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A clock synchronization thought experiment is modeled by a diffeomorphism invariant “time delay”
observable. In a sense, this observable probes the causal structure of the ambient Lorentzian spacetime.
Thus, upon quantization, it is sensitive to the long expected smearing of the light cone by vacuum
fluctuations in quantum gravity. After perturbative linearization, its mean and variance are computed in the
Minkowski Fock vacuum of linearized gravity. The naïve divergence of the variance is meaningfully
regularized by a length scale μ, the physical detector resolution. This is the first time vacuum fluctuations
have been fully taken into account in a similar calculation. Despite some drawbacks this calculation
provides a useful template for the study of a large class of similar observables in quantum gravity. Due to
their large volume, intermediate calculations were performed using computer algebra software. The
resulting variance scales like ðslp=μÞ2, where lp is the Planck length and s is the distance scale separating
the (“lab” and “probe”) clocks. Additionally, the variance depends on the relative velocity of the lab and the
probe, diverging for low velocities. This puzzling behavior may be due to an oversimplified detector
resolution model or a neglected second-order term in the time delay.
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I. INTRODUCTION

In a previous paper [1], one of us proposed a gauge
invariant and operationally meaningful observable, the time
delay, as a test case for practical calculations in perturbative
quantum gravity and as a probe of the causal structure of
both classical and quantum gravity. As is well known, the
issue of gauge invariant (diffeomorphism invariant) observ-
ables is central in the physical interpretation of relativistic
gravity as well as in its quantization [2–7]. The definition of
the time delay is inspired by classical relativistic astrometry
[8]. Thus, in the quantum context, it can be thought of as a
member of a larger class of so-called quantum astrometric
observables.
A detailed discussion of our approach to the question of

observables in both classical and quantum gravity can be
found in [1]. There, the time delay was defined using an
implicit operational description and explicitly computed at
linear perturbative order. Two exact inequalities were also
proven, demonstrating that the causal structure of a
Lorentzian metric imposes strict bounds on its values.
Finally, a sketch of a calculation of the variance of the time
delay in the Minkowski linearized quantum gravitational
vacuum was given. The sketch pointed out that the addi-
tional physical input of a finite measurement resolution was
necessary to obtain a finite result. However, the details of
the calculation, besides a simple dimensional analysis
estimate, were deferred. This calculation is presented in

detail in this work, which is based on the MSc thesis of one
of the authors [9].
The calculation is in some ways significantly different

from standard quantum field theory calculations, which
accounts for its complexity, because it uses explicitly
nonlocal observables rather than those locally defined from
the field operators or their Fourier transforms. We recall
that some similar calculations by other authors can be
found in [10–17]. The calculation in [10,11] is in some
ways more complex and sophisticated, but the methods and
focus of the result are substantially different: they used an
expansion to quadratic order, dimensional regularization,
and focused on the resulting regulated divergences. The
calculations in [12–15] have a greater breadth in the choice
of observables and vacua, but neglected important issues:
their results are somewhat difficult to disentangle from the
choice of gauge and the quantum fluctuations due to the
Poincaré invariant Fock vacuum proper were left uncom-
puted (as opposed to additional thermal, squeezed or extra
dimensional effects). The work in [16] was technically
similar, but focused on lengths of spacelike segments and
did not supply a plausible phenomenological interpretation.
The unpublished work of [17] is most similar, but makes
significantly different technical choices and is restricted to
a limited choice of experimental geometries.
Our work is the first to compute the finite quantum

variance (regularized by a finite measurement resolution
scale) of a quantum astrometric observable in the Poincaré
invariant Fock vacuum of linearized quantum gravity; the
observable is the time delay, which is interesting because it
is sensitive to the quantum fluctuations of the light cones
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[18]. Moreover, several technical choices make it of wider
interest. Since the calculation is carried out entirely in
position space, the qualitative behavior of various singular
integrals is expected to generalize to calculations on a curved
(background) spacetime. Also, (linearized) gauge invariance
of the calculation is manifest. Finally, the tools constructed
in its course, allow a straightforward generalization to more
complicated experimental geometries.
Unfortunately, some of the technical choices are not

without drawbacks. The choice of the family of detector
resolution profiles explicitly breaks Lorentz invariance
(by treating the lab’s reference frame as preferred).
Additionally, to be truly accurate to order l2

p (Planck
length squared), the linear order expression for the time
delay that we used is not sufficient and the quadratic order
should also be included. Both of these choices were made
for the pragmatic reason of making the complexity of the
calculation manageable. Despite these limitations, we
believe this calculation can serve as a useful template
for practical calculations with quantum astrometric observ-
ables and can give qualitative (though detailed) information
about the expected results.
At this point, it should be emphasized that, in any

realistic experimental setup, there will be many sources of
fluctuations, including quantum fluctuations in the internal
experimental apparatus degrees of freedom. These fluctua-
tions have been examined by many authors [20,21]. Our
calculations, on the other hand, concentrate on the con-
tribution to these fluctuations due purely to quantum
gravitational effects. Other fluctuation sources are often
found to have amplitudes exceeding Planck scales, while
our results show that amplitude of quantum gravitational
fluctuations are, as expected, set by the Planck scale. So,
the quantum gravitational fluctuations are rarely expected
to constitute the primary signal. However, they are worth
examining for two reasons. First, it is not a priori excluded
that quantum gravitational fluctuations could constitute a
subleading but detectable contribution to the signal, espe-
cially if some enhancement is possible that would remain
unguessed unless the actual calculation were performed.
Second, it is worth understanding these quantum gravita-
tional fluctuations purely theoretically, as they constitute a
physical effect that is in principle different from those in
nongravitational systems, since they are produced in part
by quantum fluctuations in what we consider to be causal
structure in spacetime.
In Sec. II we briefly recall from [1] the definition of the

time delay observable and its main properties. Section III
explicitly lists the technical choices determining the result,
together with the rationale behind them, and outlines the
strategy of the main calculation. The bulk of the compu-
tation is performed with the aid of a computer, with the
technical details of the algorithm given in Sec. IV. For the
actual computer code with usage instructions see [22]. We
present the results in Sec. V and conclude with a discussion

in Sec. VI. Appendices A and B give details of the pertur-
bative solution of the geodesic equation. Appendix C
justifies our form of the graviton two-point function. And
Appendix D shows some manual calculations used for
checking our computer code.

II. THE TIME DELAY OBSERVABLE

A. Operational definition

Here we briefly introduce the time delay observable and
summarize its most relevant properties. A more extensive
discussion of the problem of observables in General
Relativity and how the time delay fits into it can be found
in [1].
We shall construct an observable by specifying a

(thought) experiment protocol (Fig. 1) and carefully con-
structing a mathematical model of it. Since it is very
difficult to imagine an experiment executed by purely
gravitational degrees of freedom, we must introduce a
minimal amount of matter content, just enough for an
idealized model of the experimental apparatus.
Consider a laboratory in inertial motion (free fall). The

laboratory carries a clock that measures the proper time
along its trajectory. The laboratory also carries an orthogo-
nal frame, which is parallel-transported along the lab’s
worldline. (The frame could be Fermi-Walker transported if
the motion were not inertial.) At a moment of the
experimenter’s choosing, the lab ejects a probe in a
predetermined direction, fixed with respect to the lab’s
orthogonal frame and with a predetermined relative veloc-
ity. The probe then continues to move inertially and carries
its own proper time clock. The two clocks are synchronized
to 0 at the ejection event O. After ejection, the probe

FIG. 1. Geometry of the experimental protocol with the
synchronization or ejection point O, the signal emission point
P at time τðsÞ after emission and the signal reception point Q at
time s after emission.
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continuously broadcasts its own proper time (time-stamped
signals), in all directions using an electromagnetic signal.
At a predetermined proper time interval s after ejection,
event Q, the lab records the probe signal and its emission
time stamp τðsÞ, sent from event P. Call s the reception
time, τðsÞ the emission time and the difference,

δτðsÞ ¼ s − τðsÞ; (1)

the time delay.
To model this protocol mathematically, we introduce the

notion of a lab-equipped spacetime ðM; g;O; êai Þ, which
consists of an oriented manifold M, with time oriented
Lorentzian metric g, a point O ∈ M and an oriented
orthonormal frame êai ∈ TOM, with êa0 timelike and future
oriented. The point O is identified with the probe ejection
event, while êa0 is tangent to the lab worldline. The probe
worldline is tangent to a vector va ¼ viêai , whose compo-
nents are specified with respect to the tetrad at O (the lab
frame). For a fixed relative probe velocity vi and a fixed
reception time s, once a lab-equipped spacetime is given, it
is a matter of solving the appropriate geodesic equations to
calculate the emission time τvðsÞ or the time delay δτvðsÞ.
In the remaining, the explicit dependence of the time delay
on v and s is omitted when the context is clear. Manifestly,
both are invariant under diffeomorphisms that simultane-
ously act on all components of the lab-equipped spacetime
data. It is worth noting that the time delay satisfies
interesting inequalities related to the causal structure of
Lorentzian metrics. We will not expand on this remark in
this work, but refer the reader to Secs. IV and VII B of [1]
for more details.

B. Overview of the calculational procedure

Unfortunately, the above definition, though exact and
conceptually clear, is not very useful in practical calcu-
lations. For that purpose, we suppose that the spacetime
ðM; gÞ is a small perturbation on top of Minkowski
space. We find an explicit linearized expression for
the time delay, as a linear function of the graviton field
(the deviation of g from the Minkowski metric). This
linearized expression will then be used to quantize the
observable, by replacing the classical graviton field with
a smeared version of the quantum graviton field (see
Secs. IID and IIIC).
The Poincaré invariant Fock vacuum is chosen as the

quantum gravitational vacuum and the quantum time delay
observable is evaluated with respect to this vacuum. Since
the Fock vacuum is Gaussian with respect to any observ-
able that is linear in the graviton field, the focus is on
calculating the mean and the variance of our quantum
observable as this captures all the information about its
quantum measurements. The mean is the same as the
classical Minkowski space expression to linear order in the
graviton field, however, the variance h0jτ̂ðsÞ2j0i is more

complicated and will be calculated from the expectation
value of the square of the quantized linear correction to the
time delay, which we denote by r½ĥ�.
We derive an analytic expression for this quantum

variance (see Sec. IVA), which consists of 45 terms of
which each contains so-called smeared segment integrals
that are composed of one-dimensional integrals along the
worldlines of the lab and the probe and four-dimensional
integrals over a smearing function. This smearing function
smears the graviton field and guarantees that the quantum
variance is finite and can physically be interpreted as
modeling the detector sensitivity (see Sec. IIIC). We then
take a pragmatic view and chose to work not with a
generic smearing, but with one that extends only in the
plane orthogonal to the lab worldline, with spherical
symmetry within it. At this point we resort to the use
of hybrid numerical-analytical calculations automated
using computer algebra software (MATHEMATICA 8.0).
The integration along the geodesic segments and the
angular smearing integrals are computed first and then
tabulated. After this, the remaining smearing is carried out
to obtain the quantum variance of the time delay for an
arbitrary shape of the triangle as described in the
experimental protocol. The details of the computer cal-
culation are described in the rest of Sec. IV and the results
are reported in Sec. V.

C. Linearized expression

To give the explicit linearized formula, we need some
notation that is introduced in Appendix B. Note that we use
h to denote the graviton field and perform all index
contractions using the Minkowski metric. We parametrize
the linear correction to the emission time as

τðsÞ ¼ τclðsÞð1þ r½h�Þ þOðh2Þ; (2)

r½h� ¼
X
KnX

rKijnX

Z ðnÞ

X
∇KhðijÞ; (3)

where
R ðnÞ
X denotes an affinely [0, 1]-parametrized, n-

iterated integral over a segment X. The summation is
carried out over the segments X, the integral iteration
number n and the multi-indices K, with rKij

nX some tensor
coefficients to be specified. An ordinary integral is
zero-iterated

R ð0Þ dtfðtÞ ¼ R
1
0 dtfðtÞ, while a one-iterated

integral is
R ð1Þ dtfðtÞ ¼ R

1
0 dt

R
t
0 dt

0fðt0Þ. The multi-index
K ¼ ði1i2 � � � ijKjÞ defines the differential operator ∇K ¼
∂i0∂i1 � � � ∂ijKj . The segments range over X ¼ U,V, W,
which label the sides of the geodesic triangle defined in
Minkowski space by the time delay measurement protocol,
illustrated in Figs. 1 and 8. The vectors corresponding to
each segment areUa ¼ −sua, Va ¼ tva andWa ¼ wa. The
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vector wa is null, while ua and va are future pointing,
timelike unit vectors, representing, respectively, the veloc-
ities of the lab and probe worldlines. The probe ejection
velocity is parametrized by the rapidity θ, which is defined
by u · v ¼ − cosh θ. The nonvanishing coefficient tensors

rKijnX (namely, the restriction to the ranges n ¼ 0, 1
and jKj ¼ 0, 1) can be read off directly from the follow-
ing explicit formula, which is obtained by explicitly
expanding the sums of the more structured expression
(B11)–(B14),

r½h� ¼ 1

τclðsÞv · w
�
2W½iUj�Vk

Z
V
dt∂ihðkjÞ þ 2W½iUj�Wk

Z
W
dt∂ihðkjÞ þ 2W½iUj�Uk

Z
U
dt∂ihðkjÞ þWiVj

Z
V
dthðijÞ

− 2W½iVj�Vk

Z ð1Þ

V
dt∂ihðkjÞ þWiWj

Z
W
dthðijÞ

þWiUj

Z
U
dthðijÞ−2W½iUj�Uk

Z ð1Þ

U
dt∂ihðkjÞ − 2W½iUj�Wk

Z
W
dt∂ihðkjÞ − 2W½iUj�Vk

Z
V
dt∂ihðkjÞ

�
; (4)

where τclðsÞ ¼ se−θ is the time delay computed in
Minkowski space, as in Eq. (B3).

D. Quantization

The linearized gravitational field can be quantized fairly
straightforwardly, for instance, by using a complete gauge
fixing and constructing a Poincaré invariant Fock vacuum
(see Appendix C for details). The quantization is com-
pletely specified by the (Wightman) two-point function
hĥðxÞĥðyÞi, where ĥðxÞ is the quantized field correspond-
ing to hðxÞ. In a standard way, using Wick’s theorem, the
expectation value of any quantum observable can be
expressed as a function of hĥðxÞĥðyÞi. We are ultimately
interested in computing the vacuum fluctuation in the
quantized emission time observable τ̂ðsÞ, which in our
approximation reduces to computing the expectation value

of the square of the quantized linear correction dr½h�. The
latter quantity is expressible in terms of the (Hadamard)
two-point function

hfĥðxÞ; ĥðyÞgi ¼ hĥðxÞĥðyÞ þ ĥðxÞĥðyÞi ∼ l2
p

ðx − yÞ2 ; (5)

whose precise form depends on the choice of gauge, but the
displayed singular term appears generically.
Since r½h� is linear in the graviton field, the simplest

quantization prescription is to replace every occurrence of
hðxÞwith ĥðxÞ:dr½h� ¼ r½ĥ�. As for any linear observable, its
vacuum expectation value vanishes, hr½ĥ�i ¼ 0. The emis-
sion time observable is then quantized perturbatively as

τ̂ðsÞ ¼ τclðsÞð1þ r½ĥ�Þ þOðĥ2Þ (6)

and the variance of the emission time is

ðΔτÞ2 ¼ hτ̂ðsÞ2i − hτ̂ðsÞi2 (7)

¼ τclðsÞ2ð1þ hr½ĥ�2iÞ þOðl2
pÞ: (8)

Unfortunately, as discussed in Sec. VII C of [1], the
above naïve expression for ðΔτÞ2 is divergent due to the
x → y coincidence singularity on the right-hand side of
Eq. (5). A physically motivated way of regularizing this
divergence is to recall that field measurements are, in any
case, never localized with infinite spacetime precision
[23,24]. Thus, we are justified in replacing the point field
ĥðxÞ with the smeared field

~hðxÞ ¼
Z

dzĥðx − zÞ~gðzÞ; (9)

where ~gðzÞ is the smearing function and can be interpreted
as the detector sensitivity profile. It phenomenologically
models all possible sources of smearing, including the
fluctuations in the center-of-mass positions of the lab and
probe equipment, as well as the finite spatial and temporal
resolution of the signal emission and reception. The
expectation value hr½ ~h�2i is then finite, though dependent
on some moments of the detector sensitivity profile. This
observation simply shows that the quantum aspects of the
time delay observable depend on a few more details of the
lab and probe material models than just its purely classical
aspects.

III. PROVISIONAL CHOICES

While the summary of Sec. II make it clear how to go
about computing the quantum vacuum fluctuation in the
time delay observable, there remain several concrete
choices to be made to fully define the steps of such a
calculation. These choices are discussed explicitly below.
Not all of these choices are ideal and should be re-examined
and improved in future work.

A. Truncation order

We are interested in computing the quantum vacuum
fluctuation ðΔτÞ2 given by Eq. (8). We have an
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expression for τðsÞ valid to order OðhÞ. So, upon
quantization, we expect to get an expression for ðΔτÞ2
valid to the same order. However, at that order, the
correction must be proportional to the expectation value
hr½ĥ�i, which vanishes by virtue of being linear in ĥ.
Therefore, the leading nontrivial contribution ðΔτÞ2 is of
order Oðl2

pÞ, where we have noted that, after taking the
vacuum expectation value, an operator correction of order
OðĥnÞ translates to a correction of order Oðln

pÞ if n is
even and vanishes otherwise. To get a correct expression
at that order, we must know τðsÞ to order Oðh2Þ to begin
with,

τðsÞ ¼ τclðsÞð1þ r½h� þ r2½h�Þ þOðh3Þ: (10)

Then

ðΔτÞ2 ¼ τclðsÞð1þ hr½ĥ�2i þ hdr2½h�iÞ þOðl4
pÞ: (11)

The quadratic correction r2½h� is partially [25] com-
puted in Appendix A. However, we do not include it in
the quantum vacuum fluctuation in this paper. The main
reason is that of feasibility. As will be seen in Sec. IV,
the evaluation of the hr½ĥ�2i (or rather its smeared

version) is already quite involved and the term hdr2½h�i
would be even more complicated, as evidenced by the
expressions given in Appendixes A and B. Also, r2½h�
does not appear if we treat linearized gravity as an
independent theory and r½h� a gauge invariant observable
of independent interest. We adopt this interpretation
below. Thus, this result is a toy model for a result that
could be expected from the one involving r2½h�, which
itself would be a toy model for the result of a higher
perturbative order or even nonperturbative calculation.
Future work should incorporate the quadratic r2½h� term
directly into the calculation.

B. Graviton two-point function

The Wightman two-point function hĥðxÞĥðyÞi strongly
depends on the choice of gauge. However, the expectation
value of any gauge invariant observable is independent of
this choice. So we are free to select, from the possible
choices, a form of the two-point function that is convenient
for our purposes. In fact, we select it such that the
symmetrized (Hadamard) two-point function takes the
simple and covariant expression

hfĥijðxÞ; ĥklðyÞgi ¼
l2
p

π
P

ηij;kl
ðx − yÞ2 ; (12)

ηij;kl ¼ ηikηjl þ ηilηjk − ηijηkl; (13)

where P denotes a Cauchy principal value distribution.
This formula is justified in Appendix C. We are ultimately
interested in computing the vacuum fluctuation in the

quantized emission time observable τ̂ðsÞ, which in our
approximation reduces to computing the expectation value
of the square of the quantized linear correction r½ĥ�.
The latter quantity is expressible in terms of the
Hadamard two-point function (12).

C. Smearing profile

Unfortunately, without a detailed model of the lab and
probe equipment, there is no natural choice for the
smearing profile ~gðxÞ in the definition of the smeared
graviton field ~hðxÞ in Eq. (6). We make the following
pragmatic choice that balances generality and simplicity in
the resulting calculationsZ

dz~gðzÞ ¼ 1; (14)

~gðzÞ ¼ ḡðz2⊥Þδðu · zÞ; (15)

where u is the unit vector parallel to the lab worldline,
z⊥ ¼ zþ ðz · uÞu, z2⊥ ¼ R2, and ḡðR2Þ is smooth and
strongly peaked around R ¼ 0. As will be seen below,
the profile that will directly appear in the results is rather
the self-convolution

~g � ~gðzÞ ¼
Z

dx~gðz − xÞ~gðxÞ ¼ 1

4π
gðz2⊥Þδðu · zÞ; (16)

where gðR2Þ has the same characterization as ḡðR2Þ. This
choice of ~gðzÞ is simple, is invariant under rotations fixing
u, ensures that the self-convolution ~g � ~gðzÞ is equally
simple and symmetric, and is still general enough to allow
its moments to be essentially arbitrary. We only require that
there exists a length scale μ (the smearing scale) such that
arbitrary moments behave likeZ

dzzk ~gðzÞ ∼ μk; (17)

with coefficients of proportionality of order Oð1Þ.
Unfortunately, this pragmatic choice explicitly breaks

Lorentz invariance. The effect of the smearing along the
geodesic triangle is illustrated in Fig. 2. The smearing
profile ~gðzÞ must break Lorentz symmetry in some way,
otherwise it could not be peaked only near z ¼ 0. However,
it would be more physically reasonable to suppose that the
local geometry of each geodesic determines the orientation
of the smearing profile at its own points. Unfortunately, that
would reduce the symmetry of the cross-convolutions of
the different smearing profiles and hence significantly
complicate the estimation of their moments. Future work
should deal with such complications and use a more
physically reasonable smearing scheme. We hope, though,
that the results would not be qualitatively significantly
different from the present work.

QUANTUM ASTROMETRIC …. II. TIME DELAY IN … PHYSICAL REVIEW D 89, 024039 (2014)

024039-5



IV. CALCULATION

In this section, we describe the calculation of the
quantum variance of the time delay, the core of this paper,
in more detail. The details are presented in four parts.
The first part, Sec. IVA, derives a master formula for the
quantum variance. This master formula is based on the
structure of linearized time delay observable [Eqs. (3) and
(4)] and encapsulates all quantum expectation values in
smeared segment integrals. The smeared segment integrals
contain two kinds of integrations performed on the graviton
Hadamard two-point function: one-dimensional integrals

over background geodesic segments and four-dimensional
integrals over a smearing function. The segment integra-
tions and the angular smearing integrals are to be pre-
calculated and tabulated as described in Sec. IVB, which
constitutes the second part. Section IVC, completes the
description of the smeared segment integrals. Finally,
Sec. IVD describes how these tables can then be used to
efficiently compute, using an updated master formula, the
quantum variance of the time delay for an arbitrary shape of
the corresponding geodesic triangle, and potentially for
other thought experiment geometries.
The algorithm described below was implemented using

computer algebra software (MATHEMATICA 8.0). The
results of the calculations carried out with its help are
described in Sec. V.

A. Master formula for h~r2i
We denote the smeared first-order correction to the time

delay as follows,

~r ¼ r½ ~h� ¼
X
KmX

rKijmX

Z ðmÞ
dz∇K

~hijðzÞ; (18)

and we write h~r2i for the corresponding smeared correction
to the variance of the time delay. Below we derive a master
formula for this quantum variance that separates the geo-
metric aspects of the time delay observable, as encapsulated
in the coefficients rKijmX , and the quantum effects, as
encapsulated in the smeared segment integrals ~Imn

K ðX; YÞ
to be introduced below. The capital letter K (and later L)
denote multi-indices (cf. Sec. IIC).

The quantum variance can be written as

h~r2i ¼ 1

2
hf~r; ~rgi

¼ 1

2

X
KmX

X
LnY

rKijmXr
Lkl
nY

Z
dx

Z
dy∇K ~guðxÞ∇L ~guðyÞ

Z ðmÞ

X
dx0

Z ðnÞ

Y
dy0hfĥðijÞðx0 − xÞ; ĥðklÞðy0 − yÞgi

¼ l2
p

2π

X
KmX

X
LnY

rKijmXηij;klr
Lkl
nY

Z
dx

Z
dy∇K ~guðxÞ∇L ~guðyÞ

Z ðmÞ

X−x
dx0

Z ðnÞ

Y−y
dy0P

1

½y0 − x0�2

¼ l2
p

2π

X
KmX

X
LnY

rKijmXηij;klr
Lkl
nY

Z
dx

Z
dy∇K ~guðxÞ∇L ~guðyÞImnðX − x; Y − yÞ

¼ l2
p

2π

X
KmX

X
LnY

ð−ÞjLjrKijmXηij;klr
Lkl
nY

Z
dzImnðX; Y þ zÞ

Z
dy∇K∪L ~guðzþ yÞ~guðyÞ

¼ l2
p

2π

X
KmX

X
LnY

ð−ÞjLjrKijmXηij;klr
Lkl
nY

Z
dzImnðX; Y þ zÞ∇K∪LguðzÞ

¼ l2
p

2π

X
KmX

X
LnY

ð−ÞjLjrKijmXηij;klr
Lkl
nY

~Imn
K∪LðX; YÞ; (19)

FIG. 2. Rough sketch of the support of the smearing function
~gðzÞ overlaid on the OPQ geodesic triangle.
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where in the first line we used the Hadamard two-point
function (12) and we introduced the following definitions:

ImnðX; YÞ ¼
Z ðmÞ

X
ds

Z ðnÞ

Y
dtP

1

½xðsÞ − yðtÞ�2 ; (20)

~Imn
K ðX; YÞ ¼

Z
dzImnðX; Y þ zÞ∇KguðzÞ; (21)

guðzÞ ¼
Z

dz0 ~guðzþ z0Þ~guðz0Þ (22)

¼ ð~gu � ~guÞðzÞ: (23)

where � denotes convolution [recall the relation
~guð−z0Þ ¼ ~guðz0Þ]. The convolved smearing function has
the same properties as the original smearing function as
discussed in Sec. IIIC. Note the translation invariance
ImnðX þ z; Y þ zÞ ¼ ImnðX; YÞ. Even though the final
expression for h~r2i does not appear to be symmetric under
the interchange of the K and L multi-indices, in fact, the
extra ð−ÞjLj factor symmetrizes the interchange property
~Imn
K∪LðX; YÞ ¼ ð−ÞjKjþjLj~InmL∪KðY; XÞ, where K∪L ¼ L∪K
is the concatenation of two multi-indices.
The bulk of the work lies in evaluating the ~Imn

K∪LðX; YÞ
integral. Since for each term in ~r2 we have such an integral,
and ~r consists of ten terms, we have to evaluate 1

2
· 10 · 11 ¼

55 such integrals. Additionally, each integral contains 6–8
one-dimensional integrals, which makes a total of ∼400
one-dimensional integrals. This is not the entire story yet,
looking closer at the integrals one notices that the singu-
larity structure changes depending on whether the line
segments along which the integral needs to be evaluated are
either timelike or null and parallel or nonparallel. Together
with some additional technical details to be discussed, this
results in ten different singularity structures.
In short, there is no simple, direct master formula that

can be given for the evaluation of (the leading μ-order
expansion terms of) the smeared segment integrals
~Imn
K ðX; YÞ. Instead, we settle for the master formula (31)
of intermediate type. Part of it can be evaluated symboli-
cally and tabulated for different argument types. The
remaining part can be evaluated numerically as needed
using an algorithm with table look-ups. All these (hybrid
numerical-symbolic) operations are automated using
the computer algebra software MATHEMATICA 8.0. The
details of each of the two parts of the calculation are
discussed below.

1. Spherical coordinates for smearing

The ~Imn
K ðX; YÞ integral is completely determined by the

number of derivatives jKj on the smearing function
(jKj ¼ 0, 1, 2), the number of iterated integrals along

the X and Y segments denoted bym and n (wherem ¼ 0, 1
and similarly for n) and the line segments along which
the integrals need to be evaluated. We decompose
z ¼ −ðu · zÞzþ ðû · zÞûþ w, where û is a spacelike unit
vector, taken to be ûi ¼ ð0; 1; 0; 0Þ (hence u · û ¼ 0) and w
is orthogonal to the ðu; ûÞ–plane. We parametrize z as

z ¼ ð−u · z; û · z; w1; w2Þ (24)

¼ ðT; R cos θ; R sin θ cos ϕ; R sin θ sin ϕÞ (25)

and write the four-dimensional integral over the spacetime
separation z in ~ImnðX; Y þ zÞ asZ

d4z ¼
Z

dðu · zÞ
Z

dðû · zÞ
Z

d2w (26)

¼
Z

∞

−∞
dT

Z
R

−R
dc

Z
2π

0

dϕ
Z

∞

0

dRR; (27)

where we defined c ¼ R cos θ, with w2 ¼ R2 − c2.
As discussed in Sec. IIIC, the smearing function is set to

guðzÞ ¼ gðz2⊥Þδðu · zÞ. The smearing function with any
number of derivatives can be written compactly as

∇KguðzÞ ¼
X

T;d;γ;p;l

TKδ
ðdÞð−TÞgðγÞðR2ÞRpclPT;d;γ;p;l; (28)

where K is a multi-index, PT;d;γ;p;l are numerical coef-
ficients, d, γ, p, l range over a non-negative finite integral
set, and TK ranges over a certain basis of rank-jKj tensors
consisting of symmetrized products of u, û and
δ⊥ ¼ ηþ uu. The coefficients are nonzero only when
the indices satisfy the homogeneity constraint
dþ 2γ − p ¼ jKj. For the integrals we are considering,
the maximal number of derivatives on the smearing
function is two. Then, TK ranges over either f1g for
jKj ¼ 0, fu; ûg for jKj ¼ 1, or fuu; û û; uûþ ûu; δ⊥g
for jKj ¼ 2. The maximal power of c in PT;d;γ;p;l is also
two. The exact expression for all the required derivatives of
the smearing function can be found in Table I.
Since the smearing function is independent of the

direction of w and ImnðX; YÞ depends only on w2, guðzÞ
and its derivatives can be independently integrated (or
averaged) over the directions of w. The averaging pro-
cedure for w is fairly straightforward. For symmetry
reasons, all terms that are odd in w when averaged give
zero. Looking at the second column of Table I, we also need
the following integral identities (where we take ŵ2 ¼ 1 and
w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − c2

p
ŵ):
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1

2π

Z
d2ŵ ¼ 1; (29)

1

2π

Z
d2ŵwiwj ¼

1

2
ðR2 − c2Þðδ⊥ij − ûiûjÞ; (30)

where δ⊥ij ¼ ηij þ uiuj and the integration is over a unit
sphere, the possible values of ŵ. The tensor structure of the
last identity follows directly from the rotational and
reflection invariance of the integral, with the overall
constant fixed by computing its trace.

2. Master formula for ~Imn
K ðX;YÞ

Substitution of the differentiated smearing function (28)
into the definition (21) of ~Imn

K ðX; YÞ and recalling that
d4z ¼ dcRdRdTdϕ gives

~Imn
K ðX; YÞ
¼

X
T;d;γ;p;l

TKPT;d;γ;p;l

×
Z

2π

0

dϕ
Z

∞

−∞
dTδðdÞð−TÞ

Z
∞

0

dRRpþ1gðγÞðR2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
part II

×
Z ðmÞ

X
ds

Z ðnÞ

Y
dt
Z

R

−R
dcP

cl

ðyðtÞ − xðsÞ þ zÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
part I

¼ 2π

μ2
X∞
i¼0

X
T

TKμ
iImn
T;i ðln μ;X; YÞ: (31)

Since the smearing function guðzÞ depends only on R and
T, the evaluation of this integral can be broken down into
two parts: symbolic evaluation and tabulation (indicated by
“part I”) after which the remaining smearing can be
performed (indicated by “part II”). Note that the ϕ integral
simply results in the overall factor of 2π displayed on the
last line of (31). Note that, because we do not assume a
precise form of the smearing function, we are also not
interested in an exact answer for ~Imn

K ðX; YÞ. Instead, as

indicated above, we are only interested in a few of its
leading- order terms in the limit of small smearing scale
μ [cf. Eq. (17)], namely the coefficients Imn

T;i ðln μ;X; YÞ
for small values of i. The dependence on ln μ in
Imn
T;i ðln μ;X; YÞ is expected to be a low-order polynomial.
Therefore, we take the opportunity to simplify the calcu-
lations in “part I” by judiciously expanding some of the
intermediate results in powers of R and T (also with
logarithmic terms, where appropriate).

B. Tabulating angular and segment integrals

In this section, we focus on evaluating the segment
integration and the remaining angular integration of the
smeared segment integrals ~Imn

K , that is, “part I” of (31).
These integrals can be evaluated analytically and for any
given parameters (to be specified below). Thus, they can be
tabulated in advance for the values of the parameters
needed to compute h~r2i, even before the triangular geom-
etry is specified. This flexibility is what allows our methods
to be straightforwardly extended to observables with more
general underlying geometries.
We evaluate integrals of the following form, parame-

trized by integers m, n and l:

Imn
l ðR; T;X; YÞ ¼

Z ðmÞ

X
ds

Z ðnÞ

Y
dt
Z

R

−R
dcP

cl

zðs; t; cÞ2 ;
(32)

where we will need l ¼ 0, 1, 2 and m, n ¼ 0, 1.
The integration is carried out in several steps. Note that

we start with a rational expression in all variables (c, s, t, X
and Y endpoint coordinates). The integration with respect
to c is carried out in Sec. IVB1 and turns it into a mix of
rational and logarithmic terms, with a precisely controlled
structure. Next, the s and t integrals are considered. If the
segments X and Y are nonparallel, it is advantageous to
change coordinates (Sec. IVB2) to simplify the denomi-
nators and the logarithmic arguments and then apply
Stokes’s theorem to convert the two-dimensional integral
into a one-dimensional one. A similar goal is achieved for
parallel segments using an alternative method (Sec. IVB3).
In either case, iterated integrals are converted to noniterated

TABLE I. Smearing function guðzÞ ¼ gðz2⊥Þδðu · zÞ [cf. Eq. (16)], with zero, one or two derivatives. The second column shows the
derivative chain rule applied to the profile ansatz. The third column shows the result after w-averaging, as discussed in Sec. IVA1 and
expressed in ðR; T; c ¼ R cos θÞ coordinates. Products of vectors denote the symmetrized tensor product, e.g., ðuwÞij ¼ uðiwjÞ. Primes
denote derivatives with respect to the argument of the corresponding function.

chain rule w-averaging

guðzÞ gðz2⊥Þδðu · zÞ gðR2Þδð−TÞ
∇guðzÞ ugðz2⊥Þδ0ðu · zÞ þ 2½ðû · zÞûþ w�g0ðz2⊥Þδðu · zÞ ugðR2Þδ0ð−TÞ þ 2ûcg0ðR2Þδð−TÞ
∇∇guðzÞ uugðz2⊥Þδ00ðu · zÞ þ 4½uûðû · zÞ þ uw�g0ðz2⊥Þδ0ðu · zÞ

þ½2δ⊥g0ðz2⊥Þ þ 4ðû û ðû · zÞ2
þ2ûwðû · zÞ þ wwÞg00ðz2⊥Þ�δðu · zÞ

uugðR2Þδ00ð−TÞ þ 4uûcg0ðR2Þδ0ð−TÞ
þ½2δ⊥g0ðR2Þ

þð4û û c2 þ 2ðδ⊥ − û ûÞðR2 − c2ÞÞg00ðR2Þ�δð−TÞ

BÉATRICE BONGA AND IGOR KHAVKINE PHYSICAL REVIEW D 89, 024039 (2014)

024039-8



ones. The results for both the parallel and nonparallel cases
fit into the same precisely controlled structure, involving
rational functions and logarithms, which is fed into the
following step. The remaining one-dimensional integrals are
evaluated (Sec. IVB4) and the result is a mix of rational,
logarithmic and dilogarithmic terms, again with a precisely
controlled structure.
At this stage, we will have an algorithm to compute

explicit, exact expressions for the integrals Imn
l ðR; T;X; YÞ

defined in Eq. (32), even when the coordinates of the
endpoints of X and Y are given symbolically. The only
caveat is that cases when X and Y are or are not parallel
must be distinguished by hand. However, it is not these
expressions that we need, but their smeared derivatives
~Imn
K ðX; YÞ or, even more precisely, the expansion coeffi-
cients ~Imn

T;i ðln μ;X; YÞ defined in Eq. (31). Note that the
smeared segment integrals ~Imn

K ðX; YÞ have singular leading
terms in the μ expansion only if the X, Y segments have
common or lightlike separated endpoints. (All of these
possibilities occur in the time delay geometry.) These
μ-singularities stem from the singular behavior of
Imn
l ðR; T;X; YÞ for small R and T under the same circum-
stances. Unfortunately, the structure of the R, T singular-
ities depends strongly on more details of the relative
geometry of the X and Y segments. The R, T expansion
is performed and tabulated for each of the possible cases
(see Sec. IVB5 and Fig. 5).
These tables serve as input to “part II,” the remaining R,

T smearing (Sec. IVC), which ultimately computes the
~Imn
T;i ðln μ;X; YÞ coefficients.

1. Integration with respect to c

When we confine the line segments and the displacement
due to smearing to the ðu; ûÞ–plane, the denominator in
(32) can be rewritten with the following notation:

zðs; t; cÞ ¼ yðtÞ − xðsÞ þ Tuþ cûþ w; (33)

zðs; t; cÞ2 ¼ −z20 þ z21 þ 2cz1 þ R2; (34)

z0 ¼ −u · ½yðtÞ − xðsÞ þ Tu�; (35)

z1 ¼ û · ½yðtÞ − xðsÞ þ Tu�; (36)

where we have obviously separated the Tu and cû smearing
shifts. In this form, we see that the denominator depends
only linearly on c, which makes integration with respect to
c rather straightforward. Basically, the integral consists of
logarithms with the denominator evaluated at c ¼ �R as
arguments. This result simplifies even more since the
arguments of the logarithms factor as follows:

zðs; t; c ¼ �RÞ2 ¼ −z20 þ ðz1 þ cÞ2 (37)

¼ ðcþ z1 − z0Þðcþ z1 þ z0Þ (38)

¼ zcþzc−; (39)

zc� ¼ cþ z1∓z0 ¼ cþ z�; (40)

where we have introduced the new notation v�¼v ·ðû�uÞ
for any vector v. After the c integral has been performed,
the symbol c will always refer to the possible endpoint
values �R.
Performing the integration over c in terms of these new

variables zc� and z1 yields

Z
R

−R
dc

cl

−z20 þ z21 þ 2cz1 þ R2
¼

X
c¼�R

� ð2P̄1ðc; z0; z1Þ þ P2ðzc�; z1Þ½ln jzcþj þ ln jzc−j�Þ (41)

¼
X
c¼�R

�
X
�
ðP1ðc; zc�; z1Þ þ P2ðzc�; z1Þ ln jzc�jÞ; (42)

where the �-symbol following the summation over c
matches the sign in this summation. The terms P̄1, P1

and P2 are polynomials in the arguments before the semi-
colon and Laurent polynomial in the arguments after the
semi-colon. The first two are related by

P1ðc; zc�; z1Þ ¼ P̄1ðc;∓ðzc� − z1 − cÞ; z1Þ; (43)

since expression z0 in terms of z1 and zc� in this way allows
to introduce an overall �-sum. Since z1 appears Laurent

polynomially, the individual summands in the result of the
c integral may have poles for z1 ¼ 0. However, the integral
we started with was regular for z1 ¼ 0 and thus these
singularities need to vanish in the final result. This served
as a consistency check on our calculations (Secs. IVB4
and VA).
Next, integration over s and t must be performed. This is

done in different ways for the case when X and Y are
parallel or nonparallel segments.
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2. Variable change for nonparallel line segments

We can trade the complexity of iterated s and t integrals
for increased complexity of the integrands. The iterated
integrals can be treated similarly as the single integrals
using Cauchy’s formulaZ ðmÞ

X
ds ¼

Z
X
ds

ð1 − sÞm
m!

: (44)

At this point, we note that the integrands depend on s and t
explicitly and through the expressions zc� and z1. If the X
and Y segments are nonparallel, the latter two are linearly
independent and thus can serve as alternative integration
variables to s and t. It turns out to be advantageous to use
zc� and z1 as the basic integration coordinates, with the
integration domain being the parallelogram in the ðu; ûÞ-
plane spanned by the vector yðtÞ − xðsÞ þ Tu. This change
of variables and the new integration domain are illustrated
in Fig. 3, where we use the notation

zμν ¼ yν − xμ; x ¼ x2 − x1; y ¼ y2 − y1; (45)

yðtÞ ¼ y1 þ ðy2 − y1Þt; yð0Þ ¼ y1; yð1Þ ¼ y2;

(46)

xðsÞ ¼ x1 þ ðx2 − x1Þs; xð0Þ ¼ x1; xð1Þ ¼ x2:

(47)

The explicit change of variables is

s ¼ y∧ðz − z11Þ
x∧y ; t ¼ x∧ðz − z11Þ

x∧y ; (48)

ds∧dt ¼ − dz0∧dz1
x∧y ¼ � dzc�∧dz1

x∧y ; (49)

where we have used the following ∧ notation and identity
between vectors (though, note that ds∧dt stands for the
usual wedge product of differential forms):

v∧w ¼ −ðv · uÞðw · ûÞ þ ðw · uÞðv · ûÞ; (50)

v∧w ¼ �½ðv · ûÞw� − ðw · ûÞv��: (51)

Clearly, this transformation becomes singular when X and
Y are parallel (x∧y ¼ 0). That case is handled differently in
the next subsection.
So the integral we are interested in is

Z ðmÞ

X
ds

Z ðnÞ

Y
dtðP1ðzc�; z1Þ þ P2ðzc�; z1Þ ln jzc�jÞ (52)

¼
Z

1

0

ds
Z

1

0

dt
ð1 − sÞm

m!

ð1 − tÞn
n!

ðP1ðzc�; z1Þ þ P2ðzc�; z1Þ ln jzc�jÞ (53)

¼ �
Z
X∧Y

ð1 − y∧ðz−z11Þ
x∧y Þm
m!

ð1 − x∧ðz−z11Þ
x∧y Þn
n!

ðP1ðzc�; z1Þ þ P2ðzc�; z1Þ ln jzc�jÞ
dzc�∧dz1

x∧y : (54)

Since any 2-form is closed (being top dimensional) by the
Poincaré lemma, it is also exact; i.e., we can write the
differentials in (54) as dQ whereQ is some 1-form. Then by
Stokes’s theorem, we can reduce the integral in (54) from an
integral over the interior to an integral over the boundary of
the parallelogram. The boundary of the st integration
domain is ð0; 0Þ⟶s ð1; 0Þ⟶t ð1; 1Þ⟶−s ð0; 1Þ⟶−t ð0; 0Þ. In

terms of the z integration domain, this becomes
z11⟶

−x z21⟶
y z22⟶

x z12⟶
−y z11. We can formalize this

procedure as follows. We are to integrate an expression
of the form P ¼ dQ where Q is some 1-form. If we pull Q
back to any line, say x, then Qx is also top dimensional
and therefore closed. Thus, we can write Qx ¼ dLx with Lx
a 0-form, so that

FIG. 3. Illustration of the change of variables from the ðs; tÞ- to
the ðu; ûÞ-plane. We denote zTμν ¼ zμν þ Tu, cf. (45).
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Z
X∧Y

P ¼
Z
∂ðX∧YÞ

Q (55)

¼
X

μ;ν¼1;2

ð−Þμþν½LyðzμνÞ − LxðzμνÞ�; (56)

where Lx corresponds to integration over an edge parallel to
x and similarly for Ly. In short, by applying Stokes’s
theorem, we reduced the two-dimensional integral over the
interior of the parallelogram to one-dimensional integrals
over the edges. Moreover, these one-dimensional integrals
are reduced to a sum over their end points, which are the
vertices of the original parallelogram.
To actually get Q from P, which is just the integrand in

Eq. (54), we simply perform the zc� integration. Under this
operation, the structure of the expression does not change:Z

dzc�ðP1ðzc�; z1Þ þ P2ðzc�; z1Þ ln jzc�jÞ

¼ P3ðzc�; z1Þ þ P4ðzc�; z1Þ ln jzc�j: (57)

The reason is that the Piðzc�; z1Þ coefficients depend
polynomially on zc�. The integration can then be done
by elementary methods. The structure of L, obtained from
Q, will be more complicated. It is discussed in Sec. IVB4.

3. Variable change for parallel line segments

As mentioned before, when the line segments are
parallel, it is no longer possible to construct an invertible
transformation between ðs; tÞ and ðz0; z1Þ. This is easily
seen from the fact that parallelogram on the right of Fig. 3
collapses to a segment. Unfortunately, also, starting with
formulas for the nonparallel case and taking a limit
produces many technical difficulties. We found that it is
most convenient to treat the s and t integrals in the parallel
case separately, as is discussed below.
The failure to invertibly transform from ðs; tÞ to ðz0; z1Þ

coordinates indicates that we can write z0, z1, zðs; t; cÞ2 or
any function Fðz0; z1Þ as a function Fðζðs; tÞÞ of some
single affine-linear combination ζðs; tÞ of s, t with nonzero
constants ζs ¼ dζ=ds and ζt ¼ dζ=dt [26]. Each s or t
integral can then be converted into a ζ integral. The iterated
integrals are now handled recursively. Denote ζ ¼ ζðs; tÞ,
ζS ¼ ζð0; tÞ, ζT ¼ ζðs; 0Þ and ζST ¼ ζð0; 0Þ and define

Fm;n ¼
F½mþnþ2�ðζÞ
ζmþ1
s ζnþ1

t
þ

Xmþnþ2

k¼0

pS
m;n;kðsÞ

F½k�ðζSÞ
ζnþ1
t

þ
Xmþnþ2

k¼0

pT
m;n;kðtÞ

F½k�ðζTÞ
ζmþ1
s

þ
Xmþnþ2

k¼0

pST
m;n;kðs; tÞF½k�ðζSTÞ; (58)

where the p’s (to be defined below) are polynomials in their
arguments, while Fm;n ¼ Fm;nðζ; s; tÞ and

d
dζ

F½kþ1� ¼F½k�; F½0� ¼FðζÞ; F−1;−1 ¼FðζÞ: (59)

The structure of this expression is preserved under inte-
grations with respect to s and t, with only the p’s changing,
if we defineZ

0

dsFm;n ¼ Fmþ1;n and
Z
0

dtFm;n ¼ Fm;nþ1: (60)

Setting s ¼ t ¼ 1 in Fm;n precisely yields Imn
l defined in

Eq. (32) for a proper choice of FðζÞ. This choice is just the
result of the c integration given in Eq. (42), with the
replacements z1 ¼ z1ðζÞ and zc� ¼ zc�ðζÞ.
Note that the integration constants are chosen such that

Fm;n ¼ 0 whenever either s ¼ 0 or t ¼ 0 for any m ≥ 0 or
n ≥ 0. With the above initial conditions, the polynomial
coefficients will satisfy the following recurrence relations:

pS
mþ1;n;kðsÞ ¼

Z
0

dspS
m;n;kðsÞ − δk;mþ1þnþ2

ζmþ2
s

; (61)

pS
m;nþ1;kðsÞ ¼ pS

m;n;k−1ðsÞ; (62)

pT
m;nþ1;kðtÞ ¼

Z
0

dtpT
m;n;kðtÞ − δk;mþnþ1þ2

ζnþ2
t

; (63)

pT
mþ1;n;kðtÞ ¼ pT

m;n;k−1ðtÞ; (64)

pST
mþ1;n;kðs; tÞ ¼

Z
0

dspST
m;n;kðs; tÞ −

pT
m;n;k−1ðtÞ
ζmþ2
s

; (65)

pST
m;nþ1;kðs; tÞ ¼

Z
0

dtpST
m;n;kðs; tÞ −

pS
m;n;k−1ðsÞ
ζnþ2
t

: (66)

The coefficients that are relevant for the integrals we
consider can be found in Table II.
Thus, also for the parallel situation, we are left to

evaluate one-dimensional integrals, in particular, integrals
parametrized by ζðs; tÞ. Our calculations require two-,
three- and maximally four-iterated integrals. One can think
of these integrals in a similar way as for the integrals in the
nonparallel situation: the ζðs; tÞ parametrizes the sides of
the parallelogram and the four terms in (58) correspond to
the four edges of the parallelogram.
In sum, for both situations, nonparallel and parallel line

segments, we are left to evaluate one-dimensional integrals
along the sides of a parallelogram. Evaluation of these
one-dimensional integrals is discussed next.
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4. Edge segment integrals

In the two preceding sections, we have converted the two-
dimensional integrals over s and t into one-dimensional
integrals over the boundary edges of the parallelogram on
the right of Fig. 3. In the nonparallel case, these are the
integrals on the right-hand side of Eq. (55). In the parallel
case, these are the integrals that solve Eq. (59). In either
case, we need to find a convenient way to parametrize the
edge segments (wewill use a parameter σ) and keep track of
the structure of the integrand. We address this below.
We again need to consider two different situations: one in

which the edge is completely in the direction of u and one
in which the edge also has a û component. A different
parametrization is needed for each case. However, in both
cases, each side of the parallelogram is described by its
starting point b and its tangent vector a, which runs from
one vertex to the next. First the procedure for the latter
situation, which corresponds to a · û ≠ 0 is outlined and
successively the situation in which the edge is entirely in
the u direction, that is, a · û ¼ 0.
a. Case a · û ≠ 0. When a · û ≠ 0, we parametrize each

edge by zðσÞ ¼ z0ðσÞuþ z1ðσÞû with

z0ðσÞ ¼ B0 − C0σ; (67)

z1ðσÞ ¼ σ: (68)

To relate the constants B0 and C0 to the geometry of the
parallelogram, we look at the “velocity” of the edge

d
dσ

zðσÞ ¼ Ka;

where K is an unknown constant. If we dot this equation
with −u and û, we can compare this to the derivatives of z0
and z1 to determine C0 in terms of the a and b vectors

−Kða · uÞ
Kða · ûÞ ¼

dz0ðσÞ
dσ

dz1ðσÞ
dσ

¼ −C0

1
⇒ C0 ¼

a · u
a · û

:

To determine B0 in terms of the a and b vectors, we look
at the starting point of the edge which corresponds to
σ ¼ 0. At this point zðσ ¼ 0Þ ¼ b, but also zðσ ¼ 0Þ ¼
z0ð0Þuþ z1ð0Þû, which upon applying a∧u ¼
ða · ûÞðû∧uÞ ¼ −a · û shows that B0 ¼ − a∧b

a·û . After
integration along the vertices, the start and end point of
each segment needs to be inserted, which is at each
vertex σ ¼ b · û.
The ðzc�; z1Þ variables are related to these new variables

as follows. We already know that z1 ¼ σ and zc� is
obtained by

zc� ¼ cþ z1∓z0 (69)

¼ cþ σ∓B0 � C0σ (70)

¼ Bc�ð1 − Cc�σÞ; (71)

where we defined Bc� ¼ c∓B0 and Cc� ¼ − 1�C0

c∓B0
.

Hitherto, the shift in the u direction from the temporal
smearing [see Eqs. (35) and (36)] has not been explicitly
taken into account. Fortunately, it can be simply re-
obtained by absorbing the shift in the b vector:
b · u → b · u − T. This gives

B0 ¼ − a∧b
a · û

→ −a∧b
a · û

þ T: (72)

C0 does not change as it does not contain b. Thus, taking
the shift by the smearing into account, we have

Bc� ¼ ða · ûÞðc∓TÞ � a∧b
a · û

; (73)

Cc� ¼ − a�
a · ûðc∓TÞ � a∧b

: (74)

For the parallel case, we identify ζ ¼ σ. The constants ζs
and ζt can also be related to this setup: ζs ¼ −x · û
and ζt ¼ y · û.
b. Case a · û ¼ 0. When a · û ¼ 0, a different para-

metrization of the edges is needed. This is simply done by
reversing the role of z0 and z1

z0 ¼ σ; (75)

z1 ¼ B0 − C0σ: (76)

With the same procedure as before, we obtain that in this
parametrization zc� ¼ Bc�ð1 − Cc�σÞ remains the same,
but the constants Bc� and Cc� change. Thus,

TABLE II. The polynomial coefficients from Eq. (58) for the
parallel case for different values of m, n and k.

p pS pT pST

m ¼ 0, n ¼ 0 k ¼ 2 1
ζsζt

− 1
ζsζt

− 1
ζsζt

1
ζsζt

m ¼ 1, n ¼ 0 k ¼ 2 − s
ζsζt

s
ζsζt

k ¼ 3 1
ζ2sζt

− 1
ζ2sζt

− 1
ζ2sζt

1
ζ2sζt

m ¼ 0, n ¼ 1 k ¼ 2 − t
ζsζt

t
ζsζt

k ¼ 3 1
ζsζ

2
t

− 1
ζsζ

2
t

− 1
ζsζ

2
t

1
ζsζ

2
t

m ¼ 1, n ¼ 1 k ¼ 2 st
ζsζt

k ¼ 3 − s
ζsζ

2
t

− t
ζ2sζt

sζsþtζt
ζ2sζ

2
t

k ¼ 4 1
ζ2sζ

2
t

− 1
ζ2sζ

2
t

− 1
ζ2sζ

2
t

1
ζ2sζ

2
t
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B0 ¼ b · û; Bc� ¼ cþ b · û; (77)

C0 ¼ 0; Cc� ¼ �1

cþ b · û
; (78)

and at the starting point of each edge σ ¼ −b · u. When the
shift due to smearing is taken into account, Bc� andCc� are
not altered. In contrast, at each edge, σ is shifted to
σ → −b · uþ T. For the parallel case, we again identify
ζ ¼ σ and the constants ζs and ζt in this setup are ζs ¼ x · u
and ζt ¼ −y · u.
The structure of the edge integrands after each edge is

parametrized with the appropriate σ-parameter changes as
follows (we use → instead of ¼ below because some terms
proportional to ln jσj are omitted from the result, as
explained further on):

P3 þ P4 ln jzc�j → P5 þ P6 ln jBc�j þ P7 ln j1 − Cc�σj
þ P8LðCc�σÞ: (79)

The Piðzc�; z1Þ coefficients are polynomial in zc� and
Laurent polynomial in z1. Their structure is taken from
Eq. (57) in the nonparallel case and directly from Eq. (42)
for the parallel case. The function LðxÞ is defined in terms
of the dilogarithm [27,28]

LðxÞ ¼ RefLi2ðxÞg ¼ −
Z

x

0

dt
ln j1 − tj

t
: (80)

After the σ substitution, the new coefficients are obviously
Laurent polynomials in σ. In the a · û ¼ 0 case, they are
just polynomial, since in that case z1 is constant and hence
independent of σ. As written, the coefficient P8 ¼ 0.
However, its inclusion makes the structure of the expres-
sion on the right-hand side of (79) stable under σ integra-
tion, which generically changes the value of P8. In the
nonparallel case, σ integration need only be carried out
once. But in the parallel case, it may need to be carried out
repeatedly to generate the F½k�ðζÞ functions. It then
becomes important to recognize the stability of the given
expression structure.
The σ integrals can be done using elementary means,

with a partial exception for the P7 and P8 term. Recall that
all the Pi coefficients are rational, with poles only at σ ¼ 0.
Thus, also the P5 and P6 terms are rational and hence have
rational integrals, with the possible exception of terms
proportional to ln jσj. They are omitted from the result for
the following reason. The singularity of the integrand at
σ ¼ 0 appears because of the presence of inverse powers of
z1 in the summand of Eq. (42). However, the corresponding
original c integral is regular at z1 and thus all z1 ¼ 0 (and
hence all subsequent σ ¼ 0) singularities must cancel in the
final sum over the � and c ¼ �R ranges. The same
reasoning explains the exclusion of b · û ¼ 0 singularities

as discussed in Sec. IVB5. The integral of the P7 term has
the same structure up to terms absorbed by P5, with the
exception of simple poles likeZ

dσ
1

σ
ln j1 − Cc�σj ¼ −LðCc�σÞ; (81)

which obviously produce terms absorbed by P8. Using
integration by parts and the above identity, the P8 term also
produces an integral of the same form, up to terms absorbed
into P5 and P7.
The final result for the integral Imn

l ðR; T;X; YÞ defined in
Eq. (32) can be organized as follows. There are two
possible expressions, one for the case when X and Y are
not parallel and one for the case when they are. In either
case, the expression has the structure of the sum over the
values c ¼ �R, over the� indices carried by (zc�, Bc� and
Cc�), as indicated in Eq. (42), and over the parallelogram
vertices zμν, as indicated in Eq. (56) (nonparallel case) or
Eq. (58) (parallel case). The summand has the structure of
the right-hand side of Eq. (79), with the Pi coefficients
computed according the procedure discussed above.

5. Singularity structure

Recall that ultimately we are interested in obtaining an
asymptotic expansion for small μ, with leading behavior of
the form μi lnj μ for some i and j ≥ 0. For that, we do not
need the full dependence of Imn

l ðR; T;X; YÞ on R and T.
We only need the leading-order expansion for R, T → 0.
A priori, it is not completely obvious what form this
expansion will take. However, our explicit calculations
show, based on Eq. (79), that it is possible to expand in
products of powers of S, ln jSj and sgnS ¼ S=jSj, where S
is R, or R� T. Note that the form of such an expansion is
stable under differentiation with respect to R or T, provided
we supplement it with terms proportional to δðSÞ. Recall
that such differentiations will be necessary in the evaluation
of “part II” in Eq. (31), described in step 1 of Sec. IVC. In
this section, we describe how these expansions are carried
out and tabulated for later lookup during the final smearing
phase described in Sec. IVC.
The R, T expansion can be carried out mechanically with

computer algebra using the following simple trick. We
replace R → ϵR, T → ϵT, where ϵ is a symbolic parameter
and expand in powers of ϵ and ln ϵ. After truncating at the
desired order and setting ϵ → 1, for each term of the
resulting expression, we use pattern matching to extract its
structure (the R, T-independent coefficient, the value of S
and the powers in Si lnj jSjðsgnSÞk). So, the result of each
expansion is stored in structured form. Rational and
logarithmic expressions can be efficiently expanded by
MATHEMATICA as they are. But the dilogarithm LðxÞ poses
a few problems because of the need to select a specific
branch at x ¼ �∞ and x ¼ 1. To circumvent this issue, if
we expect to expand about these arguments, we first use
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one of the following identities [28] and exploit the fact that
LðxÞ is analytic at x ¼ 0:

Lð1=xÞ ¼ −LðxÞ − 1

2
ln2jxj þ π2

12
þ x
jxj

π2

4
; (82)

Lð1 − xÞ ¼ −LðxÞ − ln j1 − xj ln jxj þ π2

6
: (83)

Consider the expression ln jAþ BSj. It can clearly have
different leading S → 0 behaviors (or singularity structure)
depending on the values of the constants A and B. For
example, if A ≠ 0, then it behaves like ln jAjþ
ðB=AÞSþ � � �, while if A ¼ 0, it behaves like ln jSjþ
ln jBj. The same situation occurs for the expressions
Imn
l ðR; T;X; YÞ depending on the relative geometry of
the segments X and Y. The geometry of these segments
is captured by the geometry of the parallelogram illustrated
in Fig. 3. As discussed at the end of the preceding section
(Sec. IVB4), the expression to be expanded consists of a
sum of many terms, each of which depends only on a given
pair of vectors a and b in the ðu; ûÞ-plane, where b is a
parallelogram vertex (one of the zμν) and a is one of
the incident parallelogram edges (�x or�y), cf. Fig. 4. The
actual dependence appears a functional dependence on the
possible geometric scalars generated from the vectors a, b,
u and û: a · b, a∧b, a2, b2, a�, b�, a · u, a · û, b · u, b · û.
Not all of these scalars are independent, so for the purposes
of some symbolic manipulations they are expressed in
terms of a convenient independent subset.
Each end point of the X and Y gives rise to a light cone.

Given the nature of the original integrand (the Hadamard
two-point function) in the definition of Imn

l ðR; T;X; YÞ, it is
not surprising that its singularity structure depends on the
position of one segment with respect to the light cones
generated by the other segment or itself. A detailed study of
the expressions in Eq. (79) essentially confirms this
expectation. Although, there also appear other consider-
ations that stem from our particular choices in parametriz-
ing the edge segment integrals, as described in Sec. IVB4.
The detailed decision trees for determining the singularity

structure for nonparallel and parallel cases are illustrated in
Fig. 5. For each possible singularity type, a subset of the
scalars listed in the preceding paragraph is consistently set
to zero, and the R, T expansion is carried out mechanically
(as described before) and the result is stored in structured
form in the indicated table.
After the remaining R, T smearing of “part II,” the final

answer for h~r2i is expected to be of order 1=μ2. We would
like to compute a few subleading terms as well, namely up
to and including terms of order Oðμ0Þ. Since the R, T
smearing involves applying up to two derivatives before
integrating with respect to the smearing profile, we must
expand in R and T and keep terms up to and including order
OðR; TÞ2. However, if we are expanding Imn

l with l > 0,
which contained cl in the original integrand, we must keep
terms up to and including order OðR; TÞ2þl, because the
definition of c given in Sec. IVA1 contains an implicit
power of R.
As discussed above, the coefficients of the R, T

expansion are functions of various geometric scalars
formed from the vectors a, b, u and û, and in particular
b · û. Some of them contain terms like ðb · ûÞ ln b · û,
which have well-defined, finite values at b · û ¼ 0.
Unfortunately, direct evaluation of such expressions at b ·
û ¼ 0 by MATHEMATICA produces errors. We have circum-
vented this problem by taking the b · û → 0 limit sym-
bolically beforehand. In the parallel case, the limit is taken
on fully symbolic expressions and is tabulated separately.
However, the same strategy proved to be prohibitively
expensive, with our computational resources, in the non-
parallel case, due to the complexity of the fully symbolic
expressions inside the limit. Instead, we take the limit at a
later point of the calculation, when the numerical values of
all the geometric scalars are available. All of their numeri-
cal values are substituted into the tabulated expression, with
the exception of b · û, and the symbolic limit is taken.
We finish this subsection by briefly summarizing the

decision logic illustrated in Fig. 5. We start with an exact
formula for the summand giving Imn

l ðR; T;X; YÞ for non-
parallel or parallel segments, as in Secs. IVB2 and IVB3.
Then, we check a · û ¼ 0, which decides the edge segment
parametrization to be used, as in Sec. IVB4. In the
nonparallel case, the a · û ¼ 0 is trivial, since the integrand
is proportional to dz1, which vanishes in this case. In the
parallel case, we further implicitly assume that a · u ≠ 0,
since otherwise a ¼ 0, a case that we do not consider. Next,
we check whether a� ≠ 0 (in our code labeled ‘generic’) or
a� ¼ 0 (in our code labeled ‘special’). Recall that one of
aþ or a− vanishes precisely when a lies on one or the other
branch of the light cone in the ðu; ûÞ-plane. Finally, we
check the condition b · û ¼ 0. The decision trees in Fig. 5
show which table stores the values of the expansion of
Imn
l ðR; T;X; YÞ with the needed singularity structure. Each
table is indexed by the integers m, n (numbers of iterated
segment integrals) and l (power of cl).

FIG. 4 (color online). Illustration of the role of the vectors a and
b defined in the text. The vertices of the parallelogram are zμν and
each side is a multiple of either x or y, defined in Eq. (45).
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C. Remaining smearing

Recall the master formula (31) for ~Imn
K ðX; YÞ.

As described in the preceding sections, “part I” of the
calculation has been computed exactly as Imn

l ðR; T;X; YÞ,
expanded for small R and T and an appropriate truncation
of the expansion has been stored in a look-up table. The
truncated expansion is of the form

Imn
l ðR; T;X; YÞ ∼

X
f

Imn
l;f ðX; YÞfðR; TÞ; (84)

where each fðR; TÞ is a product of (possibly singular)
powers of R, R� T, ln jR� Tj or sgnðR� TÞ. For sim-
plicity of notation, we do not show the structure of the
truncated expansions in more detail. The evaluation of “part
II” is carried out algorithmically with the following steps,
which correspond roughly to the summation over the
indices d, γ, p and finally l:
(1) The summation over lmay be carried at any time, so

we do it first.
(2) The T integrals are evaluated by moving all T

derivatives from δðdÞð−TÞ onto the fðR; TÞ using
integration by parts and effecting the replacement
T → 0. The sgnðR� TÞ terms generate δðRÞ’s or
derivatives thereof.
At this point, the summation over d may be
carried out.

(3) Terms proportional to δðRÞ and its derivatives are
also evaluated using integration by parts and by
effecting the replacement R → 0. This part of the
calculation is then stored separately. It may contain
terms proportional to gðγÞð0Þ.

(4) In the remaining terms, each fðR; TÞ has by now
been transformed into a linear combination of terms
of the form gðγÞðR2ÞRi lnj R with powers i such that
all integrals are convergent near R ¼ 0. Formal
integration by parts (which neglects the boundary
terms at R ¼ 0) can bring this expression to the form
where each term is now gðR2ÞRi lnj R. However, the
powers imay now take values for which the integrals
diverge near R ¼ 0. They are to be interpreted as
distributional integrals, defined by the Hadamard
finite part regularization.
At this point, the summation over γ may be
carried out.

(5) The distributional R integrals are replaced by mo-
ments of the smearing function according to the ruleZ

∞

0

dRgðR2ÞRi lnj R ¼ μi−2ði;jÞ ln
jjμ̄ði;jÞj; (85)

where the numbers μði;jÞ and μ̄ði;jÞ parametrize the mo-
ments. For simplicity we simply set μ̄ði;jÞ ¼ μði;jÞ ¼ μ.
At this point, the summation over p may be trans-
formed into the summation over i in (31).

Once the coefficients PT;d;γ;p;l and the truncated expan-
sions of Imn

l ðR; T;X; YÞ are known, all of the above
operations involve only elementary algebra on moderate
sized expressions and thus can be efficiently carried out on
demand. The result is an expression for ~Imn

K ðX; YÞ in the
form given on the last line of Eq. (31). In practice, we
truncate the expansions so that the coefficients
Imn
T;i ðln μ;X; YÞ are known for i ¼ 0, 1 and 2. A few
comments about some of the above steps are in order.

FIG. 5 (color online). Decision tree summarizing the procedure for the nonparallel and parallel cases.
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Note that the values gðγÞð0Þ, possibly obtained in step 2,
can also be seen as moments of the smearing function,
though different from those defined in Eq. (85). In terms of
rough scaling, we expect gðγÞð0Þ ∼ μ−3−2γ . Thus, the
appearance of a gð0Þ in the result of the calculation would
signify a more singular leading-order term (∼μ−3) than is
expected by dimensional analysis and by the form of the
last line of (31). Such terms do actually occur in the
calculation. Fortunately, and as is to be expected, they
ultimately cancel in the summation over the X, Y segments
in Eq. (96). This cancellation is taken to be part of the
consistency check on our calculation (Sec. VA).
The use of formal integration by parts and the Hadamard

finite part regularization in step 3 are linked. Hadamard finite
part (alsopartie finie) regularization [[29], Ch. I§3] is defined
for singular integrands fðRÞ that vanish in the neighborhood
of R ¼ ∞ and for which there exists a bivariate polynomial
Aðx; yÞ such that the following limit is finite:

P:f:
Z

∞

0

fðRÞdR¼ lim
ϵ→0þ

Z
∞

ϵ
fðRÞdR−Aðϵ−1;ln ϵÞ: (86)

The polynomial A is unique up to the addition of a constant,
which may be absorbed by the replacement ln ϵ → ln ϵ=C.
This constant may be fixed by requiring that
P:f:

R
∞
0 f0ðRÞdR ¼ −fð0Þ is always true, provided fðrÞ

vanishes at R ¼ ∞. If the R integrals in “part II” are treated
from the start as distributional integrals [29], with the
differentiated smearing functions gðγÞðR2Þ playing the role
of test functions, then the formal application of integration by
parts produces precisely distributions regularized according
to the Hadamard finite part prescription [30]. The only
addition to formal integration by parts necessary for the
above statement tohold is the rule1 · d

dR fðRÞ → −δðRÞfðRÞ,
rather than 0. This extra boundary term is then handled the
same as in step 2.

D. Updated master formula for h~r2i
It remains now to evaluate the sums and tensor con-

tractions in the master formula (19) for h~r2i. The tensor

contractions consist of evaluating expressions of the
form

rKijnX ηij;klr
Lkl
mYTK∪L; (87)

where jKj, jLj ¼ 0 or 1. Reading off the tensorial coef-
ficients from the explicit expression for r½h�, Eq. (4), we can
write them in factored form

rKijnX ¼ xiAKj
nX; (88)

where x is the vector corresponding to the segment X, with
the orientation indicated by Fig. 8. For any tensor basis
element T, we can define the contraction

Ejl
T;mnðX; YÞ ¼

X
K;L

ð−ÞjLjAKj
nXTK∪LALl

mX; (89)

with the convention that TJ ¼ 0 for any multi-index J
whose size jJj does not equal the tensor rank of T. We show
the structure of the above multi-index sums explicitly for
the needed tensor ranks. Let Tp stand for a tensor basis
element of rank p (recall also that T0 takes only one value,
the scalar 1):

Ejl
T0;mn

ðX; YÞ ¼ Aj
mXA

l
nY; (90)

Ejl
T1;mn

ðX; YÞ ¼ −Aj
mXT

1
l1
Al1l
nY þ Ak1j

mXT
1
k1
Al
nY; (91)

Ejl
T2;mnðX; YÞ ¼ −Ak1j

mXT
2
k1l1

Al1l
nY: (92)

The remaining tensor contraction is evaluated using the
formula for ηij;kl from Eq. (13):

ηij;klxiykEjl ¼ ðx · yÞtrEþ Eðy; xÞ − Eðx; yÞ; (93)

where trE ¼ ηjlEjl and Eða; bÞ ¼ Ejlajbl. The updated
master formula for the quantum variance h~r2i, combining
Eqs. (19) and (31), can now be written as follows:

h~r2i ¼ l2
p

2π

X
KmX

X
LnY

ð−ÞjLjrKijmXηij;klr
Lkl
nY

2π

μ2
X∞
q¼0

X
T

TK∪LμqImn
T;qðln μ;X; YÞ; (94)

¼ l2
p

μ2
X
mX

X
nY

X∞
q¼0

X
T

μqηij;klxiykE
jl
T;mnðX; YÞImn

T;qðln μ;X; YÞ (95)

¼ l2
p

μ2
X∞
q¼0

μq
X
X

X
Y

ηij;klxiyk
X
m;n

X
T

Ejl
T;mnðX; YÞImn

T;qðln μ;X; YÞ: (96)
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Notice, from the above formula, that the final result for h~r2i
may depend on powers of μ as well of ln μ. However,
it will be seen in the next section that ln μ does not
actually appear in the final result. This fortuitous cancella-
tion can be seen as an explicit verification of the simple
dimensional analysis yielding the 1=μ2 leading singular
behavior, as well as a check on the correctness of our
calculations (Sec. VA).
This last formula (96), directly forms the basis of our

computer algorithm for explicitly evaluating h~r2i for a fixed
geodesic triangle geometry. We briefly summarize
the logic:
(1) Load lookup tables for the tensor coefficients AKi

mX
[Eqs. (4) and (88)], tensor basis elements T and
polynomial coefficients PT;d;γ;p;l [Eq. (28) and
Table I], and truncated expansions for Imn

l ðR; T;X; YÞ
[Sec. IVB, Eq. (32), Fig. 5].

(2) Construct the segments X of the geodesic triangle
geometry as in Fig. 8.

(3) For fixed m, X, n, Y and T, compute the coefficients
Imn
T;qðln μ;X; YÞ [Eq. (31) and Sec. IVC] and the
matrix Ejl

T;mnðX; YÞ [Eqs. (89)–(92)].
(4) Sum over m, n and T in Eq. (96) and perform the

remaining tensor contractions using Eq. (93).
(5) Obtain h~r2i by summing over geodesic triangle

geometry segments X and Y in Eq. (96) and keeping
as many orders in μq as available or desired.

The results of explicit computations using the above
algorithm are discussed in the next section.

V. RESULTS

Here we present the results of our calculation for the
leading-order quantum gravitational corrections to the
quantum variance of the emission time τðsÞ regularized
by a finite measurement resolution scale μ [31].
The experimental geometry is completely determined by

two parameters: the reception time s and the relative
velocity vrel between the worldlines of the lab and the
probe, which can also be parametrized by the (positive)
hyperbolic rapidity θ, with vrel=c ¼ tanhðθÞ. Given these
two inputs, in our approximation, Eqs. (6)–(8), the quantum
mean and the variance of quantum fluctuations in the
emission time are given by the following expressions:

h~τðsÞi ¼ τclðsÞ þOðl2
pÞ; (97)

ðΔτÞ2 ¼ τ2clðsÞh~r2i þOðl2
pÞ; (98)

where, following Eq. (B3),

τclðsÞ ¼ se−θ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vrel

c

1þ vrel
c

s
(99)

and h~r2i is computed by the computer routine as described
in Sec. IV.

Using dimensional analysis, as in Sec. IIIA, we can
parametrize the leading contributions to this expectation
value as

h~r2i ¼ l2
p

μ2

�
ρ0 þ ρ1

μ

s
þ ρ2

μ2

s2
þO

�
μ3

s3

��
þO

�
l2
p

μ2

�
;

(100)

where the ρi coefficients are in general functions of vrel=c.
Note that the result is given to order Oðl2

p=μ2Þ as we did
not include the Oðh2Þ term ~r2ðhÞ in our calculation of the
variance (see Sec. IIC). The explicit result of our computer
calculation gives

ρ0 ¼
1

v2

�
51

8
þ 8vþ 141

8
v2
�

− 1

v2
ð3þ 4vÞ ð1 − v2Þ

v
ln

�
1þ v
1 − v

�
; (101)

ρ1 ¼ −2π2; (102)

ρ2 ¼ 0: (103)

The limiting value at v ¼ vrel=c < 1 is ρ0 ¼ 32. These
expressions are the main result of our calculation and were,
in fact, the main motivation for it. They deserve a few
comments.
It should be mentioned that, in addition to powers of μ as

in Eq. (100), terms depending on ln μ appeared in inter-
mediate contributions to h~r2i. Remarkably, they all can-
celed, so that the final expressions for ρi given above
depends only on powers of μ. The components of the
vectors representing the worldline segments U, V and W
(Fig. 8) are rational functions of vrel=c and s. Rational
expressions in these components appear as arguments of
the graviton Hadamard two-point function and integrals
thereof, as seen Sec. IV, which generate further rational and
logarithmic expressions. It is therefore not surprising to see
the ρi coefficients of that form, with the s dependence
parametrized away in Eq. (100). However, their simplicity
is striking. Note also that the dependence on π is due only
to dilogarithm identities Eqs. (82)–(83), since the overall
factor 1

2π in (19) is absorbed into the normalization factor in
the azimuthal angular averaging, Eqs. (29) and (30).
All the physically relevant information can be glimpsed

from the low velocity approximation for the root-mean-
square size of the quantum fluctuations

Δτ ∼
ffiffiffi
3

8

r �
c
vrel

s
μ

�
lp: (104)

The dimensional scale of the effect is set by the
Planck length, (lp ∼ 10−35 m ∼ 10−44 s). There are two
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enhancement factors: the ratio s=μ of the experimental
geometry and detector resolution scales, and the ratio c=vrel
of the speed of light to the lab-probe relative velocity. We
roughly estimated this enhancement factor in laboratory
and cosmological experimental settings in Table III. The
large enhancement factors in the cosmological setting
should be taken with a grain of salt. Foremost, curvature
corrections must be added to our Minkowski calculation.
Moreover, in either setting, the divergence of the enhance-
ment factor for low velocities is rather puzzling, which we
discuss next.
A plot of the coefficient ρ0 versus v ¼ vrel=c is shown in

Fig. 6. As is clear from the graph, ρ0 diverges as 1=v2 in the
limit v → 0. It reaches a minimum around v ∼ 1=2 and
climbs to the limiting value of ρ0 ¼ 32 as v → 1. The ρ0 ∼
1=v2 divergence as v → 0 is somewhat puzzling. The
exponent of the divergence can be traced to the value of
the normalization factor τclðsÞðv · wÞ [Eq. (B12)] that
appears in the denominator of the explicit expression for
r½h�, Eq. (B11). Classically, the integrals in the numerator
of Eq. (B11) all cancel so that r½h� remains finite and in fact
goes to 0 as v → 0. Afterall, there is no time delay if the lab
and probe trajectories coincide. On the other hand, it seems
that the quantum variance of the numerator in Eq. (B11)
goes to a nonzero constant as v → 0, thus resulting in the
divergence. While this result is interesting, the extrapola-
tion of our calculation to v → 0 must be taken with a grain

of salt, since this limit violates our assumption that all sides
of the geodesic triangle must be of size s and that μ=s ≪ 1.
We cannot exclude the possibility that the low velocity
divergence is naturally regulated to a finite limit over
the range ½0; μ=s� of v in a more accurate calculation. (The
numerical values presented in Table III fall outside these
transitional regions as there the critical velocity is
μ=s ≤ 0.1 m=s.) It is worth remarking that the dependence
of ρ0 on vrel could still be significantly altered by two
factors: a different (hopefully Lorentz invariant) smearing
procedure, and the inclusion of the quadratic correction
r2½h� to the emission time, both of which would contribute
corrections to the quantum variance at the order Oðl2

p=μ2Þ.
Furthermore, a short note on the analytical formula

(101). The computer calculation was carried out symboli-
cally, but with fixed (rational) numerical values of
v ¼ vrel=c supplied as input. The analytical expression
in terms of v was obtained by a perfect fit to over 100 data
points.
Finally, a comment on the calculation time. The calcu-

lation time can be divided into two parts (essentially
“part I” and “part II” in Sec. IV): generating the tables
(which only needs to be done once) and the explicit
calculation of h~r2i for a given value of v. On a standard
computer (AMD 64 Dual Core 2 GHz Processor) the first
part takes approximately 45 minutes (once) and the second
part takes about 20 minutes (per value of v). The most time
consuming part in this latter calculation is the expansion in
b · û for nonparallel line segments. If this expansion could
also have been tabulated, the calculation time for h~r2i
would be drastically reduced.

A. Checks on results

We implemented several checks to make sure that we can
be confident that the result presented is correct. First of all,
the variance of any physical observable needs to be
positive. It is obvious from the graph in Fig. 6 that h~r2i
is always positive and this serves as a first check on our
result. In addition, as was remarked in Appendix B, parts of
the expression of r, viz. H and J of Eq. (B11), are
independently invariant under linearized diffeomorphism.
These parts turn out to satisfy all other constraints on
observables as well and are thus strictly speaking also
observables, although their physical interpretation is not
directly clear. Thus, H2 and J2 and any positive functional
thereof should also be equal to or larger than zero. This was
checked by the same routine that was used to calculate h~r2i
and indeed it was shown that hH2i ≥ 0 and hJ2i ≥ 0.
Second, the results nicely match the predictions made by

a simple dimensional analysis: no terms more divergent
than 1=μ2 appear. In [1], it was noted that detailed
calculations reveal terms with a more divergent scaling
behavior (these terms are of the form ðl2

p=μ2Þ ln μ=s and
sl2

p=μ3); however, these terms cancel in the final result. A
generic set of coefficients combining the Imn

T;i ðln μ;X; YÞ in

TABLE III. The enhancement factor ð c
vrel

s
μÞ for Δτ, Eq. (104),

over the Planck scale lp ∼ 10−44 s. Detector resolution scale:
μ ¼ 10−9 m (X-ray wavelength). Laboratory scales: s ¼ 1 m,
vrel ¼ 1 m=s. Cosmological scales: s ¼ 1 Mpc ∼ 1022 m, vrel ¼
105 m=s (Hubble recession velocity at 1 Mpc), vrel ¼ c=3 ∼
108 m=s (relativistic velocity).

vrel
s 1 m=s 105 m=s 108 m=s

1 m 1017 1012 109

1 Mpc 1039 1034 1031

0.0 0.2 0.4 0.6 0.8 1.0
20

30

40

50

60

vrel c

0

FIG. 6. Plot of ρ0 versus vrel=c for μ ¼ 1. Note the divergence
at vrel=c ¼ 0, as discussed in the text.
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a sum over the X and Y segments would not result in a
cancellation of the logarithmic terms. Thus it is unlikely
that the cancellation would happen by accident (i.e., in the
case of a programming error). This observation increases
our confidence in the result, even if the cancellation of the
logarithmic terms was not obvious in advance.
Third, there are two independent parts in our calculation

where we expected intermediate results in the integrals to
cancel each other in the final summations. One of these
expected cancellations was (already mentioned in Sec. IVB1
and its reasoning further expanded upon in Sec. IVB4):
the cancellation of terms singular in z1 ¼ 0 after all summa-
tions are taken into account. These terms singular in z1
correspond to poles for b · û ¼ 0 after parametrization. In
an independent routine we expanded the results from the
integration in b · û and checked whether we had rightfully
thrown away all the lower-order terms: the outcome was
positive, all lower-order terms vanish in the final summations
over the overall �-sign, c ¼ �R and the four vertices [32].
Theother partwhereweexpected cancellations to happenwas
related to the integration over c. This integrationmay produce
terms that have the ‘wrong’ powers of R, which would
eventually lead to terms scaling as 1=μ4. Fortunately, these
terms vanish when the boundaries of the c-summation are
taken into account (so the summation over the �-sign and
c ¼ �R is performed).
Fourth, as a check on the internal consistency of the

routine that handles all integration by parts, the boundary
terms produced by removing all derivatives from the
smearing function nicely cancel with divergent terms in
the bulk. This check is discussed in detail at the end of
Sec. IVC.
Lastly, the integral ~Imn

K ðX; YÞ has been calculated by
hand for a simple case: m ¼ n ¼ 0 (hence no iterated
integrals) and along two parallel null segments. This has
been done for zero, one as well as two derivatives on the
smearing function, that is, jKj ¼ 0, 1, 2. The results of the
calculation by hand match exactly the result produced by
the computer routine and can be found in Appendix D.
All in all, these partial checks of various aspects of the

calculation make us confident that the result presented is
correct.

VI. DISCUSSION

In this paper, we have presented the first detailed
calculation of the finite, measurement resolution regulated,
quantum fluctuations in a gauge invariant, nonlocal,
operationally defined observable in the Minkowski linear-
ized quantum gravitational vacuum. As discussed in the
Introduction, this is at least a partial improvement on
previous works in a similar direction [10–17].
Unfortunately, this calculation is not yet the final word
on the matter, due to some imperfect pragmatic technical
choices made along the way. These will be recalled in more
detail below. Still, our calculation can be seen as a very

detailed template for a future, improved calculation or for
generalizations, some examples of which are also dis-
cussed below.
The observable we considered is the time delay, induced

by metric fluctuations, between proper time clocks moving
at a predetermined relative velocity and compared using
light signals. Generically speaking, this simple thought
experiment setup can be seen as an idealization of possible
laboratory scale, space based, or even cosmological sce-
narios. In each of these cases, our results, presented in
Sec. V, give an estimate for the size of the quantum
fluctuations and its dependence on the relative velocity
of the clocks. Since this estimate is based only on the rather
conservative model of linearized quantum gravity [33], it
can be used for several purposes. For instance, the expected
size of the fluctuations can be compared to other sources of
noise, like measurement uncertainties and even intrinsic
quantum fluctuations in the measurement equipment, to see
if it is reasonable to expect noticeable quantum gravita-
tional effects in a given experimental setup. Unfortunately,
in the scenarios we have considered, the quantum gravi-
tational effects seem well below experimental sensitivity.
However, it is not out of the question that alternative
laboratory scenarios [34] could bring the size of such
effects closer to the current or future state of the art. Also,
our estimate can be used to contrast predictions of the
conservative linearized gravity model with more exotic
“quantum gravity” models, which sometimes (so far
unsuccessfully) lay claim to explain anomalies in cosmo-
logical observations, such as the dispersion in the arrival
time of distant γ-ray burst photons [35–37].
Our result for the quantum fluctuation in the time delay

shows two odd features, at least superficially: it is not
Lorentz invariant and it diverges for low relative velocities.
It fails to be Lorentz invariant because it selects a preferred
relative velocity (where the fluctuations are at a minimum)
between the two moving clocks (the lab and the probe).
This phenomenon is mostly likely due to an explicitly non-
Lorentz invariant choice of spacetime smearing applied to
the graviton field. This smearing is physically significant,
as it is interpreted as the cumulative effect of the intrinsic
(quantum and statistical) fluctuations in the center of mass
coordinates and the limited spacetime resolution of the
measurement equipment. However, to make the calculation
tractable, a pragmatic choice has been made to smear
always in the lab’s spatial plane. While this is perfectly
acceptable on the lab worldline, a future follow-up calcu-
lation should select a more realistic smearing profile for the
probe and signal worldlines, preferably in a way that
depends only on the local geometry of each worldline.
The divergence in the size of the quantum fluctuations for
small relative velocities, vrel → 0, on the other hand, is
more puzzling. It is not clear what the physical interpre-
tation of this result would be compatible with the fact that
we do not observe such unbounded fluctuations in the
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everyday world of slowly relatively moving macroscopic
objects. There are two chief possibilities that could explain
it as an artifact of our particular calculation. One possibility
is our approximation scheme. It treats the smearing length
scale μ to be much smaller than the length scale s related to
the geometric scale of the experiment. But, as the relative
velocity shrinks to zero, the size ∼vrels of the signal
worldline shrinks as well, eventually violating the μ ≪
vrels requirement. Thus, it is possible that the divergence is
resolved into a smooth transition to a finite limit, which
unfortunately cannot be resolved within our approximation.
The other possibility is that the inclusion of a quadratic
correction to the perturbative formula for the time delay
could cancel the low velocity divergence, since that term
would contribute at the same order in lp=μ as the result
computed here. Its exclusion was again a pragmatic choice
made to render the calculation tractable. A start was made
in Appendix A, where the geodesic and parallel transport
equation were calculated to second order in the gravita-
tional field. These terms are to be included to get an
expression for the time delay that is truly of quadratic order.
However, presently, the computer routine is not able to
handle some of these terms either because of the appear-
ance of three derivatives acting on the graviton field
(the code handles maximally two) or integration over the
individual geodesic segments is not of a type that we
considered (the st integral is not over the whole unit square,
but over the 0 < s < t < 1 triangle). These terms should be
fully taken into account in a follow-up calculation.
Despite the above drawbacks, we believe that the

calculation and the result presented in this work constitute
a valuable exercise in the treatment of phenomenologically
meaningful, gauge invariant observables in quantum grav-
ity. In particular, this calculation and the tools developed for
it can be straightforwardly generalized to handle a large
class of observables that in [1] were named quantum
astrometric observables. This class includes the time delay,
angular blurring [14,15] and other kinds [17] of clock and
image distortions induced by the gravitational field in the
mutual observation of a lab and one or more probes. In
particular, the details presented in Sec. IV allow an almost
immediate generalization of our triangular setup to more
complicated arrangement of lab and probe worldlines.
Furthermore, note that all intermediate steps of our

calculation have been carried out in position space, rather
than momentum space, despite the translational invariance
of the background. The purpose of that choice was to make
a detailed record of the various divergences encountered in
the intermediate steps and their cancellation or regulariza-
tion. It is hoped that it can be used to build the intuition
necessary to correctly generalize this kind of calculation to
curved backgrounds. Potential applications of quantum
astrometric observables on curved backgrounds exist in
black hole and cosmological scenarios. In a black hole
scenario, one can construct an observable to represent the

size of a black hole and then use it to study the dynamical
evaporation of a black hole with the back reaction on the
quantized dynamical gravitons taken into account. In the
cosmological scenario, it would be a fruitful exercise to
explicitly model (some idealization of) the observations
related to the cosmic microwave background (CMB) in a
gauge invariant way. It is possible that a detailed under-
standing of the structure of the corresponding observables
may resolve some of the infrared divergences occurring in
graviton-loop corrections to the CMB power spectrum [38].
Finally, as mentioned in the Introduction and discussed

in more detail in [1], information about the quantum
fluctuations of the time delay observable in the non-
perturbative regime is likely to tell us a lot about the
causal structure of quantum gravity. Unfortunately, our
current perturbative methods obviously do not provide any
information in that regime. It is possible, though, that some
exactly solvable or numerical models with similar phe-
nomenology, like 2þ 1 dimensional gravity [39,40]
or causal dynamical triangulations [41], could make
nonperturbative calculations accessible.

ACKNOWLEDGMENTS

I. K. would like to thank Renate Loll, Albert Roura,
Sabine Hossenfelder and Paul Reska for their support and
helpful discussions and also acknowledges support from
the Natural Science and Engineering Research Council
(NSERC) of Canada and from the Netherlands
Organisation for Scientific Research (NWO) (Project
No. 680.47.413).

APPENDIX A: PERTURBATIVE SOLUTION
OF GEODESIC AND PARALLEL

TRANSPORT EQUATIONS

In this appendix, we summarize some notation needed to
define the time delay observable. We closely follow
Sec. VB1 and the Appendix of [1], where more details
can be found. Though, below, we extend the solution of the
geodesic and parallel transport equations to quadratic order.
Let ðM; ηÞ denote the standard four-dimensional

Minkowski space and xi an inertial coordinate system
on it. The associated standard tetrad and its dual are
x̂ai ¼ ð∂=∂xiÞa and x̂ia ¼ ðdxiÞa, where a is an (abstract)
tensor index and i an internal Lorentz index;
ηabx̂ai x̂

b
j ¼ ηij ¼ diagð−1; 1; 1; 1Þij. Any other dual pair

of orthonormal tetrads, eai and eia, can be specified by
applying a local general linear transformation to the
standard ones:

eai ¼ T̄i0
i x̂

a
i0; eia ¼ Ti

i0x̂
i0
a; (A1)

where T and T̄ are spacetime-dependent invertible matri-
ces, such that T̄ ¼ T−1. We choose to parametrize them as
T ¼ expðhÞ, where hij is an arbitrary matrix. We also write
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hij ¼ ηij0h
j0
j and call it the graviton field. The tetrad

specifies a Lorentzian metric gab ¼ ηijeiae
j
b.

Let O ∈ M be the origin of coordinates and êai be a
special tetrad at O (the lab frame). Its discrepancy from the
tetrad fields evaluated at O is denoted by

êai ¼ ðTOÞi0i x̂ai0; êai ¼ Li0
i e

a
i0; (A2)

where TO could be an arbitrary invertible transformation,
but L is a Lorentz transformation, Li0

i L
j0
j ηi0j0 ¼ ηij, which

we parametrize as L ¼ expðhOÞ.
A worldline γðtÞ is described by its coordinates

γiðtÞ ¼ xiðγðtÞÞ. Its tangent vector is denoted _γðtÞa.
Knowledge of the tangent vector allows one to recover
the curve as followsZ

t2

t1

dt_γaðtÞx̂ia ¼
Z

γðt2Þ

γðt1Þ
dxi ¼ γiðt2Þ − γiðt1Þ: (A3)

For convenience, all curves are affinely parametrized from
0 to 1. Thus, the length of a timelike geodesic is equal to the
length of its initial tangent vector.
A geodesic γðtÞ is completely specified by its point of

origin γð0Þ and its initial tangent vector _γað0Þ, while a γ-
parallel-transported vector vaðtÞ is specified by its initial
value vað0Þ at γð0Þ. Again, for convenience in further
calculations, all such initial data are specified with refer-
ence to some given curve β, with βð0Þ ¼ O. Namely, the
point of origin is γð0Þ ¼ βð1Þ, the initial tangent vector
_γað0Þ is the β-parallel-transported image of a vector
_γaO ¼ _γiOê

a
i , and the initial value vað0Þ is the β-parallel-

transported image of a vector vaO ¼ viOê
a
i (cf. Fig. 7).

Let γðtÞ be a parametrized spacetime curve and vaαðtÞ,
α ¼ 0, 1, 2, 3, an orthonormal tetrad along it. Its compo-
nents viαðtÞ in the basis of the spacetime tetrad are given by
vaαðtÞ ¼ viαðtÞeai ðγðtÞÞ. The pair ðγ; vaαÞ is a geodesic with a
parallel-transported orthonormal frame on it if it satisfies
the following conditions:

_γðtÞa ¼ va0ðtÞ; (A4)

_γðtÞa∇avcαðtÞ ¼ 0: (A5)

The coordinate components of the velocity are
_γðtÞax̂ia ¼ _γðtÞaejaT̄i

j. Hence, in coordinate and tetrad com-
ponents, the geodesic and parallel transport equations
become

_γi ¼ vj0T̄
i
j; (A6)

_vkα ¼ −vi0ωi
k0
jv

j
α; (A7)

where ηkk0ωi
k0
j ¼ ωikj ¼ ωi½kj� are the Ricci rotation coef-

ficients (Sec. 3.4b of [42]). The Ricci rotation coefficients
can be computed in terms of the transformation matrix Ti

j:

ωikj ¼ −αi½kj� þ αjðikÞ − αkðijÞ; (A8)

αikj ¼ T̄i0
i ð∂i0Tl

j0ηlkÞT̄j0
j : (A9)

The geodesic (A6) and parallel transport (A7) equations
can be jointly transformed into a system of integral
equations

γðtÞi ¼ γð0Þi þ
Z

t

0

dt0T̄ðγðt0ÞÞijvj0ðt0Þ; (A10)

vkαðtÞ ¼ T exp

�
−
Z

t

0

dt0v0ðt0Þiωðγðt0ÞÞikj
�
vjαð0Þ; (A11)

¼ exp ðpγðtÞÞkjvjαð0Þ; (A12)

where T expð� � �Þ denotes the time-ordered exponential and
the parallel propagator exp ðpγðtÞÞkj is defined implicitly
by the last equation. For brevity, we also use the notation
pγ ¼ pγð1Þ. In this form, the solution can be directly
expanded to any desired order in OðhÞ.
The solution is specified by the following triple of input

data: a curve βðsÞ with βð0Þ ¼ O and γð0Þ ¼ βð1Þ, a frame
uiαðsÞ on βðsÞwith _βi ¼ uj0T̄

i
j, and a Lorentz transformation

Li
j with v

j
αð0Þ ¼ Lj

iu
i
αð1Þ. Each of the input data, β, u, L, as

well as the resulting γ and v can be expanded in powers of
OðhÞ, with the notation:

FIG. 7. A geodesic γ is defined by its initial point γð0Þ and
initial tangent vector _γð0Þ. The initial point itself is specified as
the final point γð0Þ ¼ βð1Þ of another curve β which starts at the
origin. The initial tangent vector can then be specified by its
inverse image _γ0 ∈ TOM under parallel transport along β.
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A ¼ A
ð0Þ

þ A
ð1Þ

þ A
ð2Þ

þOðh3Þ: (A13)

First, note the expansions

Ti
j ¼ exp ðhÞij ¼ δij þ hij þ

1

2
hikh

k
j þOðh3Þ; (A14)

T̄i
j ¼ exp ð−hÞij ¼ δij − hij þ

1

2
hikh

k
j þOðh3Þ; (A15)

αikj ¼ ∂ihkj

þ 1

2
½ð∂ihmj Þhlmηlk þ hmj ð∂ihlmÞηlk�

− hi0i ð∂i0hljÞηlk − ð∂ihlj0Þηlkhj0j
þ γ

ð1Þm∂m∂ihljηlk þOðh3Þ; (A16)

vjαð0Þ ¼ L̄j
i

ð0Þ
uαi
ð0Þ

þL̄j
i

ð0Þ
uαi
ð1Þ

þL̄j
i

ð1Þ
uαi
ð0Þ

þ L̄j
i

ð0Þ
uαi
ð2Þ

þL̄j
i

ð1Þ
uαi
ð1Þ

þL̄j
i

ð2Þ
uαi
ð0Þ

þOðh3Þ; (A17)

where, in Eq. (A16), αikj stands for αikjðγðtÞÞ and all terms
on the right-hand side are evaluated at t or γ

ð0ÞðtÞ. For
simplicity of notation, we write

Að γð0ÞðtÞÞ ¼ AðtÞ and vα
ðnÞið0Þ ¼ vα

ðnÞi: (A18)

To quadratic order in OðhÞ, the solutions of the geodesic
and parallel transport equation, Eqs. (A6) and (A7), are
given in Eqs. (A19a) and (A20a) below. To keep the
structure of the resulting expressions manageable, the terms
are displayed hierarchically. The hierarchy is laid out as
follows: (1) increasing total order in OðhÞ, (2) decreasing
OðhÞ order in inputs (β, u, L), (3) increasing number of
integrals, (4) increasing number of derivatives. The sub-
equations (a), (b) and (c) refer, respectively, to Oðh0Þ,
Oðh1Þ and Oðh2Þ terms of the expansion.
As can be seen from the explicit form of this expansion,

there are several problematic terms appearing at quadratic
order that cannot be accommodated by the evaluation
algorithm described in this paper, if they were to be
included as corrections to the quantum variance operator
r½ ~h�2. They are marked by square brackets. These terms are
of the form

R
t dt1

R
t1 dt2A½h�ðt1ÞB½h�ðt2Þ. Our algorithm

would only be able to handle this expression if the upper
limit of the inner integral were also t instead of t1.

vkαðtÞ ¼ v α
ð0Þk (A19a)

þ v α
ð1Þk −

Z
t
dt1 v 0

ð0Þi
ω
ð1Þ ðt1Þikjv 0

ð0Þj
(A19b)

þ v α
ð2Þk −

Z
t
dt1v 0

ð0Þi
ω
ð1Þ ðt1Þikjv α

ð1Þj þ
�Z

t
dt1

Z
t1
dt2 v 0

ð0Þi1
ω
ð1Þ ðt1Þi1kj1 v 0

ð0Þi2
ω
ð1Þ ðt2Þi2 j1 j2 v α

ð0Þj2
�

−
Z

t
dt1v 0

ð1Þi
ω
ð1Þ ðt1Þikjv α

ð0Þj −
Z

t
dt1v 0

ð0Þi
β
ð1Þ

ð1Þlð∂lω
ð1ÞÞðt1Þikjv α

ð0Þj

−
Z

t
dt1

Z
t1
dt2v 0

ð0Þi
δlj2 v 0

ð1Þj2ð∂lω
ð1ÞÞðt1Þikjv α

ð0Þj −
�Z

t
dt1

Z
t1
dt2v 0

ð0Þi T
ð1Þ

ðt2Þlj2 v 0

ð0Þj2ð∂lω
ð1ÞÞðt1Þikjv α

ð0Þj
�

þ
�Z

t
dt1

Z
t1
dt2

Z
t2
dt3v 0

ð0Þi
δlk3 v 0

ð0Þi3
ω
ð1Þ ðt3Þi3k3 j3 v 0

ð0Þj3ð∂lω
ð1ÞÞðt1Þikjv α

ð0Þj
�

þ
�Z

t
dt1

Z
t1
dt2 v 0

ð0Þi2
ω
ð1Þ ðt2Þi2 i1 j2 v 0

ð0Þj2
ω
ð1Þ ðt1Þi1kj1 v 0

ð0Þj1
�
−
Z

t
dt1v 0

ð0Þi
ω
ð2Þ ðt1Þikjv α

ð0Þj þOðh3Þ; (A19c)

γðtÞi ¼ β
ð0Þ
ð1Þi þ

Z
t
dt1δijv 0

ð0Þj
(A20a)

þ β
ð1Þ
ð1Þi þ

Z
t
dt1δijv 0

ð1Þj þ
Z

t
dt1 T

ð1Þ
ðt1Þijv 0

ð0Þj

−
Z

t
dt1

Z
t1
dt2δik2 v 0

ð0Þi2
ω
ð1Þðt2Þi2k2 j2 v 0

ð0Þj2 (A20b)

þ β
ð2Þ
ð1Þi þ

Z
t
dt1δijv 0

ð2Þj −
�Z

t
dt1

Z
t1
dt2 T

ð1Þ
ðt1Þik2 v 0

ð0Þi2
ω
ð1Þ ðt2Þi2k2 j2 v 0

ð0Þj2
�
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þ
Z

t
dt1 β

ð1Þ
ð1Þlð∂l T

ð1Þ
ðt1Þijv 0

ð1Þj þ
Z

t
dt1 T

ð2Þ
ðt1Þijv 0

ð0Þj

þ
Z

t
dt1

Z
t1
dt2δlj2 v 0

ð1Þj2ð∂l T
ð1Þ
Þðt1Þijv 0

ð1Þj þ
�Z

t
dt1

Z
t1
dt2T

ð1Þ
ðt2Þlj2 v 0

ð0Þj2ð∂l T
ð1Þ
Þðt1Þijv 0

ð1Þj
�

−
Z

t
dt1

Z
t1
dt2

Z
t2
dt3δlk3 v 0

ð0Þj3
ω
ð1Þ ðt3Þi3k3 j3 v 0

ð0Þj3ð∂l T
ð1Þ
Þðt1Þijv 0

ð1Þj

−
Z

t
dt1

Z
t1
dt2δik2 v 0

ð0Þi2
ω
ð1Þ ðt2Þi2k2 j2 v 0

ð1Þj2

þ
�Z

t
dt1

Z
t1
dt2

Z
t2
dt3δik2 v 0

ð0Þi2
ω
ð1Þ ðt2Þi2k2 j2 v 0

ð0Þj3
ω
ð1Þ ðt3Þi3 j2 j3 v 0

ð0Þ32
�

−
Z

t
dt1

Z
t1
dt2δik2 v 0

ð1Þj2
ω
ð1Þ ðt2Þi2k2 j2 v 0

ð0Þj2 −
Z

t
dt1

Z
t1
dt2δik2 v 0

ð0Þi2
β
ð1Þ

ð1Þlð∂lω
ð1ÞÞðt2Þi2k2 j2 v 0

ð0Þj2

−
Z

t
dt1

Z
t1
dt2

Z
t2
dt3δik2 v 0

ð0Þi2
δlj3 v 0

ð1Þj3ð∂lω
ð1ÞÞðt2Þi2k2 j2 v 0

ð0Þj2

−
�Z

t
dt1

Z
t1
dt2

Z
t2
dt3δik2 v 0

ð0Þi2 T
ð1Þ

ðt3Þlj3 v 0

ð0Þj3ð∂lω
ð1ÞÞðt2Þi2k2 j2 v 0

ð0Þj2
�

þ
�Z

t
dt1

Z
t1
dt2

Z
t1
dt3

Z
t3
dt4δik2 v 0

ð0Þi2
δlk4 v 0

ð0Þi4
ω
ð1Þ ðt4Þi4k4 j4 v 0

ð0Þj4ð∂lω
ð1ÞÞðt2Þi2k2 j2 v 0

ð0Þj2
�

þ
�Z

t
dt1

Z
t1
dt2

Z
t2
dt3δik2 v 0

ð0Þi3
ω
ð1Þ ðt3Þi3 i2 j3 v 0

ð0Þj3
ω
ð1Þ ðt2Þi2k2 j2 v 0

ð0Þj2
�

−
Z

t
dt1

Z
t1
dt2δik2 v 0

ð0Þi2
ω
ð2Þ ðt2Þi2k2 j2 v 0

ð0Þj2
(A20c)

þOðh3Þ.

APPENDIX B: LINEARIZED EXPRESSION FOR
THE TIME DELAY OBSERVABLE

In this appendix, we use the perturbative solution of the
geodesic and parallel transport equations, obtained in
Appendix A, to find an explicit linearized expression for
the time delay observable, which was defined implicitly in
Sec. II. We summarize below the relevant results, whose
detailed derivation can be found in Sec. V of [1].
First, we need to briefly recall some notation introduced

in Appendix A and introduce some more. Recall that a lab-
equipped spacetime ðM; g;O; êÞ defines a geodesic triangle
OPQ in ðM; gÞ, as illustrated in Fig. 1. Minkowski space
defines a special lab-equipped spacetime ðM; η; 0; x̂Þ, for
which the geodesic triangle and its geometry, including the
corresponding emission and delay times, can be computed
explicitly. We parametrize the deviation of ðM; g;O; êÞ
from ðH; η; 0; x̂Þ with the space-time dependent general
linear transformation T ¼ expðhÞ and the Lorentz trans-
formation L ¼ expðhOÞ at O, according to Eqs. (A1)
and (A2).

Denote the sides of the geodesic OPQ triangle by the
triple ð ~V; ~W; ~UÞ, oriented as shown in Fig. 8. The corre-
sponding initial tangent vectors, which can be used to
define these geodesic segments according to the scheme of
Appendix A, illustrated in Fig. 7, are ð~t ~va; ~wa;−s ~uaÞ,
where ~wa is null, ~ua is a unit vector, ~va ¼ viêai and ~t ¼
τvðsÞ is the emission time, with s and vi fixed by the
experimental protocol. In Minkowski space, these special-
ize to ðV;W;UÞ and ðτclva; wa;−suaÞ, where

ua ¼ uix̂ai ¼ x̂a0; (B1)

wa ¼ sðui − e−θviÞx̂ai ; (B2)

τclðsÞ ¼ se−θ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vrel

c

1þ vrel
c

s
; (B3)

with the probe rapidity θ, or equivalently its relative
velocity vrel, defined by
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u · v ¼ − cosh θ ¼ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðvrelc Þ2

q : (B4)

We parametrize the analogous non-Minkowski objects as

~t ¼ e~rτclðsÞ; (B5)

~va ¼ viêai ¼ eai exp ðhOÞijvj; (B6)

~ua ¼ eai ½expðpUÞ expðpWÞ expðpVÞ�ij exp ðhOÞjkuk; (B7)

~wa ¼ eai exp ð ~qÞijwj; (B8)

where we have used expðpγÞ to denote the parallel transport
operator along γ as defined in Eq. (A12), and we para-
metrized the changes in ~t and ~w due to the curvature by
expð~rÞ, where ~r is a scalar, and exp ~q is a Lorentz
transformation. These are determined by the triangle
closure condition (the requirement that the ~U segment
ends in O with tangent vector −sua). Since we are working
at linear order, we only need the leading terms in the
expansion of these unknowns

~qij ¼ qij½h� þOðh2Þ; ~r ¼ r½h� þOðh2Þ: (B9)

We have the following linearized expression for the
emission time [43],

τðsÞ ¼ τclðsÞ½1þ r½h� þOðh2Þ�; (B10)

r½h� ¼ −wiJi − wiHijsuj

τclðsÞv · w
; (B11)

where r½h� was obtained from the explicitly expressed
triangle closure condition, using the Eqs. (A19b) and
(A20b) (truncated at linear order). The normalization factor
explicitly evaluates to

τclðsÞv · w ¼ s2

2
ð1 − e−2θÞ ¼ s2

vrel
c

ð1þ vrel
c Þ

: (B12)

The H and J terms are given explicitly by the formulas

wiHijsuj ¼
X

X¼V;W;U

�
swiuj½h½ij��x2x1 þ 2sw½iuj�xk

Z
X
dt∂ihðkjÞ

�
; (B13)

wiJi ¼
X

X¼V;W;U

�
−wixj

Z
X
dthðijÞ þ 2w½ixj�xk

Z ð1Þ

X
dt∂ihðkjÞ þ

X
X>Y¼V;W;U

2w½ixj�yk
Z
Y
dt∂ihðkjÞ

�
; (B14)

where
R ðnÞ
X denotes the affinely [0, 1]-parametrized, n-

iterated integral over the segment X with tangent vector xa

(similarly for Y and ya). An ordinary integral is 0-iteratedR ð0Þ dtfðtÞ ¼ R
1
0 dtfðtÞ and

R ð1Þ dtfðtÞ ¼ R
1
0 dt

R
t
0 dt

0fðt0Þ.
The segments are implicitly ordered V < W < U. The first
summand term in H depends only on the antisymmetriza-
tion h½ij�. Since we shall only use a gauge where hij is
symmetric, it will can always be neglected in the sequel.
The above linearized expression for τðsÞ is invariant

under linearized gauge transformations (in fact each of the

H and J terms is invariant separately), which has been
checked explicitly in the Appendix of [1].

APPENDIX C: CALCULATION OF THE
GRAVITON TWO-POINT FUNCTION

In this appendix, we calculate the Hadamard two-point
function, hfĥijðxÞ; ĥklðyÞgi, for the linearly quantized
graviton field ĥijðxÞ, which was defined in Appendix A.
Obviously, this two-point function depends on the choice

FIG. 8. Illustration of the geometry and orientation of the U, V
and W segments.
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of vacuum state used in the expectation value. In a linear
quantum field theory, the choice of vacuum can be
effectively made by identifying a suitable notion of positive
frequency [44,45]. The standard, Poincaré invariant Fock
vacuum corresponds to positive frequency with respect to
any inertial time coordinate consistent with the time-
orientation of our Minkowski space ðM; ηÞ. With this
choice fixed, it is well known that the Hadamard two-
point function is obtained from the field commutator
½ĥijðxÞ; ĥklðyÞ� by flipping the sign of its negative frequency
Fourier modes. Finally, the field commutator is determined
by proportionality to the classical Poisson bracket, which is
fully fixed by the classical Lagrangian and a choice of
gauge fixing. Evidently, the result depends on the choice of
gauge fixing. However, if the Hadamard two-point function
is only used to evaluate expectation values of the form
hfO1½ĥ�; O2½ĥ�gi, where O1 and O2 are linear gauge
invariant observables, these expectation values will not
depend on the choice of gauge, nor even on the addition to
the Hadamard two-point function of anything that is
annihilated in the process. This last observation allows
us to choose, in the end, a particularly simple and
symmetric expression for the Hadamard tw-point function.
All these steps are performed below.

1. Field commutator

The field commutator is fixed, according to the usual
rules of canonical quantization, by the formula

½ĥijðxÞ; ĥklðyÞ� ¼ iℏΠðhijðxÞ; hklðyÞÞ; (C1)

where we use Πð−;−Þ to denote the classical Poisson
bracket to distinguish it from the quantum anti-commutator
f−;−g. In a gauge theory, Poisson brackets are usually
defined only on gauge invariant observables, but are
essentially fixed by the Lagrangian density. To extend
Poisson brackets to noninvariant observables, like the field
evaluations hijðxÞ, we must also specify a gauge fixing.
Below, we use the transverse-traceless-radiation condition
[[42], Sec. 4.4b], which fully fixes the available gauge
freedom.
To determine the Poisson brackets, instead of going

through a complicated 3þ 1 decomposition and the asso-
ciated constraint analysis, we follow the covariant phase
space formalism [46]. The Lagrangian, together with a
choice of Cauchy surface, naturally determines a 2-form on
the space of (off-shell) field configurations. This 2-form,
when restricted to the subspace of solutions (on-shell),
becomes presymplectic and independent of the choice of
the Cauchy surface. Further, restricting to the subspace
gauge fixed solution, which we identify with the physical
phase space, it becomes symplectic. We explicitly invert
this symplectic form to obtain the Poisson bivector and
hence the Poisson brackets.

A. Lagrangian

Since we are interested in linearized gravity, we start with
Minkowski space ðM; ηÞ and a global inertial coordinate
system xμ thereon. For our action, we take the Einstein-
Palatini action [47], which in coordinates looks like

SEP ¼
Z

d4xLEP ¼ κ

Z
d4x~gμνRμν; (C2)

Rμν ¼ ð∂λΓλ
μν − ∂νΓλ

μλ þ Γλ
νμΓ

β
λβ − Γλ

βμΓ
β
λνÞ; (C3)

where Rμν the Ricci tensor, built entirely out of the
Christoffel symbols Γλ

μν, and ~gμν is the inverse densitized
metric, i.e., gμν ~gνλ ¼ ffiffiffiffiffiffi−gp

δλμ, with g the determinant of gμν.
The independent fields in the Einstein-Palatini action are

~gμν and Γλ
μν. The Christoffel symbols are auxiliary (they can

be eliminated algebraically through their own equations of
motion) and their elimination immediately establishes
equivalence with the vacuum Einstein equations. It remains
only to fix the overall constant κ.
To find this constant, we consider the joint gravity-matter

action SEP þ SM, where SM is the action of a point particle,
and impose on it two conditions: in the nonrelativistic limit
(i) SM has the standard kinetic term

R
dt mv2

2
and (ii) the

equations of motion reproduce the standard Poisson equa-
tion for the Newtonian gravitational potential of a particle
of mass m. It is well known [[48], Eq. (8.1)] that (i) is
satisfied by

SM ¼ −mc
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_γμðτÞ_γνðτÞgμν

q
; (C4)

where γμðτÞ are the coordinates of the particle’s worldline.
Variation of the total action [49] yields the Einstein
equations in a form equivalent to

Rμν − 1

2
gμνR ¼ c3

2κ
Tμν; (C5)

where R ¼ gμνRμν is the Ricci scalar and the stress-energy
tensor of the point particle has the expected form

TμνðxÞ ¼
Z

dσmc2uμuνδðx; γðσÞÞ; (C6)

with dσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−_γν _γλgνλ

p
dτ, uμ ¼ _γμ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−_γν _γλgνλ
p

and
δðx; yÞ ffiffiffiffiffiffi−gp ¼ δ4ðx − yÞ, respectively, the proper time line
element, the unit 4-velocity and the scalar Dirac distribu-
tion. The correct Newtonian limit is recovered, equiva-
lently, (ii) is satisfied, if c3=2κ ¼ 8πG [[48], §99] or

κ ¼ 1

16π

c3

G
¼ 1

16π

ℏ
l2
p
; (C7)

where G is Newton’s gravitational constant and lp is the
Planck length.
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B. Gauge fixed symplectic form

Following [46], we define a 2-form Ω on the space of
(off-shell) field configurations

Ω ¼
Z
Σ
ω; (C8)

where Σ is a (codimension-1) Cauchy surface and ω is itself
a 2-form on the space of field configurations, valued in
spacetime 3-forms. We call ω the presymplectic current
density. When restricted to the subspace of solutions
(on-shell), it is space-time closed, dω ¼ 0, as well as
variationally closed, δω ¼ 0, where we have used δ as
the exterior field variational derivative. Hence Ω is inde-
pendent of Σ and is presymplectic on the space of solutions.
When dealing with a gauge theory, as we are now, its
restriction Ω̄ to the subspace of gauge fixed solutions
becomes symplectic. We calculate ω from the Lagrangian
density L using the following steps,

δL ¼ EL − dθ; (C9)

ω ¼ δθ; (C10)

where we have again used δ as the exterior field variational
derivative, EL denotes the term proportional to the
Euler-Lagrange equations and dθ is the spacetime exact
“boundary term” that is usually discarded while varying the
action. We call θ the presymplectic potential current density.
Starting with the Einstein-Palatini action (C2), we find

θ ¼ κð~gμνδΓα
μν − ~gμαΓν

μνÞd3xα (C11)

ω ¼ κðδ~gμν∧δΓα
μν − δ~gμα∧δΓν

μνÞd3xα; (C12)

where ∧ denotes the anti-symmetric product of field
variational forms and in our global inertial coordinates
dxβ∧d3xα ¼ δβαd4x. Letting Σ be the hypersurface
t ¼ x0 ¼ 0, we have

Ω ¼ κ

Z
t¼0

ðδ~gμν∧δΓ0
μν − δ~gμ0∧δΓν

μνÞd3x0: (C13)

At this point, in one step, we restrict to gauge fixed
solutions and expand everything to first perturbative order
in the graviton field hðijÞ, which was defined in
Appendix A, with the notation hμν ¼ hðijÞðdxiÞμðdxjÞν:

gμν ¼ ημν þ 2hμν þOðh2Þ; (C14)

~gμν ¼ ημν − 2hμν þ ημνhαα þOðh2Þ; (C15)

Γα
μν ¼ ηαβð∂μhβν þ ∂νhβμ − ∂βhμνÞ þOðh2Þ; (C16)

where indices have been raised using ημν. On top of the
equations of motion, to fix the full available gauge freedom,
we impose the transverse-traceless-radiation condition [[42],
Sec. 4.4b]:

□hμν ¼ ∂λ∂λhμν ¼ 0; (C17)

∂μhμν ¼ 0; (C18)

hμμ ¼ 0; (C19)

tμhμν ¼ h0ν ¼ 0; (C20)

where tμ ¼ ðdtÞμ.
Making use of the above expansions and gauge fixing

conditions, the form (C13) restricts to the symplectic form

Ω̄ ¼ 2

Z
t¼0

ðδhμν∧δ _hμνÞd3x0; (C21)

where the dot denotes the ∂0 derivative.
Thegeneral gauge fixedsolutioncanbeexplicitlywritten in

Fourier space, with x ¼ ðt;xÞ, k ¼ ðω;kÞ and ωk ¼ jkj, as

hμνðxÞ ¼
Z

d3k
ð2πÞ3 e

ik·x

× ðP1
μνðkÞ½αþ1 ðkÞe−iωkt þ α−1 ðkÞeiωkt�

þ P2
μνðkÞ½αþ2 ðkÞe−iωkt þ α−2 ðkÞeiωkt�Þ; (C22)

where α�i ðkÞ are arbitrary k-dependent coefficients and Pi
μν

are polarization factors that need to satisfy

ημνPi
μν ¼ 0;

tμPi
μν ¼ Pi

0ν ¼ 0;

kμPi
μν ¼ 0;

Pi
μνPjμν ¼ δij;

P1
μνð−kÞ ¼ P1

μνðkÞ; P2
μνð−kÞ ¼ −P2

μνðkÞ; (C23)

for i ¼ 1, 2.The first three conditionsaredirectly related to the
gauge fixing, the orthogonality condition ensures that the
coefficients α�i describe independent polarizations for differ-
ent i, and the last conditions prescribe their behavior under
parity transformations [50]. In the final expression for the
Poisson bracket, only the projected identity tensor P1

μνP1
λκ þ

P2
μνP2

λκ appears explicitly. So, instead of finding explicit
expressions for the polarization factors and computing the
projected identity from its definition, we simplify the calcu-
lation by expressing it in the most general basis and then
restricting thecoefficientsusingall of theaboveconditions.As
a basis, we use all rank-4 tensors that could be constructed
from ημν, tμ, and kμ that are symmetric under the index
exchanges ðμνÞ↔ðκλÞ, μ↔ν and κ↔λ:
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P1
μνP1

κλ þ P2
μνP2

κλ ¼
1

2
ðημκηνλ þ ημληνκÞ þ Aημνηκλ þ Bðημνkκkλ þ ηκλkμkνÞ

þ Cðημκkνkλ þ ηνκkμkλ þ ημλkνkκ þ ηνλkμkκÞ þDðημνtκtλ þ ηκλtμtνÞ
þ Eðημκtνtλ þ ηνκtμtλ þ ημλtνtκ þ ηνλtμtκÞ þ Fðημνkκtλ þ ημνkλtκ þ ηκλkμtν þ ηκλkνtμÞ
þGðημκkνtλ þ ηνκkμtλ þ ημλkνtκ þ ηνλkμtκÞ þHðημκkλtν þ ηνκkλtμ þ ημλtνkκ þ ηνλtμkκÞ
þ Ikμkνkκkλ þ Jðkμkνkκtλ þ kμkνkλtκ þ kμkκkλtν þ kνkκkλtμÞ
þ Kðkμkνtκtλ þ kκkλtμtνÞ þ Lðkμkκtνtλ þ kμkλtνtκ þ kνkκtμtλ þ kνkλtμtκÞ
þMðkμtνtκtλ þ kνtμtκtλ þ kκtμtνtλ þ kλtμtνtκÞ þ Ntμtνtκtλ; (C24)

where the capital letters are constants that will be fixed by the
restrictions in (C23). We have 14 constants: the trace
condition gives four independent constraints and projection
onto tμ andkμ eachgive ten constraints amounting to a total of
24 constraints. Fortunately, some constraints are redundant
and the system is exactly solvable. Having set t2 ¼ −1, we
obtain the following expressions for the constants:

A ¼ − 1

2
; H ¼ −k · t

2ðk2 þ ðk · tÞ2Þ ;

B ¼ 1

2ðk2 þ ðk · tÞ2Þ ; I ¼ 1

2ðk2 þ ðk · tÞ2Þ2 ;

C ¼ − 1

2ðk2 þ ðk · tÞ2Þ ; J ¼ k · t
2ðk2 þ ðk · tÞ2Þ2 ;

D ¼ − k2

2ðk2 þ ðk · tÞ2Þ ; K ¼ k2 þ 2ðk · tÞ2
2ðk2 þ ðk · tÞ2Þ2 ;

E ¼ k2

2ðk2 þ ðk · tÞ2Þ ; L ¼ − k2

2ðk2 þ ðk · tÞ2Þ2 ;

F ¼ k · t
2ðk2 þ ðk · tÞ2Þ ; M ¼ − k2ðk · tÞ

2ðk2 þ ðk · tÞ2Þ2 ;

G ¼ − k · t
2ðk2 þ ðk · tÞ2Þ ; N ¼ k4

2ðk2 þ ðk · tÞ2Þ2 :

The resulting projected identity is rather long and compli-
cated. Conveniently, there are some simplifications that can
bemade. Since hμν has gauge degrees of freedom of the form
kðμζνÞ, all terms that have a similar form can consequently be
gaugedawaywhencalculatingobservables.Additionally, the
projected identity will appear in the graviton two-point
function within an integral over k together with δð4Þðk2Þ;
hence, all terms that are proportional to k2 will vanish. Ergo,
the only nonvanishing constant is A ¼ − 1

2
and, for the

purpose of calculating with gauge invariant observables,
the projected identity can be taken to be simply

P1
μνP1

κλ þ P2
μνP2

κλ ¼
1

2
ðημκηνλ þ ημληνκ − ημνηκλÞ

≡ 1

2
ημν;κλ: (C25)

Inserting the general gauge fixed solution (C22) into the
symplectic form, expression (C21), gives

Ω̄ ¼ 2κ

Z
t¼0

d3x
Z

d3k
ð2πÞ3

Z
d3k0

ð2πÞ3 iωk0eiðkþk0Þ·x

× ðP1μνðkÞ½δαþ1 ðkÞe−iωkt þ δα−1 ðkÞeiωkt�
þ P2μνðkÞ½δαþ2 ðkÞe−iωkt þ δα−2 ðkÞeiωkt�Þ

∧ðP1
μνðk0Þ½−δαþ1 ðk0Þe−iωk0 t þ δα−1 ðk0Þeiωk0 t�

þ P2
μνðk0Þ½−δαþ2 ðk0Þe−iωk0 t þ δα−2 ðk0Þeiωk0 t�Þ (C26)

¼ 4κ

Z
R3

þ

d3k
ð2πÞ3 iωk

× ð−δαþ1 ∧δαþ�
1 þ δα−1∧δα−�1

−δαþ2 ∧δαþ�
2 þ δα−2∧δα−�2 Þ: (C27)

This result requires some explanation. The x-integration
results in a factor of δ3ðkþ k0Þ, which eliminates the k0-
integral. Further, the reality of the graviton field, h�μνðxÞ ¼
hμνðxÞ, and the parity properties of Pi

μνðkÞ given in
(C23) translate to the following parity properties of the α�i
coefficients:

αþ1 ðkÞ ¼ α−�1 ð−kÞ;
α−1 ðkÞ ¼ αþ�

1 ð−kÞ;
αþ2 ðkÞ ¼ −α−�2 ð−kÞ;
α−2 ðkÞ ¼ −αþ�

2 ð−kÞ: (C28)

Taking these parity properties into account, the integration
domain can then be shrunk from all of R3 to R3þ, the half-
space satisfying kz ≥ 0. Effecting the remaining algebraic
simplifications gives the expression (C27), where the argu-
ment of each α-coefficient isþk and hence has been omitted
for conciseness.Eachof theα-coefficients appearing in (C27)
isnow independentof theothers, at fixedk andat other values
of k ∈ R3þ.
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C. Gauge fixed Poisson brackets

If we consider the α�i ðkÞ-coefficients as a complete
set of independent coordinates on the physical phase
space of linearized gravity, then the expression (C27) for
the symplectic form shows that they are also canonical.
Therefore, it is straightforward to write down the Poisson
bivector Π ¼ Ω̄−1:

Π ¼ 1

4κ

Z
R3

þ
d3k

ð2πÞ3
ik

× ð−∂αþ
1
∧∂αþ�

1
þ ∂α−

1
∧∂α−�

1

−∂αþ
2
∧∂αþ�

2
þ ∂α−

2
∧∂α−�

2
Þ; (C29)

where the field variational vector fields ∂α�i
for are dual to

the field variational 1-forms δα�i . These vector fields,
through the standard action of vectors and bivectors on
functions, also satisfy the following identities, which
follow from the parity properties (C28):

∂αþ
1
ðkÞα

þ
1 ðqÞ ¼ δðk − qÞ;

∂αþ
1
ðkÞ∧∂αþ

1
ðkÞ�ðαþ1 ðpÞ; α−1 ðqÞÞ ¼ δðk − pÞδðkþ qÞ;

∂αþ
1
ðkÞ∧∂αþ

1
ðkÞ�ðαþ1 ðpÞ; αþ1 ðqÞÞ ¼ 0;

∂α−
1
ðkÞ∧∂α−

1
ðkÞ�ðαþ1 ðpÞ; α−1 ðqÞÞ ¼ −δðk − pÞδðkþ qÞ;

∂αþ
2
ðkÞ∧∂αþ

2
ðkÞ�ðαþ2 ðpÞ; α−2 ðqÞÞ ¼ −δðk − pÞδðkþ qÞ;

∂α−
2
ðkÞ∧∂α−

2
ðkÞ�ðαþ2 ðpÞ; α−2 ðqÞÞ ¼ δðk − pÞδðkþ qÞ:

Finally, using the above identities, together with the explicit
parametrization (C22) of gauge fixed solutions, the explicit
formula (C29) for the Poisson bivector and the simplified
expression (C25) for the projected identity tensor, we obtain
the Poisson brackets of two graviton field evaluations

ΠðhμνðxÞ; hκλðyÞÞ

¼ 2π

4κi

Z
d4k
ð2πÞ4 δðk

2ÞðP1
μνP1

κλ þ P2
μνP2

κλÞeik·ðx−yÞsgnðωÞ

¼ 1

2

2π

4κi
ημν;κλ

Z
d4k
ð2πÞ4 δðk

2Þeik·ðx−yÞsgnðωÞ; (C30)

where sgnðxÞ is the sign-function and as before k ¼ ðω;kÞ,
with the extra integration over ω compensated by the δðk2Þ
factor and the various e�iωkt factors absorbed into the single
remaining exponential.

2. Sign flip

Having computed the Poisson brackets of field evalua-
tions in the gauge fixed, linear, classical graviton field
theory, canonical quantization uniquely fixes the commu-
tator of the corresponding quantum field operators:

½ĥμνðxÞ; ĥκλðyÞ� ¼ iℏΠðhμνðxÞ; hκλðyÞÞ: (C31)

As mentioned earlier, it is well known [44,45] that the
above field commutator is related to the Hadamard two-
point function by a flip of the sign of its negative frequency
components:

hfĥμνðxÞ; ĥκλðyÞgi
¼ iℏ sgnði∂tÞΠðhμνðxÞ; hκλðyÞÞ (C32)

¼ ℏ
2

2π

4κ
ημν;κλ

Z
d4k
ð2πÞ4 δðk

2Þeik·ðx−yÞ (C33)

¼ ημν;κλ
l2
p

π
P

�
1

ðx − yÞ2
�
; (C34)

where the symbol P denotes the Cauchy principal value
prescription and we have used the identity [29]Z

d4k
ð2πÞ4 δðk

2Þeik·x ¼ 2

ð2πÞ3 P
1

x2
(C35)

and the value κ ¼ 1
16π

ℏ
l2p
from Eq. (C7). We should note that

Eq. (C35) is an identity involving two distributions, a
Dirac-delta and a Cauchy principal value, which are strictly
defined only when their arguments have simple zeros and
poles, respectively. Unfortunately, this condition fails
precisely at k ¼ 0 and x ¼ 0, respectively, so the distri-
butions are only defined in the complements of these
points. However, in four dimensions, each distribution
can be uniquely extended to the excluded point provided
that it remains homogeneous [29].

APPENDIX D: CALCULATION OF
PARTIAL CHECK

As a partial check on our computer routine, we calculated
—for a very specific case—the smeared integral ~I00

(jKj ¼ 0) by hand. In particular, we considered the integral
along two coinciding (hence parallel) 0-iterated null line
segments. This case was chosen because of its fairly simple
calculation and limited number of intermediate steps. Indeed
all results in this appendix are reproduced by our computer
routine.
We calculated the following integral along two parallel

null line segments:

~I00 ¼
Z

d4z
Z

1

0

ds
Z

1

0

dtP
gðz2⊥Þδðu · zÞ

ðxðsÞ − yðtÞ − zÞ2 : (D1)

We consider the null segments x ¼ y ¼ λðu − ûÞ, for some
scalar λ, so that xðsÞ ¼ sx with λ and yðtÞ ¼ ty ¼ tx. Since
x2 ¼ y2 ¼ 0 and z · x ¼ −λðc − TÞ, we can rewrite the
denominator as
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ððs − tÞx − zÞ2 ¼ z2 þ 2ðt − sÞx · z (D2)

¼ R2 − T2 − 2λðt − sÞðc − TÞ: (D3)

Parametrizing the integral in a similar manner as in Sec. IV
and rearranging the denominator gives

~I00 ¼ −
Z

2π

0

dϕ
Z

∞

−∞
dTδðdÞð−TÞ

Z
∞

0

dRRgðR2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
part II

×
Z

1

0

ds
Z

1

0

dt
Z

R

−R
dcP

1

R2 − T2 − 2λðt − sÞðc − TÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
part I

:

(D4)

To compute this integral, we follow the same logic that the
computer algebra uses: “part I” first, which amounts to
performing the integration over c, s and t, and subsequently
“part II,” which entails integration over R and T. The ϕ
integral merely contributes an overall factor of 2π.
Integration over c yieldsZ

R

−R
dc

1

R2 − T2 − 2λðt − sÞðc − TÞ

¼
�
− ðln jc − Tj þ ln jcþ T − 2λðt − sÞjÞ

2λðt − sÞ
�
R

−R
: (D5)

For simplicity, below, we work with the expression inside
the square brackets and plug in the boundary values c ¼
�R at the end. Next, integration along s and t is performed.
The first term in (D5) givesZ

ds
Z

dt

�
− ln jc − Tj
2λðt − sÞ

�
¼ − 1

2λ
ln jc − Tj½½−ðt − sÞðln jt − sj − 1Þ��;

where the square brackets indicate that the boundaries of s
and t still need to be inserted. These boundaries correspond
to the four vertices in Fig. 3. The second term in (D5) yieldsZ

ds
Z

dt

�
− ln jcþ T − 2λðt − sÞj

2λðt − sÞ
�

¼ − ln jcþ Tj
2λ

½½−ðt − sÞðln jt − sj − 1Þ�� þ 1

2λ
½½ðt − sÞ��

− 1

2λ

���
t − s − cþ T

2λ

�
ln

����1 − 2λðt − sÞ
cþ T

����
þðt − sÞL

�
2λðt − sÞ
cþ T

���
:

After combining the two equations again and extracting the
logarithmic divergences from the dilogarithm by applying

Eq. (82), we obtain an expression of the form − 1
2λ ½½� � ���,

where the double square brackets enclose

− ln jc2 − T2jðt − sÞðln jt − sj − 1Þ − ðt − sÞ

þ
�
ðt − sÞ − cþ T

2λ

�
ln

����1 − 2λðt − sÞ
cþ T

����
− ðt − sÞL

�
cþ T

2λðt − sÞ
�
− ðt − sÞ

2

�
ln

���� cþ T
2λðt − sÞ

�����2

þ π2

12
ðt − sÞ þ π2

4
ðt − sÞsgn

�
cþ T

2λðt − sÞ
�
:

Evaluating this result at the boundaries ðs; tÞ ¼ ð0; 0Þ and
ðs; tÞ ¼ ð1; 1Þ which correspond to the z11 and z22 vertices
gives zero. The ðs; tÞ ¼ ð1; 0Þ and ðs; tÞ ¼ ð0; 1Þ bounda-
ries which map to the z12 and z21 vertices give a nonzero
result given by

− 1

2λ

�
ln j1þ 2λ

cþT j
ln j1 − 2λ

cþT j
þ ðcþ TÞ

2λ
ln

����1 − �
2λ

cþ T

�
2
����

þ L
�
cþ T
2λ

�
− L

�
− cþ T

2λ

�
− π2

2
sgn

�
cþ T
2λ

��
Expanding this for small cþ T yields

− 1

2λ

�
2
cþ T
λ

− cþ T
λ

ln

���� cþ T
2λ

���� − π2

2
sgn

�
cþ T
2λ

��
þOðcþ TÞ2;

where we recall that the summation over c ¼ �R still needs
to be performed. Integration over ϕ and T is trivial and
using the definition in Eq. (85), the result is

~I00 ¼ π

λ2

�
4þ 2 ln j2λ=μj − π2λ

μ

�
þOðμ0Þ:

The same calculation was also checked by hand using the
momentum space representation of the Hadamard two-point
function Eq. (C33), with the smearing and s, t integrals also
converted to momentum space. The result agreed with the
above, giving us confidence that it is correct. This result is
also reproduced by the computer calculation, giving us
confidence that the latter is correct as well.
The same procedure can also be used to calculate terms

with one or two derivatives on the smearing function.
However, these calculations are slightly more involved
since now also terms proportional to c and c2 appear and
integration by parts is needed. The results of the calculation
for these integrals have been checked by hand and are
quoted here without any intermediate steps. These results
also agree with the computer output. For one derivative on
the smearing function (jKj ¼ 1) we have ~I00u ¼ ~I00û ¼ 0.
For two derivatives on the smearing function (jKj ¼ 2), the
complete set of smeared segment integrals is
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~I00uu ¼
π

λ2

�
− 2

μ2
þ π2λgð0Þ

�
þOðμ0Þ;

~I00uû ¼
π

λ2

�
− 8

μ2
− 16 ln j2λ=μj

μ2
þ 4π2λgð0Þ

�
þOðμ0Þ;

~I00û û ¼
π

λ2

�
10

μ2
− 12 ln j2λ=μj

μ2
þ π2λgð0Þ

�
þOðμ0Þ;

~I00δ⊥ ¼ π

λ2

�
− 4

μ2
− 4 ln j2λ=μj

μ2

�
þOðμ0Þ:
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