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We compute the tree-level scattering amplitude between two covariantly conserved sources in generic
cosmological topologically massive gravity augmented with a Fierz-Pauli term that has three massive
degrees of freedom. We consider the chiral gravity limit in the anti–de Sitter space as well as the limit of
flat-space chiral gravity. We show that chiral gravity cannot be unitarily deformed with a Fierz-Pauli mass.
We calculate the nonrelativistic potential energy between two point-like spinning sources. In addition to the
expected mass-mass and spin-spin interactions, there are mass-spin interactions due to the presence of the
gravitational Chern-Simons term which induces spin for any massive object and turns it to an anyon. We
also show that the tree-level scattering is trivial for the flat-space chiral gravity.
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I. INTRODUCTION

Gravity in 2þ 1 dimensions is a fertile theoretical
ground in which a plethora of interesting structures and
phenomena have been found [1–3]. In spite of its apparent
simplicity, with a vanishing Weyl tensor and no local
degrees of freedom, cosmological Einstein theory has black
hole solutions and the associated thermodynamics [4].
Ultimately, of course, the goal is to find a quantum gravity
theory in this lower-dimensional setting and hopefully learn
about the structure of quantum gravity to build one in the
more relevant 3þ 1 dimensions. The natural question is,
after about 30 years of research, whether or not we are any
closer to quantum gravity in 2þ 1 dimensions. The answer
depends on one’s level of optimism; while no quantum
version of 2þ 1-dimensional Einstein theory exists as of
now, the situation is much better when cosmological
Einstein theory is augmented with a tuned gravitational
Chern-Simons term. In this case, “chiral gravity” [5,6],
which is potentially a viable quantum gravity theory, is
conjectured to have a dual unitary boundary conformal
field theory (CFT). Generically, Einstein’s gravity plus the
gravitational Chern-Simons term—that is, the topologically
massive gravity (TMG) [7]—has a single massive spin-2
excitation in both flat and (anti–)de Sitter [(A)dS] space-
times. In the chiral gravity limit, the massive graviton
disappears and one is left with a Banados-Teitelboim-
Zanelli black hole with positive energy and a boundary
chiral CFT from which one can relate entropy to micro-
scopic states, a situation which seems to be lacking in
cosmological Einstein theory in 2þ 1 dimensions.
We started this work with the following question in

mind: suppose chiral gravity is a viable theory; how, then,

can two covariantly conserved charges scatter at the lowest
order with a single graviton exchange in this theory? Of
course, one immediately realizes that chiral gravity cannot
be easily coupled to a generic matter source but only to null
matter. We then ask the more general question: how do two
covariantly conserved particles scatter at the lowest order in
cosmological TMG augmented with a Fierz-Pauli term?
The Fierz-Pauli term is somewhat of a headache because of
its noncovariance, but at the linearized level it helps to find
the propagator without worrying about gauge-fixing issues.
Also, in 2þ 1 dimensions Fierz-Pauli massive gravity has a
remarkable nonlinear extension dubbed “new massive
gravity” [8] and even an infinite-order extension of the
Born-Infeld type [9].
Our task in this work is to first find a formal expression

for the tree-level scattering in cosmological TMG with a
Fierz-Pauli term, and then consider the flat-space limit. In
the explicit computation of the nonrelativistic potential
energy, we will recover the gravitational anyons which
were found by Deser [10] as solutions of the linearized field
equations in flat-space TMG. It will be clear that because of
the gravitational Chern-Simons term a point-like structure-
less, spinless particle with mass m acts as if it has a spin
κm=μ, where κ is Newton’s constant and μ is the gravi-
tational Chern-Simons parameter. These gravitational any-
ons are analogs of their Abelian counterparts where any
charged particle picks up a magnetic flux when coupled to
an Abelian Chern-Simons term [11].
The layout of the paper is as follows. We first find the

particle content of the cosmological TMG with a Fierz-
Pauli term in Sec. II. That section is a generalization of the
flat-space version of the same theory [12]. Moreover, in that
section we write the linearized field equations in a form
which can be formally solved by the Green’s function
technique. Section III is devoted to a derivation of the tree-
level scattering amplitude using the tensor decomposition
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of the spin-2 field in terms of its irreducible parts. In that
section, we also give the chiral gravity limit of the
amplitude. In Sec. IV we limit ourselves to the flat space,
where Green’s functions are explicitly computable and the
notion of potential energy makes sense as a nonrelativistic
approximation. There we consider two sources with mass
and spin that interact via the full TMGþ Fierz-Pauli theory
and find the anyon structure of the sources.

II. PARTICLE SPECTRUM FOR TMG WITH A
FIERZ-PAULI MASS IN (A)DS BACKGROUNDS

The Lagrangian density of TMG with a Fierz-Pauli mass
term is

L ¼ ffiffiffiffiffiffi−gp �
1

κ
ðR − 2ΛÞ −m2

4κ
ðh2μν − h2Þ

þ 1

2μ
ημναΓβ

μσ

�
∂νΓσ

αβ þ
2

3
Γσ

νλΓλ
αβ

�
þ Lmatter

�
;

(1)

where κ is the 2þ 1-dimensional Newton’s constant with
mass dimension −1 and μ is a dimensionless parameter.
The tensor ημνα is defined in terms of the Levi-Civita
symbol as ϵμνα=

ffiffiffiffiffiffi−gp
. We will work with the mostly-plus

signature. Generically, this parity-noninvariant spin-2
theory has three modes, all with different masses about
its flat and (A)dS backgrounds. There are constraints on the
parameters coming from the tree-level unitarity. We
observe that when the Fierz-Pauli term vanishes, the theory
reduces to TMG with a single massive spin-2 mode with
M2

graviton ¼ μ2=κ2 þ Λ. On the other hand, the μ → ∞
theory corresponds to the Fierz-Pauli massive gravity with
two massive spin-2 excitations with massm. The masses of
the three modes and the unitarity regions for flat spacetimes
were studied in the full theory—with all the parameters
nonvanishing—in Ref. [12]. Here, in this section we
generalize this result to the (A)dS backgrounds.
To find the particle spectrum about the (A)dS vacuum

and the propagator, let us consider the field equations
coming from the variation of Eq. (1),

1

κ

�
Rμν − 1

2
gμνRþ Λgμν

�
þ 1

μ
Cμν þ

m2

2κ
ðhμν − gμνhÞ

¼ τμν; (2)

where Cμν is the symmetric, traceless, and divergence-free
Cotton tensor,

Cμν ¼ ημαβ∇α

�
Rν

β − 1

4
δνβR

�
; (3)

which vanishes if and only if the spacetime is conformally
flat. In what follows it pays to rewrite it in an explicitly

symmetric form with the help of the Bianchi identity
(∇μGμν ¼ 0),

Cμν ¼ 1

2
ημαβ∇αGν

β þ
1

2
ηναβ∇αGμ

β: (4)

Let us consider the linearization of Eq. (2) about an
(A)dS background gμν ¼ ḡμν þ hμν, where R̄μναβ ¼
Λðḡμαḡνβ − ḡμβḡναÞ, which is the vacuum of Eq. (2) with
m ¼ 0, τμν ¼ 0,

1

κ
GL
μν þ

1

2μ
ημαβ∇̄αGLβ

ν þ 1

2μ
ηναβ∇̄αGLβ

μ þm2

2κ
ðhμν − ḡμνhÞ

¼ Tμν: (5)

Here Tμν ¼ τμν þ Θðh2; h3;…Þ and it satisfies the back-
ground covariant conservation, ∇̄μTμν ¼ 0. The 2þ 1-
dimensional linearized curvature tensors that we need
are [13]

GL
μν ¼ RL

μν − 1

2
ḡμνRL − 2Λhμν;

RL
μν ¼

1

2
ð∇̄σ∇̄μhνσ þ ∇̄σ∇̄νhμσ − □̄hμν − ∇̄μ∇̄νhÞ;

RL ¼ ðgμνRμνÞL ¼ −□̄hþ ∇̄μ∇̄νhμν − 2Λh; (6)

where h ¼ ḡμνhμν. To be able to identify the excitations, we
have to write Eq. (5) as a source-coupled (higher-
derivative) wave-type equation of the form

ð□̄ − 2Λ −m2
1Þð□̄ − 2Λ −m2

2Þð□̄ − 2Λ −m2
3Þhμν ¼ ~Tμν;

(7)

where mi correspond to the masses of the excitations.
Note that in (A)dS backgrounds ð□̄ − 2ΛÞhμν ¼ 0 is the
wave equation for a massless spin-2 particle, hence the
shifts in Eq. (7). Since the Levi-Civita tensor mixes various
excitations in Eq. (5), we need to manipulate the equation
to “diagonalize” it. But before that let us note a special
point in the parameter space. The divergence of Eq. (5)
gives

m2ð∇̄μhμν − ∇̄νhÞ ¼ 0; (8)

yielding, for m2 ≠ 0,

RL ¼ −2Λh; h ¼ κ

Λ −m2
T;

GL ≡ ḡμνGL
μν ¼

Λκ
Λ −m2

T: (9)
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Observe that at the “partially massless point”m2 ¼ Λ, and so h is not fixed and a new higher-derivative gauge invariance of
the form δξhμν ¼ ∇̄μ∇̄νξþ Λξḡμν appears, reducing the number of the degrees of freedom by one from three to two
[12,14,15]. Needless to say, this particular theory has no flat-space limit and it shall not be considered in the rest of
the paper.
Now let us try to cast Eq. (5) in the form of Eq. (7), where the masses of the excitations become apparent. For this

purpose, applying ημσρ∇̄σ to Eq. (5) gives

1

κ
ημσρ∇̄σGL

μν − 1

μ
□̄GLρ

ν þ 3Λ
μ

GLρ
ν þm2

2κ
ημσρ∇̄σðhμν − ḡμνhÞ ¼ ημσρ∇̄σTμν þ

Λ
μ
δρνGL þ 1

2μ
∇̄ν∇̄ρGL − 1

2μ
δρν□̄GL; (10)

where we have made use of the identity

ημσρηναβ ¼ ½−δμνðδσαδρβ − δσβδ
ρ
αÞ þ δμαðδσνδρβ − δσβδ

ρ
νÞ − δμβðδσνδρα − δσαδ

ρ
νÞ�: (11)

Using the field equation (2) to eliminate the first term in Eq. (10), one obtains

�
□̄ − 3Λ − μ2

κ2

�
GL

ρν − μ2m2

2κ2
ðhρν − ḡρνhÞ − μm2

2κ
ημσρ∇̄σðhμν − ḡμνhÞ

¼ μ

2
ηρ

μσ∇̄μTσν þ
μ

2
ην

μσ∇̄μTσρ − μ2

κ
Tρν − ΛḡρνGL − 1

2
∇̄ν∇̄ρGL þ 1

2
ḡρν□̄GL: (12)

To transform Eq. (12) into a wave-type equation, one should write the Fierz-Pauli part in terms of the linearized Einstein
tensor GL

μν and its contractions. For this purpose, let us define a new tensor

Bμν ≡ ημαβ∇̄αGLβ
ν ; (13)

with ḡμνBμν ¼ B ¼ 0 and ∇̄μBμν ¼ 0. Then, by plugging Eq. (13) into Eq. (12) and hitting it with ηραβ∇̄α, one arrives at

− 1

κ
ηραβ∇̄αBρ

ν þ
1

2μ
ηραβη

μσρ∇̄α∇̄σBμν þ
1

2μ
ηραβη

μσρ∇̄α∇̄σBνμ þ
m2

2κ
ηραβη

μσρ∇̄α∇̄σðhμν − ḡμνhÞ ¼ ηραβη
μσρ∇̄α∇̄σTμν:

(14)

After a somewhat lengthy but straightforward calculation, one can find the following expression:

m2

2κ
ðhβν − ḡβνhÞ ¼ −m2

κ
ð□̄ − 2ΛÞ−1GL

βν þ
Λ
κ
ð□̄ − 2ΛÞ−1ḡβνGL −m2

2κ
ð□̄ − 2ΛÞ−1ðḡβν□̄ − ∇̄β∇̄νÞh − Λð□̄ − 2ΛÞ−1ḡβνT;

(15)

where the inverse of an operator is a shorthand notation for the corresponding Green’s function. By inserting Eq. (15) into
Eq. (12) and using Eq. (9), one finds

��
□̄ − 3Λ − μ2

κ2

�
þ 2μ2m2

κ2
ð□̄ − 2ΛÞ−1 − μ2m4

κ2
ð□̄ − 2ΛÞ−2

�
GL

ρν

¼ μ

2
ηρ

μσ∇̄μTσν þ
μ

2
ην

μσ∇̄μTσρ − μ2

κ
Tρν þ

μ2m2

κ
ð□̄ − 2ΛÞ−1Tρν

− μ2m2

2κΛð1 − m2

Λ Þ

�
ð□̄ − 2ΛÞ−1ð1 −m2ð□̄ − 2ΛÞ−1Þ − κ2Λ

μ2m2

�
× ðḡρνð□̄ − 2ΛÞ − ∇̄ρ∇̄νÞT; (16)

where

GL
ρν ¼ − 1

2
ð□̄ − 2ΛÞhρν þ

1

2
∇̄ρ∇̄νh: (17)

SCATTERING IN TOPOLOGICALLY MASSIVE GRAVITY, … PHYSICAL REVIEW D 89, 024033 (2014)

024033-3



Equation (16) is almost in the desired form, except that
there is an h on the left-hand side. But this can be remedied
with the help of h ¼ κ

Λ−m2 T. Then, Eq. (16) reads as

Ohρν ¼ ~Tρν; (18)

as needed. To study the linearized gravitational degrees of
freedom, let us stay away from the sources and set Tρν ¼ 0,
which gives ~Tρν ¼ 0. Then the higher-order wave-type
equation for cosmological TMG with a Fierz-Pauli mass
term boils down to

��
□̄−3Λ−μ2

κ2

�
ð□̄−2ΛÞ2þ2μ2m2

κ2
ð□̄−2ΛÞ−μ2m4

κ2

�
hρν

¼0; (19)

which, in flat space, reduces to the known form [12]

�
ð∂2Þ3 − μ2

κ2
ð∂2Þ2 þ 2μ2m2

κ2
∂2 − μ2m4

κ2

�
hρν ¼ 0; (20)

which has three distinct real roots corresponding to the
masses of the excitations only if μ2=m2κ2 ≥ 27=4.
To read the masses of the excitations in the (A)dS

background, Eq. (19) is rewritten as Eq. (7) with a
vanishing right-hand side, which yields a cubic equation,

M6 −
�
Λþ μ2

κ2

�
M4 þ 2μ2m2

κ2
M2 − μ2m4

κ2
¼ 0; (21)

where again the three roots Mi are the masses of the
excitations. In general there are complex roots unless

1þ 9κ2Λ
μ2

�
1 − 3m2

4Λ

�
≥

Λ
m2

�
1þ κ2Λ

μ2

�
2

; (22)

which guarantees the non-negativity of the discriminant.
The explicit forms of all the three roots are somewhat
cumbersome to write, and therefore we shall not display
them here. But let us note the following cases:
(1) When μ2

κ2
¼ −Λ, which is the chiral gravity limit,

there are two tachyonic excitations unless m ¼ 0.
This means that chiral gravity cannot be deformed
unitarily with a Fierz-Pauli mass.

(2) In the m2 ¼ 0 limit caution must be exercised;
namely, there are ostensibly two solutions, M2 ¼
0 and m2 ¼ Λþ μ2

κ2
. The latter is the well-known

massive mode, while the first solution does not
actually exist. This can be seen from the equations if
one started with m2 ¼ 0 in the beginning [16,17].

(3) As a specific example, let us take m2 ¼ 8Λ
9

and
μ2

κ2
¼ 3Λ. Then all three roots are equal,

M2
1 ¼ M2

2 ¼ M2
3 ¼

4Λ
3

; (23)

which obeys the Higuchi bound [18] in dS space
(M2 > Λ > 0) but not the Breitenlohner-Freedman
bound [19] in AdS (M2 > Λ). At this specific point,
the fact that the helicityþ 2 and helicity-2 modes have
the same mass in dS does not show that parity
symmetry is restored.

(4) In the μ → ∞ limit, which is the Einstein-Fierz-Pauli
theory, one gets two excitations with the same
mass m.

Having found the spectrum of the full theory, we now
move on to calculate the tree-level scattering amplitude
between two conserved currents (∇̄μTμν ¼ 0).

III. SCATTERING AMPLITUDE IN GENERIC TMG
PLUS FIERZ-PAULI THEORY

Equation (16) is of the form Ohμν ¼ ~Tμν, where O is a
complicated operator. Since not every component of hμν is
dynamical, it pays to decompose the spin-2 field in terms of
transverse helicity-2 ðhTTμν Þ, helicity-1 ðVμÞ, and helicity-0
components ðϕ;ψÞ as

hμν ≡ hTTμν þ ∇̄ðμVνÞ þ ∇̄μ∇̄νϕþ ḡμνψ : (24)

Taking the trace of Eq. (24) and the divergence of Eq. (8)
leads to the elimination of ϕ and a relation between h and
ψ ,

h ¼ 1

Λ
ð□̄þ 3ΛÞψ : (25)

Then the trace of the field equations (9) yields

ψ ¼ κ

1 − m2

Λ

ð□̄þ 3ΛÞ−1T: (26)

To relate hTTμν to the source, one needs to use the
Lichnerowicz operator Δð2Þ

L on the symmetric spin-2
tensors,

Δð2Þ
L hμν ¼ −□̄hμν − 2R̄μρνσhρσ þ 2R̄ρðμhνÞρ; (27)

where we find the following properties [20]:

Δð2Þ
L ∇ðμVνÞ ¼ ∇ðμΔ

ð1Þ
L VνÞ; Δð1Þ

L Vμ ¼ ð−□þ ΛÞVμ;

∇μΔð2Þ
L hμν ¼ Δð1Þ

L ∇μhμν; ∇μΔð1Þ
L Vμ ¼ Δð0Þ

L ∇μVμ;

Δð2Þ
L gμνϕ ¼ gμνΔ

ð0Þ
L ϕ; Δð0Þ

L ϕ ¼ −□ϕ: (28)

Then, with the help of Eq. (28), the transverse-traceless part
of the linearized Einstein tensor GTT

L ρν can be written in
terms of the Lichnerowicz operator as
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GTT
L ρν ¼

1

2
ðΔð2Þ

L − 4ΛÞhTTρν : (29)

Substituting Eq. (29) into Eq. (16) gives a relation between
the transverse-traceless field and the sources,

hTTρν ¼ μO−1ð□̄ − 2ΛÞ2ηρμσ∇̄μTTT
σν

þ μO−1ð□̄ − 2ΛÞ2ηνμσ∇̄μTTT
σρ

− 2μ2

κ
O−1ð□̄ − 2ΛÞ2TTT

ρν

þ 2μ2m2

κ
O−1ð□̄ − 2ΛÞTTT

ρν ; (30)

where the scalar Green’s function O−1 is

O−1≡
��

ð□̄−2ΛÞ2
�
□̄−3Λ−μ2

κ2

�

þ2μ2m2

κ2
ð□̄−2ΛÞ−μ2m4

κ2

�
× ðΔð2Þ

L −4ΛÞ
�−1

: (31)

Additionally, by doing a tensor decomposition for Tρν

similar to that in Eq. (24), one can write the transverse-
traceless part TTT

ρν [21] as

TTT
ρν ≡ Tρν − 1

2
ḡρνT þ 1

2
ð∇̄ρ∇̄ν þ ΛḡρνÞ × ð□̄þ 3ΛÞ−1T:

(32)

With all the above results, we are ready to write the tree-
level scattering amplitude between two sources as

A ¼ 1

4

Z
d3x

ffiffiffiffiffiffi−ḡp
T 0
ρνðxÞhρνðxÞ

¼ 1

4

Z
d3x

ffiffiffiffiffiffi−ḡp ðT 0
ρνhTTρν þ T 0ψÞ: (33)

Finally, by plugging Eqs. (26), (29), and (32) into Eq. (33),
the amplitude is obtained as

4A ¼ 2μT 0
ρνO−1ð□̄ − 2ΛÞ2ηρμσ∇̄μTσ

ν − 2μ2

κ
T 0
ρνO−1ð□̄ − 2ΛÞð□̄ − 2Λ −m2ÞTρν

− μ2

κ
T 0
ρνO−1ð□̄ − 2ΛÞð□̄ − 2Λ −m2Þð∇̄ρ∇̄ν þ ΛḡρνÞ × ð□̄þ 3ΛÞ−1T

þ μ2

κ
T 0O−1ð□̄ − 2ΛÞð□̄ − 2Λ −m2ÞT þ κ

1 − m2

Λ

T 0ð□̄þ 3ΛÞ−1T; (34)

where for notational simplicity we have suppressed the
integral signs.
The pole structure of the full theory is highly compli-

cated: there are apparently four poles. But in the most
general case, it is hard to see from the scattering amplitude
whether the fourth pole—besides the three which are
exactly the roots of the cubic equation (21)—is unphysical
or not. In any case, the introduction of the Fierz-Pauli term
served its purpose of making the propagator invertible, and
hence we can now set it to zero and consider the most
promising limit of the general theory, that is, chiral gravity
with m2 ¼ 0, μ2=κ2 ¼ −Λ. Strictly speaking, one must
keep h ¼ 0 to get chiral gravity. Hence, we must also set
T ¼ 0. Then the amplitude in chiral gravity reads

4A ¼ 2μT 0
ρνfð□̄ − 2ΛÞ × ðΔð2Þ

L − 4ΛÞg−1

×

�
ηρμσ∇̄μTσ

ν − μ

κ
Tρν

�
; (35)

where we recall that the theory is valid in AdS with Λ < 0.
As expected, the massive mode drops out.

IV. FLAT-SPACE CONSIDERATIONS

In this section, we will study the flat-space limit of the
scattering amplitude (34) in various theories and the
corresponding Newtonian potential energy (U) between
two localized conserved spinning point-like sources,
defined by

T00 ¼ maδ
ð2Þðx − xaÞ; Ti

0 ¼ − 1

2
Jaϵij∂jδ

ð2Þðx − xaÞ;
(36)

where a ¼ 1, 2, and ma and Ja refer to the mass and spin,
respectively. (Note that spin in 2þ 1 dimensions is a
pseudoscalar quantity which can be negative or positive.)

A. Scattering of anyons in TMGwith a Fierz-Pauli term

In theΛ → 0 limit, Eq. (34) gives the tree-level scattering
amplitude in flat space for the TMG with a Fierz-Pauli
mass,
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4A ¼ −2μT 0
ρν

∂2

∂4ð∂2 − μ2

κ2
Þ þ 2μ2m2

κ2
∂2 − μ2m4

κ2

ηρμσ∂μTσ
ν þ 2μ2

κ
T 0
ρν

∂2 −m2

∂4ð∂2 − μ2

κ2
Þ þ 2μ2m2

κ2
∂2 − μ2m4

κ2

Tρν

− μ2

κ
T 0 ∂2 −m2

∂4ð∂2 − μ2

κ2
Þ þ 2μ2m2

κ2
∂2 − μ2m4

κ2

T: (37)

As long as one is looking at the generic theory where the masses are distinct, one can fractionally decompose the propagator as

∂2 −m2

∂4ð∂2 − μ2

κ2
Þ þ 2μ2m2

κ2
∂2 − μ2m4

κ2

≡X3
k¼1

Y3
r ¼ 1

r ≠ k

ðM2
k −m2Þ

ðM2
k −M2

rÞ
Gkðx;x0; t; t0Þ; (38)

where the scalarGreen’s function isGkðx;x0; t; t0Þ ¼ ð∂2 −M2
kÞ−1, withMk ¼ Mkðκ2; μ2; m2Þ, andk ¼ 1, 2, 3, are the generic

roots of Eq. (21). Substituting Eq. (38) into Eq. (37), using Eq. (36), and carrying out the time integrals yields

4U ¼
X3
k¼1

Y3
r ¼ 1

k ≠ r

ðM2
k −M2

rÞ−1
�
μ2M2

k

κ

�
κm2

μ
J1 þ

κm1

μ
J2 þ J1J2

�
1 − m2

M2
k

��

×
Z

d2x
Z

d2x0δð2Þðx0 − x2Þ∂i∂iĜkðx;x0Þδð2Þðx − x1Þ

þ μ2m1m2

κ
ðM2

k −m2Þ
Z

d2x
Z

d2x0δð2Þðx0 − x2ÞĜkðx;x0Þδð2Þðx − x1Þ
�
; (39)

where the potential energy is defined as U ¼ A=t (see Ref. [22]) and the time-integrated Green’s function is

Ĝkðx;x0Þ ¼
Z

dt0Gkðx;x0; t; t0Þ ¼ 1

2π
K0ðMkjx − x0jÞ: (40)

Finally, using the recurrence relation between the modified Bessel functions,

∇⃗2K0ðMkrÞ ¼
M2

k

2
ðK0ðMkrÞ þ K2ðMkrÞÞ; (41)

where r ¼ jx1 − x2j, one obtains

U ¼
X3
k¼1

Y3
r ¼ 1

k ≠ r

ðM2
k −M2

rÞ−1
�
μ2M4

k

16πκ

�
Jtot1 Jtot2 − κ2m1m2

μ2
−m2J1J2

M2
k

�
K2ðMkrÞ

þ μ2M4
k

16πκ

�
2m1m2

M2
k

�
1 − m2

M2
k

�
þ
�
Jtot1 Jtot2 − κ2m1m2

μ2
−m2J1J2

M2
k

��
K0ðMkrÞ

�
: (42)

We defined the total spin as the original spin of the source plus the induced spin due to the gravitational Chern-Simons term,
which turns the source into an anyon [10],

Jtota ≡ Ja þ
κma

μ
; a ¼ 1; 2: (43)

Our result not only reveals the anyon structure of the sources, but it also describeshowanyons scatter at small energies. For other
works on gravitational anyons see Refs. [23–26]. We observe that, depending on the choice of ðJa;ma;m2Þ, U can be either
negative or positive, or it could even vanish.
Let us now consider the short- and large-distance limits of the anyon-anyon potential energy. First, at short distances,

since the Bessel functions behave as

K0ðMkrÞ ∼ − lnðMkrÞ − γE; K2ðMkrÞ ∼
2

M2
k

1

r2
; (44)
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the potential energy reads

U ∼
X3
k¼1

Y3
r ¼ 1

k ≠ r

ðM2
k −M2

rÞ−1
�
μ2M2

k

8πκ

�
Jtot1 Jtot2 − κ2m1m2

μ2
−m2J1J2

M2
k

�
1

r2

− μ2M4
k

16πκ

�
2m1m2

M2
k

�
1 − m2

M2
k

�
þ
�
Jtot1 Jtot2 − κ2m1m2

μ2
−m2J1J2

M2
k

��

× ðlnðMkrÞ þ γEÞ
�
; (45)

where γE is the Euler-Mascheroni constant. On the other hand, for large distances, since the Bessel functions decay as

KnðMkrÞ ∼
ffiffiffiffiffiffiffiffiffiffiffi
π

2Mkr

r
e−Mkr; (46)

the potential energy becomes

U ∼
X3
k¼1

Y3
r ¼ 1

k ≠ r

ðM2
k −M2

rÞ−1
μ2M4

k

8πκ

�
m1m2

M2
k

�
1 − m2

M2
k

�
þ
�
Jtot1 Jtot2 − κ2m1m2

μ2
−m2J1J2

M2
k

�� ffiffiffiffiffiffiffiffiffiffiffi
π

2Mkr

r
e−Mkr: (47)

B. Scattering of anyons in TMG

We now consider the scattering of anyons and find the
related potential energy for TMG without the Fierz-Pauli
mass. Taking the limits m2 → 0 and Λ → 0 in Eq. (34) (in
order to avoid the van Dam-Veltman-Zakharov disconti-
nuity [20,27]), one arrives at

4A ¼ −2μT 0
ρν

1

ð∂2 − μ2

κ2
Þ∂2

ηρμσ∂μTσ
ν

þ 2μ2

κ
T 0
ρν

1

ð∂2 − μ2

κ2
Þ∂2

Tρν

− μ2

κ
T 0 1

ð∂2 − μ2

κ2
Þ∂2

T þ κT 0 1
∂2

T; (48)

which generically has both a massive and a massless mode.
The explicit computation of the potential energy follows
along the same line as theprevious section.One finally arrives
at the anyon-anyon scattering potential energy in TMG,

U ¼ κm2
g

16π

��
Jtot1 Jtot2 −m1m2

m2
g

�
K2ðmgrÞ

þ
�
Jtot1 Jtot2 þm1m2

m2
g

�
K0ðmgrÞ

�
; (49)

where m2
g ¼ μ2=κ2.

Let us now check the small- and large-distance behaviors
of the potential energy. First of all, for small separations,
one obtains

U ∼
κ
8π ðJtot1 Jtot2 − m1m2

m2
g
Þ

r2

− κm2
g

16π

�
Jtot1 Jtot2 þm1m2

m2
g

�
ðlnðmgrÞ þ γEÞ: (50)

At large distances, Eq. (49) behaves as

U ∼
κm2

gJtot1 Jtot2

8π

ffiffiffiffiffiffiffiffiffiffiffi
π

2mgr

r
e−mgr; (51)

which of course could be repulsive or attractive. For the
specific case of the tuned spin J ¼ −κm=μ, there is no
interaction at large separations.

C. Scattering of anyons in flat-space chiral gravity

In Ref. [28]—as an example of the holographic corre-
spondence between a gravitational theory in flat space and
a CFT in a lower-dimensional space (which is akin to the
AdS/CFT correspondence)—a chiral gravity was con-
structed as a limit of TMG, which the authors dubbed
“flat-space chiral gravity,” and it was shown that a pure
gravitational Chern-Simons term with level k, i.e.,

S ¼ k
4π

Z
d3x

ffiffiffiffiffiffi−gp
ημναΓβ

μσ

�
∂νΓσ

αβ þ
2

3
Γσ

νλΓλ
αβ

�
;

(52)

is dual to a CFT with a chiral charge c ¼ 24.
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Here we consider the scattering amplitude and the
Newtonian potential energy in flat-space chiral gravity.
To do so, let us note how flat-space chiral gravity arises
from TMG,

κ → ∞; μ →
2π

k
: (53)

From Eq. (34) and with T ¼ 0 and m2 ¼ 0, one
obtains

4A ¼ − 4π

k
T 0
ρν

1

∂4
ηρμσ∂μTσ

ν: (54)

We need to construct a covariantly conserved traceless
source.1 To do this we can write the Minkowski space in
null coordinates as ds2 ¼ −dudvþ dy2, with u ¼ tþ x
and v ¼ t − x. Then the vector lμ ≡ ∂μu satisfies lμ ¼ −δμv
and lμlμ ¼ 0. Therefore the null source should read
Tμν ∼ lμlν. Together with the condition ∇μTμν ¼ 0, we

have Tμν ¼ EδðuÞδðyÞδμvδνv. Substituting this into Eq. (54)
yields a trivial scattering amplitude.

V. CONCLUSION

We have studied the 2þ 1-dimensional cosmological
TMG augmented by a Fierz-Pauli mass term in (A)dS and
flat backgrounds in detail. We first found the particle
spectrum of the full theory in (A)dS and computed the
tree-level scattering amplitude between two conserved
energy-momentum tensors. We also looked at the chiral
gravity limit and found that chiral gravity cannot be
unitarily deformed with a Fierz-Pauli mass term. In the
flat background, we studied the potential energy between
two point-like spinning sources and obtained the anyon
nature of the sources that arises due to the gravitational
Chern-Simons term. In flat-space chiral gravity, scattering
at the tree-level is trivial.
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