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We propose and develop a general algorithm for finding the action for cosmological perturbations which
rivals the conventional, gauge-invariant approach and can be applied to theories with more than one metric.
We then apply it to a particular case of bigravity, focusing on the Eddington-inspired Born-Infeld theory,
and show that we can obtain a nearly scale-invariant power spectrum for both scalar and tensor primordial
quantum perturbations. Unfortunately, in the case of the minimal Eddington-inspired Born-Infeld theory,
we find that the tensor-to-scalar ratio of perturbations is unacceptably large. We discuss the applicability of
our general method and the possibility of resurrecting the specific theory we have looked at.
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I. INTRODUCTION

We would love to understand how the Universe began.
Due to the resounding successes of observational cosmol-
ogy, we now have a tentative idea of what the very early
Universe was like. It was probably smooth and hot yet ever
so slightly perturbed, with ripples that can, with tremen-
dous accuracy, be described as adiabatic, quasi–scale
invariant and Gaussian. The recent results from the
Planck experiment [1] have characterized these properties
with exquisite precision and we are now confident that we
can assume them in the subsequent formation of large scale
structure.
If we are to access the very beginning of time we need to

extrapolate and to do so, we use general relativity (GR), our
most successful theory of gravity. Such an extrapolation is not
exempt from problems for, if embraced wholeheartedly, it
predicts the big bang, a physical divergence inwhich physical
quantities such as the energy density diverge, and a horizon
structure that is difficult to reconcile with one of our key
assumptions—smoothness. The immensely successful theory
of cosmological inflation is often invoked as naturally leading
toasatisfactoryexplanationfor the initial stateof theUniverse.
Yet, indetail, ithasmanyproblems.Thesimplestmodels fail to
fit the observations and, more fundamentally, they rely on an
incredibly fine-tuned set of conditions to be viable.
It pays to consider alternatives to the initial state of the

Universe. One intriguing arena to explore is that of multi-
gravity, i.e. where more than one metric is at play. Particular
examples of theories with multiple metrics have recently

been looked at in detail when constructing consistent
theories of massive gravitons [2,3]. An example that
attempts to do away with the initial singularity is the
Eddington-inspired Born-Infeld (EiBI) theory [4,5].
Originally motivated by Born-Infeld electrodynamics and
Eddington’s gravity, EiBI is a classical gravitational theory
which introduces modifications to general relativity in
regions with large curvature. The theory can be formulated
[6] as a bimetriclike theory:

S½g; q; χ� ¼ − 1

2

Z
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ffiffiffi
q
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κ
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ð ffiffiffi
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qμνgμν − 2
ffiffiffi
g

p Þ þ Sm½χ; g�;
(1)

where q and g are metrics with signature (þ, −, −, −), Sm
is the matter action depending on a matter field χ, and κ is
an arbitrary constant. Throughout this paper we will use
8πG ¼ c ¼ 1. Notice here that the metric representing the
physical spacetime is only g because that is the one coupled
to matter. For our purpose, Eq. (1) turns out to be a
formulation clearer and simpler than that shown in [5], so it
will be used throughout this paper. It is an exotic form of
bigravity in which there is no kinetic term for the g metric
(which couples to matter) unlike in the case of massive
gravity [2] where it is the q metric which has no dynamics.
Note that although in both theories there is a metric with
no dynamics, these are actually very different. In the EiBI
theory, the metric g is an auxiliary field and hence is varied
in the action. In massive gravity [2], the nondynamical
metric is a fixed, reference field and is therefore not varied
in the action. This difference leads to more equations or
constraints and fewer degrees of freedom in the EiBI theory
than in the theory proposed in [2].
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In [5] it was shown that, in the context of cosmology, the
EiBI theory avoids the big bang singularity by predicting a
Universe with a nearly static past. This type of evolution is
interesting because it eliminates a physical divergence but
also generates an early stage of inflation without including
any unknown type of matter. Subsequent authors have
looked at various aspects of this theory [6–28].
If we are to fully explore the primordial properties of the

EiBI theory, and multigravity theories more generally, we
need to develop a systematic and straightforward approach
for studying linear perturbation theory around a homo-
geneous background. The origin of these perturbations via
some putative quantum mechanism and how they later seed
the formation of structure in the Universe are crucial in
making them credible, testable theories. The introduction of
extra tensor fields (as opposed to scalar fields as is usually
done in inflation) greatly complicates the endeavor. There
are multiple fields and gauge degrees of freedom which
make it cumbersome to identify the true, gauge-invariant
physical fields.
In this paper we develop a procedure for extracting

the gauge-invariant physical fields from an initial set of
perturbations (which are generally gauge dependent) and
finding an action for them. This method provides a general
yet simple alternative to what has become known as the
Mukhanov variable [29] and relies on correctly identifying
the various Noether identities and making what we call
“good” gauge choices. Given its generality, the method can
be easily rolled out for the suite of bigravity theories that
are currently being considered and we take great care in
describing and explaining the different steps in some
detail.
The internal working of EiBI is remarkably fruitful for

developing these methods and we use them to predict the
power spectra of scalar and tensor inhomogeneities in our
Universe by assuming, as usual, that they were generated by
primordial quantum first-order perturbations in a classical
cosmological background. We find that, indeed, we obtain
scale-invariant perturbations but to do so we invoke an
unconventional mechanism proposed by Hollands and Wald
[30]. We find that the main drawbacks of the EiBI theory
become manifest: tensor and scalar instabilities occur, where
these types of perturbations diverge asymptotically in the
past and we predict an unacceptably large fraction of tensor
to scalar perturbations.
The main focus of this paper is the method and we

explain it in some detail. After briefly describing the EiBI
theory we lay out our method by, first of all, using the
general relativistic case as an example. We then turn to a
particular case of bigravity and apply our method to EiBI
and find the fundamental scalar and tensor variables. We
then quantize these variables and calculate the fundamental
observables: the relative amplitude between the scalar and
tensor perturbations as well as their scalar and tensor
spectral indices. Finally we discuss our results.

II. EiBI THEORY

The action for the EiBI theory was originally written in
[5] as

S½g;Γ; χ� ¼ 1

κ

Z
d4x

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν − κRμνðΓÞj

q
− λ

ffiffiffiffiffiffi−gp i
þ Sm½χ; g�; (2)

where g is the metric, Sm is the matter action which depends
on a matter field χ, Γ is an affine connection (independent
of g), κ an arbitrary constant with units of L2, and λ is a
nonzero constant related to the cosmological constant. This
action was constructed initially to have the same main
characteristic as the Born-Infeld electrodynamic theory:
eliminating divergences. As we will describe next, the EiBI
theory actually avoids the big bang.
Action (2), with λ ¼ 1 (no cosmological constant), is

completely equivalent to (1) if one considers that Γ in (2) is
the affine connection of the metric q in (1). From (1), we
find the following equations of motion:

qμν ¼ gμν − κRμνðqÞ;ffiffiffiffiffiffiffi−qp
qμν ¼ ffiffiffiffiffiffi−gp

gμν þ κTμν; (3)

where Tμν is the standard energy-momentum tensor (with
indices raised with the metric g), satisfying a conservation
equation: Tμν

;ν, where the covariant derivative is with
respect to g. For a flat Friedmann-Robertson-Walker
(FRW) universe, both metrics are described by

ds2q ¼ b2½z−1dη2 − dx⃗ · dx⃗�;
ds2g ¼ a2½dη2 − dx⃗ · dx⃗�; (4)

where b, a and z are all functions of the conformal time η,
and parametrize the evolution of the expanding back-
ground. Since both metrics are coupled, these three
parameters are related to one another, and then both metrics
cannot be written in the FRW form at the same time. In the
case of a perfect fluid with an equation of state between the
pressure p and the rest energy density ρ given by p ¼ wρ
(with w constant), the Friedmann equation is the following:

H2 ¼ 3

κ
ð1þ κρÞð1 − κρwÞ2

×
½1
2
ð1þ 3wÞκρ − 1� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κρÞð1 − κρwÞ3

p
½3þ 3

2
wð1þ 3wÞκ2ρ2 þ 3

4
ð3w − 1Þðw − 1Þκρ�2 ;

(5)

where H ¼ ðda=dtÞ=a is the Hubble parameter, with a the
scale factor, and t the physical time. For small densities, i.e.
κρ ≪ 1, this equation is equivalent to the Friedmann limit
of GR,

H2 ¼ ρ

3
;
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as we expected, since the EiBI theory modifies GR only for
large curvatures. The solution of the scale factor aðtÞ,
satisfying Eq. (5), is described in [5,9]. Two different types
of behavior are observed for aðtÞ, depending on the sign of κ,
but we will focus only on the case κ > 0, where the Universe
presents a minimum scale factor aB (whose value depends
on κ) in the asymptotic past, i.e. t → −∞. A scheme of such
an evolution is shown in Fig. 1 for the radiation-dominated
era (w ¼ 1=3). In this figure we can see that the scale factor
initially stays near to the minimum (a stage we call the
Eddington regime) and subsequently it evolves as predicted
by GR (a stage we call the Einstein regime).
During the Eddington regime, the scale factor evolves as

aðtÞ ¼ aB
�
e

ffiffiffi
8
3κ

p
ðt−t0Þ þ 1

�
; (6)

which means that the Universe undergoes an early accel-
erated exponential expansion away from the minimum
scale factor, and therefore there is an inflationary period.
This type of evolution is very interesting because it
solves the horizon problem (one of the attractive features
of the theory of inflation in GR) without considering any
unknown type of matter field. The horizon problem is
avoided in this solution because the horizon gets infinitely
large as we approach aB. In particular, in the early
Universe, there was a time when the horizon was bigger
than the size of the horizon at the time of the photon
decoupling. The flatness problem is also alleviated
(although not completely solved) in this model—during
the Eddington regime the scale factor does not grow much,
and Ω is roughly constant. It is only during the Einstein
regime that Ω starts to deviate from unity. As a result, the
EiBI theory gives us a well-behaved background that
suggests a possible alternative to inflation.
The main prediction from the theory of inflation is a

well-defined set of initial conditions for structure formation.

We will attempt to do the same for EiBI. As in inflation, we
will assume that primordial quantum perturbations were
originated during the early Universe, i.e. the radiation-
dominated era, transforming to classical perturbations which,
through gravitational instability, grew until structures were
formed. If we are to mimic what has been done for the theory
of inflation, we need to consider the following steps: find
the first-order perturbations for all the fields in (1), calculate a
second-order action for them, identify the second-order
action for the physical fields only, and finally quantize
these physical fields. In doing so, we will find their power
spectrumwhich we can (almost) directly link to observations.
To calculate a second-order action for the gauge-

invariant physical fields we will take an alternative route
to the conventional approach of [29]. We will take
advantage of the gauge symmetry present in the theory
to eliminate redundant degrees of freedom and pin down
the fundamental fields that we need to quantize. In order to
make this process clear, in the next section wewill calculate
the second-order action for the scalar field that drives
inflation in GR, reproducing the well-known result.

III. THE SECOND-ORDER ACTION FOR GR

In general relativity, the simplest model of inflation
involves a scalar field which satisfies the following action
([31,32]):

S½g;φ� ¼ − 1

2

Z
d4x

ffiffiffiffiffiffi−gp
R

þ
Z

d4x
ffiffiffiffiffiffi−gp �

1

2
∂μφ∂μφ − VðφÞ

�
; (7)

which has a gauge symmetry that comes from considering
general coordinate transformations. We consider general first-
order perturbations for the metric g and the inflationary scalar
field φ, in a background given by a flat FRW universe with a
scalar φ0ðηÞ. Following the classification of [29] in scalar,
vector and tensor perturbations (which evolve independ-
ently), we consider only, as an example, the scalar modes:

ds2g ¼ a2½ð1þ 2ϕÞdη2 − 2B;idxidη

− ½ð1 − 2ψÞδil þ 2E;il�dxidxl�;
φ ¼ φ0 þ φ1; (8)

where the first-order perturbations are represented by the
fields ϕ, B, ψ , E and φ1, which all depend, in general, on x⃗
and η. If we replace (8) into (7) and Taylor expand up to
second order in the perturbation fields, we find1

t

a

aB

1

FIG. 1 (color online). Scale factor as a function of physical time
t during the radiation-dominated era. An asymptotic minimum
value aB is found as t → −∞, which avoids the big bang
divergence. During the Eddington regime the scale factor grows
exponentially fast, while during the Einstein regime it evolves as
predicted by GR.

1Although one would expect that some second-order pertur-
bation fields to contribute also to the second-order action, they do
not. This is because the background equations of motion hold,
and hence every term multiplying one of these fields vanishes.
This fact is a generic property of perturbed actions.
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Ss½ϕ; B;ψ ; E;φ1� ¼ Sgs þ Sms; (9)

where Sgs corresponds to the first integral of (7), i.e. the purely gravitational part, and Sms corresponds to the second integral
of (7), i.e. the matter action. Explicitly,

Sgs½ϕ; B;ψ ; E� ¼
1

2

Z
d4xa2½−6ψ 02 − 12Hðϕþ ψÞψ 0 − 9H2ðϕþ ψÞ2 − 2ψ ;ið2ϕ;i − ψ ;iÞ þ 4Hψ 0E;ii þ 3H2B;iB;i

− 4Hðϕþ ψÞðB − E0Þ;ii − 4ψ 0ðB − E0Þ;ii − 4Hψ ;iB;i þ 6H2ðψ þ ϕÞE;ii

− 4HE;iiðB − E0Þ;llþ4HE;iiB;ll þ 3H2E;iiE;ll� (10)

Sms½ϕ; B;ψ ; E;φ1� ¼
1

2

Z
d4xa2

�
φ02
0 ð4ϕ2 − B;iB;iÞ þ ðφ02

0 − 2V0a2Þ

×

�
1

2
ð3ψ2 − ϕ2 þ B;iB;i − E;iiE;llÞ−3ϕψ þ ðϕ − ψÞE;ii

�
− 2φ0

0φ1;iB;i − 4φ0
0φ1

0ϕþ φ02
1

þ 2ðϕ − 3ψ þ E;iiÞðφ1
0φ0

0 − V1a2 − ϕφ02
0 Þ − φ1;iφ1;i−2V2a2

�
(11)

where we have represented the time derivatives of η as 0,
and the spatial derivatives as “; i” (for i ¼ 1, 2, 3), we have
defined H≡ a0=a, and the potential V has been expanded
as V ¼ V0ðφ0Þ þ V1ðφ1Þ þ V2ðφ1Þ, such that V0, V1 and
V2 are of zeroth, first and second order, respectively. This
second-order action gives first-order equations of motion
and is invariant only under infinitesimal transformations of
first order. This means there are unphysical degrees of
freedom, related to this gauge symmetry. Note that, in
general, there could be yet more unphysical degrees of
freedom coming from auxiliary fields with no dynamics (no
time derivatives).
In order to eliminate all the unphysical degrees we will

fix the gauge in action (9) and eliminate the auxiliary fields.
The elimination of auxiliary fields can be easily done by
calculating their equations of motion (which are algebraic
in the auxiliary fields) and working these fields out in terms
of the fields with dynamics. However, fixing the gauge
inside an action is a subtle process. The idea is to fix some
functions (equaling to the number of gauge symmetries) to
prescribed values, typically zero, in the action at the very
beginning. Once these functions are set to zero, their
corresponding equations of motion are lost and so is their
information.
A good gauge condition is one such that the equations of

motion we get rid of are contained in the remaining ones,
i.e. are redundant equations. In other words, the gauge-
fixed action must carry the same information as the original
one (a simple example that makes this statement clear can
be found in the Appendix). In addition, a good gauge
condition must fix the gauge. This means that after some
functions are set to zero, there is no residual gauge freedom.
It turns out that the very existence of gauge invariance

provides a simple and direct criterion to distinguish
between good and bad gauge conditions. Let us briefly
describe here the main ideas.
The crucial ingredients are the Noether identities. These

identities are relations between the various equations of
motion, and follow directly from the gauge invariance of
the action. Action (9) is invariant under (see [29])

δϕ ¼ −ða0=aÞξ0 − ξ0
0
; δψ ¼ ða0=aÞξ0;

δB ¼ ξ0 − ξ0; δE ¼ −ξ; δφ1 ¼ −φ0
0ξ

0; (12)

where ξ0 and ξ are arbitrary first-order scalar functions,
representing gauge freedoms. To find the Noether iden-
tities, we consider a general variation of the perturbed
action (9):

δSs ¼
Z

d4xðEϕδϕþ EBδBþ Eψδψ þ EEδEþ Eφ1
δφ1Þ;
(13)

where En denotes the equation of motion for a field n. Now,
if we replace these variations of fields δn by the gauge
variations (12), we must obtain δS ¼ 0, because the action
is gauge invariant. Let us do this and perform some
integration by parts to obtain

δSs ¼
Z

d4x

��
Eϕ

0 þ ðEψ − EϕÞ
a0

a
þ EB − Eφ1

φ0
0

�
ξ0

þ ðEB
0 − EEÞξ�: (14)

Since the action is gauge invariant and ξ and ξ0 are
completely arbitrary, δSs ¼ 0, and then both sets of
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parentheses are zero. This gives us two equations, which
correspond to the Noether identities:

Eϕ
0 þ ðEψ − EϕÞ

a0

a
þ EB − Eφ1

φ0
0 ¼ 0; (15)

EB
0 − EE ¼ 0. (16)

Any field with an equation of motion that can be worked
out from these last two identities has a redundant equation
of motion. Thus, we could use the gauge freedoms to set to
zero in the action:

ðψ ;φ1Þ þ ðEÞ: (17)

Equation (17)2 means that we can use one scalar gauge
freedom to fix the value of one field from the first set of
parentheses and the other gauge freedom to fix one field
from the second set of parentheses.
We must choose a gauge choice in such a way that the

final fields are gauge invariant in order to represent physical
degrees of freedom. Our gauge choice will be

φ1 ¼ 0 and E ¼ 0. (18)

We have now reduced our initial problem with five
scalar perturbation fields to one with three: ψ , B and ϕ.
Furthermore, from the second-order action we can observe
that B and ϕ have no dynamics; they are auxiliary fields
that can be eliminated from the action by writing them in
terms of ψ . If this is done, we finally obtain an action for ψ
only (in Fourier space):

Ss½ψ � ¼
1

2

Z
d3kdη

a2φ02
0

H2
½ψ 02 − k2ψ2�: (19)

We can now compare our approach to the usual, gauge-
invariant approach. There, the variable of choice is the
comoving curvature perturbation:

R≡ ψ þ H
φ0
0

φ1; (20)

which is gauge invariant and turns out to be identical
to the perturbative metric variable ψ with our gauge
choice:

R ¼ ψ if φ1 ¼ 0. (21)

Unsurprisingly, we find that (19) is the action for the
only physical field in inflation, and this result is gauge
independent.
The procedure we have described is systematic and

straightforward and can easily be deployed to more com-
plex theories. We now apply it to the EiBI theory for scalar
and tensor perturbations. We neglect vector perturbations
because, in our model, they decay as the Universe expands;
thus they are cosmologically irrelevant.

IV. THE SCALAR SECOND-ORDER ACTION
FOR THE EiBI THEORY

We can now apply our technique to bigravity, in particular
the EiBI theory. In order to do that, we will initially consider
general first-order perturbations and calculate a second-order
action for all the perturbation fields present. We will then
reduce the obtained action to one containing only the
physical degrees of freedom.
Let us start by considering first-order scalar perturba-

tions for both metrics q and g on the background shown in
Fig. 1:

ds2q ¼ b2½z−1ð1þ 2ϕ1Þdη2 − 2B1;i
ffiffiffi
z

p −1dxidη
− ½ð1 − 2ψ1Þδil þ 2E1;il�dxidxl�;

ds2g ¼ a2½ð1þ 2ϕ2Þdη2 − 2B2;idxidη

− ½ð1 − 2ψ2Þδil þ 2E2;il�dxidxl�: (22)

Here, the gravitational scalar fluctuations are described by
eight functions ϕj, Bj, ψ j and Ej, with j ¼ 1, 2. For the
matter part we will proceed as in [29] and consider a perfect
fluid with an equation of state p ¼ wρ and whose scalar
fluctuation is described by one function χðη; k⃗Þ.
Consequently, there are nine scalar perturbation fields in
total. Since we are studying primordial perturbations, we
will assume w ¼ 1=3; i.e. we are in the radiation-
dominated era.
The next step is straightforward but long; we replace (22)

and χ in action (1) and Taylor expand up to second order, to
find the second-order action Ss½ϕj; Bj;ψ j; Ej; χ�:

Ss½ϕj; Bj;ψ j; Ej; χ� ¼ S1s þ S2s þ Sms; (23)

where S1s is the first integral of (1), i.e. the gravitational
action for q purely; S2s is the second integral of (1), i.e. the
coupling term between q and g plus a term for only g; and
Sms is the second-order action of Sm (in this case, the action
of a perfect fluid). Explicitly, these three actions are the
following:

2This equation does not include B as a possible field to be fixed
by the gauge choice. Its equation of motion can, in fact, be
worked out from (15) but the problem is that B cannot be fixed
along with E. This is because the information in the equation for
E is contained in the equation for B [see Eq. (16)]. Thus, if E is
eliminated from the action we must keep B to not lose
information.
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S1s½ϕ1; B1;ψ1; E1� ¼
1

2

Z
d4x

b2ffiffiffi
z

p ½4zhψ1
0E1;ii − 6zψ 02

1 − 12zhðϕ1 þ ψ1Þψ 0
1 − 2ψ1;ið2ϕ1;i − ψ1;iÞ

− 4hψ1;iB1;i þ 6zh2ðϕ1 þ ψ1ÞE1;ii − 4
ffiffiffi
z

p
hðϕ1 þ ψ1ÞðB1 − ffiffiffi

z
p

E1
0Þ;ii

− 4
ffiffiffi
z

p
ψ1

0ðB1 − ffiffiffi
z

p
E1

0Þ;ii − 4
ffiffiffi
z

p
hE1;iiðB1 − ffiffiffi

z
p

E0
1Þ;ll

þ 4
ffiffiffi
z

p
hE1;iiB1;ll þ 3zh2E1;iiE1;ll þ 3zh2B1;iB1;i−9zh2ðϕ1 þ ψ1Þ2�

− b4

κ
ffiffiffi
z

p
�
3

2
ψ2
1 − 3ϕ1ψ1 þ

1

2
B1;iB1;i− 1

2
E1;iiE1;ll − 1

2
ϕ2
1 þ E1;iiðϕ1 − ψ1Þ

�
; (24)

S2s½ϕj; Bj;ψ j; Ej� ¼
1

2

Z
d4x

a2b2

κ
ffiffiffi
z

p ½2 ffiffiffi
z

p
B1;iB2;i þ ϕ1ððz − 1Þð3ψ1 − E1;iiÞ − 6ψ2 þ 2E2;ii − 2zϕ2Þ

þ ψ1ð6ψ2 − ðz − 1ÞE1;ii − 2E2;ii − 6zϕ2Þ −
1

2
ðz − 1ÞðE1;iiE1;ll þ B1;iB1;iÞ

þ 3

2
ðϕ2

1 þ ψ2
1Þðz − 1Þ−2E1;iiðψ2 − zϕ2 þ E2;iiÞ�

− 2a4
�
3

2
ψ2
2 − 1

2
ϕ2
2þ

1

2
B2;iB2;i þ ðϕ2 − ψ2ÞE2;ii − 3ϕ2ψ2

�
; (25)

Sms½ϕ2; B2;ψ2; E2; χ� ¼
Z

d4xa4
�
1

2
ρ0ϕ

2
2 þ p0

�
3

2
ψ2
2þðϕ2 − ψ2ÞE2;ii þ

1

2
B2;iB2;i − 1

2
E2;iiE2;ll − 3ϕ2ψ2

�

−
1

6
ðρ0 þ p0Þð3ψ2 − E2;ii − χ0;iiÞ2þðρ0 þ p0Þ

�
1

2
χ02;i þ B2;iχ

0
;i þ ϕ2χ;ii

��
: (26)

Here, we have used h ¼ b0=b, ρ0 is the background rest
energy density of the fluid, and p0 its pressure.
With the full action in hand, we must now proceed to

reduce it to one containing only physical perturbation fields
by eliminating auxiliary variables and fixing the gauge.
To do so we now study the gauge invariance of (23); we
apply the ideas described in the previous section, and look
for the Noether identities for action (23).
Our full action is invariant under the following infini-

tesimal transformations:

δϕ2 ¼ − a0

a
ξ0 − ξ0

0
;

δB2 ¼ ξ0 − ξ0δψ2 ¼
a0

a
ξ0;

δE2 ¼ −ξ;
δϕ1 ¼ −

�
b0

b
− z0

2z

�
ξ0 − ξ0

0
;

δχ ¼ ξ;

δB1 ¼ −ξ0 ffiffiffi
z

p þ ξ0ffiffiffi
z

p ;

δψ1 ¼
b0

b
ξ0;

δE1 ¼ −ξ; (27)

where ξ and ξ0 are infinitesimal arbitrary functions that
represent the two gauge freedoms in the case of scalar
perturbations. This leads us to two Noether identities (one
for each gauge freedom)

Eϕ1

0 − Eϕ1

�
b0

b
− z0

2z

�
þ Eψ1

b0

b
þ EB1ffiffiffi

z
p þ Eϕ2

0

þ ðEψ2
− Eϕ2

Þ a
0

a
þ EB2

¼ 0;

ðEB1

ffiffiffi
z

p Þ0 − EE1
− EE2

þ EB2

0 þ Eχ ¼ 0; (28)

which we can use to fix the value of the following
fields:

ðψ1;ψ2Þ þ ðE1; E2; χÞ: (29)

We will choose

ψ1 ¼ 0 and χ ¼ 0. (30)

Analogously to the previous section, the gauge-invariant
curvature perturbation on slices of uniform energy density,

ζ ≡ ψ2 − 1

3ðρ0 þ p0Þ
δρ; (31)
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where δρ is the first-order energy density fluctuation,3 turns
out to be proportional to the perturbative metric variable4

E1 in Fourier space in our gauge choice (30):

ζ ¼ − 1

3
k2E1 if χ ¼ 0; (32)

where k is the comoving wave number of the perturbation.
This variable ζ is sometimes used to describe the physical
scalar field in the inflation theory, as an alternative toR. As
we will see later, there is only one physical scalar field in
this theory, and it can be described by E1.
We now proceed with the reduction process of action

(23). For simplicity, we will work in Fourier space. First of
all, we fix the gauge. Second, we notice that the metric gμν
enters with no derivatives in the action (1). This means that
the fluctuations ϕ2, B2, ψ2 and E2 are auxiliary variables.
Furthermore, analogously to inflation, we can see from
(24)–(25) that ϕ1 and B1 are also auxiliary variables. Thus,
two functions are fixed by gauge conditions, and the other
six functions can be eliminated, resulting in only one
physical field present, E1.
We now use our gauge choice (30) in Fourier space, and

consider the mode expansion of the remaining fields:

ϕjðη; x⃗Þ ¼
Z

d3k

ð2πÞ32 ϕjðη; k⃗Þeik⃗·x⃗;

Bjðη; x⃗Þ ¼
Z

d3k

ð2πÞ32 Bjðη; x⃗Þeik⃗·x⃗;

ψ2ðη; x⃗Þ ¼
Z

d3k

ð2πÞ32 ψ2ðη; k⃗Þeik⃗·x⃗;

Ejðη; x⃗Þ ¼
Z

d3k

ð2πÞ32 Ejðη; k⃗Þeik⃗·x⃗; (33)

where j ¼ 1, 2, and k2 ≡ k⃗ · k⃗. Note that χ ¼ ψ1 ¼ 0, in
our gauge choice. Varying the whole action Ss with respect
to these scalar perturbation fields in Fourier space, we
obtain the following equations of motion:

ϕ2∶ðϕ − ϕ2 þ 3ψ1 þ E1k2Þz − E2k2 − 3ψ2 ¼ 0;

ψ2∶3ðϕ2 − ϕ1Þ − ðE2k2 þ 3ψ2Þzþ E1k2 ¼ 0;

E2∶3ðϕ1 − ϕ2Þ þ k2ð3E1 − 4E2Þ þ zð3ψ2 þ k2E2Þ ¼ 0;

B2∶B2 − ffiffiffi
z

p
B1 ¼ 0;

(34)

for the metric g, and

ϕ1∶a2zϕ2 þ 3a2ψ2 − 2k2
�
κh

ffiffiffi
z

p
B1 þ

1

2
a2ðE1 − E2Þ

�
þ 2zκhE1

0k2 − ð3a2 − 2b2Þϕ1 ¼ 0; (35)

B1∶a2
ffiffiffi
z

p
B2 − B1a2 þ 2κ

ffiffiffi
z

p
hϕ1 ¼ 0; (36)

E1∶a2ðψ2 þ k2ðE1 − E2Þ − zϕ2Þ þ ð2b2 − a2Þϕ1

þ 2κzhφ1
0 ¼ 0; (37)

for the metric q. From the set of equations (34) we can
obtain all the perturbation fields for g: E2, B2, ϕ2, and ψ2,
in terms of the perturbation fields of q:

ϕ2 ¼
ð3þ z2Þϕ1 þ k2E1ðzþ 1Þðz − 1Þ

3þ z2
;

ψ2 ¼
−k2ðz − 1Þð1=3z − 1ÞE1

3þ z2
;

B2 ¼
ffiffiffi
z

p
B1;

E2 ¼ E1:

If we replace these results in the remaining three equa-
tions (35)–(37), we can see that ϕ1 and B1 can be expressed
in terms of E1,

ϕ1 ¼ − ðz − 1ÞðκzhE1
0 þ 1

2
E1ðz − 1Þa2Þk2a2

ð3ðz − 1Þa2 þ 2κk2Þκh2z ; (38)

B1 ¼
2κhzE1

0k2 þ k2a2E1ðz − 1Þ
ð3a2ðz − 1Þ þ 2κk2Þh ffiffiffi

z
p : (39)

Finally, we have obtained all fields in terms of E1. If we
write these fields in terms of ζ, by using the relation (32),
and replace them in action (23), we get the final reduced
action Ss½ζ� in Fourier space:

Ss½ζ� ¼
1

2

Z
d3kdηf1ðη; kÞðζ02 − f2ðη; kÞζ2Þ (40)

where f1 with f2 are time-dependent functions of the
background variables given by

3δρ is given by δT0
0, which in terms of the perturbation fields is

given by δρ ¼ ðρ0 þ p0Þð3ψ2 − E2;ii − χ;iiÞ.4In principle, ζ is proportional to E2, but as we will see later,
E2 ¼ E1.
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f1ðη; kÞ ¼
18b2a2ðz − 1Þ ffiffiffi

z
p

X
f2ðη; kÞ ¼ 9b2a2f2Hðz2 þ 3Þκ½9ðz − 2Þðz − 1Þ2a4þ12k2κðz − 1Þðz − 2Þa2 þ 2k4κ2ðz − 3Þ�

þ z0ðz2 þ 3Þ½9ðz − 1Þ2a4 þ 12k2κðz − 1Þa2 þ 2κ2k4�þhXκ½12za2ðz − 1Þð1þ z2Þ
þ ð3þ 5zþ z2 þ 7z3Þk2κ�

where X ≡ 3ðz − 1Þa2 þ 2k2κ. The result given in (40) is
gauge independent and describes the scalar perturbations in
the EiBI theory.

V. THE TENSOR SECOND-ORDER ACTION
FOR THE EiBI THEORY

Let us now consider first-order tensor perturbations:

ds2q ¼ b2½z−1dη2 − ðδij þ h1ilÞdxidxl�;
ds2g ¼ a2½dη2 − ðδij þ h2ilÞdxidxl�; (42)

where the tensor fluctuations are given by h1il and h2il. We
can identify two polarizations p ¼ ðþ;×Þ and, for sim-
plicity, we will choose a specific direction k⃗ ¼ kẑ so tensor
perturbations lie in the xy plane. As a result, equivalently,
tensor metric perturbations can be written as

ds2q ¼ b2½z−1dη2 − ½ð1þ h1þÞdx2 þ ð1 − h1þÞdy2
þdz2 þ 2h1×dxdy��

ds2g ¼ a2½dη2 − ½ð1þ h2þÞdx2 þ ð1 − h2þÞdy2
þdz2 þ 2h2×dxdy�� (43)

where the perturbation fields are hjpðz; ηÞ, for j ¼ 1, 2.
Replacing these expressions into (1) we obtain a second-
order action ST½hjp�:

ST½hjp� ¼ S×½hj×� þ Sþ½hjþ�; (44)

where

Sp½hjp� ¼
1

2

Z
d4x

b2

2
ffiffiffi
z

p
�
zh021p þ

2

κ
a2h21p − h21p;z

þ 2

κ
a2ðh22p − 2h1ph2pÞ

�
: (45)

As in the standard GR case, there is no matter contribution
to tensor perturbations.
The action in expression (44) does not have a gauge

symmetry, so all we need to do is eliminate the auxiliary
variables. We take the mode expansion,

hjpðη; x⃗Þ ¼
Z

d3k

ð2πÞ32 hjpðη; k⃗Þe
ik⃗·x⃗; (46)

and calculate the equations of motion,

h2p∶h2p − h1p ¼ 0; (47)

h1p∶h001p þ
�
2hþ z0

2z

�
h1p0 þ

�
k2

z
þ 2

κz
a2
�
h1p

−
2

κz
a2h2p ¼ 0. (48)

From Eq. (45) we can see that only h2p are auxiliary
variables. Using Eq. (47) we can work out h2p in terms of
h1p and replace them in action (45) to obtain the reduced
second-order action in Fourier space:

ST½h1p� ¼ S×½h1×� þ Sþ½h1þ�; (49)

where

Sp½h1p� ¼
1

2

Z
d3kdηb2

ffiffiffi
z

p �
h021p − k2

z
h21p

�
: (50)

We see that ST½h1p� has two copies of the same action
Sp½h1p� for each polarization; from now on we will describe
these two physical degrees of freedom as h, such
that h ¼ h1× ¼ h1þ.

VI. QUANTIZATION AND COSMOLOGICAL
PREDICTIONS

We have reached the final step of the calculation. We can
now proceed to the quantization of the physical fields ζ and
h. But, before we do so, we would like to comment on a
particular behavior of the classical solutions during the
Eddington regime. The equation of motion coming from
(40) for ζ can be approximated to first order in the
Eddington regime (a ≈ aB):

ζ00 ≈ 0 ⇒ ζðη; kÞ ¼ Akηþ Bk; (51)

where Ak and Bk are integration constants, depending on k.
From this solution we can see that there is a linear
divergence as η → −∞ (or a → aB), leading to a scalar
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instability. Even though, in this paper, we will not consider
the case κ < 0, we would like to mention that there too,
there is a scalar polynomial instability as a → aB. The same
behavior was found in [10] for the tensor perturbation h in
both cases of κ.
Since the amplitude of these fields was large near aB, at

some moment in the past, the linear theory of perturbations
breaks down because δgμν=g

ð0Þ
μν ≪ 1 is violated [where gð0Þμν

is the background metric and δgμν its perturbation]. This
problem can be caused by the linear perturbation theory
(corrections of higher order could change this behavior) or
could be a characteristic of the EiBI theory itself. A similar
problem appears in inflation, where the physical fields
diverge in the big bang. However, we will consider only the
region where the linear theory is still valid, and thus avoid
this problem. This means we cannot fully exploit one of the
attractive features of the EiBI theory: that it will have
existed for an arbitrarily long amount of time in the
Eddington regime before the Einstein regime began.
To quantize the perturbations in this model, we apply the

canonical quantization procedure by promoting the fields to
quantum operators, expanding in terms of annihilation and
creation operators and imposing commutation relations.
These quantum solutions are not completely determined;
one initial condition is missing, which leaves the vacuum
state undefined. In the inflation theory of GR it is assumed
that perturbations were originated in their ground state—the
Bunch-Davies vacuum—at sub-Hubble scales (the period
when a comoving wavelength λ is much smaller than the
comoving Hubble radius), which determines entirely the
quantum solutions [33]. It is possible, however to choose
different vacua (or, equivalently, different initial conditions)
for perturbations (see [34–37]), which lead to different
results for the quantum solutions. In principle a complete
theory of quantum gravity could tell us exactly how the
Universe leaves the Planck scale, and would give us a unique
prescription for the initial condition for the fluctuations.
An alternative proposal is given by Hollands andWald in

[30]: a mechanism that results in a scale-invariant power
spectrum for quantum fluctuations in GR, without assum-
ing the existence of a fundamental scalar field as matter. To
do so, let us assume that there is a fundamental length
called l0. Semiclassical physics applies to phenomena on
spatial scales larger that l0, so modes emerge from an
unknown fundamental description of spacetime at that
scale. We may, for example, assume that a perturbation
with physical wavelength λph is effectively born at l0 in the
ground state of a flat spacetime. Since λph grows in time,
the perturbations are continuously being created. When
applied to scalar perturbations in GR during the early
Universe, Hollands and Wald obtained a primordial exactly
scale-invariant power spectrum, almost in accordance with
observations [1]. In order to have the correct amplitude for
the power spectrum, the authors choose l0 to be l0 ¼ 105lp,
with lp the Planck scale.

We can apply the Hollands-Wald mechanism to the
quantum solutions ζ̂ðη; k⃗Þ and ĥðη; k⃗Þ, albeit with a slight
modification. We will define5 l0 ¼

ffiffiffiffiffijκjp ¼ 104lp, and
assume that a mode with comoving wave number k is
created at η� such that b�=k ¼ l0. Notice that we have
defined this relation6 with the scale factor of the metric q,
instead of g. Then, the initial condition for the perturbations
will be that they are in the ground state at η�. For all
cosmologically relevant scales, η� occurs in the Eddington
regime.
Since we will use the Hollands-Wald mechanism with q

as the main metric, we will rewrite (40) such that it looks
like an action for a scalar field in a background described
by q:

Ss½v� ¼
1

2

Z
d3kdηb2

ffiffiffi
z

p ðv02 − f3ðη; kÞv2Þ; (52)

where the field v is related to ζ through ζ ¼ v
ffiffiffiffiffiffiffiffi
b2

ffiffi
z

p
f1

q
, and f3

is a function depending on f1 and f2. Also, since η� occurs
in the Eddington regime, we make the approximation
a ≈ aB and find

Ss ≈
1

2

Z
d3kdη4a2B

�
v02 − 5k2

9aB
ða − aBÞv2

�
: (53)

We write the quantum solution of v as

v̂ðη; k⃗Þ ¼ vk⃗ak⃗ þ v�
k⃗
a†
k⃗
; (54)

where vk⃗ is a classical complex solution, and ak⃗ and a†
k⃗
are

the annihilation and creation operators, respectively. By
making an adiabatic approximation7 near η� in the action
(53), we can use the standard QFT rules (with ℏ ¼ 1) to
quantize v and then write vk⃗ at η� as

vk⃗ðη�Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

8a2Bω�
p eiω�η� ; ω� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5k2

9aB
ða� − aBÞ

s
;

(55)

which gives us the initial condition for ζ:

5We have chosen this order of magnitude of l0 in order to have
the correct order of magnitude for the power spectrum of scalar
perturbations.

6This modification is motivated by the form of the second-
order action for tensor perturbations. In GR the action for h has
the form of an action for a scalar field coupled to the metric g, but
in the EiBI theory it appears coupled to q.

7The adiabatic approximation consists in taking an interval of
time small enough to allow us to consider the background
functions as effectively constant. In our specific calculations,
we take an interval of time around η�.
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ζk⃗ðη�Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
ffiffiffi
5

p
κk3

s
eiω�η� ; (56)

such that

ω� ¼
ffiffiffi
5

p
k3κ

12a2B
; η� ¼

2
ffiffiffiffiffi
3κ

pffiffiffi
2

p
aB

ln

�
k

ffiffiffi
κ

p
2aB

�
: (57)

Here, we have used that l0 ¼ b�=k.
Analogously, we approximate the tensor action for h in

the Eddington regime:

Sp ≈
1

2

Z
d3kdη4a2B

�
h02 − k2

aB
ða − aBÞh2

�
; (58)

and write the quantum solution as

ĥðη; k⃗Þ ¼ hk⃗ak⃗ þ h�
k⃗
a†
k⃗
; (59)

where hk⃗ is a complex classical solution. Taking the
adiabatic approximation we find the following initial
condition for hk⃗ at η�:

hk⃗ðη�Þ ¼
ffiffiffiffiffiffiffiffiffi
1

2κk3

r
ei ~ω�η� ; (60)

such that

~ω� ¼
κk3

4a2B
; η� ¼

2
ffiffiffiffiffi
3κ

pffiffiffi
2

p
aB

ln

�
k

ffiffiffi
κ

p
2aB

�
: (61)

We now have the initial conditions for both quantum
scalar and tensor perturbations. A general solution can
be obtained by evolving in time the classical solutions ζk⃗
and hk⃗ with their equations of motion. However, this
extrapolation seems difficult analytically, so we do it
numerically.
We now want to compare with observations. Current

constraints pin down properties of the scalar and tensor
power spectra at the time when a given scale leaves the
horizon (which is the second time a perturbation crosses the
horizon), i.e. k ¼ H which coincides with the transition
from quantum perturbations to classical perturbations. We
now proceed to predict these power spectra.
The power spectrum of ζ is defined as

Pζðη; kÞ ¼
k3

2π2
jζk⃗ðηÞj2: (62)

In order to find Pζ we will extrapolate ζk⃗ numerically in
time by using the classical equation of motion and the
initial condition (56) at η�. This initial condition is imposed
on ζ and its derivative. We evaluate the numerical solution
at a particular time during the Einstein regime for

super-Hubble scales (while the perturbation wavelength
is larger than the horizon), and calculate jζk⃗j2 there for a
range of values of k. We find that the power spectrum is
scale invariant: there is no dependence on the value of
k, i.e.

PζðkÞ ¼ A2
ζk

ns−1; (63)

where the amplitude A2
ζ ∼ 10−9, and the scalar spectral

index is perfectly scale invariant, ns − 1 ¼ 0.
To calculate the power spectrum of h we proceed as for

the scalar field ζ. We perform numerical calculations to find
jhk⃗j2 and conclude that the power spectrum is nearly scale
invariant:

PTðkÞ ¼
2k3

π2
jhk⃗j2 ¼ A2

Tk
nT ; (64)

where the amplitude A2
T ∼ 10−8 the tensor spectral index is

also perfectly scale invariant nT ¼ 0.
We can now compare our predictions for the power

spectra of scalar and tensor perturbations with the results
obtained from observations.8 Using

PζðkÞ ¼ A2
ζ

�
k
k0

�
ns−1

; (65)

where k0 ¼ 0.05 Mpc−1 we have that [1]

PRðk0Þ ¼ ð2.196þ0.051−0.060Þ × 10−9;
ns − 1 ¼ −0.0397� 0.0073: (66)

We found that the amplitude of the scalar power spectrum
has the right order of magnitude (the exact value can be
fitted by choosing an appropriate value for κ), while the
predicted ns is not compatible with current constraints. The
maximum value for the tensor-to-scalar ratio rðkÞ has also
been measured for k0 (see [1]) as

rðk0Þ≡ PTðk0Þ
PRðk0Þ

< 0.11; (67)

We predict r ∼ 10 which means that the EiBI theory with
the Hollands-Wald prescription (in particular, with the
described choice of vacuum) is grossly inconsistent with
observation.

VII. CONCLUSIONS

In this paper we have proposed a general algorithm
for studying linear cosmological perturbations in

8Usually experimental results refer to the comoving curvature
perturbation R, instead of ζ. However, for super-Hubble scales
R ≈ ζ.
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multigravity. We have applied it to explore the possibility
that inhomogeneities in our Universe were generated
by primordial quantum first-order perturbations in the
classical cosmological background given by the EiBI
theory. By carefully exploring the gauge symmetry
present in the theory, we were able to write an action
which only contains the physical degrees of freedom: one
scalar and two equal tensor perturbations. The beauty of
our method is that it can be rolled out to other theories
involving multiple metrics—the currently popular bigrav-
ity theories of massive gravity come to mind as well
as more elaborate multigravity models. In some sense,
the method we used is the core result of the paper.

We have shown it to be powerful, unambiguous and
straightforward.
Since most of multigravity theories are rather new, at

present the cosmological studies are focused on the
evolution of a homogeneous and isotropic Universe
matching the observations [38–42]. The application of
the method developed in this paper to these theories should
be very similar and could help us to go further and study
the evolution of primordial quantum perturbations, giving
more observational constraints.
We then used the canonical formalism to quantize the

scalar and tensor physical fields. We argued that there
were ambiguities in making a vacuum choice and opted
for the Hollands-Wald mechanism. With this procedure,
we found perfectly scale-invariant power spectra for scalar
and tensor perturbations with a large tensor-to-scalar ratio,
grossly inconsistent with current observations. This
means that, in its current incarnation, the EiBI theory is
not a viable model for the early Universe. This is not the
end of the road and there are unexplored avenues. For a
start we have considered the minimal model, with no extra
fields. If one were to embrace the presence of other states
of equation or fundamental fields at early times, it may be
possible to circumvent the problems that we found, as the
solution for the early Universe depends on the type of
matter considered (see [9] for some different cases). For
instance, with the presence of a scalar field, at least the
tensor instability can be avoided for κ < 0, as described in
[25] and nonminimal couplings can further complicate the
scenario (see [43]). Further research is needed to predict
quantum perturbations in this scenario, but these prelimi-
nary findings already suggest an improvement of the
minimal model.
Furthermore, in working with the minimal model, we

were forced to consider the Hollands-Wald mechanism for
setting up the initial conditions in order to get viable results.
Again, extra degrees of freedom may enlarge the space of
possibilities for the quantum initial state leading to a more
viable cosmology. All these possibilities merit further
scrutiny for it would be truly intriguing if it were possible
to have a viable cosmology that could emerge from a
nonsingular initial state.
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APPENDIX: AN EXAMPLE OF A “GOOD”
GAUGE CHOICE

Consider the action

S½A0;ψ � ¼
1

2

Z
d4xðA0 − ψ

: Þ2; (A1)

where ψ
: ¼ dψ=dt. This action corresponds to the gauge

part of Maxwell’s theory, and it is invariant under the
following gauge transformation:

δψ ¼ ~ψ − ψ ¼ ϵðxÞ; δA0 ¼ ~A0 −A0 ¼
d
dt
ϵðxÞ; (A2)

where ϵðxÞ is an arbitrary function, and ~ψ and ~A0 are the
new fields. The existence of this gauge symmetry means
that there is one gauge freedom that could be used to fix the
value of one field in the action (A1), by choosing a
particular value for the function ϵðxÞ. Consider the follow-
ing two gauge choices:
(1) Set ϵ ¼ ψ : if we perform a gauge transformation

with this ϵ in the action (A1), then ~ψ ¼ 0, and the
gauge-fixed action becomes

S½ ~A0� ¼
1

2

Z
d4x ~A2

0; (A3)

whose equation of motion is ~A0 ¼ 0, and therefore
there are no degrees of freedom in this action. Here,
the equation of motion for ~ψ was lost.

(2) Set ϵ
: ¼ A0: if we perform a gauge transformationwith

thisϵ, then ~A0 ¼ 0 and thegauge-fixed actionbecomes

S½ ~ψ � ¼ 1

2

Z
d4x ~ψ

: 2
; (A4)

whose equation of motion is ̈~ψ ¼ 0, and therefore
there is one degree of freedom in this action. Here,
the equation of motion for ~A0 was lost.

Since the action is gauge invariant we expect to have the
same result for any choice of ϵ at the level of the equations
of motion (fixing gauges in the equations of motion), but
not at level of the action (fixing gauges in the action). In
fact, this discrepancy at the level of the action is noticed in
our example where both gauge-fixed actions do not contain
the same information; the first one does not describe any
physical dynamic field, while the second does. The result is
different because the second gauge choice is incorrect due
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to the fact that the lost equation of motion had crucial
information that the remaining equation did not. In general,
the tool to decide which choice is correct is the set of
Noether identities. To obtain the Noether identities in our
example, we consider a variation of the action (A1):

δS ¼
Z

d4xðEA0
δA0 þ EψδψÞ; (A5)

where EA0
and Eψ are the equations of motion for A0 and ψ ,

respectively. Now, we replace these variations by (A2),
obtaining

δS ¼
Z

d4x

�
Eψ − d

dt
EA0

�
ε; (A6)

where some integration by parts were made. Since the
action is gauge invariant and ϵ is arbitrary, the set of
parentheses of (A6) is zero:

Eψ ¼ − d
dt

EA0
; (A7)

representing the Noether identity9 for this system.
Equation (A7) displays in a clear way the difference
between both fields: EA0

¼ 0 implies Eψ ¼ 0 while
Eψ ¼ 0 does not imply EA0

¼ 0. This is why it is correct
to dispose of ψ , because its equation is already contained in
the A0 equation. The converse is not true and it is incorrect
to fix the gauge with a condition on A0.
In general, it will be correct to use the gauge freedom to

dispose of the fields that have a redundant equation of
motion (i.e. its information is contained on the remaining
equations), which can be seen from the Noether identities.
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