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We study the real-time dynamics of fermions coupled to scalar fields in a linear sigma model, which is
often employed in the context of preheating after inflation or as a low-energy effective model for quantum
chromodynamics. We find a dramatic amplification of fermion production in the presence of highly
occupied bosonic quanta for weak as well as strong effective couplings. For this we consider the range
of validity of different methods: lattice simulations with male/female fermions, the mode functions
approach and the quantum 2PI effective action with its associated kinetic theory. For strongly coupled
fermions we find a rapid approach to a Fermi-Dirac distribution with time-dependent temperature and
chemical potential parameters, while the bosons are still far from equilibrium.
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I. INTRODUCTION

Understanding the real-time dynamics of fermions
coupled to highly occupied bosonic fields is central for a
wide rangeof physical systems. Important examples concern
the creation of matter fields from inflaton decay during pre-
heating in inflationary cosmology, the fermion production
from gauge fields during the early stages of ultrarelativistic
collision experiments of heavy nuclei, or nonrelativistic sys-
tems of ultracold quantum gases with fermions and bosons.
Though these examples cover a vast range of character-

istic energy scales, they require rather similar theoretical
descriptions. Standard semiclassical approaches are based
on solutions of a Dirac equation, or its nonrelativistic limit,
in the presence of a time-dependent bosonic background
field. In this context, large coherent Bose fields are often
treated classically. However, since identical fermions can-
not occupy the same state, their quantum nature is highly
relevant and a consistent quantum treatment of the fermion
dynamics is of crucial importance. It has been pointed out
that semiclassical approaches can fail to describe the fer-
mion dynamics in the presence of high occupancies of
bosonic quanta [1]. For the example of a decaying inflaton
field, it was shown that quantum corrections dramatically
enhance the production of fermions following preheating in
the early Universe.
In this work, we analyze the real-time dynamics of Dirac

fermions coupled to scalar fields using different methods.
We consider a linear sigma model, which is often employed
in the context of preheating after inflation or also as a low-
energy effective model for quantum chromodynamics. We
compare different real-time techniques: lattice simulations

with male/female fermions [2], the mode functions
approach [3] and the quantum 2PI effective action [4] with
its associated kinetic theory. We discuss their range of
applicability in detail. As our main result, we confirm
the dramatic amplification of fermion production in the
presence of highly occupied bosons that was first pointed
out in Ref. [1]. This amplification is discussed in terms of
the emerging effective coupling ξ while the results are
extended to the strong coupling regime.
It turns out that the efficient male/female lattice approach

accurately converges to the exact mode functions result for
the available lattice sizes. Our study shows the strength of
the male/female method to address physical questions for
large volumes [1,5–9], something where the mode function
approach becomes computationally intractable. For weak
couplings we find that the lattice simulation results agree
well with those obtained from the quantum 2PI effective
action, emphasizing the ability of the lattice approach to
describe genuine quantum phenomena.
Applying an improved lattice discretization with a

pseudoscalar Wilson term, we accurately resolve for the
first time the high-momentum behavior of particle number
distributions. For weak couplings this reveals a power-law
behavior above a characteristic momentum. For strongly
coupled fermions, we find a rapid approach to a quasither-
mal Fermi-Dirac distribution with time-dependent temper-
ature and chemical potential parameters. Remarkably, this
happens while the bosons are still showing turbulent behav-
ior far from equilibrium.
The paper is organized as follows. In Secs. II and III we

describe the model we use to simulate fermion production,
explain the male/female method and mode functions
approach. We also elaborate on details of our lattice formu-
lation, our choice of initial conditions and renormalization
procedure. In Sec. III E we demonstrate the convergence of
male/female method toward the exact mode functions
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results. In Sec. IV consequences of neglecting higher-order
quantum fluctuations as well as details of our 2PI approach
are discussed. Also in Sec. IV we present numerical
evidence for applicability of 2PI and the degree of agree-
ment between 2PI and lattice simulations. In Secs. Vand VI
we finally arrive at our results for fermion production from
parametric resonance at strong and weak coupling. We
summarize and conclude in Sec. VII.

II. MODEL AND INITIAL CONDITIONS

We consider a relativistic quantum field theory of coupled
bosonic and fermionic degrees of freedom. It describes a
generic linear sigma model for a Ns ¼ 4 component scalar
field ðσ; π⃗Þ with self-coupling λ. The scalars interact via a
Yukawa coupling g with Nf ¼ 2 flavors of massless Dirac
fermions ψ i with flavor index i. The Lagrangian density
is given by1

L ¼ 1

2
ð∂μσ∂μσ þ ∂μπ⃗∂μπ⃗Þ − 1

2
m2ðσ2 þ π2Þ

− λ

4!Ns
ðσ2 þ π⃗2Þ2 þ ψ̄ði∂μγ

μÞψ

− g
Nf

ψ̄ðσ þ iγ5τ⃗π⃗Þψ ; (1)

with Dirac matrices γμ (μ ¼ 0;…; 3), γ5 ¼ γ5 ¼ iγ0γ1γ2γ3

and ψ̄ ≡ ψ†γ0. We denote by τ⃗ the Pauli matrices and
space-time variables by x≡ ðx0;xÞ.
The equal-time anticommutation relations for the fer-

mions are encoded in the spectral function

ρψ ;ijðx; yÞ≡ ihfψ iðxÞ; ψ̄ jðyÞgi (2)

as

γ0ρψ ;ijðx; yÞjx0¼y0 ¼ iδðx − yÞδij (3)

with fA;Bg≡ ABþ BA. Correspondingly, the boson
commutation relations are encoded in

ρσðx; yÞ≡ ih½σðxÞ; σðyÞ�i (4)

with

∂x0ρσðx; yÞjx0¼y0 ¼ δðx − yÞ (5)

for ½A;B�≡ AB − BA. Equivalently, one can define spec-
tral functions for the π⃗ fields, with vanishing commutators
between different fields.
The brackets hAi≡ trðϱ0AÞ denote the trace over a nor-

malized initial density matrix ϱ0, which specifies the initial
conditions at time t0. Here we will choose Gaussian initial

conditions, where ϱ0 is completely determined by one- and
two-point correlation functions at t0. This class of initial
conditions will allow us to study, in particular, particle
production from nonequilibrium instabilities as will be dis-
cussed below. We emphasize that a choice of initial condi-
tions does not represent an approximation to the dynamics
and irreducible higher n-point correlation functions will
build up for times larger than t0 because of the interactions
in (1). We restrict ourselves to spatially homogeneous ini-
tial conditions such that we can Fourier transform with
respect to spatial variables. With hψ iðxÞi ¼ 0 the one-point
function for the σ-field

ϕðx0Þ≡ hσðxÞi (6)

at initial time is specified by an initial field amplitude ϕ0 as

ϕðt0Þ ¼ ϕ0; ∂x0ϕðx0Þjx0¼t0 ¼ 0: (7)

For the initial π⃗ fields we take

hπ⃗ðxÞijx0¼t0 ¼ 0; h∂x0 π⃗ðxÞijx0¼t0 ¼ 0: (8)

It remains to specify two-point correlation functions.
Apart from the above spectral functions, whose initial
conditions are fixed by the equal-time relations at initial
time, we also have to give the respective commutator
expectation values for the fermions and anticommutators
for the bosons. These so-called statistical two-point func-
tions are [10]

Fψ ;ijðx; yÞ≡ 1

2
h½ψ iðxÞ; ψ̄ jðyÞ�i; (9)

Fσðx; yÞ ¼
1

2
hfσðxÞ; σðyÞgi − hσðxÞihσðyÞi (10)

and, similarly, the anticommutator expectation value
Fπðx; yÞ for each of the π⃗ components. Their spatial
Fourier modes at initial time are chosen as

Fψ ;ijðx0; y0;pÞjx0¼y0¼t0
¼ mψ − p

ωψ ðpÞ
�
1

2
− nψðpÞ

�
δij (11)

with ωψðpÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ψþp2
q

. Here the effective fermion mass
mψ is given by gϕ0=2 at initial time and nψðpÞ ¼ 0 for
vacuum initial conditions. For the initial boson correlators
we take

Fσðx0; y0;pÞjx0¼y0¼t0 ¼
1

ωðpÞ
�
1

2
þ nðpÞ

�
;

∂x0Fσðx0; y0;pÞjx0¼y0¼t0
¼ 0;

∂x0∂y0Fσðx0; y0;pÞjx0¼y0¼t0
¼ ωðpÞ

�
1

2
þ nðpÞ

�
(12)

1Summation over repeated indices is implied, the metric tensor
has signature ðþ;−;−;−Þ and we use natural units with
ℏ ¼ c ¼ kB ¼ 1.
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with ωðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
and nðpÞ ¼ 0. We choose the

same initial conditions for Fσ as well as for Fπ. Initial
two-point functions involving different fields are taken
to vanish. The above completely specifies the initial value
problem for our model.
To extract information about particle numbers from

numerical simulations it is convenient to define bosonic
and fermionic effective particle numbers, both of which
are in general not conserved for an interacting system
out of equilibrium.2 For bosons the particle number is as-
sociated to the equal-time statistical propagator Fσðt; t;pÞ
and quasiparticle energy ϵσðt;pÞ according to [10]

ϵσðt;pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂t∂t0Fσðt; t0;pÞ∣t¼t0

Fσðt; t;pÞ

s
;

nσðt;pÞ ¼ Fσðt; t;pÞϵσðt;pÞ − 1

2

(13)

and equivalently for the π⃗ fields. Plugging the above initial
values into these definitions confirms that the vacuum we
are starting from contains no particles according to this
definition.
To discuss properties of Fψðt;pÞ we consider its scalar,

pseudoscalar and vector components:

FSðt;pÞ ¼
1

4
TrðFψðt; t;pÞÞ; (14)

Fi
Vðt;pÞ ¼

1

4
TrðγiFψðt; t;pÞÞ; (15)

FPSðt;pÞ ¼
1

4
Trðγ5Fψ ðt; t;pÞÞ; (16)

where the trace acts in Dirac space. The flavor indices are
omitted here, because we restrict ourselves to initial con-
ditions which are diagonal in flavor space and thus consider
only flavor-averaged quantities. Each of these quantities
can be used to define an effective particle number, enabling
us to construct nψ ðt;pÞ from different combinations of
FSðt;pÞ, FPSðt;pÞ and Fi

Vðt;pÞ. Here we follow [1,4,11]
and employ

nψðt;pÞ ¼
1

2
− piFi

Vðt;pÞ þmψ ðt;pÞFSðt;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ ðt;pÞ
q : (17)

The time dependence of the effective fermion mass results
from the dynamical macroscopic field ϕðtÞ.

III. REAL-TIME LATTICE APPROACH

A. Classical-statistical mapping

There is a significant class of problems where the
dynamics of bosonic quantum fields can be accurately
mapped onto a classical-statistical system. This is the case
whenever anticommutator expectation values for bosonic
fields are much larger than the corresponding commutators
[12], which has been studied extensively for scalar field
theories [12–16] as well as pure gauge theories [17–22].
This classicality condition reads in our case

ðFσðx; yÞ þ ϕðx0Þϕðy0ÞÞ2 ≫ ρ2σðx; yÞ;
F2
πðx; yÞ ≫ ρ2πðx; yÞ: (18)

Stated differently, this concerns the large field or large
occupancy limit, which is relevant for important phenom-
ena such as nonequilibrium instabilities, particle creation
from large coherent fields or wave turbulence which will
be relevant for our study. The description breaks down once
the typical field occupancies become of order unity. In
particular, this is the case in thermal equilibrium. For an
introductory review see Ref. [10].
In this limit, observables can be obtained as ensemble

averages of solutions of classical field equations.
Suppressing for a moment the π⃗ fields in the notation,
one considers canonical field variables at initial time t0,
i.e. σ0ðxÞ ¼ σclðt0;xÞ and Π0ðxÞ ¼ ∂tσclðt;xÞjt¼t0 for
the classical field σclðxÞ. The values for the canonical field
variables at initial time are distributed according to a nor-
malized phase-space density functional W½σ0;Π0�, such
that an observable hOi is given by its phase-space average
[12,23]

hOi ¼
Z

Dσ0DΠ0W½σ0;Π0�Ocl½σ0;Π0�: (19)

Here Ocl½σ0;Π0� ¼
R
Dσ0O½σ�δðσ − σcl½σ0;Π0�Þ, where

σcl½σ0;Π0� is the solution of the classical field equation with
initial conditions σ0 and Π0. Ensemble averages at initial
time are taken to correspond to the respective quantum
expectation values for the fields.
Fermions are never largely occupied and are, in this

respect, genuinely quantum. However, fermions appear
quadratically in the Lagrangian (1) as is also the case
for theories like quantum chromodynamics or electrody-
namics.3 Therefore, their dynamics can be solved without
further approximations for given classical bosonic field
configuration.
The procedure is to integrate out the fermions from the

path integral to get the classical evolution equation for the
2Of course, there is no unique definition of particle number in

an interacting theory if the number is not conserved. It is also
nowhere needed in our calculations and only used for interpre-
tation of the results. We use standard definitions that are typically
employed to connect to discussions in the context of Boltzmann
equations.

3For all practical purposes, it can always be achieved that the
fermions appear quadratically in the Lagrangian at the expense of
introducing extra bosonic field degrees of freedom.
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bosons. This equation depends then on the fermion cur-
rents, represented by fermion two-point correlation func-
tions. The evolution for these fermion correlation
functions is obtained from the original Lagrangian, where
the fermion fields appear quadratically. This gives a Dirac-
like equation for the fermion correlation functions, which is
coupled to inhomogeneous classical Bose fields. The
description is very suitable for initial value problems
and, below, we will find that it accurately describes the
quantum dynamics including loop corrections for very non-
trivial situations where the latter can be computed using 2PI
effective action techniques.
The above model (1) leads for classical bosonic fields

σclðxÞ and π⃗clðxÞ to the equations of motion

ð□x þm2ÞσclðxÞ þ
λ

4!
ðσ2cl þ π⃗2clÞσclðxÞ

− g
2
TrðFψðx; xÞÞ ¼ 0 (20)

and

ð□x þm2Þπ⃗clðxÞ þ
λ

4!
ðσ2cl þ π⃗

2
clÞπ⃗clðxÞ

− ig
2
TrðFψðx; xÞγ5Þ ¼ 0 (21)

where the trace acts in flavor and Dirac space. These
evolution equations depend on the fermion two-point
correlator (9). For given classical bosonic fields, the
equation of motion for the spinor field ψ iðxÞ reads:�

i∂μγ
μ − g

2
ðσclðxÞ þ iγ5τ⃗π⃗clðxÞÞ

�
ψ iðxÞ ¼ 0: (22)

By multiplying from the right with ψ̄ jðyÞ we can
continue to construct the evolution equation for the fer-
mion commutator. Since the fermion fields only appear
quadratically in the Lagrangian, one obtains a Dirac-
like equation of motion for the expectation value of
the commutator (9):�

i∂x;μγ
μ − g

2
ðσclðxÞ þ iγ5τ⃗π⃗clðxÞÞ

�
Fψ ;ijðx; yÞ ¼ 0: (23)

As already mentioned the bosonic fields are treated in the
classical-statistical approximation, where the fields are
evolved in time and space according to (20) and (21) for
initial conditions that are sampled to give on average the
initial values (7), (8) and (12). For each run the coupled
system of equations including the one for the fermion
two-point function (23) with initial condition (11) is solved.
In particular, the evolution of all higher bosonic n-point
correlation functions can be easily constructed by
averaging over products of σcl and π⃗cl such as
hσclðxÞσclðyÞσclðzÞ…i. Usually the number of simulations

needed to achieve convergence is reduced by the lattice
average for the spatially homogeneous ensemble character-
ized by the initial conditions (7)–(12).

B. Fermion dynamics

Wewill describe two methods for a numerical solution of
the evolution equation for the fermion correlation function
(23) and begin in this section with a stochastic method that
turns out to be particularly efficient. To actually compute
the time evolution of the required statistical propagator
Fψðx; yÞ one has to specify the form of the field ψðxÞ at
initial time, where we will suppress the flavor indices in
the following. To this end the anticommuting ladder oper-
ators bsðpÞ for particles and dsðpÞ for antiparticles will be
used in the framework of canonical quantization, where the
spinor index s runs from 1 to 2. These operators are char-
acterized by their anticommutators

fbsðpÞ; b†s0 ðqÞg ¼ ð2πÞ3δss0δðp − qÞ; (24)

fdsðpÞ; d†s0 ðqÞg ¼ ð2πÞ3δss0δðp − qÞ; (25)

while the expectation value of their commutators are para-
metrized as

h½bsðpÞ; b†s0 ðqÞ�i ¼ ð2πÞ3δss0δðp − qÞð1 − 2nsþðpÞÞ; (26)

h½dsðpÞ; d†s0 ðqÞ�i ¼ ð2πÞ3δss0δðp − qÞð1 − 2ns−ðpÞÞ: (27)

Here ns�ðpÞ denote initial occupation numbers of
particles and antiparticles of a given spin and spatial
momentum. In terms of these operators the initial field
ψðt0;xÞ for our isotropic and homogeneous initial condi-
tions can be written as

ψðt0;xÞ ¼
Z

d3p
ð2πÞ3

X
s

ðbsðpÞusðpÞe−ipx

þ d†sðpÞvsð−pÞeipxÞ: (28)

The eigenspinors usðpÞ and vsðpÞ represent particle and
antiparticle eigenstates of the Dirac operator. In order to
evaluate Fψðx; yÞ without treating operators explicitly
one can either use a mode function expansion [3], which
will be discussed below, or utilize the ideas proposed in
[2] to rewrite the statistical propagator using a stochastic
approach in terms of so-called “male” and “female” spinor
fields ψMðxÞ and ψFðxÞ:

Fψðx; yÞ ¼ hψMðxÞψ̄FðyÞiMF ¼ hψFðxÞψ̄MðyÞiMF: (29)

This procedure of expressing the time evolution of Fψðx; yÞ
in terms of ψMðxÞ and ψFðyÞ is applicable since the equa-
tions of motion for the fermions are linear [2]. The last
equation already shows that the roles of male and female
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fields are interchangeable. The notation h…iMF emphasizes
that in this case the average is performed with respect to an
ensemble of male/female pairs. Additionally, one requires
that both of the stochastic spinors obey the Dirac-like
equation of motion in accordance to (22):�

i∂μγ
μ − g

2
ðσclðxÞ þ iγ5τ⃗π⃗clðxÞÞ

�
ψgðxÞ ¼ 0: (30)

The index g (gender) distinguishes here between M
(male) and F (female) fields. To reproduce the initial con-
figuration of Fψ ðx; yÞ in terms of ψM and ψF the latter are
initialized as

ψM;Fðt0;xÞ ¼
Z

d3p
ð2πÞ3

e−ipxffiffiffi
2

p
X
s

ðξsðpÞusðpÞ

� ηsðpÞvsðpÞÞ: (31)

So the only difference between male and female spinors is
the sign in front of the antiparticle component. Here ξsðpÞ
and ηsðpÞ are random numbers coming from a Gaussian
distribution which are used to simulate the expectation val-
ues of products of the ladder operators bsðpÞ and dsðpÞ.
Their nonvanishing correlators are linked to initial occupa-
tion numbers

hξsðpÞξ�s0 ðqÞiMF ¼ ð2πÞ3δss0δðp − qÞð1 − 2nsþðpÞÞ; (32)

hηsðpÞη�s0 ðqÞiMF ¼ ð2πÞ3δss0δðp − qÞð1 − 2ns−ðpÞÞ: (33)

To realize these correlations in a numerical simulation
one has to average over many pairs of male and female
fields, but of course each of them has to be evolved
in time separately. If the number of pairs is sufficiently
large the result will converge to the physical correlator.
Later we will discuss how many male/female pairs are
actually required.
Bilinears such as Fψ ðx; yÞ are computed by combining

spinors of both genders and the statistical propagator is
evolved in time by solving the Dirac equations for ψM
and ψF. It is illustrative to compute the initial
Fψðx0; y0;pÞjx0¼y0¼t0

in terms of operator-valued field ψ
at initial time and the same quantity from ψM and ψF.
Both calculations yield for symmetric occupation numbers
n�ðpÞ ¼ n�ð−pÞ:

Fψðx0; y0;pÞjx0¼y0¼t0
¼ 1

2

X
s

½ð1 − 2nsþðpÞÞusðpÞūsðpÞ

− ð1 − 2ns−ðpÞÞvsðpÞv̄sðpÞ�: (34)

In the following, we describe the standard mode-function
approach for comparison. The starting point of the mode-
function expansion is again a Fourier expansion of the

fermionic field operator at t ¼ t0 as in (28), which can
be generalized to t > t0 by introducing time-dependent
mode-functions Φu

s ðt;x;kÞ and Φv
sðt;x;kÞ:

ψðt;xÞ ¼
Z

d3p
ð2πÞ3

X
s

ðbsðpÞΦu
s ðt;x;pÞ

þ d†sðpÞΦv
sðt;x;−pÞÞ: (35)

Here bsðpÞ and dsðpÞ are again the annihilation operators at
initial time and we have

Φu
s ðt0;x;pÞ¼usðpÞe−ipx; Φv

sðt0;x;pÞ¼vsðpÞe−ipx:
(36)

Substituting (35) into the equation of motion for ψðxÞ,
one observes that every mode function has to satisfy

�
i∂μγ

μ − g
2
ðσclðxÞ þ iγ5τ⃗π⃗clðxÞÞ

�
Φu=v

s ðx;pÞ ¼ 0: (37)

After the time evolution of Φu=v
s ðx;pÞ has been calculated,

observables can be constructed using the expansion (35).
For the evaluation of the expectation values one has to
use properties of the initial state such as

hb†i ðpÞbiðpÞi ¼ nui ðt ¼ 0;pÞ;
hbsðpÞi ¼ 0; hb†sðpÞi ¼ 0; (38)

and similarly for di.
The statistical two-point function (9) reads in terms of

mode functions

Fψ ðx; yÞ ¼
1

2

Z
d3p
2π

X
s

ðhbib†i − b†i biiΦu
s ðx;pÞΦ̄u

s ðy;pÞ

þ hd†i di − did
†
i iΦv

sðx;pÞΦ̄v
sðy;pÞÞ

¼
Z

d3p
2π

X
s

�
1

2
− nuin;sðpÞ

�
Φu

s ðx;pÞΦ̄u
s ðy;pÞ

þ
Z

d3p
2π

X
s

�
nvin;sðpÞ − 1

2

�
Φv

sðx;pÞΦ̄v
sðy;pÞ:

(39)

Here the subscript “in” stresses the fact that the particle
numbers appearing here are evaluated at the initial time.
Similarly, we can also calculate the fermion contribution
to the energy density of the system hHDðxÞi with the
Dirac Hamiltonian HD ¼ −iγ0γi∂i þ γ0m and any other
observable OðxÞ of interest by a summation over the mode
functions:

P
iFiΦ̄iOðxÞΦi, where the index i represents the

momentum, spin and charge of the mode, and the summa-
tion over the index i represents the momentum integral and
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the sum over spin and charge modes, and Fi depends on
nuin;i and nvin;i, similarly to (39).
The advantage of this method is that it is exact without

further approximations and involves no ensemble average
as the male/female approach. The great disadvantage,
which so far had limited its applicability to lower-
dimensional systems, is the requirement to simulate a mode
function for every possible combination of space and
momentum. If implemented on a lattice, as is described
in the following, the mode-function method leads to pro-
hibitively high computational costs on bigger lattices.
We finally note that one can also build another low cost

noisy ensemble of linear combinations of mode functions
using

φj ¼
X
i

ξj;iΦi; (40)

where the j ¼ 1.:Nens index labels the mode functions in
the ensemble and the index i goes over all the modes in
the mode function expansion (i.e, i represents their
momenta, spin and charge), and ξj;i are random numbers
yet to be determined. Since the equation of motion for
the mode functions is linear, any linear combination will
be a solution as well.
If we choose the random numbers such that

hξ�j;iξl;ki ¼ Fiδikδjl (41)

then the ensemble average

1

Nens

XNens

j¼1

hφ̄jOðxÞφji ¼
X
i

FiΦ̄iOðxÞΦi (42)

gives the result of the mode function expansion. (In practice
one needs two ensembles to be able to calculate any observ-
able, corresponding to the two possible orderings of the
ladder operators in the observable.)
This formulation of the noisy ensemble performs simi-

larly to the male/female formulation, such that the expect-
ation value can be estimated using much less ensemble
members φj than a corresponding mode function simula-
tion would use (in more than one spatial dimension).

C. Lattice formulation

Numerical simulations based on the methods described
in the last subsections are carried out using a leap-frog algo-
rithm on a 3þ 1 dimensional space-time lattice with a real
time coordinate. The simulated spatial volume is V ¼
ðNasÞ3 with spatial lattice spacing as and number of lattice
points N in each direction, where periodic spatial boundary
conditions are used. The momentum resolution is deter-
mined by N and as, with the highest possible lattice
momentum proportional to 1=as and the lowest one to

1=ðNasÞ. The time direction is discretized using a lattice
spacing at and length tmax ¼ Ntat.

4

First- and second-order derivatives on the lattice are dis-
cretized using symmetric finite difference approximations

f0ðxÞ ¼ fðxþ aiÞ − fðx − aiÞ
2ai

;

f00ðxÞ ¼ fðxþ aiÞ þ fðx − aiÞ − 2fðxÞ
a2i

:

(43)

Here ai with i ¼ s, t denotes either the spatial or temporal
lattice spacing. For the calculation of second-order bosonic
spatial derivatives an alternative higher-order discretization
has been applied, which is slightly more accurate for larger
lattice spacings:

f00ðxÞ ¼ 16fðxþ aiÞ þ 16fðx − aiÞ − fðxþ 2aiÞ
12a2i

− fðx − 2aiÞ þ 30fðxÞ
12a2i

: (44)

To remain consistent with the lattice version of deriva-
tives it is also necessary to redefine lattice momenta, which
is achieved by applying discrete derivatives to plane-wave
solutions, such as ∂xeipx ¼ ½ðeipas − e−ipasÞ=ð2asÞ�eipx.
The corresponding lattice momentum definitions are5

p̄i ¼
sinðpiasÞ

as
; i ¼ 1; 2; 3 (45)

for a first order spatial derivative as appearing in a Dirac
equation, or

p2
lat ¼

1

a2s

X3
i¼1

4 sin2
�
pias
2

�
(46)

for second-order spatial derivatives as ones appearing in a
Klein-Gordon equation with pi ¼ 2πni=ðNasÞ and
ni ¼ 0;…; N − 1. For the bosonic sector of our model
we use the discretization (44), which leads to

p2
lat ¼

1

a2s

X3
i¼1

�
2.5 − 8

3
cos ðpiasÞ þ

1

6
cos ð2piasÞ

�
:

(47)

For fermionic degrees of freedom such a straightforward
discretization is known to cause so-called fermion doublers
[24]. Away to address this problem, similar to the one com-
monly employed in Euclidean lattice gauge theory, is to

4There is no (anti-)periodicity in real time employed, as is typ-
ically the case for Euclidean lattice formulations.

5On the lattice momentum integrals are replaced by sums:R d3p
ð2πÞ3 →

1
N3a3s

P
p.
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introduce a spatial Wilson term W into the equation of
motion (30):

�
i∂μγ

μ þW − g
2
ðσðxÞ þ iγ5τ⃗π⃗ðxÞÞ

�
ψgðxÞ ¼ 0: (48)

A standard choice would be

WψgðxÞ ¼
ras
2

ΔxψgðxÞ; (49)

where we set r ¼ 1 from now on and use the Laplacian

ΔxψgðxÞ¼
X3
i¼1

ψgðxþaiÞþψgðx−aiÞ−2ψgðxÞ
a2s

(50)

which leads to a momentum-dependent contribution to the
fermionic dispersion relation:

ωðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ψ þ p̄ip̄i þ asmψp2
lat þ

a2s
4
p4
lat

r
: (51)

This ensures that only low-momentum excitations show a
low-energy dispersion relation. One observes that the addi-
tional contributions from theWilson term vanish in the con-
tinuum limit as → 0. However, we find that a faster
approach to the continuum limit is achieved by replacing
W → WPS defined as

WPSψgðxÞ ¼ iγ5
ras
2

ΔxψgðxÞ: (52)

Here the subscript PSmeans pseudoscalar in contrast to the
standard scalar Wilson term. The pseudoscalar Wilson term
also leads to a (modified) momentum dependent contribu-
tion to the fermionic dispersion relation

ωðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ψ þ p̄ip̄i þ a2s
4
p4
lat

r
: (53)

This illustrates that WPS eliminates the OðasÞ contribution
to the dispersion relation which will be particularly advan-
tageous for our out-of-equilibrium setup where the effective
fermion mass will be time dependent.6 We do not include a
temporal Wilson term as this would turn a Dirac equation
into a second-order differential equation in time. The tem-
poral doublers are avoided provided that we initialize only
the physical mode and choose the temporal lattice spacing
to be much smaller than the spatial lattice spacing at ≪ as
[2,3,7–9].
At the beginning of each simulation initial conditions

have to be specified. For the bosons one has to specify
the initial classical fields and derivatives according to

(7), (8) and (12) to obtain quantumlike vacuum initial con-
ditions. They are initialized in momentum space from a
Gaussian probability distribution centered around zero with
standard deviation of ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðpÞ2

p
Þ−1=2 for the fields

and ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðpÞ2

p
=2Þ1=2 for the time derivatives of the

fields. In order to realize parametric resonance in quantum
field theory the average initial field is homogeneous with
amplitude

ϕðt ¼ 0Þ ¼ σ0

ffiffiffiffiffiffiffi
6N
λ

r
; (54)

where the parameter σ0 sets the overall scale for our
simulations.
Another important property in momentum space is

σð−pÞ ¼ σ�ðpÞ and similarly for π⃗, which is required to
get real-valued fields in position space. This is achieved
by multiplying the real field amplitudes with a random
phase factor eiαðpÞ with αðpÞ ¼ −αð−pÞ and α ¼ 0 for
pi ¼ 0 and pi ¼ π=as. The same procedure using another
random phase factor eiβðpÞ is applied to get real-valued field
derivatives w.r.t. time in position space. Due to the fact that
in our approach the scalar fields are classical-statistical we
try to minimize possible effects of UV divergent contribu-
tions by initializing the quantumlike vacuum correlators
only up to a finite momentum Λ < jpjmax

lat , with Λ being
higher than all of the momentum modes which become
relevant during the simulated time.
For the low-cost fermion approach, initial values are

given in terms of ψMðxÞ and ψFðxÞ at t ¼ t0 ¼ 0. They
are directly linked to complex random numbers, which
have to fulfill correlator relations of the fermionic ladder
operators (32). To start with vacuum initial conditions
we set all particle numbers to zero. These correlator rela-
tions are implemented numerically through complex valued
ξsðpÞ ¼ AsðpÞeiφsðpÞ and ηsðpÞ ¼ BsðpÞeiθsðpÞ with real
amplitudes AsðpÞ and BsðpÞ coming from a Gaussian dis-
tribution and random phases ϕsðpÞ and θsðpÞ to ensure that
all mixed correlators vanish. Having chosen a symmetric
finite difference approximation for the first time derivative,
we have to specify ψMðxÞ and ψFðxÞ not only at t ¼ 0 but
also at t ¼ −at, which is done by an evolution of the free
fields according to

ψM;Fðt ¼ 0;pÞ ¼ e−iγ0ωðpÞatψM;Fðt ¼ −at;pÞ: (55)

The initial statistical propagator Fψðx; yÞjx0¼y0¼0, which
solves the free Dirac equation at t ¼ 0, reads on the lattice
in the presence of the employed Wilson term

Fψðx0 ¼ 0; y0 ¼ 0;pÞ ¼ mψ − γip̄i − iγ5
as
2
p2
lat

2ωðpÞ
× ð1 − 2nψðpÞÞ: (56)

6A related construction used in lattice gauge theory is known
as twisted mass fermions.
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Likewise, the fermion occupation number (17) is given by

nψðt;pÞ ¼
1

2
− p̄iFi

Vðt;pÞ þmψ ðt;pÞFSðt;pÞ þ i as
2
p2
latFPSðt;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̄ip̄i þm2
ψðt;pÞ þ a2s

4
p4
lat

q : (57)

D. Renormalization

To obtain physically relevant information from our
numerical simulations, we have to ensure that the results
are insensitive to changes of the finite lattice cutoff
∼1=as. In practice the variation of the cutoff-scale in sim-
ulations barely exceeds one order of magnitude. Here we
consider the leading divergences perturbatively, which
we explicitly verified to lead to cutoff insensitive numerical
results for a variation of the spatial lattice spacing in the
range asσ0 ¼ 0.1 − 1. For our model, this concerns the
quadratically running scalar mass terms, where the relevant
contributions are coming from the one-loop scalar self-
energy corrections displayed in Fig. 1. Because of our
choice of initial conditions with a nonzero σ-field ampli-
tude (7), the dressings of σ and π⃗ masses through vacuum
fluctuations are in general different. For given renormalized
mass squared m2, we compute the mass parameters m2

0;σ=π
self-consistently from

m2
0;σ=π þ Σ0;σ=πðm2

0;σ; m
2
0;πÞ ¼ m2 (58)

using the analytical form of the self-energies displayed in
Fig. 1:

Σ0;σ ¼
λ

48

1

N3a3s

X
p

 
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
0;σ þp2

lat

q þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0;π þp2
lat

q !

− g2
1

N3a3s

X
p

p̄ip̄iþ a2s
4
p4
lat

ðp̄ip̄iþm2
ψ þ a2s

4
p4
latÞ3=2

; (59)

Σ0;π ¼
λ

48

1

N3a3s

X
p

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
0;σ þ p2

lat

q þ 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0;π þ p2
lat

q !

− g2
1

N3a3s

X
p

p̄ip̄i þm2
ψ

ðp̄ip̄i þm2
ψ þ a2s

4
p4
latÞ3=2

: (60)

At the beginning of each simulation of the real-time
dynamics, these equations are first solved by iteration start-
ing with m2

0;σ=π ¼ m2 until convergence is achieved. Then
m2 is replaced bym2

0;σ in equation (20) and bym
2
0;π in (21).

7

E. Comparison of male/female
and mode function approach

The male/female method described above has to con-
verge to the results of the mode function expansion in
the limit where the number of male/female pairs is suffi-
ciently large. In practice, the convergence depends on
parameters such as the dimension d of space, the number
of lattice points N or value of couplings. In general, sim-
ulations employing the mode function expansion are lim-
ited to relatively small lattices because the number of mode
functions increases like Nd for every lattice point, therefore
the total cost of the simulation increases as N2d. In contrast,
the cost for male/female fermion simulations is expected to
scale as Nd times the number of male/female pairs. As a
consequence, in one spatial dimension the male/female
method has no particular advantage over the mode func-
tions approach, as the needed number of pairs is not sig-
nificantly lower than the number of mode functions per
lattice point. The situation is different in two or three
dimensions, where one typically observes reasonable con-
vergence for a much lower number of pairs as compared to
the requirements of the full mode function expansion.
To give an explicit example, we compare the time-

evolution on a small 163 lattice using the full mode function
expansion and the male/female method for varying number
of pairs. In the remainder of this work the latter method will
then be used on larger lattices to compute results for the
analysis of the underlying physics. In Fig. 2 the fermion
occupation number (57) is shown as a function of time
for different values of the spatial momentum p. The under-
lying physical processes will be discussed in detail below.
For the plot the number of male/female pairs is varied from
5 to 600. We clearly observe that both approaches agree
to very good accuracy for a sufficiently large number of
pairs. The convergence is typically faster for low momen-
tum modes, in agreement with the expectation that self-
averaging is more efficient for low momenta since the
involved characteristic volume is larger.k = 0k = 0

FIG. 1. Left: Scalar tadpole. Right: Fermion loop with vanish-
ing external momentum.

7The Lagrangian (1) describes massless fermions. A nonzero
mass parameter for the fermions in the Lagrangian would lead to
a divergent linear contribution to the bosonic potential requiring
an additional renormalization.
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For the employed small lattice size in this example we
required a relatively high number of pairs. This is expected
to change for larger lattices due to enhanced self-averaging.
Since a direct comparison with mode function results is
impractical for larger lattices, we further investigated the
convergence of results as the number of male/female pairs
is increased for given lattice sizes. Figure 3 shows the num-
ber of male/female pairs that are required to achieve con-
vergence of momentum dependent particle spectra with all
other parameters, like simulation time, lattice spacing etc.,
fixed. One observes that for increasing lattice sizes the
number of pairs can be reduced. Convergence of momen-
tum independent observables like energy density can usu-
ally be reached with even lower statistics, because of the
full employment of self-averaging for these observables.
In general, we find that a larger ultraviolet cutoff or stronger
coupling worsens the convergence making, in particular,
the study of strongly correlated fermions computationally
more expensive than weakly correlated systems.

IV. VALIDATION AGAINST QUANTUM
FIELD THEORY

Above we described lattice methods that give a fully
nonperturbative description of the dynamics in their range
of validity for large bosonic field amplitudes or occupan-
cies. In principle, there are no further approximations in
the fermion sector and the lattice description includes the
physics of fermion loop corrections to infinite order.
However, using Wilson fermions there are additional pro-
cedures to suppress fermion doublers on the lattice. It is,
therefore, illustrative to validate the lattice description
against (continuum) quantum field theory at least in the
weak-coupling limit, where this is possible since suitable
approximations exist for the latter. The quantum description
we employ is based on a resummed large-N expansion to
next-to-leading order (NLO) for the bosonic sector and a
resummed loop expansion for the fermionic sector of our
model [4,25].
The resummation is efficiently formulated in terms of the

two-particle irreducible (2PI) effective action in Minkowski
space-time [10]

Γ½ϕ;G;Gψ �¼S½ϕ�þ i
2
Tr ln ðG−1Þþ i

2
TrðG−1

0 ðϕÞGÞ
− iTr ln ðG−1

ψ Þ− iTrðG−1
0;ψGψÞþΓ2½ϕ;G;Gψ �;

(61)

which includes all quantum corrections if the two-particle
irreducible part Γ2 is known. Here ϕðxÞ denotes the field
expectation value (6) while G ¼ diagfGσ; G⃗πg and Gψ

denote the full boson and fermion propagators, which
are diagonal in field index space. The traces involve the
sum over field indices as well as space-time integrals.
The fields live on a closed time path or Schwinger-
Keldysh contour C, which runs back and forth along the
real-time axis starting at given initial time [10]. The
classical action part reads

S½ϕ� ¼
Z
C
dt
Z

d3x

�
1

2
∂μϕ∂μϕ − 1

2
m2ϕ2 − λ

4!Ns
ϕ4

�
;

(62)

while the classical propagators are

iG−1
0;σðx; y;ϕÞ ¼

δ2S
δϕðxÞδϕðyÞ

¼ −
�
□þm2 þ λ

2Ns
ϕ2ðxÞ

�
δðx − yÞ;

iG−1
0;πðx; y;ϕÞ ¼ −

�
□þm2 þ λ

6Ns
ϕ2ðxÞ

�
δðx − yÞ;

iG−1
0;ψ ðϕÞ ¼

�
i∂μγ

μ − g
2
ϕðxÞ

�
δðx − yÞ: (63)
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FIG. 2 (color online). Occupation number of three momentum
modes as a function of time and the convergence with increasing
number of male/female pairs.
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The real-time quantum evolution equations for ϕ,G andGψ

are obtained from (62) by

δΓ½ϕ; G;Gψ �
δϕðxÞ ¼ 0;

δΓ½ϕ; G;Gψ �
δGðx; yÞ ¼ 0;

δΓ½ϕ; G;Gψ �
δGψ ðx; yÞ

¼ 0; (64)

which are solved numerically by discretizing the
equations on a sphere in spatial momentum space using
standard techniques. In particular, this description requires
no Wilson term to remove fermion doublers inherent in the
above lattice approach.
Our approximation for Γ2 is depicted graphically in

Figs. 4 and 5. The employed 1=N expansion to NLO
in the bosonic sector corresponds to summing an infinite
series of diagrams [25], while the fermion corrections are
taken into account at two-loop order. We will call this
approximation ‘NLO 2PI’ in the following. For the com-
parison, we employ weak couplings λ ≪ 1 and g ≪ 1.
The 1=N expansion can describe even nonperturbatively
large occupancies of order 1=λ, which will be relevant for
the dynamics in the bosonic sector, whereas the occupancies
in the fermion sector are strictly limited by the Fermi statis-
tics. Of course, the loop expansion of Γ2 in the fermion sec-
tor is not expected to be valid for strong couplings. As a
consequence, the quantum results can be used to validate
the lattice approach for weak coupling only.
The comparison of quantum and classical-statistical

lattice results has been performed in great detail for purely
bosonic theories in the past [12,23]. Here we concentrate on
the fermion sector entending our earlier results [1]. We
decompose the propagators into their respective statistical
and spectral components as [10]

Gσ=πðx; yÞ ¼ Fσ=πðx; yÞ − i
2
ρσ=πðx; yÞ sgnðx0 − y0Þ; (65)

Gψðx; yÞ ¼ Fψðx; yÞ − i
2
ρψðx; yÞ sgnðx0 − y0Þ: (66)

The statistical two-point functions Fσ=πðx; yÞ and Fψðx; yÞ
as well as the corresponding spectral functions are the
ones defined in Sec. II. In particular, we employ the same
definitions for extracting the time evolution of particle
numbers.
In Fig. 6 we plot the fermion number nψðt; jpjÞ as a func-

tion of time for three different momentum modes
jpj ¼ 0.25σ0, 0.5σ0 and σ0. Since we expect our 2PI effec-
tive action approximation for the quantum evolution to
break down at strong coupling, we give the results for dif-
ferent values of the effective coupling ξ ¼ g2=λ and com-
pare them to the respective lattice simulation results. One
observes from Fig. 6 that for ξ ¼ 0.1 the agreement
between quantum and lattice approach is almost perfect.
It worsens with increasing coupling as expected, but even
at ξ ¼ 1.0 infrared modes seem to be quite accurately
reproduced. However, at ξ ¼ 2 the coupling expansion
seems to finally break down.
In Figs. 7 and 8 we present the full spectrum at fixed time

tσ0 ¼ 50 for two different couplings. We observe a rather
good agreement between both methods, reproducing char-
acteristic features in the shape of the distribution. However,
there is a clear discrepancy in the high-momentum part of
the spectrum building up for the larger ξ ¼ 0.25. In general,
we find good agreement between both methods at suffi-
ciently small ξ as expected while the agreement worsens
for larger ξ. The level of agreement for small ξ is also
remarkable since the comparison involves two very differ-
ent procedures: The results from the quantum 2PI effective
action approach are obtained from a single run of the time
evolution equations for correlation functions, while the lat-
tice results are computed from a statistical average of many
different runs of the corresponding lattice evolution equa-
tions. Already because of the Wilson term for the lattice
description, it is rather difficult to get precisely the same
initial conditions realized in both cases.
These results confirm that possible dicretization and stat-

istical errors on the lattice are under control. On the other
hand, they show that for not too strong coupling a loop
approximation beyond lowest order is sufficient to describe
fermion production accurately. This has to be confronted
with standard semiclassical (LO) descriptions of fermion
production, which employ the solution of a Dirac equation
in the presence of a time-dependent but spatially homo-
geneous background field neglecting fluctuations [26]. In
this case, the evolution equation for the fermion statistical
two-point function reads

�
iγμ∂x;μ − g

2
ϕðtÞ

�
Fψðx; yÞ ¼ 0: (67)

+ + + +

. . . 

+ + +
. . . φ

φ

φ φφ

φ

FIG. 4. Expansion of Γ2 to NLO in 1=N for the bosonic
sector. Solid lines are full boson propagators while external
legs correspond to insertions of the macroscopic field ϕ.
The dots indicate that we sum up an infinite series of
diagrams, with every next diagram having one additional
loop in the bubble ring.

FIG. 5. Expansion of Γ2 to two loops in the fermion sector.
A dashed line represents a full fermion propagator.
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In contrast, our employed NLO 2PI approximation includes
one-loop self-energy corrections to this equation. From the
point of view of the lattice approach, a crucial difference
concerns the spatial dependence of the fluctuating fields
appearing in (23). Sampling with respect to these fluctua-
tions leads to the generation of loop corrections for ensem-
ble averages, which are missing in (67). In the next section
we will present numerical evidence that a semiclassical

approximation fails to describe the dynamics and may only
be applied for very short times of the initial evolution.

V. FERMION PRODUCTION FROM
PARAMETRIC RESONANCE

The initial conditions described in Sec. II lead to the
well-known phenomenon of parametric resonance in the
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FIG. 6 (color online). Time evolution of fermion occupation numbers for three different momenta at effective coupling strengths in the
range ξ ¼ 0.1–2.0.
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scalar sector which we summarize [13,27,28]: Small initial
quantum fluctuations grow exponentially in time. At early
times this growth occurs in a compact momentum range
with p⃗2 ≤ σ20=2. As time proceeds, the exponentially

growing modes induce nonlinear behavior and secondary
instabilities for higher momentum modes with even faster
growth rates occur. As a consequence, there is a fast rise in
the occupation numbers nσ;πðt; jpjÞ for a broad momentum
range. Figures 9 and 10 show the behavior of the field ϕðtÞ
and the occupancies of transverse modes nπðt; jpjÞ, respec-
tively. The rapidly oscillating field decreases its amplitude
with time, while the occupancies grow. After the fast initial
growth period of occupation numbers, the time evolution of
the now highly occupied scalar field modes slows down
considerably, and can be described in terms of turbulent
flows of energy and particle number [29–32]. The sub-
sequent evolution becomes self-similar and the correspond-
ing power-law behavior with nπðjpjÞ ∼ 1=jpj4 is clearly
visible from Fig. 10.
In the following we will analyze the behavior of the fer-

mions, which is the main topic of our work. To this end, it is
useful to compare our lattice simulation results with stan-
dard semiclassical approximations based on Eq. (67). For
this comparison we distinguish the weak-coupling regime,
where ξ ¼ g2=λ ≪ 1, and the strongly coupled case with ξ
of order one. Figure 11 shows the fermion occupation num-
ber distribution for ξ ¼ 0.1 at the time tσ0 ¼ 250 after the
initial instability has ceased. The lattice simulation results
(circles) show a low-momentum range for jp⃗j ≤ σ0, where
the distribution is rather flat. For higher momenta one
observes a power-law behavior whose exponent agrees well
with the scaling exponent found for the bosonic occupan-
cies as shown in Fig. 10. While bosons can support a 1=jpj4
dependence also at low momenta, of course the fermion
number distribution has to level off in the infrared because
of the Pauli exclusion principle [4,11]. For this weak-
coupling case we observe corresponding results also in
the quantum theory based on the 2PI effective action at
NLO, in accordance with the discussion of Sec. IV.
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However, the lattice results including fluctuations clearly
show significant differences to the semiclassical approxi-
mation results (squares), which neglect all fluctuations.
In fact, the observed differences are so pronounced
only after the bosonic fields become highly populated.
This enhancement of fluctuations, which is missing in stan-
dard semiclassical approximations, will be discussed in
detail below.
A similar snapshot of occupation number spectra for the

strongly coupled case (ξ ¼ 1), shown in Fig. 12, reveals a
rather different picture. Here, the lattice simulation results
exhibit a distribution without any power-law behavior.
Remarkably, the distribution can be nicely fitted to a
Fermi-Dirac distribution with time-dependent temperature
and chemical potential parameters. At the time tσ0 ¼ 250
employed for Fig. 12 they are T=σ0 ¼ 1.15 and
μ=σ0 ¼ 0.13. The similarity to the Fermi-Dirac distribution
is nontrivial at this stage, since the bosons are still far from
equilibrium showing the characteristic ∼1=jpj4 behavior in
the infrared. The Fermi-Dirac distribution also requires the
specification of a dispersion relation orωp, and we approxi-
mate it here by the free dispersion relation for massless
fermions with a pseudoscalar Wilson term as discussed
in (53). It should be emphasized that the total charge in
our simulations is zero such that the number of particles
and antiparticles are equal. As a consequence, the chemical
potential vanishes for true thermal equilibrium. Here we
find that μðtÞ is oscillating, which is not surprising in view
of the oscillating Yukawa fermion mass term at this stage,
and its absolute value turns out to be much smaller than the
temperature for all considered times. The time-dependence
of the fitted temperature parameter is shown in Fig. 13. It is
seen to approximately rise linearly in time, after performing
an average over periods of △t ¼ 5=σ0 in order to smooth
oscillations due to ϕðtÞ. To get a simple estimate of how
much this time-dependent temperature parameter deviates
from the value of the equilibrium temperature, we compute
the temperature of a corresponding gas of noninteracting

massless bosons and fermions having a continuum
dispersion relation:

Teq ¼ σ0

�
45Ns

π2ðNs þ 7
2
NfÞλ

�1
4 ≃ 2.02σ0: (68)

Here we used the initial energy density, which for para-
metric resonance is given in terms ϕðt ¼ 0Þ and the
self-coupling λ (here and throughout the paper λ ¼ 0.1).
This estimate indicates that the observed time-dependent
temperature parameter is still far away from the
asymptotic equilibrium value. The observed linear rise
of the temperature parameter would lead to the above
estimate for the equilibrium temperature after a
time teq ≃ 103=σ0.
To study in more detail the similarities and deviations

from a Fermi-Dirac distribution, it is instructive to
consider the “inverse slope parameter” lnðn−1ψ − 1Þ.
Figure 14 shows this quantity for ξ ¼ 1 as a function
of ωp at four different times. For a thermal equilibrium
distribution it would be a time-independent straight line.
For a vanishing chemical potential in thermal equilibrium
this line would go through the origin. From the figure one
observes that rather quickly an approximately stable
inverse slope is established for lower momenta around
jpj≲ 1.5ωp=σ0. This is due to the fact that already at early
times many low-momentum bosonic quanta are occupied,
making it possible for fermions to scatter off them and
redistribute momentum and energy. In contrast, there
are almost no high-momentum bosons present at early
times, preventing a more efficient transfer of energy
and particles to the UV. Around tσ0 ¼ 250 one observes
again the high level of agreement with a Fermi-Dirac dis-
tribution with fitted temperature and chemical potential
parameter at that time.
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VI. UNDERSTANDING AMPLIFIED FERMION
PRODUCTION FOR LARGE BOSONIC

OCCUPANCIES

The above lattice simulation results for fermion
production from parametric resonance revealed a dra-
matic difference compared to standard semiclassical esti-
mates. The latter includes for instance fermion decay
from a homogeneous background field, but neglects fluc-
tuations or scattering effects. Scattering processes can
become strongly enhanced if the participating modes
are highly occupied. Correspondingly, the observed
differences between lattice simulations and semiclassical
treatment are pronounced once the bosons become
strongly occupied.
In the following we analyze the impact of scattering

processes on the dynamics in more detail. To this end,
we consider the NLO approximation for the quantum
2PI effective action of Sec. IV in the weak-coupling regime
with ξ ¼ 0.1. As discussed above, in this regime the NLO
2PI approximation is found to accurately reproduce the full
lattice simulation result. In particular, we will use this
approximation to derive kinetic equations that explain
the relevant underlying processes. The power counting
will be based on an expansion in the coupling g in the
presence of large occupancies with parametric depend-
ence nσ;πðt; jpjÞ ∼ 1=λ for λ ≪ 1 and g2=λ ≪ 1. We
also emphasize that the observation of an amplified fer-
mion production in the presence of large bosonic occu-
pancies is not specific to the phenomenon of parametric
resonance, though we will continue to consider this
example. For the main points of the following analysis
one could equally well consider other nonequilibrium
instabilities leading to—or even directly starting from—
large occupancies.
Counting powers of the coupling g, direct scattering

appears at order g2 according to Sec. IV, whereas the semi-
classical approximation based on Eq. (67) is restricted to
processes at order g. Figure 15 compares the total number
of produced fermions at order g2 (NLO 2PI, solid line) to
results from the semiclassical approximation (dashed line).
In the figure we also give an analytic estimate for the pro-
duction rate from kinetic theory (dotted line), which will be
explained below. While for very short times the order g and
g2 results agree rather well, after the end of the parametric
resonance regime, i.e. when the occupancies become large,
the order g2 corrections are seen to dominate the fermion
production by far. Apparently, highly occupied bosons act
as a very efficient amplifier for genuine quantum correc-
tions to the fermion dynamics.
This phenomenon can be understood from the NLO

approximation of the 2PI effective action described in
Sec. IV. In order to make analytic progress, we consider
in addition a standard gradient expansion to lowest order
in derivatives following Ref. [33]. It employs for two-point
functions, such as Fϕðx; yÞ given by (10) and Fψ ðx; yÞ

defined in (9), the introduction of relative coordinates
x − y and center coordinates ðxþ yÞ=2. For the considered
spatially homogeneous systems, a Fourier transformation
with respect to the relative coordinates leads to Fσ;πðt; kÞ
and Fψðt; kÞ with four-momentum k and the time coordi-
nate t≡ ðx0 þ y0Þ=2. The general form of the equation for
the boson two-point function to lowest order in derivatives
with respect to the center coordinate is

2k0∂tFσ;πðt; kÞ ¼ Σρðt; kÞFσ;πðt; kÞ − ΣFðt; kÞρσ;πðt; kÞ;
(69)

where the “collision term” on the right-hand side encodes
the “gain” minus “loss” structure in terms of the statistical
(ΣF) and spectral (Σρ) parts of the self-energy. At order g2

the spectral and statistical components of the self-energy
displayed on the right of Fig. 1 read

ΣFðt; kÞ ¼
g2

2

Z
d4p
ð2πÞ4 Tr½Fψ ðt; kþ pÞFψðt; pÞ

− 1

4
ρψ ðt; kþ pÞρψðt; pÞ�; (70)

Σρðt; kÞ ¼
g2

2

Z
d4p
ð2πÞ4 Tr½Fψðt; kþ pÞρψðt; pÞ

− ρψðt; kþ pÞFψðt; pÞ�: (71)

The physical content of these expressions can be
further clarified by setting the fermion spectral function
ρψ ðt; kÞ on shell and introducing occupation numbers
nϕðt; kÞ and nψ ðt; kÞ for bosons and fermions, respec-
tively, with
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Fσ;πðt; kÞ ¼
�
1

2
þ nϕðt; kÞ

�
ρσ;πðt; kÞ;

Fψ ðt; kÞ ¼
�
1

2
− nψ ðt; kÞ

�
ρψðt; kÞ: (72)

The (anti-)symmetry of the (spectral) statistical correla-
tion functions translate into

nϕðt;−kÞ ¼ −½nϕðt; kÞ þ 1�;
nψ ðt;−kÞ ¼ −½nψðt; kÞ − 1�: (73)

The time-independent on-shell spectral functions are
given by

ρσ;πðkÞ ¼ 2πsgnðk0Þδðk2 −m2Þ; (74)

ρψðkÞ ¼ 2πkμγμsgnðk0Þδðk2Þ; (75)

for the considered case of massless fermions. After per-
forming traces in spinor and flavor space as well as some
of the integrals and projecting onto positive frequencies
we arrive at

∂tnϕðt;kÞ ¼ πg2
Z

d3p
ð2πÞ3

Z
d3qδðk − p − qÞ

× δðωk − jpj − jqjÞ 1

ωk

�
1 − pq

jpjjqj
�

× ½ðnϕðt;kÞ þ 1Þnψðt;pÞnψ ðt;qÞ
− nϕðt;kÞðnψ ðt;pÞ − 1Þðnψðt;qÞ − 1Þ�: (76)

Here ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
is the free bosonic dispersion

relation. Along the same lines one can obtain the corre-
sponding kinetic equation for the fermion occupation
number,

∂tnψ ðt;kÞ¼πg2
Z

d3p
ð2πÞ3

Z
d3qδðkþp−qÞ

×δðjkjþjpj−ωqÞ
1

ωq

�
1− kp

jkjjpj
�

× ½ðnψðt;kÞ−1Þðnψðt;pÞ−1Þnϕðt;qÞ
−nψ ðt;kÞðnψðt;pÞ−1Þðnϕðt;qÞþ1Þ� (77)

From these expressions we observe that

∂tðNϕðtÞ þ NψðtÞÞ ¼
Z

d3k
ð2πÞ3 ∂tðnϕðt;kÞ þ nψ ðt;kÞÞ

¼ 0 (78)

reflecting total number conservation of bosons and fer-
mions, Nφ þ Nψ , in this approximation. Total number
changing processes would enter the kinetic description

at higher order in g. Though they are crucial for the
approach to thermal equilibrium at late times [4,34], these
processes turn out not to be important for the time of
enhanced fermion production in the weak-coupling regime.
It is instructive to consider (76) for nψ ¼ 0, which is

approximately realized at sufficiently early times. The
equation can then be written as

∂tnϕðt;kÞ≃−Γϕ→ψψ̄ðkÞnϕðt;kÞ (79)

with

Γϕ→ψψ̄ðkÞ ¼ πg2
Z

d3p
ð2πÞ3

Z
d3qδðk − p − qÞ

× δðωk − jpj − jqjÞ 1

ωk

�
1 − pq

jpjjqj
�
: (80)

For k ¼ 0 one obtains the standard vacuum decay rate for
the production of massless fermions with momenta �m=2,
i.e. Γϕ→ψψ̄ð0Þ ¼ g2m=ð8πÞ. Taking the number conserva-
tion (78) into account, we can write for the change in
the total fermion number

∂tNψðtÞ≃
Z

d3k
ð2πÞ3 Γϕ→ψψ̄ðkÞnϕðt;kÞ: (81)

To get a parametric estimate for the right-hand side, we may
approximate nϕðt;kÞ≃ Θðjkj − σ0Þ=λ around the time
after the parametric resonance regime ends. The crucial
ingredient here is the enhancement by a factor of 1=λ,
which for the considered weak-coupling case encodes
the amplification of ∂tNψ from being order g2 to order
g2=λ≡ ξ for parametrically large Bose occupancies. As
a consequence, one expects an approximately linear rise
in the total fermion number with slope proportional to ξ
as shown in Fig. 15 for ξ ¼ 0.01. Because of the nonzero
fermion occupation numbers building up with time, this lin-
ear rise is diminished by the Pauli suppression due to the
presence of already produced fermions. We can also use
(76) to estimate the magnitude of the backreaction of fer-
mions onto the bosonic sector. To this end, we compare the
bosonic “ gain term” ∼nψðt;pÞnψðt;qÞ to the “ loss term”
∼ − nϕðt;kÞð1 − nψðt;qÞ − nψðt;kÞÞ. The latter is
enhanced by the macroscopic occupation of scalars while
the former is strictly ≤ 1 and we find it to be even ≤ 1=4 at
later times during our simulations. The minor role of fer-
mionic backreaction in the weak-coupling regime agrees
well with our findings from the full simulation data.
The above kinetic description provides a detailed under-

standing of the weak-coupling case with ξ ≪ 1. It is
expected to fail to describe the physics for strong couplings,
where higher order processes are no longer suppressed.
This is also what we find by comparing it to the nonper-
turbative lattice simulation results in accordance with the
discussion of Sec. IV. It is a characteristic property of
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the above kinetic description that typical fermion and boson
momenta are similar. In Fig. 16 on the left we show the
occupancies of bosons and produced fermions for
ξ ¼ 0.1, where the highest occupied momenta agree rather
well. The right graph shows the same quantities for ξ ¼ 1,
where one observes the tendency to occupy higher maxi-
mum momenta for fermions than for bosons. Even though
the fermion occupancy per mode is limited by the exclusion
principle, they quickly populate higher momentum modes
in the nonperturbative regime. This contribution becomes
essential for strong enough coupling since the high-
momentum part carries most of the energy.

VII. CONCLUSIONS

In this work we have studied nonequilibrium production
of fermions from parametric resonance in 3 þ 1 dimen-
sions for a generic linear sigma model. As our main result,
we confirmed the dramatic amplification of fermion pro-
duction in the presence of highly occupied bosons that
was first pointed out in Ref. [1] and extended the results
to the strong coupling regime.
We compared different real-time techniques—lattice

simulations with male/female fermions, mode functions
approach and quantum 2PI effective action with its associ-
ated kinetic theory—and discussed their range of appli-
cability. It turned out that the efficient male/female
lattice approach accurately converges to the exact mode
functions result for the available lattice sizes. The study
shows the strength of the male/female method to address
physical questions for large volumes, something where
the mode function approach becomes computationally
intractable. For weak couplings we found that the lattice

simulation results agree well with those obtained from
the quantum 2PI effective action, emphasizing the ability
of the lattice approach to describe genuine quantum
phenomena.
Applying an improved lattice discretization with a pseu-

doscalar Wilson term, we have been able to accurately
resolve thehigh-momentumbehavior of particle numberdis-
tributions. For weak couplings this revealed a power-law
behavior above a characteristic momentum. For strongly
coupled fermions, we found that a quasithermal Fermi-
Dirac distribution is approached, with time-dependent tem-
perature and chemical potential parameters. This happens
while the bosons are still showing turbulent behavior far
from equilibrium [35].
In the employed model the coupling to the fermions and

the bosonic self-coupling can be separately chosen to re-
present the weak-coupling (ξ ≪ 1) and the strong-coupling
regime (ξ≳ 1). This allowed us to validate the lattice sim-
ulation techniques in the weak-coupling regime by compar-
ing it to alternative, quantum techniques. The strategy for
future studies is to employ these nonperturbative tech-
niques to theories, where ξ ≪ 1 cannot be realized. An
important class of such theories concerns non-Abelian
gauge theories, where the bosonic self-coupling and the
coupling to the fermion sector are given by the same cou-
pling such that the relevant ratio is ξ ¼ 1.
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