the applications according to the number of
bound states or, equivalently, the number of poles of the
continuum spinors in the complex ζ plane.

A. General solution with one pole: twisted kink

With one pole, the matrix ω is just a real number, and
the matrix B reduces to a single function of z, z̄. We
parametrize the position ζ1 of the pole as

ζ1 ¼ − e−iϕ1

η1
; η1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v1
1 − v1

s
: (3.1)

The complex potential Δ can then be written as

Δ ¼ 1þ e−2iϕ1U1

1þU1

(3.2)

with the real function

U1 ¼
B11

ω11

¼ η1
2ω11 sin ϕ1

exp

�
sin ϕ1

η1
ðz̄þη21zÞ

�
: (3.3)

Expressed in ordinary coordinates, the argument of the
exponential in U1 reads

sin ϕ1

η1
ðz̄þ η21zÞ ¼ 2 sin ϕ1

x − v1tffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v21

p : (3.4)

This is the boosted form of the Shei twisted kink (1.7) for
the NJL2 model. The role of the free parameter ω11 is to
shift the position of the kink. The phase and modulus of
ζ1 are related to the chiral twist and the velocity of the kink,
respectively, as illustrated in Fig. 2. To cover the full range
of chiral twists, it is sufficient to restrict ϕ1 to the interval
½0; π�. In this case, sin ϕ1 > 0, and we have to choose
ω11 > 0 in order to get a nonsingular Δ. Notice that this
definition of ϕ1 also implies Im k1 > 0, as assumed in
Ref. [31]. Turning to the self-consistency issue, the matrix
M introduced in Eq. (2.23) has just one component:
M11¼−i lnð−ζ�1Þ¼ϕ1þi lnη1. Thus, the NJL2 filling-
fraction condition (2.30) gives

ν1 ¼
ϕ1

π
; (3.5)

This self-consistent TDHF kink binds a number nv of
valence fermions, where in the large Nf limit the filling
fraction ν1 ¼ nv=Nf is equal to the twist angle ϕ1 divided
by π.
We obtain the real kink solution (1.6) of GN2 by

choosing ϕ1 ¼ π
2
in Eqs. (3.2) and (3.3). For GN2 there

is no filling fraction condition, as we do not have to
impose a self-consistency condition on the pseudoscalar
condensate.
In an ðS; PÞ plot, the twisted kink traces out a segment

of a straight line, joining two points on the chiral circle.
In our case, the starting point (x → −∞) is always the
point (S ¼ 1, P ¼ 0), whereas the end point (x → ∞)
depends on the chiral twist. Most of the examples discussed
below are based on constituent kinks with parameters
ϕ1 ¼ 1.0, 0.8, 0.6, 0.4, shown in Fig. 3 and, in greater
detail, in the Supplemental Material [42] to this paper
(see 3dplot_constituent_kinks).

FIG. 2 (color online). A spectral ζ plane representation of
single kinks. Each of the open square, circle, and triangle on
the positive imaginary axis represents a real GN2 kink, with
positive, zero, or negative boost, with respect to the rest frame.
Each of the full square, circle, and triangle on the ray at angle φ1

represents a complex twisted NJL2 kink with phase parameter
φ1. Taken together, all these six points represent the scattering
of six kinks, three of them real and three with (equal) twist
parameter φ1.

–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1

FIG. 3. ðS; PÞ plot, of the scalar (S) and pseudoscalar (P)
components of the condensate Δ, for the four basic twisted kinks
used to build up most of the multikink configurations in this
work, as explained in the text.
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B. General solution with two poles:
kinks, baryons, and breathers

With two poles, the matrices entering the general solu-
tion (2.7), (2.9), (2.30) are 2 × 2. This enables us to work
out everything explicitly, including the self-consistency
condition. The physics depends on the assumptions about
the constant matrix ω and the pole positions ζ1;2.

1. Nonbreather solutions

We find nonbreather solutions by choosing a diagonal
form of ω in Eq. (2.7). Introducing functions Ui ¼
Bii=ωii for i ¼ 1, 2 in analogy to Eq. (3.3) and generalizing
the parametrization (3.1) to ζ1;2, we find the potential

Δ ¼ 1þ e−2iϕ1U1 þ e−2iϕ2U2 þ b12e−2iðϕ1þϕ2ÞU1U2

1þ U1 þ U2 þ b12U1U2

:

(3.6)

The interaction effects between the two twisted kinks are
described by the real parameter b12 given by

b12¼
����ζ1−ζ2
ζ1−ζ�2

����2¼ η21þη22−2η1η2 cosðϕ1−ϕ2Þ
η21þη22−2η1η2 cosðϕ1þϕ2Þ

: (3.7)

This is theN ¼ 2 case of a general formula valid for diagonal
ω, presented in Sec. 3B of Ref. [31]. Equation (3.6) gives the
self-consistent potential for the scattering of two twisted
kinks, with twist angles ϕ1 and ϕ2 and boost parameters
η1 and η2, or for a bound state if one chooses η1 ¼ η2.
The filling-fraction consistency condition is simple
when ω is diagonal. The M matrix is M ¼ diagðϕ1þ
i ln η1;ϕ2 þ i ln η2Þ. Thus, we find filling fractions

ν1 ¼
ϕ1

π
; ν2 ¼

ϕ2

π
; (3.8)

as expected from the asymptotics of the scattering problem.
If we are interested in solutions of the NJL2 model with real
Δ, we are restricted to fermion number 0. In that case the
self-consistency condition yields

ν1 ¼
ϕ1

π
; ν2 ¼

ϕ2

π
¼ π − ϕ1

π
¼ 1 − ν1: (3.9)

This corresponds to an “exciton” in condensed matter lan-
guage. In the GN case, we cannot take over the derivation of
the self-consistency condition, which was only valid for
generic parameters. Now, the contributions of the 2 bound
states give equal and opposite contributions to the conden-
sate ψ̄ψ , so that only the difference of the corresponding two
equations of the NJL2 model survives,

ν1 − ν2 ¼
ϕ1 − ϕ2

π
¼ 2ϕ1

π
− 1: (3.10)

The baryon state of lowest energy for a given baryon number
has fully occupied the negative energy bound state, corre-
sponding to ν2 ¼ 1, ν1 ¼ 2ϕ1=π. This is the relation familiar
from DHN.
We can consider various special cases:
1. Scattering of two GN2 kinks. We obtain real kink

solutions by setting ϕ1 ¼ ϕ2 ¼ π
2
. Then

S¼ 1−U1−U2þb12U1U2

1þU1þU2þb12U1U2

; b12¼
�
η1−η2
η1þη2

�
2

;

(3.11)

and sin ϕ1;2 ¼ 1 in the definition of U1;2. This agrees
with the n ¼ 2 case of the general formula in Ref. [29].
There is no filling-fraction consistency condition.

2. GN2 baryon. We can also obtain a real solution by
choosing ϕ2 ¼ π − ϕ1, together with ω11 ¼ ω22. To
obtain a baryon, we also choose η1 ¼ η2. Then
U1 ¼ U2, and we find

S ¼ 1þ 2 cosð2ϕ1ÞU1 þ cos2ϕ1U2
1

1þ 2U1 þ cos2 ϕ1U2
1

; (3.12)

which agrees with the GN2 baryon in Eq. (1.8). Thus,
we see that the DHNGN2 baryon is in fact a bound pair
of two twisted kinks, as depicted in Fig. 4. The fermion
filling fractions are ν2 ¼ 1, ν1 ¼ 2ϕ1=π, as in DHN.
Note that DHN havewritten the parameter y, which de-
fines the size of the baryon in the form y ¼ sin θ, with-
out geometrical interpretation of the angle θ. Now we
see that θ is nothing but the angle ϕ1 related to the twist
of the constituent kinks. These constituents are well
hidden inside the baryon, since the individual twisted
kinks are not solutions of the GN model. The only
observable which hints at this compositeness is the
factorized fermion transmission amplitude.

FIG. 4 (color online). A spectral ζ plane representation of a real
GN2 baryon. The baryon is composed of two twisted kinks,
one with chiral angle φ1 and the other with π − φ1. The triangles
(squares) have ζ1 < 1 (ζ1 > 1), corresponding to negative
(positive) boost parameter, while the circles correspond to a
baryon at rest.
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2. Breather solutions

Breather solutions in the rest frame are obtained by
choosing η1 ¼ η2 ¼ 1 and a nondiagonal 2 × 2 matrix ω
in Eqs. (2.14) and (2.30). Using the freedom of making
translations in x and t, we choose the following positive
definite Hermitian matrix:

ω ¼
�
sec χ tan χ

tan χ sec χ

�
: (3.13)

Then we find for the GN2 system, where ϕ2 ¼ π − ϕ1,

S ¼ N
D

N ¼ 1þ cosð2ϕ1Þ
sin ϕ1 cos χ

e2x sin ϕ1

þ tan χe2x sin ϕ1 sinð2t cos ϕ1 þ ϕ1Þ

þ 1

4
cot2 ϕ1e4x sin ϕ1

D ¼ 1þ 1

sin ϕ1 cos χ
e2x sin ϕ1

− tan χe2x sin ϕ1 sinð2t cos ϕ1 þ ϕ1Þ

þ 1

4
cot2 ϕ1e4x sin ϕ1 : (3.14)

This agrees (modulo translations in x and t) with the DHN
GN2 breather (1.9) if we use the following identifications:

ϵ¼ tan ϕ1; b¼ 1

cos ϕ1 cos χ
; a¼ tan ϕ1 tan χ:

(3.15)

The limit χ → 0 of Eq. (3.14) yields back the static DHN
baryon (3.12) up to a shift in x, as can be seen by setting

U1 ¼
e2x sin ϕ1

2 sin ϕ1

: (3.16)

A new twisted breather for the NJL2 model is obtained by
choosing the off-diagonal mixing matrix (3.13) and
relaxing the reality condition (so that ϕ2 ≠ π − ϕ1) on
the twist angles. This is the most complicated TDHF
solution with two poles. To exhibit its structure, we first
write down the potential Δ in the form

Δ ¼ N
D

N ¼ 1þ 1

cos χ

�
ζ1
ζ�1

U1 þ
ζ2
ζ�2

U2

�
þ b12

ζ1ζ2
ζ�1ζ

�
2

U1U2

− tan χ

�
ζ2
ζ�1

B12 þ
ζ1
ζ�2

B21

�

D ¼ 1þ 1

cos χ
ðU1 þU2Þ þ b12U1U2 − tan χðB12 þ B21Þ

(3.17)

with U1 ¼ B11, U2 ¼ B22, Bnm from Eq. (2.5), and b12
from Eq. (3.7). In the limit χ → 0, we recover the bound
state of twisted kinks; see Eq. (3.6). The chiral twist of
the solution is time independent and can be inferred from
the prefactors of the U1U2 terms. It does not depend on χ
and therefore coincides with the sum of the individual
twists, like for the bound state. Consider the oscillating
terms in N and D first, i.e., those multiplied by tan χ.
Using ordinary coordinates to exhibit their space and time
dependence, the factors multiplying tan χ can be cast into
the form

�
ζ2
ζ�1

B12 þ
ζ1
ζ�2

B21

�
¼ e−iðϕ1þϕ2ÞðB12 þ B21Þ;

ðB12 þ B21Þ ¼ − 2eKxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ Ω2

p sin

�
Ωtþ arctan

K
Ω

�
;

(3.18)

where we have introduced a wave number K and frequency
Ω generalizing the corresponding quantities from the (real)
DHN breather,

K¼ sin ϕ1þ sin ϕ2; Ω¼ cos ϕ1−cos ϕ2: (3.19)

The period of the twisted breather is T ¼ 2π=Ω. The time-
independent parts of N and D can be evaluated with the
help of

U1 ¼
e2x sin ϕ1

2 sin ϕ1

; U2 ¼
e2x sin ϕ2

2 sin ϕ2

;

b12 ¼
1 − cosðϕ1 − ϕ2Þ
1 − cosðϕ1 þ ϕ2Þ

: (3.20)

Let us now turn to the issue of self-consistency. Following
the steps leading to Eq. (2.30), we write ω in its Cholesky
factorized form:

ω ¼
�
sec χ tan χ

tan χ sec χ

�
¼ LL†;

L ¼
� ffiffiffiffiffiffiffiffiffiffiffi

sec χ
p

0ffiffiffiffiffiffiffiffiffiffiffi
cos χ

p
tan χ

ffiffiffiffiffiffiffiffiffiffiffi
cos χ

p
�
: (3.21)

Then

2

�
L†M† 1

L† þ
1

L
ML

�

¼ 2

 
2ϕ1 −ðϕ1 − ϕ2Þ tan χ

−ðϕ1 − ϕ2Þ tan χ 2ϕ2

!
: (3.22)

Using Eq. (2.30), the eigenvalues of this matrix give the
two filling fractions as
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ν� ¼ ϕ1 þ ϕ2

2π
� ϕ1 − ϕ2

2π
sec χ: (3.23)

The condition that ν� ∈ ½0; 1� restricts the allowed range of
χ for given twist angles ϕ1, ϕ2.
Finally, the most general two-pole solution would seem

to be the one with off-diagonal ω and η1 ≠ η2, combining
elements from the breather and the scattering problem. We
have not considered this option for the following reason. As
is clear from Eq. (2.11), a nondiagonal ω implies a non-
diagonal matrix C. This in turn means that the bound states
φ̂n entering the TDHF problem are mixtures of kink bound
states φ1, φ2 moving at different velocities; see Eq. (2.10).
At asymptotic times we would then be dealing with super-
positions of states located infinitely far apart, in violation of
the principle of cluster separability. Although such solu-
tions do exist mathematically, they would not correspond
to any kind of observable scattering process, since the ini-
tial state could not be prepared. An overview over all the
possibilities with two poles is given in Table 1, as a short
summary of Sec. III B.

We illustrate these various examples in a few cases, using
ðS; PÞ plots. In Fig. 5, a 2-kink bound state at rest (param-
eters: ϕ1 ¼ 1.0, ϕ2 ¼ 0.8, ω11 ¼ 3, ω22 ¼ 1=ω11) is
shown. If one increases the distance between the kinks
by increasing ω11, one reaches eventually two static, non-
interacting kinks which would show up as an open polygon
made out of two of the straight line segments shown in
Fig. 3. The breather with the same parameters as the 2-kink
and χ ¼ 1.1 is illustrated in Fig. 6, where the different
curves correspond to equidistant time steps. Figure 7 shows
the scattering of two twisted kinks with ϕ1 ¼ 1.0,
ϕ2 ¼ 0.8. The initial and final states consist of two straight
line segments ending on the chiral circle. During the

TABLE I. Summary of all two-pole solutions

ω η ϕ Object

Diagonal η1 ¼ η2 ϕ1 þ ϕ2 ¼ π DHN baryon
ϕ1 þ ϕ2 ≠ π Twisted kink

bound state
η1 ≠ η2 ϕ1 ¼ ϕ2 ¼ π=2 CCGZ kink

scattering
other ϕi’s Twisted kink

scattering
Off-diagonal η1 ¼ η2 ϕ1 þ ϕ2 ¼ π DHN breather

ϕ1 þ ϕ2 ≠ π Twisted breather
η1 ≠ η2 all ϕi’s Unphysical
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FIG. 5. ðS; PÞ plot of a 2-kink, a bound state of two twisted
kinks.
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FIG. 6. ðS; PÞ plot of a 2-breather made out of two kinks with
the same parameters as the bound state in Fig. 5. The different
curves illustrate the time dependence of the twisted breather,
in equal time steps.
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FIG. 7. ðS; PÞ plot of the scattering process of two twisted
kinks. The curves show the time dependence, in equal time steps.
The initial and final states are open polygons with two segments,
ending on the chiral circle.
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collision process (illustrated again by a sequence of equi-
distant time steps), the kinks interchange their order.
Clearly, these static pictures can give only an incomplete
view of the time-dependent examples. A complete graphi-
cal representation requires animated plots, as provided in
Ref. [42] for the same parameters; see the Appendix and
the files ANIMATION_KINK_PLUS_KINK and ANIMATION_2
-BREATHER.

C. Three-pole solutions

In the preceding section, we have discussed the TDHF
solutions built out of two kinks in great detail. With an
increasing number of kinks (or poles in the complex ζ
plane), both the number of different physical configurations
and the complexity of these solutions increase rapidly. It is
straightforward to generate these solutions with computer
algebra (CA) using the general formalism and to check the
self-consistency by a numerical diagonalization of a finite
matrix. We will show examples of such calculations at the
end of this and the following sections. We start with a
survey of the different cases with three poles.
The input to any TDHF calculation of the NJL2 or GN

models is a set of boost parameters ηn and chiral twist
angles ϕn for the constituent kinks, together with the bound
state mixing matrix ω. These parameters are not entirely
independent, though. A nonvanishing off- diagonal matrix
element ωnm implies that the physical bound states of kinks
n and m get mixed. This is only physically meaningful
if these two kinks have the same boost parameter
ηn ¼ ηm, since otherwise the two kinks would be arbitrarily
far apart at asymptotic times and the mixing would violate
cluster separability. The other restriction is that two kinks
(not involved in breathers) with the same ηn parameter must
have different ϕn’s; otherwise, the number of kinks is
reduced by 1.
With this in mind, the possibilities with three kinks are as

follows. If η1, η2, η3 are all different, we are dealing with the
scattering of three individual kinks. If one chooses in par-
ticular ϕn ¼ π=2 for all three kinks, this reproduces known
results for three CCGZ kinks of the GNmodel derived from
the Sinh–Gordon solitons in Ref. [29]. If two of the kinks
have the same velocity (say η1 ¼ η2 ≠ η3), we are dealing
with the scattering of a 2-kink compound and a single kink,
and we must choose ω13 ¼ ω23 ¼ 0. The compound sys-
tem can either be a bound state (ω12 ¼ 0) or a breather
(ω12 ≠ 0), as discussed in Sec. III B. In the case of real
potentials, this includes scattering and bound states of a
DHN breather or baryon (ϕ2 ¼ π − ϕ1) and a CCGZ kink
(ϕ3 ¼ π=2). The bound state case has been discussed inde-
pendently in the condensed matter [9] and particle physics
[43] literature. Finally, if all three kinks have the same
velocity, there are three possibilities for ω. First, if ω is
diagonal, we describe the 3-kink bound state, which fits
into the framework of Ref. [36]. Second, if only one
off-diagonal element ωnm is different from zero, this

describes a bound state of a 2-kink breather (kinks n, m)
and a single kink. Finally, if more than one off-diagonal
element ωnm is different from zero, this 3-kink compound
state cannot be resolved into a 2-kink breather and a
kink but represents a more complicated oscillation mode
where all three kinks are involved in a nontrivial way.
Of course, in all of these cases one has to check that the
self-consistency condition can be fulfilled with physical
occupation fractions νn ∈ ½0; 1�. Since this involves diago-
nalization of a 3 × 3 matrix, this has to be checked on a
case-by-case basis.
To simplify the discussion in the next section, we intro-

duce the following language: A bound state of n twisted
kinks will be referred to as “n-kink” (a “1-kink” being sim-
ply a kink). An irreducible breather made out of n kinks will
be called “n-breather,” If several clusters are scattering, this
will be indicated by aþ sign, e.g., kinkþ kink for the scat-
tering of two kinks. Then the one-pole solution deals with
the kink; the two-pole solution with kinkþ kink, 2-kink,
and 2-breather; and the three-pole solution with kinkþ
kinkþ kink, kinkþ 2-kink, kinkþ 2-breather, 3-kink,
and 3-breather.
Let us illustrate once again a few cases, using ðS; PÞ plots.

In Fig. 8, a 3-kink bound state at rest (parameters: ϕ1 ¼ 1.0,
ϕ2 ¼ 0.8, ϕ3 ¼ 0.6, ω11 ¼ 9, ω22 ¼ 1, ω33 ¼ 1=9) is
shown. Figure 9 represents the scattering of a 2-kink bound
state and a single kink (η1 ¼ η2 ¼ 2, η3 ¼ 1=2), and Fig. 10
represents the scattering of three twisted kinks (η1 ¼ 2,
η2 ¼ 1, η3 ¼ 1=2). Similar plots involving 2-breathers or
3-breathers are not really able to convey a picture of the com-
plicated time dependence. We refer the reader to the
Appendix andRef. [42], where full animations of all of these
cases can be found (ANIMATION_KINK_PLUS_KINK_PLUS_
KINK, ANIMATION_2-KINK_PLUS_KINK, ANIMATION_2-
BREATHER_KINK_BOUNDSTATE, ANIMATION_2-BREATHER_
PLUS_KINK, ANIMATION_3-BREATHER).
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FIG. 8. ðS; PÞ plot of a 3-kink, a bound state of three twisted
kinks.
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D. Four-pole solutions

TDHF solutions based on four kinks are of particular
interest since we reach the level of complexity needed to
describe baryon-baryon and breather-breather scattering
in the GN model. These problems have already been solved
recently by a different method based on an ansatz for the
TDHF potential [33,34], at the expense of a substantial
technical effort. It is an important cross-check of the present
simpler approach to reproduce these complicated results.
From the preceding discussion, it is clear that the various

four kink processes can be classified as follows:
kinkþ kinkþ kinkþ kink, kinkþ kinkþ 2-kink, kinkþ
kinkþ2-breather, 2-kinkþ 2-kink, 2-kinkþ 2-breather,

2-breather þ 2-breather, kinkþ 3-kink, kinkþ 3-breather,
4-kink, and 4-breather. Out of these, we select the following
processes which are of interest for the GN model:

1. 2-kinkþ2-kink

By pairing the twist angles (ϕ1 þ ϕ2 ¼ ϕ3 þ ϕ4 ¼ π)
and using a diagonal matrix ω, this particular process
can be turned into scattering of two DHN baryons studied
in Ref. [33]. We have checked with CA that the present
closed expressions reproduce exactly the results of
Ref. [33], provided one chooses the origin of the x and
t axes appropriately. This calculation can now be general-
ized to the scattering of two twisted 2-kinks in a straight-
forward manner.

2. 2-breatherþ 2-breather

To get a real TDHF potential for breather-breather scat-
tering, one has to pair the twist angles as in the baryon-
baryon case and choose ω in the block diagonal form

ω ¼

0
B@

ω11 ω12 0 0

ω�
12 ω11 0 0

0 0 ω33 ω34

0 0 ω�
34 ω33

1
CA: (3.24)

Once again, we have checked with CA that the result agrees
with the solution of breather-breather scattering in the GN
model from Ref. [34]. A comparison between the compli-
cated formulas given in Ref. [34] and the present work
shows how efficient it is to take the detour via the NJL2

model, where one can take full advantage of factorization
and integrability properties of the model. Once again, the
present approach allows us to repeat the calculation with
twisted breathers in the NJL2 model with modest effort,
solving an even more complicated problem analytically.

3. 4-breather

An irreducible 4-kink breather of the NJL2 model has
many free parameters due to the appearance of a general,
Hermitian 4 × 4 matrix ω. We do not study all of these
complex oscillation modes here but ask the following ques-
tion: How many parameters survive if we specialize the
4-breather to real Δ, i.e., a solution of the GN model?
This is of some interest, since the 4-breather is the simplest
TDHF solution of the GN model which cannot be reduced
to the known basic building blocks of kink, baryon, and 2-
breather. (There is no real 3-breather, since the chiral twists
have to be paired). We have computed the TDHF potential
Δ for the 4-breather at rest with CA, using ϕ1 þ ϕ2 ¼ ϕ3 þ
ϕ4 ¼ π and keeping ω general at first. We then demand that
Δ is real. This puts a number of constraints on the matrix
elements ωnm. The most general solution can be parame-
trized as follows (a and e are real):
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FIG. 9. ðS; PÞ plot of the scattering of a 2-kink and a kink. The
curves illustrate the time dependence, in equal time steps. Initial
and final states can be identified by the fact that one inner point
on a curve touches the chiral circle.
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FIG. 10. ðS; PÞ plot of the scattering process of three single,
twisted kinks. The curves show the time dependence, in equal
time steps. Initial and final states correspond to three-sided open
polygons, all corners and end points lying on the chiral circle.
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ω ¼

0
BB@

a b c d
b� a d� c�

c� d e f
d� c f� e

1
CCA: (3.25)

This leaves a lot of room for new kinds of solutions of the
GN model, parametrized by the two complex parameters c,
d characteristic for an irreducible 4-breather.
In Fig. 11, a 4-kink bound state at rest (parameters:

ϕ1 ¼ 1.0, ϕ2 ¼ 0.8, ϕ3 ¼ 0.6, ϕ4 ¼ 0.4, ω11 ¼ 81,
ω22 ¼ 9, ω33 ¼ 1, ω44 ¼ 1=9) is illustrated. Figure 12
shows the scattering of a 2-kink on a 2-kink. For animations
of the complete time dependence and processes involving
breathers, see the Appendix and Ref. [42] (animation_2-
kink_plus_2_kink, animation_2-breather_plus_2-breather,

animation_4-breather), where also an example of an irre-
ducible 4-breather of the GN model with real Δ ¼ S
(animation_real_4-breather) can be found.

IV. SUMMARY AND CONCLUSIONS

Within one year after the inception of the GN2 model,
DHN found a time-dependent multifermion solution, the
breather [22]. They also realized that it is related to the
kink-antikink scattering problem by analytic continuation.
Somewhat surprisingly, no further progress was made on
time-dependent solutions of either the GN2 or the NJL2

model between 1975 and 2010, to the best of our knowl-
edge. In the present work and in Refs. [24,31], we have
presented what we believe to be the full solution of the
TDHF problem for both the GN2 and NJL2 models. Let
us briefly summarize how this has been achieved.
In a first round of investigations starting in 2010, the

interaction of a small number of scatterers was studied
in great detail by means of an ansatz method. The scatterers
involved were kinks [28], baryons [33], and breathers [34],
all belonging to the GN2 model. The ansatz consisted of
multiplying the scalar potentials and spinors for the individ-
ual scatterers and then varying the coefficients of some
ðx; tÞ-dependent exponentials, until the Dirac equation
was satisfied. This could be done at the expense of consid-
erable use of computational algebra and led to the exact sol-
utions of the problems considered. In the course of these
works, many simplifying features emerged which enabled
the authors to extrapolate the results to more complicated
scattering processes involvingN scatterers [38]. Since a gen-
eral proof was lacking, these results could only be checked
analytically for few body problems, up toN ¼ 6. In the sim-
plest special case, that of multikink scattering, the problem
proved to be fully solvable for all N, by mapping it onto the
known soliton solutions of the Sinh–Gordon equation [29].
Several developments have helped us to solve the prob-

lem in full generality in the meantime. Thus, for instance,
we realized that it is advantageous to solve the NJL2 model
first and then get the GN2 solutions in a second step by
specializing to real TDHF potentials. This strategy had
been overlooked for a long time and is indeed unexpected:
The NJL2 model has a more complicated Lagrangian than
the GN2 model. Moreover, its continuous chiral symmetry
forbids states with localized fermion density, whereas one
is just interested in such “baryonic” states in the GN2

model. The reason why the NJL2 model is easier to solve
lies in the fact that twisted kinks are the basic constituents
of all TDHF solutions, and they appear in free form only in
the NJL2 model. Nevertheless, they are also hidden con-
stituents of GN2 baryons and breathers, as we have shown
here. As for the question of fermion density, we have shown
that the same construction of the TDHF potential can be
used for both models, but the self-consistency condition
is different, leading to different assignments of fermion
number, but with the same condensate.
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FIG. 11. ðS; PÞ plot of a 4-kink, a bound state of four twisted
kinks.
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FIG. 12. ðS; PÞ plot of the scattering process of two 2-kinks.
The curves show the time dependence, in equal time steps.
The initial and final states are the curves touching the chiral circle
with an inner point.
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A two-step procedure for solving the TDHF problem
has proven most economic. In a first step, we have con-
structed a general family of transparent scalar-pseudoscalar
Dirac potentials [31], generalizing the method used for the
stationary Schrödinger equation byKay andMoses long ago
[39]. This yields closed form expressions for processes
involving N twisted kinks. Depending on the parameters,
they describe kinks, bound states, breathers, and scattering
processes among all of these entities. In a second step
reported in the present paper, we employ these transparent
potentials in a TDHF calculation and prove their self-
consistency. While the method is completely general, it
requires diagonalization of anN × N matrix. Thus, for more
than N ¼ 2, it is difficult to write general analytic expres-
sions, so the occupation fractions of the bound states are best
determined numerically. We have presented examples with
up to four kinks, displaying a rich spectrum of scenarios, in
particular as far as breathers are concerned. If one specializes
these examples to real potential, either by choosing the twist
angle π or by pairing two twisted kinks to total twist 0, one
recovers all the preceding results from the GN2 model. In
contrast to the earlier works, we now have the general proof
of the Dirac equation and self-consistency condition as well
as compact closed expressions in terms of determinants,
valid for arbitrary numbers of constituent kinks. We have
also learned that new kinds of breathers appear at each N,
so that one cannot exhaust the dynamics of the GN2 model
via bound or scattering states of N ¼ 2 objects only. The
basic constituent common to all solutions is the twisted kink,
which does not exist as a free entity in the GN model—it is
hidden.
Characteristic for integrable models is the fact that the

transmission amplitude for a fermion on a compound object
factorizes in the individual kink constituents. Nevertheless,
there are nontrivial backreaction effects which require fer-
mion filling-fraction conditions for a self-consistent TDHF
solution. We have shown that the factorized scattering
translates into an additivity of the kink masses for all bound
states and breathers. It is also the key for finding the asymp-
totic behavior of the solitons after the scattering has taken
place. This includes in general a deformation of the soliton
shape, a time delay, and (for breathers) a change in the
phases of the oscillations.
Is this the end of the story? Given the fact that all static

HF solutions are known, the only loophole is for the breath-
ers. We have not yet completely ruled out that the ansatz we
have used for finding transparent Dirac potentials misses
some exotic breathers with an even more complicated struc-
ture. However, in view of the simplicity of the underlying
Lagrangians, this seems very unlikely.
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APPENDIX: PARAMETERS USED
IN THE ANIMATIONS

Here we collect the parameters used in the animations
contained in the Supplemental Material to the present paper
[42]. The fermion occupation fractions νn are not input but
the result of the self-consistency condition. For kinks, they
can be computed as νn ¼ ϕn=π; therefore, they are not
given below. For solutions involving breathers, the fermion
occupation numbers are derived from the eigenvalues in the
consistency condition (2.30), as described at the end of
Sec. II B.
(i) animation_kink_plus_kink

η1¼ 2; η2¼ 1=2 ϕ1¼ 1.0; ϕ2¼ 0.8

ω11¼ 3; ω22¼ 1=3

(ii) animation_2-breather

η1 ¼ η2 ¼ 1 ϕ1 ¼ 0.6; ϕ2 ¼ 1.2

χ ¼ 1.1 ν1 ¼ 0.076; ν2 ¼ 0.497

(iii) animation _kink_plus_kink_plus_kink

η1 ¼ 2; η2 ¼ 1; η3 ¼ 1=2

ϕ1 ¼ 1.0; ϕ2 ¼ 0.8; ϕ3 ¼ 0.6

ω11 ¼ 9; ω22 ¼ 1; ω33 ¼ 1=9

(iv) animation_2-kink_plus_kink

η1 ¼ η2 ¼ 2; η3 ¼ 1=2 ϕ1 ¼ 1.0;

ϕ2 ¼ 0.8; ϕ3 ¼ 0.6 ω11 ¼ 9;

ω22 ¼ 1; ω33 ¼ 1=9

(v) animation_2-breather_kink_boundstate

η1¼η2¼η3¼1 ϕ1¼1.0; ϕ2¼0.8; ϕ3¼0.6

χ¼1.4; ω33¼1=81 ν1¼0.474; ν2¼0.099
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(vi) animation_2-breather_plus_kink

η1 ¼ η2 ¼ 1.1; η3 ¼ 1=η1

ϕ1 ¼ 1.0; ϕ2 ¼ 0.8; ϕ3 ¼ 0.6

χ ¼ 1.4; ω33 ¼ 1=81

ν1 ¼ 0.474; ν2 ¼ 0.099

(vii) animation_3-breather

η1 ¼ η2 ¼ η3 ¼ 1

ϕ1 ¼ 1.0; ϕ2 ¼ 0.8; ϕ3 ¼ 0.6

L ¼
0
@ 2.5 0 0

2.4 0.5 0

1.65 −0.7 1.0

1
A

ν1 ¼ 0.543; ν2 ¼ 0.007; ν3 ¼ 0.214

(viii) animation_2-kink_plus_2-kink

η1 ¼ η2 ¼ 2; η3 ¼ η4 ¼ 1=2

ϕ1 ¼ 1.0; ϕ2 ¼ 0.8; ϕ3 ¼ 0.6; ϕ4 ¼ 0.4

ω11 ¼ 81; ω22 ¼ 9; ω33 ¼ 1; ω44 ¼ 1=9

(ix) animation_2-breather_plus_2-breather

η1 ¼ η2 ¼ 1.1; η3 ¼ η4 ¼ 1=η1

ϕ1 ¼ 1.0; ϕ2 ¼ 0.8; ϕ3 ¼ 0.6; ϕ4 ¼ 0.4

χ1 ¼ 1.1; χ2 ¼ 1.2

ν1 ¼ 0.357; ν2 ¼ 0.216; ν3 ¼ 0.247; ν4 ¼ 0.071

(x) animation_4-breather

η1 ¼ η2 ¼ η3 ¼ η4 ¼ 1

ϕ1 ¼ 1.0; ϕ2 ¼ 0.8; ϕ3 ¼ 0.6; ϕ4 ¼ 0.4

L ¼

0
BB@

1.48 0 0 0

1.32 0.67 0 0

0 1.50 1.66 0

0 0 1.55 0.60

1
CCA

ν1 ¼ 0.473; ν2 ¼ 0.029; ν3 ¼ 0.172; ν4 ¼ 0.217

(xi) animation_real_4-breather

η1 ¼ η2 ¼ η3 ¼ η4 ¼ 1

ϕ1 ¼ 1.0; ϕ2 ¼ π − ϕ1; ϕ3 ¼ 0.6; ϕ4 ¼ π − ϕ3

L ¼

0
BBB@

1.07 0 0 0

0.51 0.94 0 0

0.22 0.20 1.20 0

0.28 0.10 0.86 0.83

1
CCCA

ν3 − ν1 ¼ 0.922; ν4 − ν2 ¼ 0.410
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