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A variational method is discussed, based on the principle of minimal variance. The method seems to be
suited for gauge interacting fermions, and the simple case of quantum electrodynamics is discussed in
detail. The issue of renormalization is addressed, and the renormalized propagators are shown to be the
solution of a set of finite integral equations. The method is proven to be viable, and, by a spectral
representation, the multidimensional integral equations are recast in one-dimensional equations for the
spectral weights. The UV divergences are subtracted exactly, yielding a set of coupled Volterra integral
equations that can be solved iteratively and are known to have a unique solution.
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I. INTRODUCTION

In the last years, there has been a renewed interest on
variational methods for gauge theories [1–3], because of
the relevance of non-Abelian gauge theories, that are
known to be asymptotically free. The high energy asymp-
totic behavior of these theories is known exactly, which is
one of the most important requirements for a viable
variational approach to quantum field theory. On the other
hand, important issues like quark confinement and the low
energy phase diagram of QCD still lack a consistent
analytical description because of the strong coupling that
rules out the use of perturbation theory.
Unfortunately, a simple variational method like the

Gaussian effective potential (GEP) [4–7], which has been
successfully applied to physical problems ranging from
scalar theory and electroweak symmetry breaking [7–14] to
superconductivity [15–17] and antiferromagnetism [18],
fails to predict nontrivial results for gauge interacting
fermions [19]. Actually, the GEP only contains first order
terms, and the minimal coupling of gauge theories does not
give any effect at first order. Extensions like the post-
Gaussian effective potential (PGEP) [20] also fail to predict
nontrivial results for fermions [19].
Recently, a new higher order extension of the GEP has

been proposed [21], based on the method of minimal
variance [22,23], and has been shown to predict nontrivial
results even for fermions. The variance of the interaction
contains second order terms and seems to be suited for
dealing with the minimal coupling of gauge theories.
In this paper we explore the potentiality of the method of

minimal variance by a study of the simple Uð1Þ gauge
theory with an interacting fermion, i.e., QED. An important
merit of the method, shared with other techniques like the
post-Gaussian effective potential, is the paradox that the
standard formalism of perturbation theory is used, while
retaining a genuine variational nature, without the need of
any small coupling. In fact, we do not assume that the

coupling is small, but at any stage we check that, expanding
the results in powers of the coupling, the standard known
properties of QED are recovered in the phenomenological
weak coupling limit.
The issueof renormalization is addressed,and thestandard

renormalization schemeof perturbation theory ismodified in
order to obtain finite stationary conditions for the optimized
propagators, which emerge as solutions of a set of coupled
integral equations. Their numerical solution would be a first
step toward the study ofmore complex non-Abelian theories
in the strong coupling limit. However, even in this simple
case, the numerical solution might not be so straightforward
andseemstoneedsomemoreeffort. In that respectwediscuss
a method that is based on the spectral representation of the
propagators.Undersomeassumptions, themultidimensional
integralequationsare recast inone-dimensionalequationsfor
the spectral weights, and the UV divergences are subtracted
exactly, yielding a set of coupledVolterra integral equations,
which can be solved iteratively, and are known to have a
unique solution.
The paper is organized as follows. In Sec. II the method

of minimal variance is described in detail for the simple
case of QED. In Sec. III the problem of renormalization is
addressed, yielding a set of finite stationary equations. In
Sec. III the method of spectral representation is discussed,
and the stationary equations are recast in a set of Volterra
integral equations.

II. QED BY A GENERALIZED
VARIATIONAL METHOD

The method of minimal variance [22,23] is based on a
second order variational criterion that is suited to describe
gauge theories with a minimal coupling like QED [21],
where first order approximations like the GEP do not add
anything to the standard treatment of perturbation theory
[19]. The method has been discussed in some detail in
Ref. [21]. Let us consider the basic Uð1Þ gauge theory of a
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single massive fermion interacting through an Abelian
gauge field,

L ¼ Ψ̄ði∂ þ eA −mÞΨ − 1

4
FμνFμν − 1

2
ð∂μAμÞ2; (1)

where the last term is the gauge fixing term in the Feynman
gauge and the electromagnetic tensor is Fμν ¼ ∂μAν−∂νAμ. We do not assume that the coupling e2 is small,
unless we would like to compare the results with the
phenomenological QED. The quantum effective action Γ½a�
can be evaluated by a shift aμ for the gauge field
Aμ → Aμ þ aμ,

eiΓ½a� ¼
Z
1PI

DADΨ̄;Ψe
iS½aþA�; (2)

and is given by the sum of connected vacuum one-particle-
irreducible (1PI) graphs [24] for the action S. Here the
action can be split as S ¼ S0 þ SI , and we define the trial
action S0 as

S0 ¼
1

2

Z
AμðxÞD−1

μν ðx; yÞAνðyÞd4xd4y

þ
Z

Ψ̄ðxÞG−1ðx; yÞΨðyÞd4xd4y; (3)

where Dμνðx; yÞ and Gðx; yÞ are unknown trial matrix func-
tions. By comparison with the definition of L in Eq. (1),
the interaction can be written as the sum of three terms,

SI ¼
1

2

Z
AμðxÞ½Δ−1

μν ðx; yÞ −D−1
μν ðx; yÞ�AνðyÞd4xd4y

þ
Z

Ψ̄ðxÞ½g−1m ðx; yÞ −G−1ðx; yÞ�ΨðyÞd4xd4y

þ e
Z

Ψ̄ðxÞγμAμðxÞΨðxÞd4x; (4)

where Δμνðx; yÞ and gmðx; yÞ are free-particle propagators.
Their Fourier transform can be expressed as

Δ−1
μν ðkÞ ¼ −ημνk2
g−1m ðkÞ ¼ k − m̂; (5)

whereημν is themetric tensorandm̂ ¼ m − ea isashiftedmass
matrix term. An implicit dependence ona is assumed inG,D,
S0, and SI . If theUð1Þ symmetry is not broken, in the physical
vacuum, aμ ¼ 0, and the mass term becomes m̂ ¼ m.
Of course, the trial functionsG−1,D−1 cancel in the total

actionS,whichisexactandcannotdependonthem.Thus, this
formal decomposition holds for any arbitrary choice of the
trial functions, provided that the integrals converge.
The effective action Γ½a� can be evaluated by perturbation
theoryorderbyorderasasumofFeynmandiagramsaccording
to the general path integral representation of Eq. (2):

eiΓ½a� ¼
Z
1PI

DADΨ̄;Ψe
iS0 ½eiSI �: (6)

By our decomposition of the action functional, we must
associate the trial propagators Gðx; yÞ, Dðx; yÞ to the free-
particle lines of the diagrams, while the vertices are read from
the interaction terms in SI . The three vertices that come out
from the three interaction terms in Eq. (4) are reported in the
first lineofFig.1.Atany finiteorder, theapproximateeffective
action does depend on the trial functionsG,D, whichmust be
fixed by a variational criterion. Several variational strategies
have been discussed [21]: the variations δG, δD affect both S0
and SI , and the optimal choice is the one that minimizes the
effects of the interaction SI in the vacuum of S0, ensuring that
the expansion makes sense even without any small parameter
in the Lagrangian [25].
Denoting by hXi the quantum average

hXi ¼
R
1PI DADΨ̄;Ψe

iS0XR
DADΨ̄;Ψe

iS0
; (7)

the effective action can be written as

iΓ½a� ¼ iΓ0½a� þ logheiSI i; (8)

where the zeroth order contribution can be evaluated
exactly, since S0 is quadratic,

iΓ0½a� ¼ log
Z

DADΨ̄;Ψe
iS0 ; (9)

and the remaining terms can be written by expansion of the
logarithm in moments of SI ,

logheiSIi ¼
X∞
n¼1

iΓn½a�

¼ hiSIi þ
1

2!
h½iSI − hiSIi�2i

þ 1

3!
h½iSI − hiSIi�3i þ � � � ; (10)

++

+

SI =

=

= +Π− i

+

+

Σ− i 

FIG. 1. The three vertices in the interaction SI of Eq. (4) are
shown in the first line. First and second order graphs for the self-
energy and polarization function are shown in the second and
third lines, respectively. For each two-point function, we recog-
nize a first order graph, a reducible second order graph, and a
one-loop 1PI second order graph.
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which is equivalent to the sum of all connected 1PI vacuum
diagrams arising from the interaction SI , as emerges from a
direct evaluation of the averages by Wick’s theorem. In our
notation Γn, Vn, Σn are single nth order contributions, while
their sum up to nth order is written as ΓðnÞ, VðnÞ, ΣðnÞ, so
that

iΓðNÞ ¼
XN
n¼0

iΓn: (11)

The effective potential follows as VðaÞ ¼ −Γ½a�=Ω, where
Ω is a total space-time volume.
We fix the trial functions by the method of minimal

variance, requiring that the functional derivatives of the
second order term V2 are zero [21–23],

δV2

δG
¼ 0;

δV2

δD
¼ 0. (12)

In fact, by inspection of Eq. (10), the second order term can
be written as

V2 ¼ − σ2I
2Ω

; (13)

where σI is the variance of the Euclidean action SEI ,

σ2I ¼ hðSEI Þi2 − hðSEI Þ2i: (14)

That is obvious by Wick rotating, as the operator ðiSÞ
becomes the Euclidean action ðiSÞ → −SE and the quan-
tum action iΓ → −V=Ω.
The method is based on the physical idea that in the exact

eigenstates of an operator O, the variance must be zero
because hOOi ¼ hOi2. For any Hermitian operator, the
variance is a positive quantity, bounded from below, and
the variational parameters can be tuned by requiring that
the variance is minimal. In quantum mechanics the method
is not very popular because the accuracy of the standard
variational approximation can be easily improved by a
better trial wave function with more parameters. In field
theory, calculability does not leave too much freedom in the
choice of the wave functional, which must be Gaussian.
When the simple first order stationary condition fails, a
second order extension can be achieved by the method of
minimal variance [23] as discussed in Ref. [21]. Among the
other variational strategies, we cite the method of minimal
sensitivity [25] that would be equivalent to a search for the
stationary point of the total second order effective potential
Vð2Þ instead of the single term V2. Actually, for the simple
theory of a self-interacting scalar field, the total effective
potential Vð2Þ is unbounded and has no stationary points
[20], while the stationary conditions, Eq. (12), have been
shown to have a solution [22], since the variance is always
perfectly bounded.

The stationary conditions, Eq. (12), are readily evaluated
in terms of self-energy and polarization graphs, without the
need to write the effective potential. In fact a general
connection has been proven in Ref. [21] between the
functional derivatives of the effective potential and the
two-point functions,

δVn

δDμνðkÞ
¼ i

2
ðΠνμ

n ðkÞ − Πνμ
n−1ðkÞÞ; (15)

δVn

δGabðkÞ ¼ −iðΣba
n ðkÞ − Σba

n−1ðkÞÞ; (16)

where the polarization function Πμν and the self-energy Σab

are the sum of all connected two-point graphs without
tadpoles. Explicit spinor indices have been inserted in the
trial function Gab. First and second order two-point graphs
are shown in Fig. 1.
Making use of Eqs. (15) and (16), the stationary

conditions, Eq. (12), can be written as

Πνμ
2 ðkÞ ¼ Πνμ

1 ðkÞ
Σba
2 ðkÞ ¼ Σba

1 ðkÞ: (17)

The first order two-point functions are given by a single tree
graph each, as shown in Fig. 1. Making use of the explicit
form of the vertices in the interaction, Eq. (4), we can write

−iΠνμ
1 ðkÞ ¼ i½Δ−1

νμ −D−1
νμ �

−iΣba
1 ðkÞ ¼ i½g−1m −G−1�: (18)

The proper self-energy and polarization contain one
second order term each, the one-loop graphs of Fig. 1:

Σ⋆
2ðkÞ ¼ ie2

Z
d4p
ð2πÞ4 γ

μGðkþ pÞγνDμνðpÞ

Π⋆
2
μνðkÞ ¼ −ie2

Z
d4p
ð2πÞ4 TrfGðpþ kÞγμGðpÞγνg: (19)

These would be the usual proper two-point functions of
QED if the functions D and G were replaced by the bare
propagators Δ and gm. The total second order contributions
to the two-point functions follow by the sum of all second
order graphs in Fig. 1,

Σ2 ¼ Σ1 ·G · Σ1 þ Σ⋆
2

Π2 ¼ Π1 ·D · Π1 þ Π⋆
2 ; (20)

where matrix products have been introduced in the notation.
The stationary conditions, Eq. (17), then read

Σ1 ¼ Σ1 ·G · Σ1 þ Σ⋆
2

Π1 ¼ Π1 ·D · Π1 þ Π⋆
2 (21)
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and are a set of coupled integral equations for the trial
functions G, D. Their solution is equivalent to the opti-
mization of an infinite set of variational parameters.
Before proceeding further, it is instructive to examine the

first order approximation. The first order GEP is obtained
by imposing that the first order effective potential Vð1Þ is
stationary. The general relations, Eqs. (15) and (16), for
n ¼ 1 give1

δVð1Þ

δDμνðkÞ
¼ i

2
Πνμ

1 ðkÞ ¼ 0

δVð1Þ

δGabðkÞ ¼ −iΣba
1 ðkÞ ¼ 0; (22)

where Vð1Þ ¼ V0 þ V1 and the stationary conditions are
equivalent to the vanishing of first order self-energy and
polarization. Inserting the explicit expressions of Eq. (18),
the stationary conditions of the GEP yield the trivial result
D ¼ Δ andG ¼ gm. Thus, the GEP is equivalent to the free
theory, and any meaningful variational approximation
requires the inclusion of second order terms at least.
By insertion of the explicit expressions for the first order

functions, Eq. (18), the second order coupled integral
equations, Eq. (21), can be recast as

GðkÞ ¼ gmðkÞ − gmðkÞ · Σ⋆
2ðkÞ · gmðkÞ

DμνðkÞ ¼ ΔμνðkÞ − ΔμλðkÞ · Π⋆
2
λρðkÞ · ΔρνðkÞ; (23)

where the proper functions Π⋆
2 , Σ⋆

2 are given by Eq. (19).
While this result resembles the simple lowest order
approximation for the propagators in perturbation theory,
it differs from it in two important ways: the presence of a
minus sign in front of the second order term and the
functional dependence on the unknown propagators D, G
in the proper functions in Eq. (19). Because of this
dependence, the stationary conditions are a set of coupled
integral equations, and their self-consistent solution is
equivalent to the sum of an infinite set of Feynman graphs.
In fact, despite the appearance, the stationary conditions are
not a second order approximation of an expansion in
powers of the coupling e2, but they make sense even when
the coupling is large as they derive from a variational
constraint on the variance.
Once the best trial functions are determined, as solutions

of the coupled integral equations, Eq. (23), perturbation
theory can be used for determining higher order corrections
with the optimized interaction SI and zeroth order propa-
gators given by the solutionsG,D. For instance, the second
order propagator Gð2Þ can be obtained by standard
Feynman rules. We assume that the Uð1Þ symmetry is

not broken, and a ¼ 0 in the physical vacuum. In terms of
the proper self-energy

Gð2ÞðkÞ ¼ ½G−1ðkÞ − Σ1ðkÞ − Σ⋆
2ðkÞ�−1 (24)

and by inserting the explicit expressions for the first order
self-energy Σ1 ¼ G−1 − g−1m and the bare propagator gm,
we find

½Gð2ÞðkÞ�−1 ¼ k −m − Σ⋆
2ðkÞ; (25)

which looks like the standard one-loop result of QED but
differs for the functions G and D that must be inserted in
the one-loop Σ⋆

2 in Eq. (19) instead of the bare propagators
gm, Δ. If we expand the stationary conditions, Eq. (23), in
powers of the coupling e2, take the lowest order approxi-
mation G ≈ gm, D ≈ Δ, and substitute back in the one-loop
proper self-energy Σ⋆

2, then Eq. (25) becomes exactly equal
to the one-loop propagator of QED. In fact, we can state
that the variational method agrees with the standard results
of perturbation theory when the equations are expanded in
powers of the coupling. Thus, in the phenomenological
limit of weak coupling, the method of minimal variance
would predict the standard results of QED. On the other
hand, a numerical solution of the stationary conditions,
Eq. (23), would allow a study of the strong coupling limit.

III. RENORMALIZATION

Any numerical solution of the stationary equations,
Eq. (23), requires a regularization of the integrals and
renormalization of the bare parameters in the Lagrangian.
One of the main advantages of the present formalism is its
Lagrangian approach that allows for a formal use of standard
perturbation theory, while retaining a genuine variational
nature of the approximation that is nonperturbative and valid
even in the strong coupling limit. Thus, the problem of
regularization and renormalization can be addressed by the
standard techniques of perturbation theory, at any order in
the optimized interaction SI , assuming convergence as a
byproduct of the variational method. We use the standard-
dimensional regularization scheme of QED and define
renormalized fields and couplings,

Aμ
R ¼ 1ffiffiffiffiffiffi

ZA
p Aμ ΨR ¼ 1ffiffiffiffiffiffi

ZΨ
p Ψ

mR ¼ 1

Zm
m eR ¼ 1

Ze

�
e

μϵ=2

�
; (26)

where μ is an arbitrary energy scale and the space dimension
is d ¼ 4 − ϵ.
Gauge invariance requires that Ze ¼ 1=

ffiffiffiffiffiffi
ZA

p
at any

order. We can also define renormalized trial functions

G−1
R ¼ ZΨG−1; D−1

R ¼ ZAD−1 (27)

1As discussed in Ref. [21], the general relations, Eqs. (15) and
(16), hold even for n ¼ 0; 1 provided that we define
Σ0 ¼ iδV0=δG, Π0 ¼ −2iδV0=δD and take Σ−1 ¼ 0, Π−1 ¼ 0.
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and write the action as

S0 ¼
1

2

Z
Aμ
RðxÞDR

−1
μν ðx; yÞAν

RðyÞddxddy

þ
Z

Ψ̄RðxÞG−1
R ðx; yÞΨRðyÞddxddy (28)

SI ¼
1

2

Z
Aμ
RðxÞ½ZAΔ−1

μν ðx; yÞ −DR
−1
μν ðx; yÞ�Aν

RðyÞddxddy

þ
Z

Ψ̄RðxÞ½ZΨg−1m ðx; yÞ −G−1
R ðx; yÞ�ΨRðyÞddxddy

þ eRμϵ=2ZΨ

Z
Ψ̄RðxÞγμAμ

RðxÞΨRðxÞddx: (29)

Everything goes as before with the substitution

G → GR D → DR g−1m → ZΨg−1m
Δ−1 → ZAΔ−1 e → eRμϵ=2ZΨ; (30)

so that, defining new renormalized proper functions in
d-dimensional space,

Σ⋆
RðkÞ ¼ ie2Rμ

ϵ

Z
ddp
ð2πÞd γ

μGRðkþ pÞγνDRμνðpÞ

Π⋆
R
μνðkÞ ¼ −ie2Rμϵ

Z
ddp
ð2πÞd TrfGRðpþ kÞγμGRðpÞγνg;

(31)

the stationary conditions, Eq. (23), now read

GRðkÞ ¼ Z−1
Ψ gmðkÞ − gmðkÞ · Σ⋆

RðkÞ · gmðkÞ

DRμνðkÞ ¼ Z−1
A ΔμνðkÞ −

�
ZΨ

ZA

�
2

ΔμλðkÞ · Π⋆
R
λρðkÞ · ΔρνðkÞ:

(32)

As usual, we expand the differences ðZ − 1Þ in powers of
the interaction SI and denote by δZ the lowest order
nonvanishing contribution. In the optimized theory, δZ
must be small, and we may regard it as a small parameter in
the expansion. While the first order approximation does not
require any renormalization, we find a nonvanishing δZ in
the second order approximation and assume that

Z−1 ≈ ð1þ δZÞ−1 ≈ 1 − δZ: (33)

Moreover, at the same order of approximation, we may
neglect higher powers of δZ in the stationary equations.
For instance, we may completely neglect δZ in the second
order two-point functions, Eq. (20), while retaining a first
power of δZ in the first order two-point functions, Eq. (18).
That is equivalent to dropping the factor ðZΨ=ZAÞ2 in the
last term of Eq. (32), which can be written, in a compact
notation, as

GR ¼ gR þ gR · ½mRδZm − g−1R δZΨ − Σ⋆
R� · gR

DR ¼ Δ − Δ · ½Δ−1δZA þ Π⋆
R� · Δ; (34)

having inserted a renormalized gR,

g−1R ðkÞ ¼ kþ ea −mR ¼ g−1m ðkÞ þ δZmmR; (35)

that satisfies, up to first order in δZ,

gmðkÞ ¼ gRðkÞ þ δZmmRg2RðkÞ: (36)

In the minimal subtraction scheme (MS), the constants
δZΨ, δZm, δZA are defined by the requirement that the
quantities inside the square brackets of Eq. (34) are finite
and are given by the polar diverging parts of the one-loop
proper functions. For instance, assuming that the Uð1Þ
symmetry is not broken, and aμ ¼ 0 in the vacuum, by
Lorentz and gauge invariance, we can write

Σ⋆
RðkÞ ¼ AðkÞ þ BðkÞk

Π⋆
μνðkÞ ¼ ðk2ημν − kμkνÞΠðkÞ; (37)

and defining by A∞, B∞, Π∞ the polar diverging parts of A,
B, and Π, respectively, in the limit ϵ → 0, the renormaliza-
tion constants follow

δZψ ¼ −B∞

ðδZm þ δZΨÞmR ¼ A∞

δZA ¼ Π∞; (38)

and setting Σ∞ ¼ A∞ þ kB∞, the renormalized stationary
conditions can be written in the simple shape,

GRðkÞ ¼ gRðkÞ − gRðkÞ · ½Σ⋆
RðkÞ − Σ∞ðkÞ� · gRðkÞ

Dμν
R ðkÞ ¼ ημν

k2
½ΠðkÞ − Π∞� þ kμkνterms; (39)

which are UV finite and can be solved for the functions
DR, GR.
Notice that the renormalization constants in Eq. (38) are

the opposite of the standard definitions in QED. That is
perfectly reasonable, as the aim of the present renormal-
ization scheme is a finite integral equation for the functions
DR, GR that play the role of zeroth order propagators in the
perturbation expansion. The equivalent of the one-loop
propagator is the second order function Gð2Þ in Eq. (25),
obtained by perturbation theory as the sum of all Feynman
graphs up to second order, with the free lines given by the
optimized renormalized propagators DR, GR. As a result, if
these propagators are finite, the function Gð2Þ is not, while
if we want to make the second order functionGð2Þ finite, we
must renormalize backward, and the zeroth order functions
DR, GR would acquire diverging renormalization factors as
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for the bare propagators in QED. That seems more evident
if we evaluate the second order function Gð2Þ in the
following two steps. Suppose we obtained finite functions
DR,GR as a solution of the integral equations, Eq. (39), and
want to write the first order function Gð1Þ by perturbation
theory. We need the first order proper self-energy, which is
given by Eq. (18) and can be written in our renormalization
scheme, according to Eq. (30), as

Σ1ðkÞ ¼ G−1
R − ZΨg−1m : (40)

The first order function follows

Gð1Þ ¼ ½G−1
R − Σ1�−1 ¼ ð1 − δZΨÞgm; (41)

which contains the diverging term δZΨ. If we would like
to make the first order function finite, we must add a wave
function renormalization term δZ0

Ψ ¼ −δZΨ. This is a
backward renormalization that cancels the previous
renormalization, since the first order approximation just
gives back the bare propagator. Next, for evaluating the
second order function Gð2Þ, we need the second order
proper self-energy, which is given by Eq. (20). Neglecting
higher order powers of δZ,

½Gð2Þ�−1 ¼ G−1
R − Σ1 − Σ⋆

R

¼ g−1R − ½mRδZm − g−1R δZΨ þ Σ⋆
R�: (42)

A comparison with Eq. (34) shows that the renormalization
constants must be the opposite of Eq. (38) in order to get a
finite second order propagator. After having canceled the
renormalization in the first step, an opposite renormaliza-
tion is required in this second step, going from a first to
second order approximation. This opposite renormalization
agrees exactly with the standard renormalization of QED. A
similar analysis can be done for the polarization function
and the renormalization constant δZA. Thus, the apparent
wrong sign of the renormalization constants in Eq. (38) is
just a consequence of the different aim of the present
renormalization scheme that renormalizes backward with
respect to the standard scheme, in order to get finite zeroth
order propagators.

IV. SPECTRAL REPRESENTATION

A numerical solution of the coupled integral equations,
Eq. (39), would give a variational estimate for the optimized
propagators DR, GR. These functions are just the zeroth
order approximation in the optimized expansion, but never-
theless they are expected to contain important physical
insight. As the total action S does not depend on the trial
functions D, G, they could be freely chosen as arbitrary
variational parameters and are not required to satisfy any
physical condition, apart from convergence of the integrals.
Of course, we expect that even if the trial functions were
unphysical in some respect, the optimized functions GR,

Gð1Þ, Gð2Þ would progressively acquire a physical nature if
the expansion makes sense. However, as for any variational
problem, physical constraints might be imposed on the trial
functions in order to make the problem more tractable. If we
impose that the functions D, G must be the propagators of
some physical theory, then their spectral representation can
be used in the integral equations, Eq. (39). That would be a
way to cancel the divergences exactly, before dealing with
the numerical problem. Moreover, the multidimensional
integral equations would give rise to one-dimensional
integral equations for the spectral weights.
We illustrate the method by a weaker approximation and

restrict the gauge field propagator to its free-particle value
in Feynman gauge D ¼ Δ,

DμνðkÞ ¼ −ημν
k2 þ iη

; (43)

while assuming for G the Källén–Lehmann spectral
representation [26]

GðkÞ ¼
Z

∞

m0

ωρ0ðωÞ þ k
k2 − ω2 þ iη

f0ðωÞdω: (44)

Hereafter, we drop the subscript R everywhere as we are
dealing with renormalized quantities. We assume that the
Uð1Þ symmetry is not broken and aμ ¼ 0 in the vacuum, so
that the renormalized free propagator in Eq. (35) reads
g−1 ¼ k −m, where m is the renormalized mass.
Basically, in Eq. (39), we ignore the second equation, as

D is not varied, and optimize the choice of the spectral
weights f0ðωÞ, ρ0ðωÞ and ofm0 by the first equation. A full
numerical calculation would require the inclusion of a finite
mass for the photon, to be sent to zero at the end of the
calculation, once the IR singularity has canceled. That is
not a major problem, and we ignore it at the moment for
brevity.
As we prefer to maintain the pole at the renormalized

mass m, we modify the MS renormalization scheme of
Eq. (38) a little. The first of Eq. (34) can be written as

GðkÞ ¼ gðkÞ ·
�
1 −

�
Σ⋆ðkÞ −mδZm

k −m
þ δZΨ

��
; (45)

which is finite if we take

mδZm ¼ Σ⋆ðmÞ

δZΨ ¼ −
�∂Σ⋆

∂k
�

∞

k¼m
; (46)

where, as before, the superscript ∞ indicates the polar
diverging part in the limit ϵ → 0. The first of Eq. (39) still
holds with
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Σ∞ðkÞ ¼ Σ⋆ðmÞ þ ðk −mÞ ·
�∂Σ⋆

∂k
�

∞

k¼m
(47)

and can be written as

GðkÞ ¼ 1

k −mþ iη
− 1

k −mþ iη

�
Σ⋆ðkÞ − Σ∞ðkÞ
k −mþ iη

�
;

(48)

which is the stationary integral equation to be solved.
With this choice the function G has a first order pole at

k ¼ m, with a finite residue

Z0 ¼ lim
k→m

GðkÞ · ðk −mÞ ¼ 1 − lim
k→m

�
Σ⋆ − Σ∞

k −m

�
: (49)

Thus, the spectral representation can be written as

GðkÞ ¼ Z0

k −mþ iη
þ
Z

∞

m

ωρðωÞ þ k
k2 − ω2 þ iη

fðωÞdω; (50)

where the lower bound in the integral has been set at the
renormalized mass m because of the vanishing of the
photon mass. Here the spectral weight functions ρðωÞ, fðωÞ
must be regular inω ¼ m, having taken the pole apart in the
first term.
Before inserting the spectral representation in the sta-

tionary equation, Eq. (48), we find it useful to introduce the
regularized function

ΣωðkÞ ¼ Σ⋆
ωðkÞ − Σ∞

ω ðkÞ; (51)

where Σ⋆
ω and Σ∞

ω are evaluated by insertion of the function
GωðkÞ,

GωðkÞ ¼
ωρðωÞ þ k
k2 − ω2 þ iη

; (52)

instead of GðkÞ in the definition of Σ⋆, Eq. (31).
With this notation, the subtracted proper function can be

written as

Σ⋆ − Σ∞ ¼ Z0Σm þ
Z

∞

m
ΣωfðωÞdω; (53)

where Σm is the regularized function Σω of Eq. (51),
evaluated for ρ ¼ 1 and ω ¼ m. With the same notation,
the stationary equation, Eq. (48), becomes

Z
∞

m

ωρðωÞ þ k
k2 − ω2 þ iη

fðωÞdω ¼ 1 − Z0

k −mþ iη
− 1

k −mþ iη

×
Z

∞

m

ΣωðkÞ
k −mþ iη

fðωÞdω

− Z0

k −mþ iη

�
ΣmðkÞ

k −mþ iη

�
:

(54)

Taking now the imaginary part, we obtain an integral
equation for the regular weight functions ρ, f:

kρðkÞfðkÞ þ kfðkÞ ¼ ð1 − Z0ÞðkþmÞδðk −mÞ − ðkþmÞδðk −mÞ
Z

∞

m
Re

�
ΣωðkÞ

k −mþ iη

�
fðωÞdω

− Z0ðkþmÞδðk −mÞRe
�

ΣmðkÞ
k −mþ iη

�
þ 2kðkþmÞ
πðk2 −m2Þ

Z
∞

m
Im

�
ΣωðkÞ

k −mþ iη

�
fðωÞdω

þ 2Z0kðkþmÞ
πðk2 −m2Þ Im

�
ΣmðkÞ

k −mþ iη

�
: (55)

By insertion of the propagators, Eqs. (43) and (52) in the
first of Eq. (31), the function Σ⋆

ω is given by the well-known
QED proper self energy [26,27] with the mass replaced by
ω and odd powers of the mass multiplied by ρ,

Σ⋆
ωðkÞ ¼ −ie2μϵ

Z
ddp
ð2πÞd

Z
1

0

dx
γμ½ð1 − xÞkþ pþ ωρ�γμ

½p2 −M2�2 ;

(56)

where

M2 ¼ x½ω2 − ð1 − xÞk2� − iη: (57)

The external integration can be evaluated yielding

Σ⋆
ωðkÞ ¼

α

4π

Z
1

0

dx½4ωρ − 2ð1 − xÞk�

×

�
2

ϵ
þ log

μ2

M2
þOðϵÞ

�
;
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where μ has been rescaled as μ2 → μ2eγ=ð4πÞ and α is the
standard QED coupling constant α ¼ e2=ð4πÞ. We immedi-
ately extract the diverging terms Σ⋆

ωðmÞ and
�∂Σ⋆

ω

∂k
�

∞

k¼m
¼ − α

4π

�
2

ϵ

�
; (58)

and, subtracting according to Eqs. (47) and (51), the
regularized function can be written as

ΣωðkÞ ¼
α

4π
½aðkÞ þ kbðkÞ�; (59)

with the functions aðkÞ, bðkÞ that follow, in terms of
the complex varaiable ~ω2 ¼ ω2 − iη, from the integral
representation

ΣωðkÞ ¼
α

4π

�Z
1

0

dx½4ωρ− 2mð1− xÞ� log ~ω2 − ð1− xÞm2

~ω2 − ð1− xÞk2

− 2ðk−mÞ
Z

1

0

dxð1− xÞ log μ2

x½ ~ω2 − ð1− xÞk2�
�
:

(60)

By an elementary integration, real and imaginary parts
follow in terms of the Heaviside step function ΘðxÞ and of
the adimensional functions HðxÞ ¼ 4xð1 − x2Þ, F ðxÞ ¼
ðx4 − 1Þ:

ReaðkÞ ¼ 4ω

�
ω2

k2
− 1

�
ρ log

jω2 − k2j
ω2

þm log
μ2

ω2

þm

�
ω2

m2
− 1

��
ω2

m2
− 4ωρ

m
þ 1

�
log

ω2 −m2

ω2

þm

�
2þ ω2

m2

�

ImaðkÞ ¼ 4πω

�
1−ω2

k2

�
ρΘðk−ωÞ

¼ πρkΘðk−ωÞHðω=kÞ

RebðkÞ ¼ −
�
2þω2

k2
þ log

μ2

ω2
þ
�
1−ω4

k4

�
log

ω2

jω2 − k2j
�

ImbðkÞ ¼ −π
�
1−ω4

k4

�
Θðk−ωÞ ¼ πΘðk−ωÞF ðω=kÞ:

(61)

In Eq. (55) the real part of ΣωðkÞ only occurs as a factor
of δðk −mÞ. For instance

Im

�
Σω

k −mþ iη

�
¼ ImΣω

k −m
− iπðkþmÞδðk2 −m2ÞReΣω;

so that the real parts of aðkÞ and bðkÞ are only required at
k ¼ m. We observe that

Re½aðmÞ� ¼ −mRe½bðmÞ� ¼ mSðωÞ; (62)

where

SðωÞ ¼
�
2þ ω2

m2
þ log

μ2

ω2
þ
�
ω4

m4
− 1

�
log

ω2 −m2

ω2

�
;

(63)

and the real part of the regularized function Σω then
reads

ðReΣωÞk2¼m2 ¼ − α

4π
ðk −mÞSðωÞ; (64)

so that

Re

�
ΣωðkÞ

k −mþ iη

�
k2¼m2

¼ − α

4π
SðωÞ; (65)

since the imaginary part of Σω does not contribute at
k ¼ m, as it only differs from zero for k > ω, while ω > m
in the integrations. Moreover, from Eq. (64) we see that
ReΣω vanishes at the pole, as k → m, and then

Im

�
ΣωðkÞ

k−mþ iη

�
¼ ImΣω

k−m
¼
�
α

4π

�
ImaþkImb

k−m

¼
�
α

4π

�
πΘðk−ωÞkρHðω=kÞþkF ðω=kÞ

k−m
:

(66)

Because of the vanishing of the imaginary part of Σω for
k ≤ m, we can insert Eq. (65) in Eq. (49) and write the
residue Z0 as

Z0 ¼ 1þ α

4π

Z
∞

m
SðωÞfðωÞdωþ Z0SðmÞ: (67)

Inserting the real part, Eq. (65), in the integral equation,
Eq. (55), we see that the coefficient of δðk −mÞ cancels
exactly because of the definition of Z0 in Eq. (67). In fact,
in the spectral representation, Eq. (50), the weight functions
ρ, f are assumed to be regular functions. Finally, inserting
the imaginary part, Eq. (66), in the integral equation,
Eq. (55), and denoting by θðωÞ and φðωÞ the new reduced
spectral functions

θðωÞ ¼ ρðωÞfðωÞ
Z0

; ϕðωÞ ¼ fðωÞ
Z0

; (68)

we find the following coupled linear Volterra equations for
the coefficients of the gamma matrices:
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θðkÞ ¼ θ0ðkÞ þ
�
α

4π

�
2k

ðk2 −m2Þ2
Z

k

m
½ðm2 þ k2ÞHðω=kÞθðωÞ þ ð2mkÞF ðω=kÞϕðωÞ�dω

ϕðkÞ ¼ ϕ0ðkÞ þ
�
α

4π

�
2k

ðk2 −m2Þ2
Z

k

m
½ð2mkÞHðω=kÞθðωÞ þ ðm2 þ k2ÞF ðω=kÞϕðωÞ�dω; (69)

where the functions θ0, ϕ0 are defined as

θ0ðkÞ ¼
�
α

4π

�
2k

ðk2 −m2Þ2 ½ðm
2 þ k2ÞHðm=kÞ þ ð2mkÞF ðm=kÞ�

ϕ0ðkÞ ¼
�
α

4π

�
2k

ðk2 −m2Þ2 ½ð2mkÞHðm=kÞ þ ðm2 þ k2ÞF ðm=kÞ� (70)

and the residue Z0 that by Eq. (67) now reads

Z−1
0 ¼ 1 − α

4π

�
3þ log

μ2

m2
þ
Z

∞

m
SðωÞϕðωÞdω

�
: (71)

The Volterra integral equations are known to admit a
solution, which is unique, and can be numerically evaluated
by iteration.Of course, a full numerical analysiswould require
some extra care for the regularization of the IR divergence.
In fact the zeroth order functions θ0, ϕ0 have a pole at
k ¼ m, which is the lower integration limit. The insertion of
a finite mass for the photon would raise the lower limit to a
higher value mþ > m and would remove the divergence.
In the weak coupling limit, up to first order in α, we

obtain for Z0 the standard result of QED:

Z−1
0 ¼ 1 − α

4π

�
3þ log

μ2

m2

�
: (72)

It would be interesting to study the behavior of Z0 in the
strong coupling limit, by a numerical solution, as the
vanishing of Z0 would be the sign of the onset of a new
vacuum without single particle excitations. We do not
expect it to occur in the present case, as we are keeping
D ¼ Δ fixed, and we are neglecting the pair excitations
that would contribute to the polarization function.
However, the technique can be extended to the study of
the full set of coupled stationary equations that come out
from the method of minimal variance. Including a spectral
representation for the trial photon propagator D, the paired
stationary equations, Eq. (39), could be studied numerically
by the same technique, yielding nonlinear coupled integral
equations for the weight functions. The present analysis
shows that, at least in the weaker approximation of a fixed
D ¼ Δ, the method of minimal variance yields a nontrivial
solution.
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