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In this paper, we study distorted, five-dimensional, electrically charged (nonextremal) black holes on the
example of a static and “axisymmetric” black hole distorted by external, electrically neutral matter. Such a
black hole is represented by the solution derived here of the Einstein-Maxwell equations which admits an
R1 × Uð1Þ × Uð1Þ isometry group. The external matter, which is “located” at the asymptotic infinity, is not
included in the solution. The space-time singularities are located behind the black hole’s inner (Cauchy)
horizon, provided that the sources of the distortion satisfy the strong energy condition. The inner (Cauchy)
horizon remains regular if the distortion fields are finite and smooth at the outer horizon. The solution has
some remarkable properties. There exists a certain duality transformation between the inner and the outer
horizon surfaces which links surface gravity, electrostatic potential, and space-time curvature invariants
calculated at the black hole horizons. The product of the inner and outer horizon areas depends only on the
black hole’s electric charge, and the geometric mean of the areas is the upper (lower) limit for the inner
(outer) horizon area. The electromagnetic field invariant calculated at the horizons is proportional to the
squared surface gravity of the horizons. The horizon areas, electrostatic potential, and surface gravity
satisfy the Smarr formula. We formulated the zeroth and the first laws of mechanics and thermodynamics of
the distorted black hole and found a correspondence between the global and local forms of the first law. To
illustrate the effect of distortion, we consider the dipole-monopole and quadrupole-quadrupole distortion
fields. The relative change in the Kretschmann scalar due to the distortion is greater at the outer horizon
than at the inner one. By calculating the maximal proper time of free fall from the outer to the inner
horizons, we show that the distortion can noticeably change the black hole interior. The change depends on
the type and strength of distortion fields. In particular, due to the types of distortion fields considered here,
the black hole horizons can either come arbitrarily close to or move far from each other.
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I. INTRODUCTION

This paper is an extension of our previous results [1] to
five-dimensional space-times. In its analytical description,
it is based on the paper on a distorted, five-dimensional,
static, and “axisymmetric”1 vacuum black hole [2].
A study of distorted black holes in four-dimensional

space-times is naturally motivated by astrophysical prob-
lems. For example, a realistic black hole interacts with its
accretion disk. Such an interaction affects the space-time
metric, which, as a result, differs from the space-time
metric of an isolated black hole. Thus, in the application to
real astrophysical problems, the isolated black hole sol-
utions, e.g., the Schwarzschild solution or the Kerr one, are
highly idealized. To construct exact solutions that would
model to some extent the interaction of a black hole with
the external matter, Geroch and Hartle [3] proposed to

consider static (or stationary), axisymmetric space-times
that are not asymptotically flat. Such solutions represent
black holes distorted by external matter. In the case of static
and vacuum, axisymmetric space-times, the external metric
near these distorted black holes is given by a Weyl solution
[4]. Such a Weyl solution represents what is called a local
black hole solution, which is a space-time metric in the
external neighborhood of a distorted black hole horizon.
The external matter is not included in the solution and
“located” at the asymptotic infinity. As was demonstrated
by Geroch and Hartle [3], a local black hole solution has an
extension to a “true” distorted, static black hole solution
which is asymptotically flat and includes the black hole
horizon and its interior, as well as the external matter. In
what follows, we shall use the term “distorted black hole”
for a solution which includes the black hole horizon and its
interior but is not asymptotically flat; i.e., it does not
include the external matter, however, an extension to an
asymptotically flat solution is, in principle, possible.
Four-dimensional, distorted, static, axisymmetric, vac-

uum black holes were studied in, e.g., [5–10]. Such black
hole solutions arise naturally in space-times where one of
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the spatial dimensions is compactified (see, e.g., [11–13]).
Distorted, static, axisymmetric, electrically charged black
holes were studied in, e.g., [1,9,14], and distorted, sta-
tionary, axisymmetric, vacuum and electrically charged
black holes were studied in, e.g., [15,16] and [17–20],
respectively. Generic, “stationary”, distorted, electrovac-
uum black hole spacetimes in four dimensions were studied
in [21]. For an example of a distorted, static, axisymmetric,
electrically charged dilaton black hole, see [22]. Distorted
black holes can show some strange and remarkable proper-
ties; for example, for sufficiently distorted Schwarzschild
solutions, the isolated horizon can be foliated with neither
marginally trapped nor outer trapping two-dimensional
surfaces [23]. As a result of distortion, the space-time
curvature can become very high at some regions of the
black hole horizon [10]. In this paper, we illustrate that
distorted black holes have some unique and universal
properties.
Let us now discuss construction of static and axisym-

metric distorted black hole solutions. In four dimensions,
the general static, axisymmetric solution of the vacuum
Einstein equations can be written in the form of the Weyl
solution, which is defined by one of its metric functions
solving the Laplace equation in an auxiliary three-
dimensional flat space. The other remaining metric function
is derived by a line integral defined by the first one. Having
written one of the Einstein equations as the Laplace equation
in a three-dimensional flat space is a great advantage. One
can consider its solution as a Newtonian potential of some
axisymmetric source. In addition, because the Laplace
equation is linear, one can use the superposition principle.
As a result, distorted black hole solutions can be constructed
by adding extra harmonic functions to the original one,
which represents the black hole source. These functions
represent the distortion fields.
In higher-dimensional space-times we have a very rich

variety of black objects classified according to their horizon
topology, for example, black holes, black strings, and black
rings (for a review see [24]). The possibility of constructing
higher-dimensional distorted black holes is based on the
generalizedWeyl solution described by Emparan and Reall
in the remarkable paper [25]. This generalization is based
on the observation that a four-dimensional Weyl solution is
characterized by two orthogonal commuting Killing vector
fields generating an R1 ×Uð1Þ isometry group, rather than
by an R1 ×Oð2Þ isometry group. As a result, the gener-
alized Weyl solution (in a d-dimensional space-time,
d > 4) is characterized by d − 2 orthogonal commuting
Killing vector fields. There are two classes of the gener-
alized Weyl solution (see [25]). The one we shall consider
here is defined by d − 3 metric functions which solve the
Laplace equation in an auxiliary three-dimensional flat
space. Like in four-dimensional space-times, these func-
tions can be considered as Newtonian potentials of certain
sources. They are subject to additional constraints, which

implies that the sources must add up to produce an infinite
rod of zero thickness. Thus, the generalized d-dimensional
Weyl solution is defined by d − 3 independent axisym-
metric metric functions solving the Laplace equation and
the remaining metric function is derived by a line integral
expressed through them. A framework for the generalized
Weyl solution in five-dimensional space-times within the
Einstein-Gauss-Bonnet theory was proposed by Kleihaus
et al., [26] and a numerical evidence for the existence
of solutions representing a static black ring was given.
The generalized Weyl solution was extended to a
d-dimensional, d ≥ 4, stationary solution characterized
by d − 2 commuting Killing vector fields by Harmark [27].
The generalized Weyl solution includes many interesting

black objects of different horizon topology and configu-
ration (see, e.g., [24,25]). However, only in d ¼ 4, 5
are there solutions that can be globally asymptotically
flat, such as four- and five-dimensional Shwarzschild-
Tangherlini black holes. Multi–black hole configurations
that are higher-dimensional generalizations of the Israel-
Khan solutions [5] were discussed in [25]. Let us note that a
five-dimensional solution with two black hole horizons is
not asymptotically flat, while a five-dimensional solution
with three black hole horizons is asymptotically flat but has
irremovable conical singularities. Asymptotically flat sol-
utions that describe a “collinear” configuration of five-
dimensional Schwarzschild-Tangherlini black holes were
constructed by Tan and Teo [28]. The corresponding
background space-time is not flat and has conical singu-
larities. These solutions were generalized to a configuration
of charged black holes, with fixed mass-to-charge ratio,
within the Einstein-Maxwell-dilaton theory [28]. By apply-
ing a solution generation technique, which utilizes the
symmetries of the reduced Lagrangian, Chng et al., [29]
generated the multi–Reissner-Nordström solution in five
dimensions with general masses and electric charges from a
four-dimensional multi–Reissner-Nordström solution. In
that solution, the black holes distort one another by their
mutual gravitational attraction. If we push the other black
holes to asymptotic infinity by taking an appropriate limit
in the metric and focus on the geometry near one of the
black holes, we get a distorted black hole solution.
However, such a solution represents a black hole distorted
by a very specific configuration of external sources defined
by the other black holes. We would like to find a solution
representing a black hole distorted by more general con-
figuration of external sources retaining the axial symmetry.
In this paper, using another generating technique, we shall
construct a solution representing a five-dimensional static
electrically charged black hole distorted by “axisymmetric”
configuration of electrically neutral sources.
As was done in the case of a four-dimensional Weyl

solution, one can use the generalized Weyl solution to
construct distorted black objects by adding the distortion
fields to the Newtonian potentials, which define the
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solution. Using this approach, a distorted five-dimensional
Schwarzschild-Tangherlini black hole solution was con-
structed and analyzed in our previous paper [2]. Here, we
shall construct and analyze a solution representing a
distorted five-dimensional Reissner-Nordström black hole.
This is a static solution of the Einstein-Maxwell equations
which has R1 × Uð1Þ ×Uð1Þ isometry group. The con-
struction is based on the gauge transformation of the matrix
which is an element of the coset target space
SLð2;RÞ=Uð1Þ of the scalar fields that define our model
(see, e.g., [30–43]).
Having our solution constructed, we shall analyze

properties of such a black hole, focusing on its outer
and inner horizons and the interior region located between
them. We compare the distorted black hole solution with
the Reissiner-Nordström solution representing undistorted
black holes and study which properties remain and which
are changed due to the distortion. The main questions we
shall ask are the following:
(i) Is there a relation between geometries of the horizons

similar to the one that was established for the horizons
of a four-dimensional static and axisymmetric dis-
torted black hole (see [1])? In the case of the four-
dimensional black hole, such a relation is expressed
through a duality transformation between its two-
dimensional outer and inner horizon surfaces. An
analogous relation between the Ernst and electromag-
netic potentials at the outer and inner horizons of a
four-dimensional stationary and axisymmetric black
hole distorted by arbitrary surrounding matter was
derived by Ansorg and Hennig [19,20]. The duality
transformation is identical to the duality transforma-
tion between the horizon and the stretched singularity
surfaces of a distorted four-dimensional Schwarzs-
child black hole [10]. It is interesting to find out if a
similar situation exists in the five-dimensional case.

(ii) What is the space-time curvature at the black hole
horizons? In particular, does the inner (Cauchy) horizon
remain regular under static andUð1Þ ×Uð1Þ–symmet-
ric distortions? The importance of this question is
manifested in four-dimensional space-times. Namely,
observers traveling inside a Reissner-Nordström or,
more generally, Kerr-Newman black hole receive an
infinitely blueshifted radiation when they approach the
Cauchy horizon. Penrose argued that small perturba-
tions produced in the black hole exterior grow infinitely
near the Cauchy horizon [44]. The evolution of small
perturbations was analyzed in [45–47], and the derived
results confirmed intuitive Penrose’s arguments. Later
Poisson and Israel considered incoming and outgoing
radiation propagating inside an electrically charged
black hole and showed that such radiation results in
an infinite growth of the black hole internal mass
parameter and, as a result, in an infinite growth of
the space-time curvature near the Cauchy horizon [48].

An exact and simplified solution describing this phe-
nomenonwas constructed byOri [49]. For more details
about the instability of the Chauchy horizon, see [50]
and references therein. Maeda et al. have demonstrated
a novel, so-called “kink” instability of the Cauchy
horizon of d-dimensional static solutions in the Ein-
stein-Maxwell scalar Λ system, which includes the
Reissner-Nordström–(anti–) de Sitter black hole [51].
In our previous work [1], we have shown that the inner
(Cauchy) horizon of a distorted, four-dimensional,
electrically charged, static, and axisymmetric black
hole is regular, provided the distortion field is regular
and smooth at its outer horizon. Thus, it is natural to ask
if that is true in the five-dimensional case.

(iii) What is the effect of distortion on the black hole
interior? In particular, what is the effect of distortion
on the maximal proper time of free fall from the outer
to the inner horizon of the black hole? In the case of a
distorted, four-dimensional, electrically charged,
static, and axisymmetric black hole, it was shown
that the distortion noticeably changes the maximal
proper time of free fall of a test particle moving in the
black hole interior along the symmetry axis. Here we
shall study the same problem in the case of a five-
dimensional distorted black hole.

(iv) There are other interesting issues that can be ad-
dressed here, namely, the product of the black hole
horizon areas and the areas’ inequality. The horizon
area product of a four-dimensional, stationary and
axisymmetric, electrically charged black hole dis-
torted by arbitrary surrounding matter distribution
was derived by Ansorg and Hennig [18–20]. The
product is expressed in terms of the black hole’s
angular momentum and electric charge. They showed
that the horizon areas of such a black hole satisfy an
inequality, which defines the upper and the lower
limits on the values of its inner and outer horizon
areas, respectively (see [52] as well). Cvetič et al.
[53] have shown that the product of all horizon areas
of a general rotating multicharge black hole in
asymptotically flat or asymptotically anti–de Sitter
space-times of four and higher dimensions depends
only on its charges, angular momenta, and the
cosmological constant, and is independent of its
mass. The product is quantized within the framework
of a weakly coupled two-dimensional conformal field
theory. Visser [54] has shown that, generically,
products of horizon areas may not be independent
of the black hole’s mass. For example, the product of
the Schwarzschild–de Sitter (Kottler) black hole
horizon area and the area of the cosmological horizon
depends on the black hole mass. The product of
Reissner-Nordström–anti–de Sitter black hole hori-
zon areas depends on mass as well. In this work, we
shall analyze the horizon areas’ product and the
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inequality of the distorted, five-dimensional, electri-
cally charged black hole.

Our paper is organized as follows. In Sec. II we present
the five-dimensional Reissner-Nordström black hole in the
suitable coordinates and calculate its horizon areas, surface
gravity, and electrostatic potential values at its horizons. We
derive the Smarr formula for both the black hole horizons.
In Sec. III we present a transformation which produces a
five-dimensional, electrically charged, static solution to the
Einstein-Maxwell equations, when applied to a five-
dimensional, vacuum, static seed solution. We illustrate
the transformation in the example of five-dimensional
Schwarzschild-Tangherlini and Reissner-Nordström black
holes. In Sec. IV we apply the transformation to a solution
representing distorted, five-dimensional, vacuum, static
black hole given by the generalized Weyl form and
construct the solution representing five-dimensional, elec-
trically charged, static black hole distorted by electrically
neutral external matter distribution. We give answers to the
questions raised above in the following sections. Namely,
in Sec. V we present the duality transformation between the
black hole’s outer and inner horizons. We calculate its
horizon areas, surface gravity, and electrostatic potential
values at its horizons. Using these results we calculate the
horizon areas product, define the area inequality, and derive
the Smarr formula for both the black hole horizons. In
Sec. VI we discuss mechanics and thermodynamics of the
distorted black hole. In particular, we formulate the zeroth
law and the global and local form of the first law for the
black hole outer and inner horizons. We show the corre-
spondence between the global and local forms. In Sec. VII
we study the space-time curvature at the black hole
horizons. We derive the Kretschmann scalar and show that
its values at the black hole horizons are related by the
duality transformation. In Sec. VIII we study the model of a
five-dimensional, electrically charged, static and “axisym-
metric” black hole distorted adiabatically by external,
electrically neutral matter. In such a model the black hole
horizon areas do not change and are equal to those of an
undistorted (Reissner-Nordström) black hole of the given
mass and charge. This model allows us to study the effect of
distortion on the black hole horizons and interior by
varying the parameters of the distortion fields. We consider
an example of the dipole-monopole and quadrupole-quad-
rupole distortions and calculate the corresponding values of
the Kretschmann scalar at the black hole horizons and the
maximal proper time of free fall of a test particle from the
outer to the inner horizon along the symmetry semiaxes.
Section IX of our paper contains the summary and
discussion of the derived results.
In this paper we use the following convention of

units: Gð5Þ ¼ c ¼ ℏ ¼ kB ¼ 1, where Gð5Þ is the five-
dimensional gravitational constant. The space-time signa-
ture is þ3 and the sign conventions are those adopted
in [55].

II. THE FIVE-DIMENSIONAL REISSNER-
NORDSTRÖM BLACK HOLE

The Einstein-Maxwell theory in five dimensions is
described by the action

S ¼ 1

16π

Z
d5x

ffiffiffiffiffiffi−gp �
R − 1

4
F2

�
; (1)

where g ¼ detðgμνÞ is the determinant of the five-
dimensional space-time metric gμν, R is the five-
dimensional Ricci scalar, and F2 ¼ FμνFμν, where
Fμν ¼ ∇μAν − ∇νAμ is the electromagnetic field tensor.
The Einstein-Maxwell field equations derived from this

action are

Rμν − 1

2
gμνR ¼ 8πTμν;

8πTμν ¼
1

2

�
F λ
μ Fνλ − 1

4
gμνF2

�
; (2)

∇λFμν ¼ 0: (3)

Here and in what follows, ∇μ denotes the covariant
derivative defined with respect to the metric gμν.
The five-dimensional Reissner-Nordström solution is a

static, spherically symmetric, asymptotically flat solution
of the Einstein-Maxwell equations (see, e.g., [56,57]) that
corresponds to the five-vector potential

Aμ ¼ −Φδtμ; (4)

where Φ ¼ ΦðrÞ is an electrostatic potential. The solution
reads

ds2 ¼ −fdt2 þ f−1dr2 þ r2dΩ2; f ¼ 1 − 2m
r2

þ q2

r4
;

(5)

Φ ¼
ffiffiffi
3

p
q

r2
; Fμν ¼ − 2

ffiffiffi
3

p
q

r3
ðδtμδrν − δrμδ

t
νÞ; (6)

where m and q are parameters of the solution, dΩ2 is a
metric on a round unit three-sphere, which can be presented
in the following form:

dΩ2 ¼ 1

4
ðdθ2 þ 2ð1þ cos θÞdχ2 þ 2ð1 − cos θÞdϕ2Þ;

(7)

where θ ∈ ½0; π�, χ ∈ ½0; 2πÞ, and ϕ ∈ ½0; 2πÞ are the
Hopf coordinates. The parameters m and q are related
to the five-dimensional Komar mass of the black
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hole M and its five-dimensional electric charge Q as
follows:

M ¼ 3π

4
m; Q ¼ 2

ffiffiffi
3

p
q: (8)

The five-dimensional Komar mass of the black hole defined
by the following expression:

M ¼ − 3

32π

I
S∞

d3Σμν∇μξν; (9)

where ξμðtÞ ¼ δμt is a timelike Killing vector normalized at
the spatial infinity, ξ 2

ðtÞ ¼ −1,

d3Σμν ¼
1

3!

ffiffiffiffiffiffi−gp
εμνλσρdxλ∧dxσ∧dxρ; εtrθχϕ ¼ þ1;

(10)

is the area element of a three-dimensional closed spacelike
surface at the spatial infinity, S∞. The five-dimensional
electric charge Q is defined as follows:

Q ¼ 1

4π2

I
S
d3ΣμνFμν; (11)

where S is a three-dimensional closed spacelike surface.
The black hole horizons are at

r� ¼
�
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q �1
2

; (12)

where the upper sign stands for the event (outer) horizon
and the lower sign stands for the Cauchy (inner) horizon.
To indicate that a quantity (…) is calculated at the black
hole horizons, we shall use the subscripts � and denote
such a quantity as ð…Þ�. Accordingly, in the expressions
that follow, the upper sign stands for the outer horizon and
the lower one stands for the inner horizon, unless stated
otherwise. The space-time (5) has a timelike singularity at
r ¼ 0. In what follows, we shall consider nonextremal
black holes with q < m and without the loss of generality
take q > 0.
For our future purposes it is convenient to introduce the

following coordinate transformation:2

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1þ pηÞ

p
; p ¼ 1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
; (13)

where p ∈ ð0; 1Þ and η ∈ ð−1=p;þ∞Þ. Then, the black
hole horizons are at

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1� pÞ

p
: (14)

Using the transformation, we can rewrite the solution
(5)–(6) in the form

ds2 ¼ −p2ðη2 − 1Þ
ð1þ pηÞ2 dt2 þmð1þ pηÞ

�
dη2

4ðη2 − 1Þ þ dΩ2

�
;

(15)

Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − p2Þ

p
1þ pη

;

Fμν ¼ −p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − p2Þ

p
ð1þ pηÞ2 ðδtμδην − δημδtνÞ; (16)

where dΩ2 is given by Eq. (7). In these coordinates the
event horizon is at η ¼ 1 and the Cauchy horizon is at
η ¼ −1, and the space-time singularity is at η ¼ −1=p.
The horizons surface areas are

A� ¼ 2π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3ð1� pÞ3

q
: (17)

From this expression we derive the horizon areas product

AþA− ¼ 4π4q3 ¼ π4

6
ffiffiffi
3

p Q3: (18)

The horizon areas product for distorted four-dimensional
axisymmetric stationary black holes was derived by
Ansorg and Hennig [18–20]. Such a product is quite a
universal result valid for many charged and rotating
black hole solutions in four- and higher-dimensional
asymptotically flat or anti–de Sitter space-times (see,
e.g., [53,54,58]).
The surface gravity at the horizons is

κ2� ¼ − 1

2
ð∇μξνÞð∇μξνÞj� ¼ 4p2

mð1� pÞ3 ;

κ� ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1� pÞ3

p ;
(19)

and the electrostatic potential at the horizons is

Φ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − p2Þ

p
1� p

: (20)

Using these expressions we can construct the Smarr
formula of the black hole horizons,

�M ¼ 3

16π
κ�A� � π

8
Φ�Q: (21)

The change of signs in the Smarr formula for the Cauchy
horizon is due to space-like nature of the Killing vector ξμðtÞ
in the region between the horizons, that implies negative

2Note that this coordinate transformation is valid for a
nonextremal black hole only, i.e., for p > 0.
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energy. The Smarr formula for the inner horizon of
asymptotically flat and anti–de Sitter higher-dimensional
solutions was given in, e.g., [58].
Calculating the electromagnetic field invariant F2 at the

black hole horizons we find the following relation:

F2
� ¼ − 6

p2
ð1 − p2Þκ2�: (22)

In the case of q ¼ 0, i.e., for p ¼ 1, the electrostatic
potential Φ vanishes, and the metric (15) represents
the vacuum five-dimensional Schwarszchild-Tangherlini
space-time [56],

ds2 ¼ − η − 1

ηþ 1
dt2 þmðηþ 1Þ

�
dη2

4ðη2 − 1Þ þ dΩ2

�
: (23)

Note that according to the transformation (13), in this case
r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðηþ 1Þp
, where η ∈ ð−1;þ∞Þ.

III. CHARGING VACUUM SOLUTIONS

In this section, we present a transformation which, when
applied to a five-dimensional static vacuum seed solution,
produces a charged static solution of the Einstein-Maxwell
equations. We shall follow the procedure based on the
gauge transformation of the matrix which is an element of
the coset target space SLð2;RÞ=Uð1Þ of the scalar fields
which define our model (see, e.g., [30–43]).

A. The generating transformation

The metric of a five-dimensional static space-time can be
written in the following form:

ds2 ¼ −e2Udt2 þ e−Uhijdxidxj; (24)

where U ¼ UðxiÞ, hij ¼ hijðxiÞ, i, j ¼ ð1; 2; 3; 4Þ. Using
this form of the metric we can present the quantities in the
action (1) in terms of the four-dimensional metric hij and
the metric function U as follows:

ffiffiffiffiffiffi−gp ¼ e−U
ffiffiffi
h

p
; R ¼ eU

�
R − 3

2
hijU;iU;j þ ΔU

�
;

F2 ¼ −2e−UhijΦ;iΦ;j; (25)

where h ¼ detðhijÞ, R is the four-dimensional Ricci scalar
defined by the metric hij, Δ is the Laplace-Beltrami
operator defined with respect to the metric hij. Here and
in what follows, the expression ð…Þ;i means the partial
derivative of ð…Þ with respect to the coordinate xi. We
derived the expression for the Ricci scalar R by using a
dimension reduction along the Killing coordinate t, fol-
lowed by a conformal transformation applied to the reduced
four-dimensional Ricci scalar.

Substituting these expressions into the action (1), inte-
grating by parts, and neglecting the surface terms we derive
the following equivalent action:

S ¼ 1

16π

Z
d4x

ffiffiffi
h

p �
R − 3

2
hijU;iU;j þ

1

2
e−2UhijΦ;iΦ;j

�
:

(26)

This action represents four-dimensional nonlinear σ model
without dilaton field. Following [34,39], one can define the
target space metric defined by the scalar fields U and Φ as

dl2 ¼ 3

2
dU2 − 1

2
e−2UdΦ2; (27)

which represents a coset SLð2;RÞ=Uð1Þ, where SLð2;RÞ
is an isometry group acting on the target space and Uð1Þ is
its isotropy subgroup. To construct the matrix correspond-
ing to the target space we follow the procedure presented in,
e.g., [31,32,34], that gives

A ¼
�
eU − Φ2

3
e−U − Φffiffi

3
p e−U

− Φffiffi
3

p e−U −e−U
�

∈ SLð2;RÞ=Uð1Þ;

(28)

which allows for the following matrix representation of
the σ model:

S ¼ 1

16π

Z
d4x

ffiffiffi
h

p �
Rþ 3

4
hij TrfA;iðA−1Þ;jg

�
: (29)

One can easily check that the action (29), when extremized,
generates the Einstein-Maxwell equations,

ΔU ¼ 1

3
e−2UhijΦ;iΦ;j;

Rij ¼
3

2
U;iU;j − 1

2
e−2UΦ;iΦ;j; ðe−2UhijΦ;iÞ;j ¼ 0;

(30)

written in terms of the static metric functions (24) and the
electrostatic potential Φ. The action (29) is invariant under
the symmetry transformation (see, e.g., [41])

Ā ¼ GAGT; (31)

where G ∈ SLð2;RÞ is a constant matrix.
To consider a specific form of the transformation matrix

G, we need to specify the matrix A in order that its
properties will be preserved under the transformation (31).
Let us consider asymptotically flat space-times. In such
space-times, one can find an appropriate coordinate system
in which the metric function U and the electrostatic
potential Φ have asymptotic expansions of the form
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e2U¼1−C1

r2
þOð1=r3Þ; Φ¼C2

r2
þOð1=r3Þ; (32)

where r is the radial distance, the constant C1 is
proportional to the Komar mass (9), and the constant
C2 is proportional to the electric charge (11). For an
asymptotically flat solution the matrix A at infinity is

A∞ ¼
�
1 0

0 −1
�
: (33)

This matrix can be considered as a matrix representing the
metric of two-dimensional Minkowski space-time. Thus, to
preserve the asymptotic flatness3, G should satisfy the
condition

GA∞GT ¼ A∞: (34)

This implies that one can choose

G ¼
�
cosh δ sinh δ
sinh δ cosh δ

�
∈ SOð1; 1Þ ⊂ SLð2;RÞ; (35)

where δ ∈ R1 is the “boost” parameter.
To illustrate this transformation let us consider a static

asymptotically flat vacuum space-time of the form (24),
then

A ¼
�
eU 0

0 −e−U
�
: (36)

Applying the transformation (31) defined by (35) we derive

ds2 ¼ −e2Ūdt2 þ e−Ūhijdxidxj; (37)

eŪ ¼ eU

ðcosh2 δ − e2U sinh2 δÞ ; (38)

Φ̄ ¼ −
ffiffiffi
3

p ðe2U − 1Þ tanh δ

ð1 − e2U tanh2 δÞ : (39)

This is a static solution of the five-dimensional Einstein-
Maxwell equations (30).4 We call the above transformation
(38)–(39) the generating transformation. In what follows,
we shall apply this transformation to a five-dimensional
Weyl solution.

B. The Weyl seed solution

A five-dimensional Weyl solution is characterized by
three commuting, orthogonalKilling vector fields, ξμðtÞ ¼ δμt ,
ξμðχÞ ¼ δμχ , and ξμðϕÞ ¼ δμϕ (for details see [25]). A five-
dimensional Weyl solution can be presented as follows:

ds2 ¼ −e2U1dt2 þ e2Vðη2 − cos2 θÞ
�

dη2

η2 − 1
þ dθ2

�
þ e2U2dχ2 þ e2U3dϕ2; (40)

where θ ∈ ½0; π�, χ ∈ ½0; 2πÞ, and ϕ ∈ ½0; 2πÞ are the Hopf
coordinates [see Eq. (7)]. The metric functionsUi, i ¼ 1, 2,
3, and V depend on the coordinates η and θ. Each of the
functionsUi solves the following three-dimensional Laplace
equation:

ðη2 − 1ÞUi;ηη þ 2ηUi;η þ Ui;θθ þ cot θUi;θ ¼ 0; (41)

and the following constraint holds:

e2ðU1þU2þU3Þ ¼ ðη2 − 1Þsin2 θ: (42)

Once the functionsUi’s are found, the metric functionV can
be calculated froma line integral involving the functionsUi’s
and their first-order derivatives (for details see, e.g., [24,25],
and [2]).
The metric (40) is a solution of vacuum Einstein’s

equations. Let us denote U ¼ U1 and introduce the
conformal factor e−U1 in the spatial part of the metric
(40), then we can identify this metric with the metric (24).
Applying the generating transformation (38)–(39) to the
Weyl metric one can derive a solution of the Einstein-
Maxwell equations (30). In what follows, it is convenient to
introduce a parameter p which is related to the “boost”
parameter δ,

cosh δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ p
2p

s
;

sinh δ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
1 − p
2p

s
; 0 < p ≤ 1: (43)

Here we shall restrict ourselves to positive values of δ and
p ∈ ð0; 1Þ. As we shall see below, such a restriction
corresponds to nonextremal Reissner-Nordström solution
with positive electric charge and p given by Eq. (13). Then,
the solution generated from the Weyl metric reads

ds2 ¼ −e2Ū1dt2 þ e−Ū1þU1

×

�
e2Vðη2 − cos2 θÞ

�
dη2

η2 − 1
þ dθ2

�

þe2U2dχ2 þ e2U3dϕ2

�
; (44)

3For other class of transformations which do not preserve
asymptotic flatness see, e.g., [41–43].

4Note, that the transformation (38)–(39) can be derived by
introducing the Ernst potentials and applying to them the
Harrison-Ernst transformation with c ¼ tanh δ, followed by
gauge transformation with b ¼ − sinh δ cosh δ and scaling
transformation with a ¼ cosh−2 δ (see Eqs. (26)–(28), [39]).

DISTORTED FIVE-DIMENSIONAL ELECTRICALLY … PHYSICAL REVIEW D 89, 024040 (2014)

024040-7



and the generating transformation (38)–(39) takes the form

eŪ1 ¼ 2peU1

ð1þ p − ð1 − pÞe2U1Þ ; (45)

Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − p2Þ

p
ð1 − e2U1Þ

ð1þ p − ð1 − pÞe2U1Þ ; (46)

where we dropped the bar from the electrostatic potentialΦ.
Note that this transformation is almost identical to the
Harrison-Ernst transformation [59,60] of a four-dimensional
space-time (see, e.g., [1]). It differs only by the factor

ffiffiffi
3

p
in

the expression for Φ.
As an illustrative example, let us apply the transforma-

tion (45)–(46) to the space-time (23) representing the
Schwarzschild-Tangherlini black hole. By identifying the
metric (23) with the Weyl solution (40), we find

e2U1 ¼ η−1

ηþ1
; e2U2 ¼m

2
ðηþ1Þð1þ cos θÞ;

e2U3 ¼m
2
ðηþ1Þð1− cos θÞ; e2V ¼ mðηþ1Þ

4ðη2−cos2 θÞ : (47)

Then, using the transformation (45)–(46) we construct the
metric (44), which takes the following form:

ds2 ¼ −p2ðη2 − 1Þ
ð1þ pηÞ2 dt2

þm
p
ð1þ pηÞ

�
dη2

4ðη2 − 1Þ þ dΩ2

�
; (48)

where dΩ2 is given by Eq. (7) and p is given by Eq. (13).
The electrostatic potential Φ and the corresponding electro-
magnetic field tensor Fμν are given by Eq. (16).
Let us compare this solution with the five-dimensional

Reissner-Nordström space-time (15). We see that the
solutions match, except for the constant conformal factor
1=p in the spatial part of the generated metric.5 This factor
can be removed by rescaling the t coordinate and by
subsequent rescaling of the metric as follows:

t →
tffiffiffiffi
p

p ; ds2 → pds2: (49)

IV. DISTORTED FIVE-DIMENSIONAL
ELECTRICALLY CHARGED BLACK HOLE

In this section, we apply the generating transformation
presented in the previous section to a five-dimensional
Schwarzschild-Tangherlini black hole distorted by static
and neutral, distribution of external matter, which creates
only gravitational field [2]. The sources of the distortion
(the external matter) are located at the asymptotic infinity
and not included into the solution. The distorted five-
dimensional vacuum black hole solution is not asymptoti-
cally flat. Therefore, the sought distorted five-dimensional
electrically charged black hole solution is not expected to
be asymptotically flat either. In principle, one can consider
more general transformation, which does not produce an
asymptotically flat solution when applied to an asymptoti-
cally flat one (see, e.g., [41–43]). Here we would like to
construct an electrically charged distorted black hole
solution, which is not asymptotically flat due to distorting
matter only, in a way similar to our earlier work [1], such
that when the distortion fields vanish the space-time
becomes asymptotically flat. Thus, to achieve our goal,
we shall consider the transformation (45)–(46). Because
the sources of the distortion are not included into the
solution, one can apply the transformation (45)–(46). Here
we apply these transformations to a vacuum solution.
When the transformation is applied, we get a distorted
Reissner-Nordström black hole solution. The sources of
the distortion are still purely gravitational, located at the
asymptotic infinity and not included into the solution. This
is because the transformation electrically charges the black
hole only.

A. The vacuum seed solution

Let us present the distorted five-dimensional
Schwarzschild-Tangherlini solution in the form (24)
suitable for the transformation (for details see [2]),

ds2 ¼ −e2Udt2 þ e−Uhijdxidxj;

eU ¼
ffiffiffiffiffiffiffiffiffiffiffi
η − 1

ηþ 1

s
eÛþŴ;

hijdxidxj ¼
m
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 1

q
eÛþŴdl2;

dl2 ¼ e2ðV̂þÛþŴÞ
�

dη2

η2 − 1
þ dθ2

�

þ 2ð1þ cos θÞe−2Ŵdχ2

þ 2ð1 − cos θÞe−2Ûdϕ2: (50)

Here Û, Ŵ, and V̂ are the distortion fields given by the
following expressions:

5Note that if we applied the transformation to the “standard
Schwarzschild form” (see Eqs. (5)–(6) with Q ¼ 0), we would
derive the Reissner-Nordström solution of the form different from
that given by the expression (5)–(6). In order to bring this solution
to the form (5)–(6) one has to construct an involved coordinate
transformation.
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Ûðη; θÞ ¼
X
n≥0

anRnPn; Ŵðη; θÞ ¼
X
n≥0

bnRnPn;

V̂ ¼ V̂1 þ V̂2; (51)

V̂1ðη; θÞ ¼ −
X
n≥0

�
3ðan=2þ bn=2ÞRnPn

þ ðan þ bn=2Þ
Xn−1
l¼0

ðη − cos θÞRlPl

þ ðan=2þ bnÞ
Xn−1
l¼0

ð−1Þn−lðηþ cos θÞRlPl

�
;

(52)

V̂2ðη; θÞ ¼
X
n;k≥1

nk
nþ k

ðanak þ anbk þ bnbkÞ

× Rnþk½PnPk − Pn−1Pk−1�; (53)

where

R ¼ ðη2 − sin2θÞ1=2; Pn ≡ Pnðη cos θ=RÞ: (54)

Here Pn’s are the Legendre polynomials of the first kind.
These series generally converge if the sources of the
distortion fields are located far from the black hole and
the fields are considered in the black hole vicinity.
Accordingly, as in the Newtonian gravitational theory
and electromagnetism, the constant coefficients an’s and
bn’s, which define the distortion fields, are called interior
multipole moments.6 On the other hand, according to the
uniqueness theorem formulated in [61], a Schwarzschild-
Tangherlini black hole is the only d—dimensional, asymp-
totically flat, static, vacuum black hole which has
nondegenerate regular event horizon. This implies that
the sources located inside the black hole make its horizon
singular. Thus, to have a regular horizon we shall consider
nonasymptotically flat solution distorted by the external
sources only, whose distortion fields are defined by the
interior multipole moments. Such fields must be regular
and smooth at the horizon. The distortion fields Û, Ŵ, and

V̂ given above satisfy this condition. Note that the
distortion field V̂ is defined up to an additive constant
of integration. The form of the distortion field V̂ corre-
sponds to a particular choice of that constant (see footnote
on page 15). There is an additional restriction on the
multipole moments, which follows from the strong energy
condition imposed on the distortion fields due to the
positive mass theorem [62]. If the sources of the distortion
fields are included into the solution, then their energy-
momentum tensor TðsourceÞ

μν satisfies the strong energy
condition,

TðsourceÞ
μν − gμν

3
TðsourceÞ ≥ 0; TðsourceÞ ¼ gμνTðsourceÞ

μν :

(55)

Using the Einstein equations we derive

�
TðsourceÞ
μν − gμν

3
TðsourceÞ

�
δμtδ

ν
t

¼ mðη − 1Þðη2 − cos2θÞ
8πðηþ 1Þ2 e−2V̂ΔðÛ þ ŴÞ: (56)

Because the Laplace operator △ is negative, the strong
energy condition implies that

Û þ Ŵ ≤ 0: (57)

Then from Eq. (51) it follows that on the semiaxes θ ¼ 0
and θ ¼ π,7 at the black hole horizon η ¼ 1, we haveX

n≥0
ð�1Þnðan þ bnÞ ≤ 0; (58)

where þ1 corresponds to θ ¼ 0 and −1 corresponds
to θ ¼ π.

B. The solution

Applying the generating transformation (45)–(46) to the
metric (50) accompanied by the scaling transformation (49)
we derive the solution representing distorted charged black
hole,

ds2 ¼ − 4p2ðη2 − 1Þ
Δ2

e2ðÛþŴÞdt2

þmΔ
2

�
e2ðV̂þÛþŴÞ dη2

4ðη2 − 1Þ þ dΩ̂2

�
; (59)

6Note that despite the fact that the equation for the distortion
fields Û and Ŵ is Laplace one, these fields are relativistic. To
construct the corresponding Newtonian fields one has to take the
nonrelativistic limit, e.g., limc2→∞c

2Ûðη; θ; c2Þ, where c is the
speed of light (see, e.g., [63,64]). Distortion fields defined by
exterior multipole moments correspond to asymptotically flat
solutions. However, in this case the series representing such
distortion fields near the black hole horizon converge if the
sources of the fields are located inside the black hole.

7We call the spatial regions θ ¼ 0 and θ ¼ π semiaxes in
analogy with a three-dimensional space. However, in a four-
dimensional space these regions are two-dimensional planes,
ðη; χÞ and ðη;ϕÞ.

DISTORTED FIVE-DIMENSIONAL ELECTRICALLY … PHYSICAL REVIEW D 89, 024040 (2014)

024040-9



Δ ¼ ð1þ pÞðηþ 1Þ − ð1 − pÞðη − 1Þe2ðÛþŴÞ; (60)

dΩ̂2 ¼ 1

4
ðe2ðV̂þÛþŴÞdθ2 þ 2ð1þ cos θÞe−2Ŵdχ2

þ2ð1 − cos θÞe−2Ûdϕ2Þ; (61)

Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − p2Þ

p
Δ

ðηþ 1 − ðη − 1Þe2ðÛþŴÞÞ: (62)

The only nonzero components of the electromagnetic field
tensor Fμν are

Ftη ¼ − 4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − p2Þ

p
Δ2

e2ðÛþŴÞ

½1þ ðη2 − 1ÞðÛ;η þ Ŵ;ηÞ�; (63)

Ftθ ¼ −
4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − p2Þ

p
Δ2

e2ðÛþŴÞðη2 − 1Þ½Û;θ þ Ŵ;θ�:
(64)

For p ¼ 1, this solution represents the distorted five-
dimensional Schwarzschild-Tangherlini black hole (50).
If the distortion fields vanish, this solution represents the
five-dimensional Reissner-Nordström solution (15)–(16).
Note that the distorted black hole electric charge Q is
independent of the values of the multipole moments and
equals to that of the Reissner-Nordström black hole [see
Eq. (8)]. The transformation does not affect the distortion
fields Û, Ŵ, and V̂. Thus, the transformation electrically
charges the black hole only.8

We were able to construct a solution which represents
a five-dimensional charged black hole distorted by
external electrically neutral sources, such that when
the distortion fields Û, Ŵ, and V̂ vanish, the solution
represents a five-dimensional Reissner-Nordström solu-
tion in an empty, asymptotically flat universe. The
metric (59)–(61) is not asymptotically flat. The unique-
ness of static, electrically charged, and asymptotically
flat black holes proved in [65] implies that if instead of
the interior multipole moments corresponding to the
external sources we considered exterior multipole
moments or both, then the resulting solution would
have a singular horizon.

The distorted black hole solution (59)–(62) possesses
two horizons, the outer horizon, at η ¼ 1, and the inner
horizon, at η ¼ −1. One can show that the space-time
curvature invariants, e.g., the Kretschmann scalar, and the
electromagnetic field invariant F2 diverge in the region
where Δ ¼ 0 [see Eq. (60)], i.e., where

ηþ 1þ pþ ð1 − pÞe2ðÛþŴÞ

1þ p − ð1 − pÞe2ðÛþŴÞ ¼ 0: (65)

This expression implies that the space-time singularities
can be located behind the inner horizon, if there
Û þ Ŵ < 1=2 ln½ð1þ pÞ=ð1 − pÞ� and outside the outer
horizon, in the black hole exterior, if there Û þ Ŵ >
1=2 ln½ð1þ pÞ=ð1 − pÞ�. Thus, if Û þ Ŵ ≤ 0, that is if
the sources of the distortion fields satisfy the strong energy
condition, then the space-time singularities are located
behind the inner (Cauchy) horizon, i.e., there η < −1 for
any p ∈ ð0; 1Þ.
In addition, for a regular horizon there should be no

conical singularities on the semiaxes θ ¼ 0 and θ ¼ π, and
thus on the horizon. The metric (59)–(61) has no conical
singularities on the semiaxes if the space there is locally
flat. In other words, the ratio of the Killing vector ξαðφÞ ¼ δαφ
(ξαðχÞ ¼ δαχ ) orbit circumference to the orbit radius at the
vicinity of the “semi-axis” θ ¼ 0 (θ ¼ π) should be equal to
2π. For the metric (59)–(61) this condition implies (for
details see [2])

V̂ þ 2Û þ Ŵjθ¼0 ¼ 0; (66)

for the “semi-axis” θ ¼ 0, and

V̂ þ Û þ 2Ŵjθ¼π ¼ 0; (67)

for the “semi-axis” θ ¼ π.
Using the expressions (51)–(54) and the symmetry

property of the Legendre polynomials,

Pnð−xÞ ¼ ð−1ÞnPnðxÞ; Pnð1Þ ¼ 1; (68)

from the expressions (66) and (67) we derive the following
condition:

X
n≥0

ða2n − b2nÞ þ 3
X
n≥0

ða2nþ1 þ b2nþ1Þ ¼ 0: (69)

This condition implies the black hole equilibrium
condition.9

8For example, if we consider a triple Israel-Khan black hole
solution, which represents the central black hole distorted by the
other two, one can show that the Ernst-Harrison transformation
charges the central black hole.

9Note that different constant of integration, which defines the
distortion field V̂, would give us exactly the same expression for
V̂ and the condition (69), after one imposes the no conical
singularity conditions (66) and (67).
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V. PROPERTIES OF THE DISTORTED BLACK
HOLE SOLUTION

In this section we shall discuss the distorted black hole
solution (59)–(62) focusing on its horizons.

A. The inner and outer horizons and their duality
transformation

As it was mentioned in the Introduction, there exists a
certain duality transformation between the outer and inner
horizon surfaces of a distorted, four-dimensional, static,
electrically charged, axisymmetric black hole which is
exactly the same as the duality transformation between
the horizon and the stretched singularity surfaces of a four-
dimensional, static, vacuum, axisymmetric black hole.
Here we show that an analogous situation takes place in
a five-dimensional case. We first present the metrics on the
three-dimensional surfaces of the outer and inner horizon of
the distorted five-dimensional charged black hole and then
show the duality transformation between them. This duality
transformation is exactly the same as that between the
horizon and the stretched singularity surfaces of a distorted
five-dimensional Schwarzschild-Tangherlini black hole.
To begin with, let us introduce the following notations:

u0 ¼
X
n≥0

a2n; u1 ¼
X
n≥0

a2nþ1;

w0 ¼
X
n≥0

b2n; w1 ¼ −X
n≥0

b2nþ1; (70)

u�ðθÞ ¼
X
n≥0

ð�1Þnancosnθ − u0;

w�ðθÞ ¼
X
n≥0

ð�1Þnbncosnθ − w0:
(71)

Then, the black hole equilibrium condition (69) can be
written as

u0 þ 3u1 ¼ w0 þ 3w1; (72)

and the strong energy condition (58) takes the form

u0 þ w0 � ðu1 − w1Þ ≤ 0; (73)

where the sign ‘þ’ stands for the θ ¼ 0 “semi-axis” and the
sing ‘−’ stands for the θ ¼ π “semi-axis”. This condition
can be written in the following form:

u0 þ w0 ≤ 0; ju0 þ w0j ≥ ju1 − w1j: (74)

Using these notations and the symmetry property of the
Legendre polynomials (68) we calculate the distortion
fields (51)–(53) at the black hole horizons,

Û� ¼ u�ðθÞ þ u0; Ŵ� ¼ w�ðθÞ þ w0; (75)

V̂þ ¼ − 3

2
ðu0 þ w0Þ − 1

2
ðu1 þ w1Þ; (76)

V̂− ¼ −3u−ðθÞ − 3w−ðθÞ − 3

2
ðu0 þ w0Þ þ

1

2
ðu1 þ w1Þ:

(77)

The three-dimensional surface of the outer horizon is
defined by t ¼ const and η ¼ 1. The corresponding metric
derived from (59)–(61) reads

dΣ2þ ¼ mð1þ pÞe−ðu0þw0þ3u1þ3w1Þdσ2þ; (78)

dσ2þ ¼ 1

4
ðe2ðVþþUþþWþÞdθ2 þ 2ð1þ cos θÞe−2Wþdχ2

þ2ð1 − cos θÞe−2Uþdϕ2Þ; (79)

with the following notations:

U� ¼ u�ðθÞ − 3u1; W� ¼ w�ðθÞ − 3w1;

V� ¼ 4ðu1 þ w1Þ:
(80)

The metric dσ2þ coincides with the metric on the distorted
five-dimensional Schwarzschild-Tangherlini black hole
horizon surface (see Eq. (96), [2]).
The three-dimensional surface of the inner horizon

is defined by t ¼ const and η ¼ −1. The correspond-
ing dimensionless metric derived from (59)–(61)
reads

dΣ2− ¼ mð1 − pÞeðu0þw0þ3u1þ3w1Þdσ2−; (81)

dσ2− ¼ 1

4
ðe−2ðV−þU−þW−Þdθ2 þ 2ð1þ cos θÞe2U−dχ2

þ2ð1 − cos θÞe2W−dφ2Þ: (82)

The metric dσ2− coincides with the metric on the distorted
Schwarzschild-Tangherlini black hole stretched singularity
surface (see Eq. (131), [2]).
The metrics dΣ2þ and dΣ2− are related to each other by the

following transformation:

u0 → −w0; u1 → −w1; u� → −w∓; (83)

w0 → −u0; w1 → −u1; w� → −u∓; (84)

� p → ∓p: (85)
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Note that according to the expression (14), the trans-
formation (85) corresponds to a “switch” between the
outer and inner horizons of the Reissner-Nordström black
hole. The no conical singularity condition (72) does not
change under the transformation (83)–(84). However, this
transformation implies a “switch” between the semiaxes
θ ¼ 0 and θ ¼ π and the reverse of the inequality sign in
the strong energy condition (73). This is because Killing
vector ξμðtÞ is spacelike in the region between the horizons,
that implies negative energy. The transformation (83)–(84)
implies the following transformation between the multipole
moments:

a2n → −b2n; a2nþ1 → b2nþ1;

b2n → −a2n; b2nþ1 → a2nþ1: (86)

Such a transformation corresponds to an exchange between
the semiaxes and reverse of signs of the multipole
moments,

ðθ; χ;ϕÞ → ðπ − θ;ϕ; χÞ; an → −an; bn → −bn:
(87)

We shall call the transformation (83)–(87) the duality
transformation between the outer and inner horizons of
the distorted black hole. The duality transformation
(86)–(87) is exactly the same as the duality transformation
between the horizon and the stretched singularity
surfaces of the distorted five-dimensional Schwarzschild-
Tangherlini black hole (see Eqs. (135)–(137), [2]).

B. Surface gravity, electrostatic potential, horizon areas
product and inequality, the Smarr formula

The surface gravity at the horizons is

κ� ¼ 2pe�3
2
γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mð1� pÞ3
p ; (88)

where

γ ¼ u0 þ w0 þ
1

3
ðu1 þ w1Þ: (89)

According to the strong energy condition (74), we
have γ ≤ 0. We see that due to distortion fields, the
surface gravity differs from that of the Reissner-
Nordström (undistorted) black hole (19) by the factor
e�3

2
γ. One can interpret this factor as an “effective redshift

factor” due to the distortion fields. However, we should
bear in mind that the distortion fields contribute to both the
local acceleration (acceleration of the Killing field ξðtÞ
orbit) and to the redshift factor of the space-time,

ffiffiffiffiffiffiffiffiffi−gttp
.

The horizon areas of the distorted black hole solution
(59)–(62) are [cf. Eq. (17)]

A� ¼ 2π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3ð1� pÞ3

q
e∓3

2
γ: (90)

One can see that the area product

AþA− ¼ 4π4q3 ¼ π4

6
ffiffiffi
3

p Q3 (91)

has the same form as that of the Reissner-Nordström black
hole (18). Let us define the lower and upper limits for the
values of Aþ and A−, respectively. In order to do so, we
calculate the ratio Q3=2=A�. Using the expressions (8),
(13), and (90) we derive

Q
3
2

A−
¼ 3

3
4

ffiffiffi
2

p

π2

�
1þ p
1 − p

�3
4

e−3
2
γ;

Q
3
2

Aþ
¼ 3

3
4

ffiffiffi
2

p

π2

�
1 − p
1þ p

�3
4

e
3
2
γ: (92)

Then, the conditions γ ≤ 0 and p ∈ ð0; 1Þ allow us to
define the lower and upper limits for the inner and outer
horizon areas of a general distorted Reissner-Nordström
black hole,

A− <
π2Q

3
2

3
3
4

ffiffiffi
2

p < Aþ; (93)

Using the area product (91) we present the universal area
inequality (93) in the following form:

A− <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A−Aþ

p
< Aþ: (94)

Thus, the geometric mean of the inner and outer horizon
areas of the distorted black hole represents the upper and
lower limits of its inner and outer horizon areas,
respectively.10

The electrostatic potential (62) takes the following
values at the black hole horizons [cf. Eq. (20)]

Φ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − p2Þ

p
1� p

: (95)

Thus, the values of the electrostatic potential at the black
hole horizons does not change under the distortion.
Calculating the electromagnetic field invariant F2 at the
black hole horizons we find

F2
� ¼ − 24ð1 − p2Þ

mð1� pÞ3 e
�3γ: (96)

10Hennig, Cederbaum, and Ansorg [52] have proven a similar
inequality for the areas of regular axisymmetric and stationary
four-dimensional sub-extremal black hole with surrounding
matter in the Einstein-Maxwell theory.
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Using this expression and the expression (88) one can show
that the relation [cf. Eq. (22)]

F2
� ¼ − 6

p2
ð1 − p2Þκ2�: (97)

holds for the distorted black hole as well. Note that the
quantities (90), (88), (95), and (96) are related by the
duality transformation (83)–(85).
One can check that the Smarr formula [cf. Eq. (21)]

�M ¼ 3

16π
κ�A� � π

8
Φ�Q: (98)

holds for the distorted black hole as well. Here M defines
the black hole Komar mass (9), assuming that the space-
time (59)–(61) can be analytically extended to achieve its
asymptotic flatness (see the discussion in the beginning of
subsection VI.B.1.).

VI. MECHANICS AND THERMODYNAMICS OF
THE DISTORTED BLACK HOLE

Mechanical laws of black holes represent relations
between the black hole variables, such as mass, horizon
area, surface gravity, etc (see [66]). These variables, in turn,
correspond to the thermodynamic variables, such as energy,
entropy, temperature, etc. This correspondence is due to
Hawking radiation [67], which “endows” a black hole with
temperature.11 In this section, we derive mechanical laws of
the distorted black hole and present the corresponding laws
of thermodynamics. We shall mostly follow the arguments
of Geroch and Hartle [3], who constructed the global and
local forms of the first law for a four-dimensional distorted
vacuum black hole. The results of Geroch and Hartle were
generalized by Fairhurst and Krishnan [9] for an electrically
charged four-dimensional black hole distorted by external
charged matter.

A. The zeroth law

The zeroth law says that a black hole surface gravity (and
accordingly, its temperature) is constant at the black hole
horizon. The surface gravity is defined up to an arbitrary
constant which depends on the normalization of the time-
like Killing vector. However, the normalization does not
affect the zeroth law. As we readily see from the expression
(88), the zeroth law holds for both the horizons of our
distorted black hole. The corresponding temperature is
defined in terms of the surface gravity as

T� ¼ κ�
2π

: (99)

This definition, however, requires a proper normalization of
the Killing vector at the spatial infinity.
Though the temperature Tþ is associated with the

black hole outer horizon is a typical quantity, the “temper-
ature” T−, which is associated with the black hole inner
(Cauchy) horizon, is rather a dubious thermodynamic
variable. However, taking into account the description of
black holes within string theory [69], one can view the outer
horizon thermodynamics as the sum of the thermodynamics
corresponding to the left- and right-moving excitations of
the string. Due to such a duplicate nature of the horizon
thermodynamics, one can view the inner horizon thermo-
dynamics as the difference of the thermodynamics corre-
sponding to the right- and left-moving excitations of the
string [70–72]. In this picture, the thermodynamic variables
corresponding to the outer horizon are mapped to the
thermodynamic variables corresponding to the inner hori-
zon. In our case, such a map is represented by the duality
transformation (see Eqs. (83)–(85) and the comment at the
very end of the previous Section). We will follow this
picture in our description of thermodynamics of the
distorted black hole.
The electrostatic potential (95) is constant at the black

hole horizon. Note that this condition holds for more
general class of regular horizons (see, e.g., [73]).

B. The first law

The first law of the black hole mechanics represents a
relation between the black hole’s two nearby equilibrium
configurations related by a change in the black hole mass,
horizon area, and other black hole parameters, e.g., electric
charge and angular momentum, as well as the change in the
stress-energy of the external matter, if present. There are
different forms of the first law, which are defined according
to the system in question. Here we shall consider global and
local forms of the first law which correspond to the total
system of the black hole plus the distorting matter and to
the black hole alone, respectively.

1. The global first law

The global first law is defined for the system which
consists of the black hole and the external matter acting on
it. To define the global first law of black hole mechanics,
we need to extend the space-time (59)–(61) to achieve its
asymptotic flatness. Such an extension is possible assuming
that one can include into the solution the sources of the
distorting matter. Accordingly, the Einstein-Maxwell equa-
tions get violated in the region of the sources location due
to their energy-momentum tensor. The extension is
achieved by requiring that the distortion fields Û, Ŵ,
and V̂ vanish at the asymptotic infinity and by extending
the corresponding space-time manifold. In the extended
manifold there exists an electrovacuum region in the
interior of the black hole and part of the exterior region
where the solution (59)–(62) is valid. Then, there is a region

11Such a correspondence had previously been conjectured by
Bekenstein [68].
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where the external sources are located. Beyond that region
there is asymptotically flat electrovacuum region. Having
this extension one can normalize the timelike Killing
vector ξðtÞ at the spatial infinity as ξ 2

ðtÞ ¼ −1. As it is
done, one naturally finds the Komar mass M [see
Eqs. (8)–(9)] of the distorted black hole equal to the
Komar mass of the Reissner-Nordström (undistorted)
black hole. Then, using the expression for the black
hole horizon area (90) one can find the relation
M ¼ MðA�; Q; γÞ. Differentiating M with respect to its
arguments and using the expressions for the surface
gravity (88), the electrostatic potential (95), and for the
black hole local mass, which can be calculated by using
the definition (9) with the three-dimensional closed space-
like surface Sð3Þ at the black hole horizons, we derive the
global first law of the black hole mechanics,

�δM ¼ κ�
8π

δA� � π

8
Φ�δQþMloc

� δγ; (100)

where the local black hole mass,

Mloc
� ¼ � 3π

4
mp; (101)

does not depend on the distortion fields.
From the global first law of the black hole mechanics, by

using the definition of temperature (99) and the black hole
entropy,

S� ¼ A�
4

; (102)

we derive the global first law of the black hole
thermodynamics,

�δM ¼ T�δS� � π

8
Φ�δQþMloc

� δγ: (103)

Here the term Mloc
� δγ is interpreted as the work done on

the black hole by the variation of the external potential γ
due to the distorting matter. If the distortion is adiabatic,
δS� ¼ 0, i.e., such that neither matter nor gravitational
waves cross the black hole horizons, and in addition,
the black hole charge Q does not change, then the
work Mloc

� δγ results in the change of the black hole
mass δM.

2. The local first law

The local first law is defined for the system which
consists of the black hole alone. The local first law does not
include the distorting matter into consideration of the black
hole mechanics. It can be defined by observers who live
near the black hole and attribute the local gravitational field
to the black hole alone. These observers consider the black

hole as an isolated, undistorted object.12 Thus, assuming
that there is no other matter present and the space-time is
asymptotically flat, they define its surface gravity ~κþ, the
outer horizon area ~Aþ, electrostatic potential ~Φþ, electric
charge ~Q, and the black hole Komar mass ~M such that they
satisfy the Smarr formula for the Reissner-Nordström black
hole,

~M ¼ 3

16π
~κþ ~Aþ þ π

8
~Φþ ~Q: (104)

Accordingly, the Smarr formula for the black hole Cauchy
horizon reads [cf. Eq. (21)]

− ~M ¼ 3

16π
~κ− ~A− − π

8
~Φ− ~Q: (105)

Note that because the distortion fields do not carry
electrostatic energy, we have ~Φ� ¼ Φ� [see Eq. (95)]
and ~Q ¼ Q. Thus, these observers construct the local
first law of the black hole mechanics as that of the
Reissner-Nordström (undistorted) black hole,

�δ ~M ¼ ~κ�
8π

δ ~A� � π

8
Φ�δQ: (106)

With the definitions of temperature (99) and entropy (102),
the local first law of black hole thermodynamics reads

�δ ~M ¼ ~T�δ ~S� � π

8
Φ�δQ: (107)

The measurements of the observers define the black hole
area as that which is exactly equal to the black hole area
when the presence of the distortion fields is taken into
account, i.e.,

~A� ¼ 2π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m3ð1� ~pÞ3

q
¼ A� ¼ 2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3ð1� pÞ3

q
e∓3

2
γ;

(108)

where [cf. Eqs. (8) and (13)]

~M ¼ 3π

4
~m; ~p ¼ 1

~m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 − q2

q
: (109)

The expression (108) gives us the following relations:

~M ¼ M
2
½ð1þ pÞe−γ þ ð1 − pÞeγ�; (110)

~p ¼ ð1þ pÞe−γ − ð1 − pÞeγ
ð1þ pÞe−γ þ ð1 − pÞeγ : (111)

12Note that according to the expressions (90), (88), (95), and
(96), all deviations from spherical symmetry vanish at the black
hole horizons.
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Using these relations and the expressions for the surface
gravity (19), (88) and for the electrostatic potential (20),
(95) we derive

~κ� ¼ 2 ~pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~mð1� ~pÞ3

p ¼ κ�
2p

½ð1þ pÞe−γ − ð1 − pÞeγ�; (112)

~Φ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − ~p2Þ

p
1� ~p

¼ Φ�eγ; (113)

where κ� and Φ� are given by the expressions (88) and
(95), respectively. The relations (110)–(113) provide us
with the correspondence between the local and the global
forms of the first law. Namely, substituting these relations
into the expressions (106) and (107), we derive the
expressions (100) and (103).

VII. SPACE-TIME CURVATURE AT THE
HORIZONS

Let us now calculate space-time curvature at the
distorted black hole horizons. The main purpose of such
a calculation is to analyze the effect of the distortion
fields on the inner horizon. Here we shall calculate the
Kretschmann scalar (the trace of the square of the
Riemann tensor) value at the outer and inner horizons.
As an example, we consider the dipole-monopole and
quadrupole-quadrupole distortion fields. Using the results
of our previous work [73] we can write the Kretschmann
scalar at the horizons as follows (see Eq. (65) of [73] for
d ¼ 5)13:

K� ¼ 6ðRABRABÞ� þ 3

2
F2
�R� þ 55

144
F4
�; (114)

where ðRABRABÞ� is the trace of the square of the Ricci
tensor of the horizon surfaces,R� is the Ricci scalar of the
horizon surfaces, and F� is the electromagnetic field
invariant calculated at the horizons. Here and in what
follows, we shall use the capital Latin letters for three-
dimensional objects defined on the horizon surfaces. Using
the relation (97) we derive

K� ¼ 6ðRABRABÞ� − 9

p2
ð1 − p2Þκ2�R�

þ 55

4p4
ð1 − p2Þ2κ4�: (115)

Thus, for an arbitrary static and “axisymmetric” distortion,
the value of the Kretschmann scalar at the horizons is
defined by the horizons intrinsic curvature and surface
gravity. The corresponding Ricci scalar and the trace of the
square of the Ricci tensor can be expressed through the
Ricci tensor components as follows:

R� ¼ Rϕ
�ϕ þRχ

�χ þRθ
�θ;

ðRABRABÞ� ¼ ðRϕ
�ϕÞ2 þ ðRχ

�χÞ2 þ ðRθ
�θÞ2: (116)

Components of the Ricci tensor corresponding to a three-
dimensional surface, in turn, can be expressed through the
Gaussian curvatures Kθ, Kχ , and Kϕ of the two-dimen-
sional sections ðχ;ϕÞ, ðθ;ϕÞ, and ðθ; χÞ as (see, e.g.,
[74,75])

Rϕ
�ϕ ¼ K�θ þ K�χ ;

Rχ
�χ ¼ K�θ þ K�ϕ;

Rθ
�θ ¼ K�χ þ K�ϕ: (117)

The Gaussian curvatures of the sections are expressed
through the corresponding Riemann tensor components of
the metrics dΣ2þ, Eq. (78), and dΣ2−, Eq. (81), calculated in
an orthonormal frame xα̂ (see, e.g., [74,75]),

Kþϕ ¼ Rþθ̂ χ̂ θ̂ χ̂

¼ N þ

�
1þ 4wþ;θθ − 8w2

þ;θ − 4uþ;θwþ;θ

− 2 sin θ

1þ cos θ
ðuþ;θ þ 3wþ;θÞ

�
;

Kþχ ¼ Rþθ̂ ϕ̂ θ̂ ϕ̂

¼ Nþ

�
1þ 4uþ;θθ − 8u2þ;θ − 4uþ;θwþ;θ

þ 2 sin θ

1 − cos θ
ðwþ;θ þ 3uþ;θÞ

�
;

Kþθ ¼ Rþχ̂ ϕ̂ χ̂ ϕ̂

¼ Nþ

�
1 − 4uþ;θwþ;θ − 2

sin θ
ðuþ;θ − wþ;θÞ

þ 2 cot θðuþ;θ þ wþ;θÞ
�
;

(118)

for the outer horizon surface, and

13Note that the Ricci scalar and the trace of the square of the
Ricci tensor, RαβRαβ, calculated at the horizons are proportional
to F2 value at the horizons (see Eqs. (63)–(64) of [73], setting the
cosmological constant and dilaton field to zero). Thus, if they
diverge, then the Kretschmann scalar diverges too.
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K−ϕ ¼ R−θ̂ χ̂ θ̂ χ̂

¼ N −
�
1 − 4u−;θθ − 8u2−;θ − 4u−;θw−;θ

þ 2 sin θ

1þ cos θ
ðw−;θ þ 3u−;θÞ

�
;

K−χ ¼ R−θ̂ ϕ̂ θ̂ ϕ̂

¼ N −
�
1 − 4w−;θθ − 8w2−;θ − 4u−;θw−;θ

− 2 sin θ

1 − cos θ
ðu−;θ þ 3w−;θÞ

�
;

K−θ ¼ R−χ̂ ϕ̂ χ̂ ϕ̂

¼ N −
�
1 − 4u−;θw−;θ þ

2

sin θ
ðw−;θ − u−;θÞ

− 2 cot θðw−;θ þ u−;θÞ
�
;

(119)

for the inner horizon surface. Here

N � ¼ 1

mð1� pÞ e
∓2½u�ðθÞþw�ðθÞ��ðu1þw1þu0þw0Þ: (120)

Thus, defining the values of the distortion fields Û, Ŵ, and
V̂ at the black hole horizons, one can calculate the
Gaussian curvatures (118)–(119) and using the expressions
(116)–(117) findR� and ðRABRABÞ�. Note that in the case
of the distortion fields Û ¼ 0, Ŵ ≠ 0;we haveKþχ ¼ Kþθ,
K−ϕ ¼ K−θ, and in the case of the distortion fields Û ≠ 0,
Ŵ ¼ 0, we have Kþϕ ¼ Kþθ, Kχ ¼ K−θ. For a round
three-dimensional sphere, which represents the horizon
surfaces of a five-dimensional Reissner-Nordström black
hole (15)–(16), we have

K�ϕ ¼ K�χ ¼ K�θ ¼
1

mð1� pÞ : (121)

We see from the expression (115) that if the distortion
fields are regular and smooth at the outer horizon, then the
space-time curvature at the outer horizon is regular. We can
see that the expressions (118) and (119) are related by the
duality transformation (83)–(85), and therefore, the quan-
tities ðRABRABÞ� and R�. As we mentioned at the end of
Section 5, the expressions for the surface gravity calculated
at the horizons, (88), are related by the duality trans-
formation as well. Thus, according to the expression
(115), the Kretschmann scalars calculated at the outer
and inner horizons are related by the duality transforma-
tion. This implies that if Kþ is regular, then K− is regular
as well.

VIII. ANALYSIS OF THE DISTORTED
BLACK HOLE

A. The model

After the study of the properties of the charged distorted
black hole solution, let us now discuss our model. We shall
consider a five-dimensional Reissner-Nordström black hole
which is distorted adiabatically by the external matter.
More precisely, according to the solution (50)–(54), the
external matter is located at the asymptotic infinity.
The matter is described by the multipole moments. For
the vanishing multipole moments the solution is the
Reissner-Nordström black hole of the given mass and
charge defined by the parameters m0 and p0. For a slow
(adiabatic) change of the multipole moments, such that
neither gravitational waves nor matter cross the black hole
outer horizon, the horizon area Aþ does not change. Then,
according to the relation (18), the area of the inner black
hole horizon A− does not change either. Thus, for arbitrary
values of the multipole moments we have [see Eqs. (17)
and (90)]

mð1� pÞe∓γ ¼ m0ð1� p0Þ; (122)

m2ð1 − p2Þ ¼ q2 ¼ m2
0ð1 − p2

0Þ: (123)

Therefore, we can express the factor N � [see Eq. (120)]
and the electromagnetic field invariant (96) as follows:

N � ¼ 1

m0ð1� p0Þ
e∓2½u�ðθÞþw�ðθÞ��2

3
ðu1þw1Þ; (124)

F2
� ¼ −24 ð1 − p2

0Þ
m0ð1� p0Þ3

: (125)

Thus, the expression for the Kretschmann scalar (114) can
be written as

K� ¼ 6ðRABRABÞ� − 36
ð1 − p2

0Þ
m0ð1� p0Þ3

R�

þ 220
ð1 − p2

0Þ2
m2

0ð1� p0Þ6
; (126)

where the quantities ðRABRABÞ� and R� are calculated
with the use of (116)–(119) where the factor N � is given
by (124). Note that the expression (126) does not depend on
the monopole moments a0, b0.
We would like to analyze the effect of the distortion

fields on the black hole horizons. For this purpose, we shall
calculate K� in units of KRN� corresponding to the
Reissner-Nordström black hole. Using the expressions
(19), (115)–(117), and (121), we derive
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KRN� ¼ 4

m2
0ð1� p0Þ4

ð19∓74p0 þ 127p2
0Þ; (127)

and construct the following function:

k� ¼ K�
KRN�

: (128)

This function illustrates the relative space-time curvature at
the distorted black hole horizons. In the following sub-
section, we shall analyze this function on the example of
two simple and dominant cases of the dipole-dipole and
quadrupole-quadrupole distortion fields.

B. An example: The dipole-monopole and
quadrupole-quadrupole distortions

Let us now illustrate the effect of the distortion fields on
the black hole horizons by considering two simple exam-
ples of the distortion fields—the dipole-monopole and the
quadrupole-quadrupole distortions, where the first name
stands for the Û field and the second name sands for the Ŵ
field. For the dipole-monopole distortion we have [see
Eqs. (70)–(74)]

u0 ¼ a0; u1 ¼ a1; u�ðθÞ ¼ �a1 cos θ;

w0 ¼ a0 þ 3a1; w1 ¼ 0; w�ðθÞ ¼ 0;

2a0 þ 3a1 ≤ 0; j2a0 þ 3a1j ≥ ja1j:
(129)

Substituting these expressions into (118)–(119) with N �
given by (124), we derive

Kþϕ ¼ Kþθ ¼ kdm1þ; Kþχ ¼ kdm2þ;

K−χ ¼ K−θ ¼ kdm1− ; K−ϕ ¼ kdm2−;
(130)

where

kdm1� ¼ e−2a1 cos θ�2
3
a1

m0ð1� p0Þ
ð1� 2a1 − 2a1 cos θÞ;

kdm2� ¼ e−2a1 cos θ�2
3
a1

m0ð1� p0Þ
ð1∓6a1 − 10a1 cos θ − 8a21sin

2θÞ:
(131)

For the quadrupole-quadrupole distortion we have [see
Eqs. (70)–(74)]

u0 ¼ w0 ¼ a0 þ a2; u1 ¼ w1 ¼ 0;

u�ðθÞ ¼ w�ðθÞ ¼ −a2sin2θ; a0 þ a2 ≤ 0: (132)

Substituting these expressions into (118)–(119) with N �
given by (124), we derive

K�ϕ ¼ kqq1�; K�χ ¼ kqq2�; K�θ ¼ kqq3�; (133)

where

kqq1� ¼ e�4a2sin2θ

m0ð1�p0Þ
ð1�8a2ð1þ2 cos θ−4cos2θÞ

−48a22cos2θsin2θÞ;
kqq2� ¼ e�4a2sin2θ

m0ð1�p0Þ
ð1�8a2ð1−2 cos θ−4cos2θÞ

−48a22cos2θsin2θÞ;
kqq3� ¼ e�4a2sin2θ

m0ð1�p0Þ
ð1∓8a2cos2θ−16a22cos

2θsin2θÞ: (134)

Using these expressions, one can evaluate the function
k� [see Eq. (128)]. This function is plotted in Figs. 1–4 for
p0 ¼ 0.6, which corresponds to q0=m0 ¼ 0.8. From the
plots we see that as a result of the distortion, the
Kretschmann scalar varies over the horizon surface, and
for the given range of the dipole and quadrupole moments,
the maximal values of kþ are 10–20 times greater than
those of k−. This implies that the outer horizon is more
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FIG. 1 (color online). The dipole-monopole distortion,
p0 ¼ 0.6. The Kretschmann scalar at the outer horizon of the
distorted black hole, in units of that of the undistorted one.
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FIG. 2 (color online). The dipole-monopole distortion,
p0 ¼ 0.6. The Kretschmann scalar at the inner horizon of the
distorted black hole, in units of that of the undistorted one.
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susceptible to the distortion. In the case of the quadrupole-
quadrupole distortion, for a given value of p0 there exits a
local minima of k� at θ ¼ π=2 for some value of a2 given
by the root of the expression

ð14� 112a2 þ 192a22Þð1� p0Þe�4a2

− ð21� 48a2Þð1∓p0Þ ¼ 0.

For example, for p0 ¼ 0.6 the local minimum kþ ≈ 0.144
for a2 ≈ −0.084 and the local minimum k− ≈ 0.375 for
a2 ≈ −0.234. For values of p0 very close to 1, i.e., for black
holes with very low charge, the horizons at θ ¼ π=2may be
very flattened.

C. The maximal proper time of free fall from the outer
to the inner horizon

Let us now consider the effect of the distortion fields on
the black hole interior between its horizons. In particular,
we would like to see if the inner horizon “can come any

closer” to the outer one. In order to do so, we calculate the
maximal proper time τ of free fall of a test particle from the
outer to the inner horizon along the symmetry semiaxes
θ ¼ 0 and θ ¼ π. In this case, the maximal proper time of
free fall corresponds to a timelike geodesic of zero
azimuthal angular momenta associated with the Killing
vectors ξμðϕÞ and ξμðχÞ and zero energy, which is associated

with the Killing vector ξμðtÞ. For this free fall the coordinates
ðt; θ; χ;ϕÞ remain constant along such geodesic. Thus, the
proper time is a function of the timelike coordinate η, which
changes from 1 to −1. It is convenient to introduce another
coordinate ψ as

η ¼ cos ψ ; ψ ∈ ½0; π�: (136)

Then, using the metric (59)–(61) together with the
conditions (72), (122), and (123), we derive

τjθ¼0 ¼
ffiffiffiffiffiffi
m0

8

r Z
π

0

dψ ½ð1þ p0Þð1þ cos ψÞe−2~uþðψÞ

þð1 − p0Þð1 − cos ψÞe2 ~wþðψÞ�12; (137)

τjθ¼π ¼
ffiffiffiffiffiffi
m0

8

r Z
π

0

dψ ½ð1þ p0Þð1þ cos ψÞe−2 ~w−ðψÞ

þð1 − p0Þð1 − cos ψÞe2~u−ðψÞ�12; (138)

where we defined

~u�ðψÞ ¼
X
n≥0

ð�1Þnancosnψ − u0 − 1

3
ð5u1 − 4w1Þ; (139)

~w�ðψÞ ¼
X
n≥0

ð�1Þnbncosnψ − w0 þ
1

3
ð4u1 − 5w1Þ: (140)

Note that the expressions (137) and (138) are related to
each other by the duality transformation (85), (87) accom-
panied by the transformation of the dummy variable
ψ → π − ψ . We shall calculate the proper times τjθ¼0

and τjθ¼π in units of the maximal proper time τRN
corresponding to free fall from the outer to the inner
horizon of the Reissner-Nordström black hole, which is

τRN ¼
ffiffiffiffiffiffi
m0

p
2

Z
π

0

dψ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p0 cos ψ

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0ð1þ p0Þ

p
E

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0

1þ p0

s !
; (141)

where EðxÞ is the complete elliptic integral of the second
kind [76]. Accordingly, we define the following quantities:
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FIG. 3 (color online). The quadrupole-quadrupole distortion,
p0 ¼ 0.6. The Kretschmann scalar at the outer horizon of the
distorted black hole, in units of that of the undistorted one.
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FIG. 4 (color online). The quadrupole-quadrupole distortion,
p0 ¼ 0.6. The Kretschmann scalar at the inner horizon of the
distorted black hole, in units of that of the undistorted one.
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T jθ¼0 ¼
τjθ¼0

τRN
; T jθ¼π ¼

τjθ¼π

τRN
: (142)

Let us now illustrate the effect of the dipole-monopole
and quadrupole-quadrupole distortion fields on the maxi-
mal proper time of free fall. For the dipole-monopole
distortion (129), we have

~u�ðψÞ ¼ �a1 cos ψ − 5

3
a1; ~w�ðψÞ ¼

4

3
a1; (143)

and for the quadrupole-quadrupole distortion (132), we
have

~u�ðψÞ ¼ ~w�ðψÞ ¼ −a2sin2ψ : (144)

The maximal proper times (142) for p0 ¼ 0.6 as func-
tions of the dipole moment a1 are plotted in Fig. 5. From
this Figure we see that for negative (positive) values of a1
the maximal proper time τ of free fall from the outer to the
inner horizon along the symmetry semiaxis θ ¼ 0 is less

FIG. 6 (color online). Plot (a): The maximal proper times as functions of the quadrupole moment a2 for free fall from the outer horizon
to the inner horizon along the semiaxes θ ¼ 0 and θ ¼ π for p0 ¼ 0.6. The horizontal dashed line illustrates the maximal proper time
corresponding to the Reissner-Nordström black hole. Plot (b): The critical value acr versus 0 < p0 < 1. Note that for acr < a2 < 0 the
maximal proper time of free fall is less than that corresponding to the Reissner-Nordström black hole.

FIG. 5. The maximal proper times for p0 ¼ 0.6 as functions of the dipole moment a1 for free fall from the outer horizon to the inner
horizon along the semiaxes: (a) θ ¼ 0 and (b) θ ¼ π. The horizontal dashed lines illustrate the maximal proper time corresponding to the
Reissner-Nordström black hole.
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(greater) than that of the Reissner-Nordström black hole.
For free fall along the symmetry semiaxis θ ¼ π, for
positive (negative) values of a1, the maximal proper time
is less (greater) than that of the Reissner-Nordström black
hole. This behavior of the maximal proper time is generic
for all values of p0 ∈ ð0; 1Þ. The maximal proper times
(142) as functions of the quadrupole moment a2 for p0 ¼
0.6 are plotted in Fig. 6(a). For all values of a2 between
zero and the critical one, acr, the proper times are less than
those of the undistorted Reissner-Nordström black hole.
The dependence of acr on p0 is illustrated in Fig. 6(b). For a
given value of p0 there exists the corresponding value of
amin for which the maximal proper time of free fall has its
minimal value T min. Figure 7 shows amin and T min as
functions of p0. In contrast to the quadrupole-quadrupole
distortion, the maximal proper time corresponding to the
dipole-monopole distortion can be reduced to arbitrarily
small values by taking arbitrarily large (but finite) negative
(for θ ¼ 0) or positive (for θ ¼ π) values of the dipole
moment a1.

14

Summarizing our results, we see that the distortion fields
can indeed bring closer to each other or move away the
black hole horizons. In the case of the dipole-monopole
distortion, depending on the values of the dipole moment
a1, the horizons can come arbitrarily close to or far from
each other. While in the case of the quadrupole-quadrupole
distortion, there is the range of the quadrupole moment
a2 ∈ ðacr; 0Þ for which the horizons come close to each
other and there is the minimal value T min corresponding to
a2 ¼ amin which defines how close the horizons can come.
The values acr, T min, and amin decrease with increasing of
p0 [see Figs. 6(b), 7(a) and 7(b)], i.e., with decreasing of the

black hole’s electric charge-to-mass ratio. In particular, for
p0 ¼ 0.05 we have q0=m0 ≈ 0.999, and T min ≈ 0.999,
while for p0 ¼ 0.95 we have q0=m0 ≈ 0.312,
and T min ≈ 0.712.

IX. CONCLUSION

In this paper, we studied distorted, five-dimensional,
electrically charged (nonextremal) black holes on the
example of a static and “axisymmetric” black hole distorted
by external, electrically neutral, static and “axisymmetric”
sources of gravitational field. The solution to the five-
dimensional Einstein-Maxwell equations representing such
a black hole was constructed by means of the procedure
based on the gauge transformation of the matrix which is an
element of the coset target space SLð2;RÞ=Uð1Þ of the
scalar fields which define our model. In order to derive the
solution, we applied the transformation to the vacuum seed
solution representing distorted, five-dimensional, static and
“axisymmetric”, vacuum black hole. Note that taking the
limit of vanishing electric charge, our solution becomes
identical to the seed solution. The external sources of the
distortion are not included into the solution. As a result, the
solution is not asymptotically flat. In fact, it diverges at
the asymptotic infinity, where the sources are located. The
space-time can be extended to achieve asymptotic flatness
by including the sources into the solution. The constructed
solution has the following properties:
(i) The space-time singularities (beside those correspond-

ing to the location of the sources) are located behind
the inner (Cauchy) horizon of the distorted black hole,
provided that the sources of distortion fields satisfy the
strong energy condition.

(ii) There is a duality transformation between the outer
and the inner horizons of the distorted black hole. This

FIG. 7 (color online). Plot (a): The value of the quadrupole moment amin versus 0 < p0 < 1. Plot (b): The minimal value of T min
versus 0 < p0 < 1.

14One should take into account that for ja1j ≫ 1 the higher-
order multipole moments cannot generally be neglected.
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duality transformation is exactly the same as that
between the horizon and the stretched singularity
surfaces of the distorted, five-dimensional, static
and “axisymmetric,” vacuum black hole, which is
the seed solution. The same case happens to be in four
dimensions, where the duality transformation between
the outer and the inner horizon surfaces of a distorted,
electrically charged, static and axisymmetric black
hole is exactly the same as that between the horizon
and the stretched singularity surfaces of the corre-
sponding distorted, electrically neutral black hole [1].
The duality transformation corresponds to an ex-
change between the symmetry semiaxes of our sol-
ution and reverse of signs of the multipole moments,
which define the distortion fields.

(iii) We calculated the horizon surface areas and found that
their product depends only on the black hole’s electric
charge and equals to the horizon area product of
the Reissner-Nordström (undistorted) black hole of
the same charge value. In addition, we constructed the
universal area inequality which shows that the
geometric mean of the areas is the upper (lower) limit
for the inner (outer) horizon area. The area product
and the universal area inequality are the higher-
dimensional generalizations of those of a distorted
four-dimensional black hole (see [18–20,52]). The
calculated areas, surface gravity and the electrostatic
potential at the black hole horizons satisfy the Smarr
formula given for both the horizons, which is exactly
the same as that for the five-dimensional Reissner-
Nordström (undistorted) black hole. In addition, we
found that the electromagnetic field invariant calcu-
lated at the black hole horizons is proportional to
the squared surface gravity of the horizons. The
coefficient of proportionality depends on the charge-
to-mass ratio of the black hole and is independent of
the distortion parameters. The quantities calculated
at the black hole horizons are related by the duality
transformation.

(iv) The Kretschmann scalars calculated at the black hole
horizons are related by the duality transformation,
which implies that if the Kretschmann scalar calcu-
lated at the outer horizon is regular, then the Kretsch-
mann scalar calculated at the inner (Cauchy) horizon is
regular as well. The Kretschmann scalars depend on
the trace of the square of the Ricci tensor and the Ricci
scalar of the horizon surfaces and on the electromag-
netic field invariant calculated at the horizons, or the
horizons surface gravity. These quantities are finite if
the distortion fields are regular and smooth at the black
hole horizons.

(v) The outer horizon area of a black hole distorted
adiabatically does not change. Because the product
of the inner and outer horizon areas depends on the
black hole’s electric charge only, and the distortion

fields do not change its value, the area of the inner
horizon does not change under adiabatic distortion
either. As a result, the expressions for the Kretsch-
mann scalars calculated at the black hole horizons can
be presented in the form independent of the monopole
moments of the distortion fields. On the example of
the dipole-monopole and quadrupole-quadrupole dis-
tortion fields we illustrated in the plots that, as a result
of the distortion, both the inner and outer horizons
have regions of high and low space-time curvature.
For the given range of the dipole and quadrupole
moments, the maximal values of the Kretschmann
scalar calculated at the outer horizon in the units of
that of the Reissner-Nordström (undistorted) black
hole of the same mass and electric charge are 10–20
times greater than those of the Kretschmann scalar
calculated at the inner horizon. It implies that the outer
horizon is more susceptible to the distortion than the
inner one. In the case of the quadrupole-quadrupole
distortion, there are regions of the outer black hole
horizon where the space-time curvature can be very
low, especially if the black hole’s charge-to-mass ratio
is small.

(vi) The distortion fields affect noticeably the black hole
interior region. Studying the maximal proper time of
free fall of a test particle from the outer to the inner
horizon along the symmetry semiaxes we showed on
the example of the dipole-monopole and quadrupole-
quadrupole distortion fields that due to the distortion
the horizons can come close to each other or move
away. In the case of the dipole-monopole distortion,
depending on the value of the dipole moment, the
horizons can either come arbitrarily close to or
move far from each other, while in the case of the
quadrupole-quadrupole distortion where is the mini-
mal value of the horizons approach, which cannot be
arbitrary small. This minimal value decreases with the
decreasing value of the black hole’s charge-to-mass
ratio. These results show that the effect of the
distortion fields on the black hole interior depends
not only on their strength but as well on their type.

In addition, we formulated the zeroth and the first law
of mechanics and thermodynamics of the distorted black
hole and found a correspondence between the global and
the local forms of the first law. These laws are higher-
dimensional generalizations of the laws formulated for
four-dimensional, distorted, electrically changed black hole
by Fairhurst and Krishnan [9], who considered more
general class of distortion fields generated by electrically
charged matter.
There are some open issues which we would like to

mention here. The established duality transformation illus-
trates a correlation between the space-time geometry at the
black hole horizons. Such a transformation seems to be an
inherent property of a Weyl-type solution. In the case of
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arbitrarily distorted, four-dimensional, electrically charged,
stationary and axisymmetric black hole, the corresponding
Einstein-Maxwell equations are equivalent to two complex
Ernst equations. These equations can be viewed as the
integrability conditions for an associated linear problem
(see [19,20]). Then, as it was demonstrated by Ansorg and
Hennig [19,20]), the duality transformation (in the general
form) emerges from the integration of the linear problem
along the black hole horizons and the symmetry axis. Such
a linear problem can be formulated by means of a Lax pair
construction for more general, higher-dimensional models
of gravity (see, e.g., [34,39]). Existence of a Lax pair is
directly related to a generation of an infinite number of
solutions, starting from a known one, and thus, to a
complete integrability (see, e.g., [77,78]). Thus, one may
expect that a certain duality transformation may exist
between horizons of some solutions of these models, which
possess a certain group of isometries.
As we illustrated on the example of the five-dimensional,

electrically charged, static and “axisymmetric” black hole,
distorted by electrically neutral matter, its inner (Cauchy)

horizon remains regular. It is rather possible (because of the
duality transformation) that it will be regular under more
general type of distortion due to electrically charged matter.
However, whether the inner horizon is regular under
arbitrary (asymmetric) static distortion, is an open question
in four- and five-dimensional space-times.
One natural generalization of the distorted, five-

dimensional, static black hole is to consider a distorted,
five-dimensional, stationary black hole. The analysis pre-
sented here can be done on other distorted, higher-
dimensional black objects, such as black strings, black
rings, black saturns, etc.
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