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In this paper we present a complete and exact spectral analysis of the (1þ 1)-dimensional model that
Jackiw and Rebbi considered to show that the half-integral fermion numbers are possible due to the
presence of an isolated self-charge-conjugate zero mode. The model possesses the charge and particle
conjugation symmetries. These symmetries mandate the reflection symmetry of the spectrum about the
line E ¼ 0. We obtain the bound-state energies and wave functions of the fermion in this model using
two different methods, analytically and exactly, for every arbitrary choice of the parameters of the kink,
i.e. its value at spatial infinity (θ0) and its scale of variations (μ). Then, we plot the bound-state energies of
the fermion as a function of θ0. This graph enables us to consider a process of building up the kink from the
trivial vacuum. We can then determine the origin and evolution of the bound-state energy levels during this
process. We see that the model has a dynamical mass generation process at the first quantized level and the
zero-energy fermionic mode responsible for the fractional fermion number, is always present during the
construction of the kink and its origin is very peculiar, indeed. We also observe that, as expected, none of
the energy levels cross one another. Moreover, we obtain analytically the continuum scattering wave func-
tions of the fermion and then calculate the phase shifts of these wave functions. Using the information
contained in the graphs of the phase shifts and the bound states, we show that our phase shifts are consistent
with the weak and strong forms of the Levinson theorem. Finally, using the weak form of the Levinson
theorem, we confirm that the number of the zero-energy fermionic modes is exactly one.

DOI: 10.1103/PhysRevD.89.025002 PACS numbers: 05.45.Yv, 03.65.Ge, 03.65.Pm

I. INTRODUCTION

It is known that the modification of the spectrum of the
Fermi field due to its coupling to other field configurations
influences many properties of the system and causes many
interesting phenomena. One of these phenomena is the
appearance of a nonzero and even noninteger fermion num-
ber of the vacuum. The occurrence of the fractional fermion
number was first pointed out by Jackiw and Rebbi in 1976
[1]. They considered some models possessing the charge
conjugation symmetry, in which the fermion is coupled
to a scalar background field in the form of a soliton.
They concluded that the existence of an isolated nondegen-
erate zero-energy fermionic mode implies that the soliton is
a degenerate doublet carrying fermion number � 1

2
. Their

surprising result has motivated much of the works on this
subject. This effect has been studied extensively in the lit-
erature for different physical models in many branches of
physics such as particle physics [1–8], cosmology [9–13],
condensed matter physics [14–17], polymer physics
[18–20] and atomic physics [21–23].
In the early 1980s two systematic and elegant methods

were developed as a way to evaluate the vacuum polariza-
tion of the fermions induced by the presence of prescribed
static background fields. The first method called the

adiabatic method, invented by Goldstone and Wilczek
[3], basically consists of building up adiabatically the final
configuration of the background field starting from the free
vacuum. Then, the charge of the final state can be obtained
by observing the fermionic current at spatial infinity, com-
puted from the lowest-order Feynman loop diagram. This
method is limited to the slowly varying background fields.
For infinitely slow variations of the background, none of
the bound states of the fermion crosses the line of
E ¼ 0. Consequently, there exists only one contribution
to the vacuum polarization, i.e. the adiabatic contribution.
This contribution can be attributed to the change in the
number of continuum states with negative energy and is
responsible for the fractional part of the fermion number.
The second method was invented by MacKenzie and

Wilczek [4,5], and the restriction of adiabaticity is lifted.
To calculate the charge of the no-particle state in the pres-
ence of an interaction, one starts with the definition of the
particle number operator in the free Dirac case and trans-
forms it into the one which is appropriate for the basis of
states in the presence of the interaction. Then, the vacuum
charge turns out to be equal to the difference between the
number of negative-energy states in the presence and
absence of the background field. One can then return back
to the first quantized level and solve for the spectrum of the
Dirac field in the presence of the background field. As we
couple the Dirac field to an external potential, the Dirac
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equation is altered and the spectrum of the fermion is
distorted. The positive and negative continua change and
bound states may appear. When the scale of spatial varia-
tion of the background field is much larger than the
Compton wavelength of the fermion (λ), i.e. the adiabatic
regime, the results of the two methods coincide. However,
when the aforementioned scale becomes comparable to or
smaller than λ, the bound-state energy levels could cross the
E ¼ 0 line, and the definition of the vacuum changes. This
contribution to the vacuum polarization is called the non-
adiabatic contribution. In this sense the second method
generalizes the first.
In this paper we concentrate on the simple but important

model considered by Jackiw and Rebbi. In this model a
Fermi field is coupled to an external scalar field in the form
of a kink in (1þ 1) dimensions. This system has charge
conjugation and particle conjugation symmetries. These
symmetries relate each state of the fermion with positive
energy E to a state with the energy −E. Therefore, the
whole spectrum of the system is completely symmetric
with respect to the line of E ¼ 0. Jackiw and Rebbi stated
that there is an isolated zero-energy fermionic mode in this
system, which is self-charge-conjugate and showed that the
vacuum polarization of the system due to the presence of
this mode is � 1

2
. They have obtained the exact form of the

zero mode [1,2]. Before these works, the same model had
been discussed by Dashen et al. in 1974 [24] in a different
context and with a different purpose. In that paper, they
extended the semiclassical method to include fermions.
They also pointed out the existence of the zero-energy fer-
mionic mode and obtained an expression for the discrete
bound levels. Later on Rajaraman gave the same expression
for the bound-state energies of the Jackiw-Rebbi model
while reviewing the previous works [25]. However, as
far as we know, an exact solution for the whole spectrum
of this model, which was introduced four decades ago has
been heretofore missing. In this paper we calculate the
exact spectrum of the system, i.e. the eigenstates in the con-
tinua and all of the bound eigenstates and their energies, for
the whole allowed ranges of the parameters, i.e. θ0 which
denotes the value of the kink at x → ∞ and μ the slope at
x ¼ 0. Having such solutions, we can explore what exactly
happens to the spectrum of the fermion as the background
field evolves from the trivial vacuum to the kink. From this
evolution perspective, the origin of an isolated zero mode in
a system with particle conjugation symmetry has been a
mystery to us. The symmetries of the system clearly man-
date the zero mode to be self-charge-conjugate, but disal-
low any levels crossing E ¼ 0 during the evolution process,
and this obfuscates the mystery even further. When this
analysis illuminates the origin of this zero mode, some
of its unexpected features become manifest. To this end,
we obtain the bound states of the fermion for this system
using two different analytical methods. In the first method
we solve the equations of motion, directly. Our second

method is the elegant shape invariance method [26–32].
Shape invariance indicates the presence of an integrability
condition for the potential of the Schrödinger-like equa-
tions. When such a condition is satisfied for the potential,
one can use the supersymmetry algebra to exactly solve the
Schrödinger-like equation and obtain the stationary states
and their corresponding energy eigenvalues. Our second-
order equations, obtained by decoupling the two first-order
equations embedded in the Dirac equation, turn out to be
two Schrödinger-like equations which are surprisingly part-
ner Hamiltonians and related to each other through a shape
invariance condition. Therefore, we are able to easily obtain
the solutions for our bound states using the shape invari-
ance method. We plot the bound-state energies of the fer-
mion as a function of θ0. The invariance of the system
under the charge and particle conjugation symmetries is
obvious in this graph. We also obtain the continuum scat-
tering states of the fermion by solving the equations of
motion directly, and then calculate the phase shift of these
states. One of our observations is that there is a dynamical
mass-generation process operating at the first quantized
level. We check the consistency of our results with both
the weak and strong forms of the Levinson theorem
[33,34], and use those two forms to gain further insight into
the fermionic spectrum.
The outline of the paper is as follows. In Sec. II we intro-

duce the model. In Sec. III we obtain the bound states of the
fermion using two different methods. In Sec. IV we com-
pute the continuum wave functions of the fermion and then
calculate the phase shift of these states. Then, we check the
consistency of our results with both the weak and strong
forms of the Levinson theorem. In Sec. V we summarize
and discuss the results and draw some conclusions.

II. THE PRELIMINARIES OF THE
JACKIW-REBBI MODEL

In this section we review the basic definitions of the
(1þ 1)-dimensional model studied by Jackiw and Rebbi
[1]. This model includes a spinor field ψ coupled to a scalar
field φ through the following Lagrangian:

L ¼ ψ̄ ½iγμ∂μ − gϕclðxÞ�ψ ; (1)

where g > 0 and φclðxÞ is a prescribed pseudoscalar field
and chosen to be the kink of the φ4 theory, i.e.
ϕclðxÞ ¼ ðm=

ffiffiffi
λ

p Þ tanh ðmx=
ffiffiffi
2

p Þ. Two important parame-
ters which describe the kink are θ0 ¼ ϕclð∞Þ ¼ mffiffi

λ
p and

μ ¼ dφcl
dx jx¼0 ¼ m2ffiffiffiffi

2λ
p . Notice that the Lagrangian has no

explicit fermion mass term and the mass of the free fermion
is obviously zero. However, as we shall show, the interac-
tion term of this Lagrangian gives the mass Mf ¼
jghϕclij ¼ g mffiffi

λ
p ¼ gθ0 to the fermion, to lowest order.

We use the representation γ0 ¼ σ1 and γ1 ¼ iσ3 for the
Dirac matrices and represent the Fermi field by
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ψðx; tÞ ¼ e−iEt
�
ψ ðþÞðxÞ
ψ ð−ÞðxÞ

�
.

Then, the Dirac equation in the presence of the background
field φclðxÞ can be written as follows:�−∂x − gϕclðxÞ E

E ∂x − gϕclðxÞ
��

ψ ðþÞðxÞ
ψ ð−ÞðxÞ

�
¼ 0. (2)

Our purpose is to solve this equation exactly and explore
the results in detail. Before doing that, we state some
important symmetries of this model. It possesses the charge
conjugation symmetry. In our representation the charge
conjugation operator includes σ3 and it relates the states
with positive energy to the ones with negative energy as
ψc−E ¼ σ3ψ

�
E. Also, if there is a zero-energy fermionic

mode, it is self-conjugate, i.e. ψc
0 ¼ σ3ψ

�
0 ¼ ψ0. This

model also possesses particle conjugation symmetry. In
our representation the particle conjugation operation is
given by ψ−E ¼ σ3ψE. Therefore, for every state with pos-
itive energy E there exists a corresponding state with
energy −E. The chosen model is not invariant under the
parity, since the background field φclðxÞ is the kink which
is an odd function in space. Therefore, this model does not
preserve theCP symmetry and consequently it is not invari-
ant under the time reversal.

III. BOUND STATES OF THE FERMION IN THE
PRESENCE OF THE BACKGROUND FIELD

In this section we solve Eq. (2) to find the wave functions
of the bound states along with their associated discrete

energies. First, we solve the equations of motion directly.
Then, we solve the equations using the formalism of shape
invariance, as a double-check. For an alternative derivation
of the bound states see Ref. [35].

A. The direct method

Equation (2) consists of two coupled first-order differen-
tial equations. We first solve the two decoupled second-
order equations and then look for a set of solutions which
are consistent with the original Dirac equation (2). The
decoupled equations are

d2ψ ð�Þðx0Þ
dx02

þ ½ϵ� − v�tanh2ðx0Þ�ψ ð�Þðx0Þ ¼ 0; (3)

where we have rescaled the original parameters of the
model as follows: x0 ¼ ðμ=θ0Þx, g0 ¼ ðθ20=μÞg and
E0 ¼ ðθ0=μÞE. We have also defined two new parameters
as follows: ϵ� ¼ ðE0�Þ2 � g0 and v� ¼ g02 � g0. The solu-
tions to these two Schrödinger-like equations can be
inferred from some old literature [36,37]. However, we
present a very short derivation of the solutions, which
we shall later combine to obtain the solution to the original
Dirac equation. When ϵ� < v�, these equations have
solutions vanishing at spatial infinities and consequently
for this range of parameters we can have bound states.
However, for ϵ� > v� the continuum solutions which
are oscillatory at spatial infinities are possible. To solve
these equations, we substitute the ansatz ψ ð�Þðx0Þ ¼
sechb�ðx0ÞF�ðx0Þ into Eq. (3) and obtain

sechb�ðx0Þ
�
d2F�ðx0Þ

dx02
− 2b� tanhðx0Þ dF�ðx0Þ

dx0
þ ½ϵ� − v� þ b2� þ ðv� − b�ðb� þ 1ÞÞsech2ðx0Þ�F�ðx0Þ

�
¼ 0. (4)

In this equation the terms in the curly brackets should add up to zero. By choosing the arbitrary parameters b� such that
ϵ� − v� þ b2� ¼ 0, and by using a change of variable u ¼ 1

2
½1 − tanhðx0Þ�, the differential equations for F�ðx0Þ turn into a

hypergeometric equation with the following general solution:

A2F1

�
b� þ 1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� þ 1

4

r
; b� þ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� þ 1

4

r
; 1þ b�; u

�
þ Bu−b�2F1

�
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� þ 1

4

r
;
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� þ 1

4

r
; 1 − b�; u

�
: (5)

For the bound states we set b� > 0 to turn sechb�ðx0Þ into a damping factor. However, since b� > 0, limu→0u−b� ¼ ∞ and
we have to set B ¼ 0. In order that the remaining solution have the proper asymptotic behavior, we have to impose the
following constraint:

b� þ 1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� þ 1

4

r
¼ −n; (6)

where n is a semipositive integer. This constraint along with
the constraint ϵ� − v� þ b2� ¼ 0 determine the allowed dis-
crete energies of the system. Using these two constraints, and

the definitions of v� and ϵ�, the allowed energies in terms of
the original parameters θ0 and μ are as follows:

Eþ
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gμn − μ2

θ20
n2

s
; n ¼ 0; 1; 2;… <

gθ20
μ

; (7)

COMPLETE SPECTRAL ANALYSIS OF THE JACKIW- … PHYSICAL REVIEW D 89, 025002 (2014)

025002-3



E−
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gμn − μ2

θ20
n2

s
; n ¼ 1; 2;… <

gθ20
μ

: (8)

We have reverted to the original parametrization since it is necessary for explaining the origin of the zero mode. The upper
bounds for the integer n have been obtained using the constraint b� > 0. The corresponding wave functions are

ψ ðþÞ
n ðxÞ ¼ Nþ

�
sech

�
μ

θ0
x

��gθ2
0
μ −n

2F1

�
−n; 2 gθ

2
0

μ
− nþ 1;

gθ20
μ

− nþ 1;
1

1þ e
2μ
θ0
x

�
; (9)

ψ ð−Þ
n ðxÞ ¼ N−

�
sech

�
μ

θ0
x

��gθ2
0
μ −n

2F1

�
−nþ 1; 2

gθ20
μ

− n;
gθ20
μ

− nþ 1;
1

1þ e
2μ
θ0
x

�
: (10)

Now, we use these solutions to construct the solutions of
the original Dirac coupled first-order differential equa-
tions (2). It is important to note that the energy E of both
of these solutions for any state should be the same, since E
is the energy of the fermion and its wave function is the
doublet

e−iEt
�
ψ ðþÞðxÞ
ψ ð−ÞðxÞ

�
:

We define En ¼ Eþ
n ¼ E−

n and choose the wave function of
the fermion to be in the following form:

ψnðx; tÞ ¼ e−iEnt

 
ψ ðþÞ
n ðxÞ

ψ ð−Þ
n ðxÞ

!
; n ¼ 0; 1; 2;… <

gθ20
μ

:

(11)

One can easily check that the solutions given by Eq. (11)
satisfy the first-order Eq. (2), if we set N−=Nþ ¼ nμ=
ðθ0EnÞ. Therefore, the total number of the bound states

for a given value of θ0 is Nb ¼ 2½gθ20μ �F þ 1, where
½fðθ0Þ�F denotes the floor function.
Now let us concentrate on the zero-energy mode since

this is the most important bound state. For the E ¼ 0mode,
n ¼ 0 and only the upper component is nonzero. We can
easily extract the explicit form of the zero mode from our
exact solution given in Eqs. (7)–(11). Due to the impor-
tance of the zero mode, let us find it by a second method
which we choose to be a direct calculation based on the
Dirac equation (2) (see Ref. [25]). Setting E ¼ 0 in the
first-order Eq. (2), the two equations decouple and their
solutions are as follows:

ψ ðþÞ
0 ðxÞ ¼ cþ

�
cosh

�
μ

θ0
x

��−gθ2
0
μ

;

ψ ð−Þ
0 ðxÞ ¼ c−

�
cosh

�
μ

θ0
x

��gθ2
0
μ

; (12)

where cþ and c− are constant. Since ψ ð−Þ
0 ðxÞ makes the

fermion wave function for the zero-energy mode un-
normalizable, we set c− ¼ 0. Therefore, the wave function
for this mode is

ψ0ðxÞ ¼ cþ

 h
cosh

�
μ
θ0
x
	i−gθ2

0
μ

0

!
: (13)

We should mention that the asymptotic behavior of all of
the bound states can be easily obtained from Eq. (3) and are
as follows:

lim
jxj→∞

ψ ð�Þ
n ðxÞ ¼ e−b

�
n

μ
θ0
jxj: (14)

This asymptotic behavior exactly matches the correspond-
ing behavior of our exact solutions given in Eqs. (7)–(11).

B. The shape invariance method

In this subsection we use the shape invariance method to
rederive the bound-state sector of this model. Since there
are many excellent reviews on the shape invariance method
(see for example Ref. [28]), we shall only use the results,
with minimal introduction. Consider a sequence of
Hamiltonians which are related to each other by the shape
invariance condition,

Hkðg1Þ ¼ H1ðgkÞ þ
Xk−1
s¼1

RðgsÞ; k ¼ 2; 3;…; p; (15)

where p is the number of bound states of H1, RðgsÞ is a c
function depending on the parameters of the Hamiltonians,
and gs ¼ fs−1ðg1Þ. The Hamiltonian H1 and its ground
state are required to have the following properties:
H1ðgÞ ¼ A†ðgÞAðgÞ, and Aðg1Þψ ð1Þ

0 ðg1Þ ¼ 0. The nth
Hamiltonian Hn in this sequence has the same spectrum
as H1 except that the first n − 1 bound states of H1 are
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absent in the spectrum of Hn. Using this relation, it is
obvious that the ground state of the Hamiltonian Hk is
the kth energy level of H1. The bound-state energies of
H1 are as follows:

Eð1Þ
n ¼

Xn
s¼1

RðgsÞ; n ¼ 1; 2;…; p; and Eð1Þ
0 ¼ 0.

(16)

Moreover, the nth eigenstate of H1 is as follows:

ψ ð1Þ
n ðg1Þ ∝ A†ðg1ÞA†ðg2Þ…A†ðgnÞψ ð1Þ

0 ðgnþ1Þ;
n ¼ 1; 2;…; p: (17)

Now, we use the shape invariance method to solve the
second-order Schrödinger-like equations (3). We can write
the partner Hamiltonians for our equations, in terms of the
parameters μ and θ0, as follows:

Hþ ¼ A†A ¼ − d2

dx2
þ g2θ20 − gθ0

�
gθ0 þ

μ

θ0

�
sech2

�
μ

θ0
x

�
;

(18)

H− ¼ AA†

¼ − d2

dx2
þ g2θ20 − gθ0

�
gθ0 − μ

θ0

�
sech2

�
μ

θ0
x

�
;

(19)

where, the lowering and raising operators which build Hþ
and H− are, respectively,

A ¼ − d
dx

− gθ0 tanh

�
μ

θ0
x

�
; (20)

A† ¼ d
dx

− gθ0 tanh
�
μ

θ0
x
�
: (21)

It can be easily seen that the Hamiltonians (18) and (19)
satisfy the following shape invariance condition:

H−ðgÞ ¼ Hþ

�
g − μ

θ20

�
þ
�
2gμ − μ2

θ20

�
: (22)

Thus, in our case fðgÞ ¼ g − μ
θ2
0

and RðgÞ ¼ 2gμ − μ2

θ2
0

.

Using these two functions and Eq. (16), the energies of
the bound states of Hþ are as follows:

Eþ
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ngμ − n2

μ2

θ20

s
; n ¼ 0; 1; 2;…: (23)

Substituting Eqs. (13) and (21) into Eq. (17), the bound-
state wave functions of the Hamiltonian Hþ can be easily

obtained. The ground state ψ ðþÞ
0 is already shown in

Eq. (13) (upper component) and the first two excited states
are as follows:

ψ ðþÞ
1 ðxÞ∝sinh

�
μ

θ0
x

��
cosh

�
μ

θ0
x

��−gθ2
0
μ

;

ψ ðþÞ
2 ðxÞ∝

�
gθ20þðμ−gθ20Þ cosh

�
2μ

θ0
x

���
cosh

�
μ

θ0
x

��−gθ2
0
μ

:

(24)

As it can be seen, these energies and states are exactly the
ones we obtained in the previous subsection.

IV. CONTINUUM SCATTERING STATES
OF THE FERMION IN THE PRESENCE

OF THE BACKGROUND FIELD

Now, we focus our attention on obtaining the continuum
scattering states for this model. As in the case of bound
states, we choose the continuum wave functions to be in

the form of ψ ð�Þ
k ðxÞ ¼ sechb�ðμx=θ0ÞF�ðxÞ. From the con-

straint ϵ� − v� þ μ2

θ2
0

b2� ¼ 0, we have b� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2
0

μ2
ðv� − ϵ�Þ

q
.

To have oscillatory behavior in spatial infinities for the con-
tinuum states, we set b� ¼ −ik in which k is a real quantity.
This choice corresponds to the region ϵ� > v�. Using the
definitions of the parameters v� and ϵ� in terms of θ0
and μ, we obtain E2 ¼ μ2

θ2
0

k2 þ g2θ20. This equation reveals

an extremely important property of this model, namely
dynamical mass generation at the tree level. This mass is
given byMf ¼ gθ0. We shall comment further on the proper-
ties of the spectrum of this model in Sec. IV A.

The continuum states of the fermion are as follows:

ψ ð�Þ
k;L ðxÞ ¼ Nk;L

� coshik
�
μ

θ0
x

�
2F1

�
1

2
− ik − ζ�;

1

2
− ikþ ζ�; 1 − ik;

1

1þ e
2μ
θ0
x

�
; (25)
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ψ ð�Þ
k;R ðxÞ ¼ Nk;R

� coshik
�
μ

θ0
x

�
2F1

�
1

2
− ik − ζ�;

1

2
− ikþ ζ�; 1 − ik;

1

1þ e−
2μ
θ0
x

�
; (26)

where ζ� ¼ gθ2
0

μ � 1
2
, and Nk;L

� and Nk;R
� are the normalization factors for the continuum states. We can easily check that the

spinor constructed from solutions of the decoupled equations presented in Eqs. (25) or (26), with the same value of k,

satisfies the original (coupled) Dirac equation (2) if we set Nk;L− =Nk;L
þ ¼ −Nk;R− =Nk;R

þ ¼ ði μ
θ0
kþ gθ0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

θ2
0

k2 þ g2θ20
q

.

The asymptotic behavior of these wave functions at spatial infinities is as follows:

ψ ð�Þ
k;L ðxÞ ¼

8<
:Nk;L

� Γð1 − ikÞ
�

Γð−ikÞeik
μ
θ0

x

Γð1
2
−ikþζ�ÞΓð12−ik−ζ�Þ þ

ΓðikÞe−ik
μ
θ0

x

Γð1
2
þζ�ÞΓð12−ζ�Þ

�
; as x → −∞;

Nk;L
� eik

μ
θ0
x; as x → þ∞;

(27)

ψ ð�Þ
k;R ðxÞ ¼

8<
:

Nk;R
� e−ik

μ
θ0
x; as x → −∞;

Nk;R
� Γð1 − ikÞ

�
ΓðikÞeik

μ
θ0

x

Γð1
2
þζ�ÞΓð12−ζ�Þ þ

Γð−ikÞe−ik
μ
θ0

x

Γð1
2
−ikþζ�ÞΓð12−ik−ζ�Þ

�
; as x → þ∞:

(28)

This asymptotic behavior of ψ ð�Þ
k;L ðxÞ [Eq. (25)], shown in

Eq. (27) represents an incident wave for x → −∞ moving

to the right (eik
μ
θ0
x), a reflected wave for x → −∞ moving

back to the left (e−ik
μ
θ0
x) and a transmitted wave for

x → þ∞ moving to the right (eik
μ
θ0
x). As it is apparent from

Eq. (28), the solution ψ ð�Þ
k;R ðxÞ given in Eq. (26) represents

the opposite scattering process. By the use of these asymp-
totic behaviors, we can easily obtain the scattering phase
shift for this model. Having obtained the phase shifts,
we can use the strong form of the Levinson theorem for
a double-check on our calculations and the weak form
of the Levinson theorem as a counter for the bound states.
In particular, we concentrate on the ever important
zero mode.

A. Phase shift and the Levinson theorem

In this section we first find the phase shift for the scatter-
ing process embedded in Eqs. (25)–(28). To this end, we
divide the coefficient of the transmitted wave by the coef-
ficient of the incident wave and obtain the scattering matrix
element which is related to the phase shift by the relation
SðkÞ ¼ eiδðkÞ. Using Eq. (27) or Eq. (28), the scattering
matrix element of the fermion is as follows:

S�ðkÞ ¼
Γð1

2
þ ζ� − ikÞΓð1

2
− ζ� − ikÞ

Γð−ikÞΓð1 − ikÞ ¼ eiδ�ðkÞ; (29)

where as before � signs refer to the upper and lower com-
ponents of the continuum wave function of the fermion,
respectively. As it can be seen, the S matrix is ambiguous
and the upper and lower components of the fermion wave
function have different phase shifts. We define the phase
shift of the state to be the average of the phase shifts of

the two components of the fermion wave function [34].
We shall show that this phase shift has all of the expected
properties. Also, notice that the S matrix of our model and
consequently the phase shifts of the fermion wave function
are independent of the sign of the fermion energy, due to
the symmetries of the system. Therefore, the phase shifts of
the states in the Dirac sea and sky with the same value of jEj
are the same.
Let us plot some examples of the phase shift of the fer-

mion and explore them in connection with the Levinson
theorem. We concentrate on the case with the parameters
μ ¼ 2.5 and g ¼ 2.15 as the value of θ0 is increased from
zero. It is important to investigate the change in the values
of the phase shifts at the boundaries of the continua, i.e.
δskyð0Þ and δseað0Þ, when bound states appear. In the left
panel of Fig. 1 we show the phase shifts as a function
of k for θ0 ¼ f0.272; 0.343242; 0.414gπ. We draw the
phase shifts for these three values of θ0 with solid, dashed
and dot-dashed lines, respectively. In the right panel of this
figure we show the fermion bound states as a function of θ0
and indicate the same three values of θ0 with solid, dashed
and dot-dashed lines. As it can be seen, there are two
threshold bound states (with n ¼ 1) at θ0 ¼ 0.343242π.
At θ0 ¼ 0.272π there is only the zero-energy bound state
and at θ0 ¼ 0.414π there are two additional bound states.
We first utilize the weak form of the Levinson theorem

for counting the exact number of the zero-energy bound
states. The weak form of this theorem for the Dirac equa-
tion can be written as follows (see for example Ref. [34]):

Δδ≡ ½δskyð0Þ − δskyð∞Þ� þ ½δseað0Þ − δseað∞Þ�

¼ Δδsky þ Δδsea ¼
�
N þ Nt

2
− N0

t

2

�
π: (30)

F. CHARMCHI AND S. S. GOUSHEH PHYSICAL REVIEW D 89, 025002 (2014)

025002-6



Here N is the total number of bound states, Nt is the total
number of threshold bound states at the given strength of
the potential and N0

t is the total number of threshold bound
states at the zero strength of the potential. In fact the last
term takes into account the two threshold half bound states
which exist for a free Dirac field in one spatial dimension.
Therefore, in this model N0

t ¼ 2. Now, we check this theo-
rem for the sample phase shifts drawn in Fig. 1. As shown
in the left graph of this figure, for the phase shift at
θ0 ¼ 0.272π, depicted by the solid line, we haveΔδsea=π ¼
Δδsky=π ¼ 0. From the right graph we can see that Nt ¼ 0
at θ0 ¼ 0.272π, and since N0

t ¼ 2, the Levinson theorem
predicts only one bound state which is in fact the nonde-
generate zero-energy bound state. By considering the phase
shift at the other values of θ0, we conclude the same result.
Now, we briefly explain the strong form of the Levinson

theorem which deals with the value of the phase shift at
k ¼ 0 (E ¼ �Mf ) and k → ∞ (E → �∞), separately
[34]. For k ¼ 0 this theorem can be expressed in the
following form:

δð0Þ ¼ ðNexit − NenterÞπ: (31)

That is the value of the phase shift at zero momentum for
each continuum is equal to the number of the bound states
that exit minus the number of the bound states that enter
that continuum from E ¼ �Mf , as the strength of the
potential is increased from zero to its final value. We
can easily see that the sample phase shifts shown in
Fig. 1 are consistent with the relation (31). For example,
at θ0 ¼ 0.272π the value of the phase shifts at zero momen-
tum (E ¼ �Mf ) are 0. On the other hand, from the right
panel of Fig. 1 we see that the total number of bound
states that have exited each of the continua from the line
E ¼ �Mf is 0. We conclude that the ever-present zero-
energy bound state has been formed from the union of
the two threshold (half) bound states present in the free
case, i.e. at θ0 ¼ 0. At θ0 ¼ 0.343242π two threshold
bound states have formed at E ¼ �Mf and the correspond-
ing phase shifts are δskysea ð0Þ ¼ π

2
. For θ0 ¼ 0.404π these

states have completely separated from the continua and

become full bound states. Therefore, the corresponding
phase shifts attain the value π. This sort of consistency
can be easily seen for other phase shifts.
The strong form of the Levinson theorem for k → ∞ can

be written as follows:

δð∞Þ ¼ ðNenter − NexitÞπ: (32)

This means that the value of the phase shift for E → �∞ is
equal to the total number of the bound states that enter
minus the number of the bound states that exit that con-
tinuum from E ¼ �∞, as the strength of the potential is
increased from zero to its final value. For the generic cases
where the presence of a background field does not cause the
Hamiltonian to lose its Hermiticity the spectrum remains
complete, and hence δskyð∞Þ þ δseað∞Þ ¼ 0. Since in this
model the charge and particle conjugation symmetries
imply that δskyðkÞ ¼ δseaðkÞ for all k, we expect δskyð∞Þ ¼
δseað∞Þ ¼ 0, and this is precisely the result shown in
Fig. 1. Now we emphasize several important properties
of the spectrum of the model at this point. As is evident
from the right panel of Fig. 1, there are no level crossings,
the spectrum is symmetric about E ¼ 0, the dynamical
mass generated is Mf ¼ gθ0, and the zero mode is always
present.

V. CONCLUSION

In this paper we thoroughly investigated the (1þ 1)-
dimensional model considered by Jackiw and Rebbi,
whence they have introduced the possibility of the frac-
tional fermion number for the ground state. In this model
a Fermi field is coupled to a prescribed pseudoscalar field
in the form of the kink characterized by two parameters θ0
(the value of the kink at spatial infinity) and μ (the slope of
the kink at x ¼ 0). We solved the equations of motion of
this system analytically and exactly, and found the bound-
state wave functions and energies as well as the continuum
states for arbitrary choices of the parameters θ0 and μ.
Then, we plotted the bound-state energies of the fermion
as a function of the parameter θ0. Having this complete
set of solutions, we considered a process in which the
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FIG. 1. Left panel: The graphical representation of δskysea ðkÞ=π as a function of k. In these graphs g ¼ 2.15 and μ ¼ 2.5, and the values of
θ0 for solid, dashed and dot-dashed lines are 0.272π, 0.343242π and 0.414π, respectively. Right panel: The bound states of the fermion
as a function of θ0. The three values of θ0 are shown by the solid, dashed and dot-dashed lines.
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background field evolves from zero to its final form. We then
observed the changes in the spectrum of the fermion during
this process. We found that the interaction induces a mass for
the Fermi fieldMf ¼ gθ0. That is although the free theory is
massless, a band gap appears as θ0 increases. Also, the

bound states start appearing with Nb ¼ 2½gθ20μ �F þ 1. The
invariance of the system under the charge and particle con-
jugation symmetry is obvious in the graph of the bound ener-
gies, since the energy levels are totally symmetric with
respect to the line of E ¼ 0. We focused our attention espe-
cially on the zero-energy fermionic mode and saw that this
mode is always present for every choice of the parameters. In
particular, we exposed the origin of the ever-present zero
mode: in the free Dirac case, i.e. when θ0 ¼ 0, there is

no mass gap and two threshold zero-energy bound states
separate the continua. As θ0 increases, a mass gap appears
and the two threshold bound states merge to form the zero-
energy bound state. We also found the continuum scattering
states of the fermion analytically and then calculated the
phase shift of these wave functions. Using the weak form
of the Levinson theorem, we concluded that the self-
charge-conjugate zero-energy fermionic mode is a nonde-
generate mode as Jackiw and Rebbi stated.
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