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The recent Planckdata of cosmicmicrowavebackground temperature anisotropies support theStarobinsky
theory in which the quadratic Ricci scalar drives cosmic inflation. We build up a multidimensional quantum
consisted ultraviolet completion of the model in a phenomenological “bottom-up approach.”We present the
maximal class of theories compatible with unitarity and (super-)renormalizability or finiteness which
reduces to the Starobinsky theory in the low-energy limit. The outcome is a maximal extension of the
Krasnikov-Tomboulis-Modesto theory including an extra scalar degree of freedom besides the graviton
field. The original theory was afterwards independently discovered by Biswas-Gerwick-Koivisto-
Mazumdar starting from first principles. We explicitly show power counting super-renormalizability
or finiteness (in odd dimensions) and unitarity (no ghosts) of the theory. Any further extension of the
theory is nonunitary, confirming the existence of at most one single extra degree of freedom, the scalaron.
A mechanism to achieve the Starobinsky theory in string (field) theory is also investigated at the
end of the paper.
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I. INTRODUCTION

Inflation not only resolves a number of cosmological
puzzles plagued in the standard big bang cosmology [1,2],
but also it can account for the origin of large-scale structure
in the Universe [3]. The standard slow-roll single-field
inflationary scenario gives rise to nearly scale-invariant and
adiabatic primordial perturbations by stretching out quan-
tum fluctuations over super-Hubble scales. This prediction
was confirmed by the COBE [4] and WMAP [5] groups
from the observations of the cosmic microwave back-
ground (CMB) temperature anisotropies.
Recently, the Planck group provided high-precision data

of the CMB temperature anisotropies [6–9], by which the
spectral index ns of curvature perturbations, the tensor-to-
scalar ratio r, the nonlinear parameter fNL of primordial
non-Gaussianities were tightly constrained relative to the
bounds derived by the WMAP 9-year data [10]. Since these
observables are different depending on the models of
inflation [11], we can discriminate between a host of
inflationary models from the Planck data. In particular
the bound of the nonlinear estimator of the squeezed shape
is flocalNL ¼ 2.7� 5.8 (68% CL) [9], by which all of the

single-field slow-variation inflationary models are consis-
tent with the bound of local non-Gaussianities.
The joint data analysis combined with Planck and the

WMAP polarization (WP) measurement shows that the
scalar spectral index is constrained to be ns ¼ 0.9603�
0.0073, by which the Harrison-Zel’dovich spectrum is
excluded at more than 5σ CL [8]. The tensor-to-scalar
ratio is bounded to be r < 0.12 (95% CL), which corre-
sponds to an upper bound for the inflationary energy scale
of about ð1.9 × 1016 GeVÞ4. In Ref. [12] the authors
discriminated between single-field inflationary models
which belong to the class of most general scalar-tensor
theories with second-order equations of motion
(Horndeski’s theory [13]).
There are many slow-roll single-field models which are

tension with the Planck data [8,12]. For example, power-
law inflation with the exponential potential V ¼
Λ4 expð−λϕ=MplÞ [14] (where Mpl ¼ 2.435 × 1018 GeV
is the reduced Planck mass) and chaotic inflation with
the potential V ¼ λϕn=n (n > 2) [15] are outside the
95% CL boundary because of the large tensor-to-scalar
ratio. Even chaotic inflation with the powers n ¼ 1, 2=3
[16] is under an observational pressure due to the
large scalar spectral index. Hybrid inflation with the
potential V ¼ Λ4 þm2ϕ2=2þ � � � [17] gives a blue-tilted
scalar spectrum (ns > 1) and hence it is disfavored from
the data. Other models such as hilltop inflation with
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V ¼ Λ4ð1 − ϕ2=μ2 þ � � �Þ [18] or natural inflation with
V ¼ Λ4½1þ cosðϕ=fÞ� [19] are viable for a restricted range
of parameters (e.g. f ≳ 5Mpl for natural inflation).
The models favored from the Planck data are the “small-

field” scenario in which the tensor-to-scalar ratio is sup-
pressed because of the small variation of the field during
inflation with the scalar spectral index ns ≃ 1 − 2=N,
where N ¼ 50 − 60 is the number of e-foldings from the
end of inflation [12]. This includes the Starobinsky model
with the Lagrangian fðRÞ ¼ Rþ ϵR2 (R is the Ricci scalar)
[1] and the nonminimally coupled model (ξRϕ2=2) with the
self-coupling potential VðϕÞ ¼ λϕ4=4 [20] or the Higgs
potential VðϕÞ ¼ λðϕ2 − μ2Þ2=4 [21]. In fact, the resulting
power spectra of scalar and tensor perturbations in the
Starobinsky model is the same as those in the nonminimally
coupled model in the limit jξj ≫ 1 [22].
In the Starobinsky model the quadratic curvature term R2

drives inflation, which is followed by the gravitational reheat-
ing with the decrease of R2 [23–26] (see Refs. [27–29] for
reviews). Ifwemakeaconformal transformationtotheEinstein
frame, there appears a scalar degree of freedom ϕ called
“scalaron” [1] with a nearly flat potential in the regime
ϕ ≫ Mpl. The presence of the scalaron is crucial to generate
densityperturbations consistentwith thePlanckdata.Recently
therehavebeennumerousattemptstoconstructtheStarobnisky
model in the context of supergravity [30–39].
In this paper we go in search of an ultraviolet completion

of Starobinsky’s fðRÞ action, assuming a pure gravitational
origin of inflation. We start restricting our attention on the
most general local quadratic action for gravity [40–42],

Lquadratic ¼ Rþ ϵR2 þ ζCμνρσCμνρσ þ ηχE; (1)

where Cμνρσ is the Weyl tensor and χE is the density
of the Euler number. Assuming a Friedmann-Lemaître-
Robertson-Walker (homogeneous and isotropic) metric the
Weyl term vanishes because the metric is conformally flat
and the Lagrangian simplifies to the Starobinsky theory,

LStarobinsky ¼ Rþ ϵR2: (2)

The goal of this paper is to find a (i) Lorentz invariant,
(ii) (super-)renormalizable or finite, (iii) unitary theory of
gravity which reduces to the Starobinsky theory in the low-
energy limit. In trying to achieve this goal we are looking
for a new classical theory of gravity which is renormaliz-
able at quantum level. This point of view opposes to the
emergent gravity scenery.
We can resume as follows the theoretical and observative

consistency requirements for a full quantum gravity theory.
(1) Unitarity (theoretical). A general theory is well

defined if “tachyons" and “ghosts" are absent, in
which case the corresponding propagator has only
first poles at k2 −M2

i ¼ 0 with real masses (no
tachyons) and with positive residues (no ghosts).

(2) Super-renormalizability or finiteness (theoretical).
This hypothesis makes consistent the theory at
quantum level in analogy with all the other funda-
mental interactions.

(3) Lorentz invariance (observative). This is a symmetry
of nature well tested below the Planck scale.

(4) The theory must be at least quadratic in the curvature
(observative) to achieve the agreement with the
recent Planck data confirming the viability of the
Starobinsky theory.

(5) The energy conditions are not violated from the
matter side (observative), but can be violated be-
cause higher-derivative operators are present in the
classical theory.

Possible candidate theories which satisfy the above
requirements are listed below.

(I) We have several candidate theories, but only one
fulfills all the above requirements at perturbative
level. We call it: “super-renormalizable or finite
gravity" [43–49]. This is the theory we are going
to mainly concentrate on in this paper. Another
candidate perturbatively renormalizable and unitary
theory has been studied in Ref. [50].

(II) At nonperturbative level a natural candidate theory
is “asymptotic safe quantum gravity" in which the
mass of the ghost diverges when the momentum
scale goes to infinity and the mode decouples from
the theory in the ultraviolet regime or the ghost
pole is moved further by the renormalization group
running [51–53].

(III) String theory or its field redefinition could do the job
because the modification of the propagator coming
from “string field theory" [54] makes it possible to
get the Starobinsky model in the low-energy limit.
We can easily extend supergravity in ten dimensions
incorporating the modification suggested by string
field theory together with diffeomorphism invari-
ance [55–57]. We will come back to this point at the
end of the paper.
The problem lies in the spectrum of the theory which
contains extra massless degrees of freedom besides
the graviton field and an infinite tower of massive
states. It is not clear how to select out only one scalar
degree of freedom to sustain inflation and reproduce
the correct perturbation spectrum, while the other
massive scalars will be suppressed by a higher mass
scale involving the volume of the compact space or
the extra dimensions in a brane-cosmology scenery.
However, a priori we cannot exclude this possibility
and we strongly suggest one should investigate and
engineer in this direction.

The last very important feature of the theory we are
looking for is the presence of one extra scalar degree of
freedom in the gravitational spectrum, without voiding
unitarity and renormalizability. We call this degree of
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freedom graviscalar or scalaron, which is of fundamental
importance to generate primordial perturbations during
inflation.
A previous work [48] presented a super-renormalizable

and ghostfree theory of gravity, which, under a natural
exponential ansatz of the form factor and a suitable
truncation, gives rise to the Starobinsky model. However
the problem with such a model is that, at quantum level, the
linearized theory on a flat background has only two tensor
degrees of freedom corresponding to the spin-two graviton
of general relativity and no extra scalar degree of freedom.
Therefore, there is no consistent way to generate primordial
density perturbations in this framework due to the lack of
an extra scalar playing the role of the inflaton field.
This fact could be quite obscure since the Starobinsky

theory to which the super-renormalizable theory reduces, as
well as any fðRÞ gravity model [27–29], naturally encloses
an extra degree of freedom. However, this apparent paradox
is solved if one remembers that the super-renormalizable
model introduced in Ref. [48] reduces to Rþ ϵR2 gravity
only after a truncation up to terms Oð1=Λ4Þ, where
Λ ∼ 10−5 Mpl is a parameter with energy dimension.
Meanwhile, the full theory where all orders in 1=Λ2 are
considered, which contains infinite derivatives, does not
coincide with the Starobinsky model with different degrees
of freedom. In particular the full theory has no extra scalar
degree of freedom. Therefore in some sense, the truncation
procedure adopted in Ref. [48] is not completely consistent
with the Starobinsky theory, since it does not preserve the
degrees of freedom of the starting theory.
The aim of this paper is to show that the most general class

of super-renormalizable theories compatible with unitarity
contains at most one extra degree of freedom besides the
graviton field and reduces to the StarobinckyRþ ϵR2 theory
under a suitable truncation. The truncation is coherent in this
case, since it preserves the degrees of freedom of the theory
after truncation. Here we achieve this result and define the
maximal class of such theories; we use the term “maximal” to
indicate that any other extension of the theory must contain a
ghost or a tachyon and therefore unitarity is violated.
This paper is organized as follows. In Sec. II we intro-

duce the super-renormalizable action for gravity in a D-
dimensional spacetime. In Sec. IIIwe calculate thepropagator
for the gravitational field fluctuation and in Sec. IV we show
that, requiring unitarity, the theory contains at most the spin-
two graviton field plus one scalar degree of freedom that we
call graviscalar or scalaron. In Sec. Vwe show that the theory
is super-renormalizable in even dimension and finite in odd
dimension. In Sec. VI the Starobinsky theory is recovered
through a suitable and coherent truncation of the Lagrangian
density. In Sec. VII we expand about the importance of the
graviscalar degree of freedom of the theory. Finally in Sec. IX
we resume the results of this paper and conclude.
Hereafter the spacetime metric tensor gμν has the

signature ðþ;−;…;−Þ, the curvature tensor is

Rμ
νρσ ¼ −∂σΓ

μ
νρ þ � � �, the Ricci tensor is Rμν ¼ Rσ

μνσ, the
curvature scalar is R ¼ gμνRμν, Moreover, we use natural
units c ¼ 1 and ℏ ¼ 1.

II. THE MULTIDIMENSIONAL THEORY

In this section we introduce a general action for the class
of super-renormalizable or finite theories under consider-
ation in D-dimensional spacetime. Let us start with the
following nonpolynomial or semipolynomial Lagrangian
density

L ¼ 2κ−2D Rþ λ̄þ cð1Þ1 R3 þ � � � þ cðNÞ1 RNþ2

þ
XN
n¼0

½anRð−□ΛÞnRþ bnRμνð−□ΛÞnRμν�

þ Rh0ð−□ΛÞRþ Rμν h2ð−□ΛÞRμν; (3)

where κ2D ¼ 32πG, G is Newton’s gravitational constant,
□Λ ≡□=Λ2 and the operator □≡ gμν∇μ∇ν is constructed
with covariant derivatives. The nonpolynomial operators
have been introduced in the last line of (3) making use of
the following two entire functions

h0ðzÞ ¼ − ½V0ðzÞ−1 − 1�
κ2DΛ

2z
−XN

n¼0

~anzn;

h2ðzÞ ¼ 2
½V2ðzÞ−1 − 1�

κ2DΛ
2z

−XN
n¼0

~bnzn; (4)

where V0ðzÞ and V2ðzÞ are two entire functions that we
are going to select consistently with unitarity and renor-
malizability. The constants ~an and ~bn are just nonrunning
parameters, while the running coupling constants are

αi ∈ fκD; λ̄; an; bn; cð1Þ1 ; � � � ; cðNÞ1 g≡ fκD; λ̄; ~αng: (5)

The integer N is defined as follows in order to avoid
fractional powers of the D’Alembertian operator, namely,

2Nþ 4 ¼ Dodd þ 1 in odd dimension; (6)

2Nþ 4 ¼ Deven in even dimension: (7)

The “form factors" ViðzÞ−1 ði ¼ 0; 2Þ will be defined later
for the compatibility with unitarity and renormalizability.
The goal of this paper is to find an ultraviolet completion

of the Starobinsky theory with exactly the same particle
spectrum: the massless graviton and the massive gravisca-
lar. We will see later in Sec. IV that this is the maximal
particle content compatible with unitarity and super-
renormalizability or finiteness at quantum level.
However, a nonpolynomial minimal theory reproducing
the Starobinsky action in the low-energy limit has been
already introduced and studied in Refs. [45,48,49]. This
action satisfies all the requirements (1–5) listed in the
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previous section, but only the massless graviton propagates.
The Lagrangian in Refs. [45,48,49] is the same as Eq. (3),
with the identification of the two form factors as V0ðzÞ−1 ¼
V2ðzÞ−1 ≡ e□Λ [49,54]. In Sec. VII we see that this
prescription gives rise to the Starobinsky Lagrangian, but
the problem is that it lacks the graviscalar degree of
freedom required to generate scalar metric perturbations
during inflation.

III. PROPAGATOR

We shall explicitly calculate the two-point propagator for
the action (3) and then we impose the condition that the
nonpolynomial functions h0ðzÞ and h2ðzÞ defined in (4)
have to fulfill in order to achieve a theory which satisfies
the theoretical and observative consistency requirements
stated in the introduction. We stress that it is important here
to obtain the expression of the two-point function since
from the poles of the propagator the number of propagating
degrees of freedom will be clear.
We proceed to split the spacetime metric into the flat

Minkowski background plus a fluctuation hμν defined by

gμν ¼ ημν þ κDhμν; (8)

and then we expand the Lagrangian to second order in the
gravitational fluctuation hμν. Omitting total derivative
operators, we end up with the following outcome [58]

Llinear¼−1

2
½hμν□hμνþA2

νþðAν−ϕ;νÞ2�

þκ2D
8
½□hμνβð□Þ□hμν−Aμ

;μβð□ÞAν
;ν−Fμνβð□ÞFμν

þðAα
;α−□ϕÞðβð□Þþ4αð□ÞÞðAβ

;β−□ϕÞ�; (9)

where the vector and antisymmetric tensor are below
defined in terms of the gravitational fluctuation,

Aμ ¼ hμν;ν;

ϕ ¼ hμμ ðtrace of hμνÞ;
Fμν ¼ Aμ;ν − Aν;μ; (10)

while the functionals of the d’Alembertian operators αð□Þ,
βð□Þ are defined by

αð□Þ ≔ 2
XN
n¼0

anð−□ΛÞn þ 2h0ð−□ΛÞ;

βð□Þ ≔ 2
XN
n¼0

bnð−□ΛÞn þ 2h2ð−□ΛÞ: (11)

The d’Alembertian operator in Llinear and (11) should
be evaluated on the flat spacetime. The linearized
Lagrangian (9) is invariant under infinitesimal coordinate

transformations xμ → xμ þ κDξ
μðxÞ, where ξμðxÞ is an

infinitesimal vector field of dimensions ½ξðxÞ� ¼
MðD−4Þ=2. Under this transformation, the graviton field
turns into hμν → hμν − ξðxÞμ;ν − ξðxÞν;μ: The presence of
the local gauge symmetry calls for the addition of a gauge-
fixing term to the linearized Lagrangian (9). Hence, we
choose the usual harmonic gauge

LGF ¼ ξ−1Aμωð−□ΛÞAμ; (12)

where ωð−□ΛÞ is a gauge weight function [40,44]. The
linearized gauge-fixed Lagrangian reads

Llinear þ LGF ¼
1

2
hμνOμν;ρσhρσ; (13)

where the operator O has two contributions coming from
the linearized Lagrangian (9) and from the gauge-fixing
term (12). Inverting the operator O [58], we find the
following two-point function

O−1¼ ξð2Pð1Þ þ P̄ð0ÞÞ
2k2ωðk2=Λ2Þ þ Pð2Þ

k2ð1þk2κ2D
βðk2Þ
4
Þ

−
Pð0Þ

k2ðD−2−k2κ2DðDβðk2Þ
4

þðD−1Þαðk2ÞÞÞ
; (14)

where the projectors inD dimensions are defined by [58,59]

Pð2Þ
μν;ρσðkÞ ¼ 1

2
ðθμρθνσ þ θμσθνρÞ − 1

D − 1
θμνθρσ;

Pð1Þ
μν;ρσðkÞ ¼ 1

2
ðθμρωνσ þ θμσωνρ þ θνρωμσ þ θνσωμρÞ;

Pð0Þ
μν;ρσðkÞ ¼ 1

D − 1
θμνθρσ; P̄ð0Þ

μν;ρσðkÞ ¼ ωμνωρσ;

θμν ¼ ημν − kμkν
k2

; ωμν ¼
kμkν
k2

: (15)

Note that the tensorial indices for the operator O−1 and the
projectors Pð0Þ, Pð2Þ, Pð1Þ, P̄ð0Þ have been omitted.1

1The following identities are useful to split the terms propor-
tional to the gravitational momentum from the remaining:

Pð2Þ
μν;ρσ ¼ 1

2
ðημρηνσ þ ημσηνρÞ − 1

D − 1
ημνηρσ

−
�
Pð1Þ þD − 2

D − 1
P̄ð0Þ − 1

D − 1
¯̄Pð0Þ

�
μν;ρσ

;

Pð0Þ
μν;ρσ ¼ 1

D − 1
ημνηρσ − 1

D − 1
½P̄ð0Þ þ ¯̄Pð0Þ�μν;ρσ ; (16)

where

¯̄Pð0Þ
μν;ρσðkÞ ¼ θμνωρσ þ ωμνθρσ : (17)
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The functions αðk2Þ and βðk2Þ are achieved by
replacing −□ → k2 in the definitions (11). By looking
at the last two gauge-invariant terms in Eq. (14), we deem
convenient to introduce the following definitions,

h̄2ðzÞ ¼ 1þ κ2DΛ
2

2
z
XN
n¼0

bnzn þ
κ2DΛ

2

2
zh2ðzÞ;

h̄0ðzÞ ¼ 1 − κ2DΛ
2D

2ðD − 2Þ z
�XN
n¼0

bnzn þ h2ðzÞ
�

−
2κ2DΛ

2ðD − 1Þ
D − 2

z

�XN
n¼0

anzn þ h0ðzÞ
�
; (18)

where again z ¼ −□Λ. Through the above definitions (18),
the propagator greatly simplifies to

O−1 ¼ 1

k2

�
Pð2Þ

h̄2
− Pð0Þ

ðD − 2Þh̄0

�
þ ξð2Pð1Þ þ P̄ð0ÞÞ

2k2ω
: (19)

In the above formula we missed the argument k2 for the
entire functions h2, h0 and the weight function ω.
Once established that h2 and h0 are not polynomial

functions, to achieve unitarity, we demand the following
general properties for the transcendental entire functions
hiðzÞ ði ¼ 0; 2Þ and/or h̄iðzÞ ði ¼ 0; 2Þ [44]:
(i) h̄2ðzÞ is real and positive on the real axis and it has no

zeroes on the whole complex plane jzj < þ∞.
h̄0ðzÞ is real with at most one zero on the real axis and
then at most one zero in the whole complex plane
jzj < þ∞. We will show in the next section that these
requirements imply the maximal particle content
compatible with unitarity.

(ii) jhiðzÞj has the same asymptotic behavior along the real
axis at �∞.

(iii) There exists Θ > 0 such that

lim
jzj→þ∞

jhiðzÞj → jzjγiþN;

γi ≥ D=2 for D ¼ Deven and

γi ≥ ðD − 1Þ=2 for D ¼ Dodd; (20)

for the argument of z in the following conical
regions

C¼fzj −Θ< argz<þΘ; π−Θ< argz< πþΘg
for 0<Θ< π=2.

This condition is necessary to achieve the super-
renormalizability of the theory that we are going to
show here below. The necessary asymptotic behavior
is imposed not only on the real axis, but also on the

conic regions that surround it. In a Euclidean space-
time, the condition (ii) is not strictly necessary if
(iii) applies.

We suppose that the theory is renormalized at some scale
μ0. Therefore, if we set

~an ¼ anðμ0Þ; ~bn ¼ bnðμ0Þ; (21)

we can express h̄2ðzÞ and h̄0ðzÞ in terms of the form factors
V2ðzÞ and V0ðzÞ replacing (4) in (18), namely

h̄2ðzÞ ¼ V2ðzÞ−1;

h̄0ðzÞ ¼
2

D − 2

�
−D

2
V2ðzÞ−1 þ ðD − 1ÞV0ðzÞ−1

�
: (22)

Let us assume for the moment that the entire functions
h̄2ðzÞ and h̄0ðzÞ are each a polynomial multiplied by the
exponential of an entire function, namely

h̄2ðzÞ ≔ eH2ðzÞpðn2ÞðzÞ;
h̄0ðzÞ ≔ eH0ðzÞpðn0ÞðzÞ; (23)

while pðniÞðzÞ are two polynomials of degree ni, respec-
tively. The two polynomials will be fixed shortly in Sec. IV
compatibly with unitarity. Using (22), we can invert (23)
for V2ðzÞ−1 and V0ðzÞ−1,

V2ðzÞ−1 ¼ eH2ðzÞpðn2ÞðzÞ;

V0ðzÞ−1 ¼
ðD − 2ÞeH0ðzÞpðn0ÞðzÞ þDV2ðzÞ−1

2ðD − 1Þ : (24)

A class of entire functions HiðzÞ ði ¼ 2; 0Þ compatible
with the required properties (i)-(iii) and the definitions (4),
(23) are

HiðzÞ ¼
1

2
½γE þ Γð0; p2

γiþNþ1ðzÞÞ þ log ðp2
γiþNþ1ðzÞÞ�;

Reðp2
γiþNþ1ðzÞÞ > 0; (25)

where Γða; zÞ is defined in the footnote2 and the form
factors can be written as

eHiðzÞ ¼ e
1
2
½Γð0;p2

γiþNþ1
ðzÞÞþγE�jpγiþNþ1ðzÞj: (27)

If we choose pγiþNþ1ðzÞ ¼ zγiþNþ1, HiðzÞ simplifies
to:

2γE ¼ 0.577216 is Euler’s constant and

Γða; zÞ ¼
Z þ∞

z
ta−1e−tdt (26)

is the incomplete gamma function.
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HiðzÞ ¼
1

2
½γE þ Γð0; z2γiþ2Nþ2Þ þ logðz2γiþ2Nþ2Þ�;

Reðz2γiþ2Nþ2Þ > 0 ⇒ Θ ¼ π

4ðγi þ Nþ 1Þ ;

HiðzÞ ¼
z2γiþ2Nþ2

2
− z4γiþ4Nþ4

8
þ � � � for z ≈ 0; (28)

where Θ is the angle defining the cone C of the property
(iii). The first correction to the form factor eHiðzÞ goes to
zero faster than any polynomial function for z → þ∞,
namely,

lim
z→þ∞

eHiðzÞ ¼ eγE=2jzjγiþNþ1;

lim
z→þ∞

�
eHiðzÞ

eγE=2jzjγiþNþ1
− 1

�
zn ¼ 0; ∀n ∈ N: (29)

The main result in this section is the propagator (19)
together with the definitions (23) and (25).

IV. UNITARITY AND DEGREES
OF FREEDOM

In this section we discuss the unitarity of the
theory (3). In particular we tackle the problem of
defining a theory of pure gravity with the maximal
number of degrees of freedom compatible with
unitarity.
If both tachyons and ghosts are absent, the stability of the

theory is ensured at classical and quantum levels. In this
case the corresponding propagator has only first poles at
k2 −M2

i ¼ 0 with real masses Mi (no tachyons) and with
positive residues (no ghosts).
For the evaluation of the propagator (19) we make use

of the explicit definitions (23) of h̄i ði ¼ 2; 0Þ written in
terms of the entire functions HiðzÞ and the polynomial
functions pðniÞ defined through (23),

pðn2Þ ¼
Yn2
j¼1

�
1 − k2

m̄2
j

�
; pðn0Þ ¼

Yn0
j¼1

�
1 − k2

m2
j

�
; (30)

where m̄2
j > 0 and m2

j > 0. If we couple the propagator
(19) to the conserved stress-energy tensor Tμν satisfying
the relation ∇μTμν ¼ 0, the contributions coming from
the terms Pð1Þ and P̄ð0Þ vanish from the definition (15).
Dropping those contributions and using Eq. (30), the
propagator (19) reads

O−1ðkÞ ¼ Pð2Þ

k2eH2pðn2Þ −
Pð0Þ

ðD− 2Þk2eH0pðn0Þ

¼ Pð2Þe−H2

k2
Qn2

j¼1 ð1− k2

m̄2
j
Þ−

Pð0Þe−H0

ðD− 2Þk2Qn0
j¼1 ð1− k2

m2
j
Þ

¼ Pð2Þ

eH2

�
Ā0

k2
þ Ā1

k2 − m̄2
1

þ � � � þ Ān2

k2 − m̄2
n2

�

−
Pð0Þ

ðD− 2ÞeH0

�
A0

k2
þ A1

k2 −m2
1

þ � � � þ An0

k2 −m2
n0

�
;

(31)

where Āj, Aj, are constants, and m̄2
0 ¼ 0, m2

0 ¼ 0.
Let us assume that we have two real monotonic sequences

of masses: m̄1 < m̄2 < … < m̄n2 , m1 < m2 < … < mn0 .
In this case the signs of the corresponding residues alternate,
i.e., sign½ResAj� ¼ −sign½ResAjþ1� and sign½ResĀj� ¼−sign½ResĀjþ1� [41]. From the propagator (31) we see that
the residues in k2 ¼ 0 and k2 ¼ m2

1 are positive but the
residues in k2 ¼ m̄2

1 and k2 ¼ m2
2 are negative. It follows

that in order to avoid ghosts the polynomials must have,
respectively, degrees

n2 ¼ 0; n0 ≤ 1: (32)

In fact, this meets the requirement (i) introduced and
discussed in Sec. III.
Let us consider the explicit example for n2 ¼ 1 and

n0 ¼ 2. The spin-two and spin-zero sectors of the propa-
gator respectively read

spin 2∶
Pð2Þ

eH2

�
1

k2
− 1

k2 − m̄2
1

�
;

spin 0∶
Pð0Þ

ðD − 2ÞeH0

�
− 1

k2
þ A1

k2 −m2
1

þ A2

k2 −m2
2

�
; (33)

where the constants A1, A2 are

A1 ¼
m2

2

m2
2 −m2

1

> 0; A2 ¼ − m2
1

m2
2 −m2

1

< 0. (34)

The quantum states have positive-definite norms and
energies if the poles in the propagator have positive
residues. In the example given above the residues in
k2 ¼ 0 and k2 ¼ m2

1 are positive, but the residues in
k2 ¼ m̄2

1 and in k2 ¼ m2
2 are negative.

This example confirms that the maximal theory com-
patible with unitarity has n2 ¼ 0 and n0 ≤ 1. The case with
n0 ¼ n2 ¼ 0 corresponds to the model presented in
Ref. [48], which will be discussed with more details in
Sec. VII.
In the case n2 ¼ 0 and n0 ¼ 1, defining m2

1 ≡m2, the
propagator further simplifies to
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O−1 ¼ Pð2Þ

k2eH2
þ m2Pð0Þ

k2eH0ðk2 −m2ÞðD − 2Þ

¼ Pð2Þ

k2eH2
− Pð0Þ

ðD − 2Þk2eH0
þ Pð0Þ

ðD − 2ÞeH0ðk2 −m2Þ ;
(35)

with two single poles at k2 ¼ 0 and k2 ¼ m2 that do have
positive residues because Hið0Þ ¼ 0. We now expand on
the tree-level unitarity coupling the propagator to external
conserved stress-energy tensors Tμν, and examining the
amplitude at the poles [58,59]. When we introduce a
general source operator, the linearized action is replaced by

Llinear þ LGF − ghμνTμν; (36)

and the transition amplitude in momentum space is

A ¼ g2TμνO−1
μν;ρσTρσ; (37)

where g is an effective coupling constant.
To make the analysis more explicit, we can expand the

sources using the following set of independent vectors in
the momentum space [58],

kμ ¼ ðk0; k⃗Þ; ~kμ ¼ ðk0;−k⃗Þ;
ϵμi ¼ ð0; ϵ⃗iÞ; i ¼ 1;…; D − 2; (38)

where ϵ⃗i are D − 2 unit vectors orthogonal to each other
and to k⃗,

k⃗ · ϵ⃗i ¼ 0 → kμϵ
μ
i ¼ 0; ϵ⃗i · ϵ⃗j ¼ δij: (39)

The most general symmetric stress-energy tensor can be
expressed as

Tμν ¼ akμkν þ b~kμ ~kν þ cijϵðμi ϵ
νÞ
j þ dkðμ ~kνÞ

þ eikðμϵνÞi þ fi ~kðμϵνÞi ; (40)

where we used the notation aðμbνÞ ≡ ðaμbν þ bμaνÞ=2. The
conditions kμTμν ¼ 0 and kμkνTμν ¼ 0 provide the follow-
ing constraints and consistency conditions on the coeffi-
cients a, b, d, ei, fi [58]:

kμTμν ¼ 0 ⇒

8>><
>>:

ak2 þ dðk20 þ k⃗2Þ=2 ¼ 0;

bðk20 þ k⃗2Þ þ dk2=2 ¼ 0;

eik2 þ fiðk20 þ k⃗2Þ ¼ 0:

9>>=
>>;

(41)

⇒ d ¼ 0; b ¼ 0; fi ¼ 0 for k2 ≔ k20 − k⃗2 ¼ 0 ; (42)

kμkνTμν¼0 ðconsistency relation for a;b; andd Þ
⇒ ak4þbðk20þ k⃗2Þ2þdk2ðk20þ k⃗2Þ¼0: (43)

Introducing the spin-projectors and making use of the
identities (16) together with the conservation of the

stress-energy tensor kμTμν ¼ 0, the amplitude (37) for
n2 ¼ 0 and n1 ¼ 1 reads

A ¼ g2Tμν

�
Pð2Þ
μν;ρσ

k2eH2pðn2Þ −
Pð0Þ
μν;ρσ

ðD − 2Þk2eH0pðn0Þ

�
Tρσ

¼ g2
�
TμνTμν − T2

D−1
k2eH2

−
T2

D−1
ðD − 2Þk2eH0ð1 − k2

m2Þ

�
; (44)

where T ≔ ημνTμν.
We now calculate the residue of the amplitude in k2 ¼ 0

and k2 ¼ m2. Using the properties Hið0Þ ¼ 0 and (42), the
residue in k2 ¼ 0 reads

ResAjk2¼0 ¼ g2
�
TμνTμν − T2

D − 2

�����
k2¼0

¼ g2
�
ðcijÞ2 − ðciiÞ2

D − 2

�����
k2¼0

> 0 for D > 3.

(45)

When D ¼ 3, the graviton is not a dynamical degree of
freedom and the amplitude is zero. The residue in k2 ¼ m2

results

ResAjk2¼m2 ¼ g2
T2e−H0ðm2=Λ2Þ

ðD − 1ÞðD − 2Þ > 0 for D > 2; (46)

in which case the scalar mode propagates. Thus, in the
case n2 ¼ 0 and n0 ¼ 1, the spectrum consists of two
particles: the graviton and the graviscalar (scalaron). We
conclude that the maximal class of super-renormalizable
unitary theories includes a graviscalar besides the
graviton.

V. RENORMALIZABILITY AND FINITENESS

In this section we study the power counting renor-
malizability of the theory, showing that it is renorma-
lizable in even spacetime dimension and finite in odd
dimension.
The theory can be renormalizable if we assume the same

ultraviolet behavior for the functions h̄2ðzÞ and h̄0ðzÞ. For
n2 ¼ 0 and n0 ¼ 1, it follows that

h̄2ðzÞ ¼ eH2 → zγ2þNþ1; and

h̄0ðzÞ ¼ eH0

�
1 − Λ2z

m2

�
→ zγ0þNþ2: (47)

If γ2 ¼ γ0 þ 1≡ γ, then the functions h̄2ðzÞ and h̄0ðzÞ have
the same scaling property.
Replacing γ2 ¼ γ and γ0 ¼ γ − 1 and using Eqs. (3), (4),

(18), and (19), the high-energy scaling of the propagator in
the momentum space and the leading interaction vertex are
schematically given by
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O−1ðkÞ ∼ 1

k2γþ2Nþ4
in the ultraviolet;

LðnÞ ∼ hn□ηh hið−□ΛÞ □ηh → hn□ηh□
γþN
η □ηh; (48)

where□η ≔ ημν∂μ∂ν. In (48) the indices for thegravitational
fluctuations hμν are omitted (replaced by h), and hið−□ΛÞ is
the entire function defined by the properties (i)-(iii). From
(48), the upper bound to the superficial degree of divergence
in a spacetime of “even" or “odd" dimension is

wðGÞeven ¼ Deven − 2γðL − 1Þ;
wðGÞodd ¼ Dodd − ð2γ þ 1ÞðL − 1Þ; (49)

where we used the topological relation between vertices V,
internal lines I, and number of loops L: I ¼ V þ L − 1.
Thus, if γ > Deven=2 or γ > ðDodd − 1Þ=2, only 1-loop
divergences survive in this theory. Therefore, the theory is
super-renormalizable, unitary, andmicrocausal as pointed out
also in Refs. [43,60–63]. For γ sufficiently large the divergent
contributions to the β-functions (βi) are independent from
the running coupling constants (5) and then the β-functions
do not depend on the energy scale μ defined trough
t ≔ log ðμ=μ0Þ. It follows that we can easily integrate the
renormalization group equations [45], i.e.,

dαi
dt

¼ βi ⇒ αiðtÞ ∼ αiðt0Þ þ βit: (50)

The mass of the graviscalar is not subject to renormaliza-
tion and the logarithmic quantum corrections to the propa-
gator leave its value almost invariant because the damping
factor e−H0ðzÞ suppresses any high energy shift, namely

O−1 ¼ Pð2Þe−H2

k2½1þ e−H2k2ðc0 þ…þ cNk2NÞ log ðk2μ2Þ�

þ m2Pð0Þe−H0

ðD− 2Þk2½ðk2 −m2Þ þ e−H0k2ðc̄0 þ � � �Þ log ðk2
μ2
Þ� ;

where c0; c̄0…; cN are dimensionful constants and μ is a
renormalization group invariant sale.
However, in odd dimension there are no local invariants

(using dimensional regularization) with an odd number of
derivativeswhichcould serveascounterterms forpuregravity.
This is a consequence of the rational nature of the entire
functions which characterize the theory (one example of a
nonrational function is hið

ffiffiffi
z

p Þ). We conclude that all the
amplitudeswith an arbitrary number of loops are finite and all
the beta functions are identically zero in odd dimension,

βan ¼ βbn ¼ β
cðnÞi

¼ 0;

i ∈ f1;…; ðnumber of invariants of order NÞg;
n ¼ 1;…;N: (51)

It follows thatwecan fix to zeroall thecouplingscðnÞi andset to
constants the couplings anðμÞ and bnðμÞ, namely,

cðnÞi ¼ 0;

anðμÞ ¼ constant ¼ ~an;

bnðμÞ ¼ constant ¼ ~bn: (52)

Therefore, quantum gravity is finite in even dimension,
as well, once the Kaluza-Klein compactification is applied
[64]. The finiteness of the theory in even dimensions
follows from the inclusion of an infinity tower of states
which drastically affects the ultraviolet behavior.

VI. STAROBINSKY LIMIT

In the following we show how the Lagrangian (3)
reduces to the Starobinsky Rþ ϵR2 theory after a suitable
truncation for large values of the Λ parameter. We also
discuss how to fix the value of such a mass scale and the
value of the graviscalar mass m.
The Lagrangian (3) can be recast as follows

L¼ 2

κ2D

�
R−Gμν

V−1
2 −1

□
Rμνþ1

2
R
V−1
0 −V−1

2

□
R

�
;

V−1
0 −V−1

2 ¼ D−2

2ðD−1Þ
�
eH0

�
1þ □

m2

�
−eH2

�
; (53)

where Gμν is the Einstein tensor. Expanding the above
Lagrangian (53) for large Λ, we find

L ¼ 2

κ2D

�
Rþ ðD − 2ÞR2

4ðD − 1Þm2
þO

�
R
□

2γþ2N−1
Λ4γþ4N R

��
: (54)

When

R
□

2γþ2N−1
Λ4γþ4N R ≪

ðD − 2ÞR2

4ðD − 1Þm2
; (55)

the last term in (54) is negligible and in D ¼ 4 dimen-
sions the Lagrangian (54) reduces exactly to (2) with
ϵ ¼ 1=ð6m2Þ.
It seems natural to identify Λ and the graviscalar mass m

to avoid a further mass scale in the classical theory. Unlike
the previous model [47], we obtain the Starobinsky
Rþ ϵR2 theory with exactly the same spectrum, the
massless graviton and the massive graviscalar essential
to generate proper primordial density perturbations.
The equation of motion up to operators OðR□RÞ and

OðR3Þ reads [65–67],

Gμν þ
D − 2

2ðD − 1Þm2
R

�
Rμν − 1

4
gμνR

�

−
D − 2

2ðD − 1Þm2
ðgμν□ − ∇μ∇νÞR ¼ κD

4
Tμν; (56)
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which is exactly the Starobinsky equation of motion in D
dimensions3.
Let us discuss observational signatures for the model

described by the Lagrangian (54) with D ¼ 4 under the
condition (55), i.e.,

L ¼ 2

κ2D

�
Rþ R2

6m2

�
: (58)

The density perturbations generated in the inflationary
models based on fðRÞ gravity and scalar-tensor theory
were studied in detail in Refs. [22]. The resulting power
spectra of curvature perturbations R and gravitational
waves hij are given, respectively, by [28]

PR ¼ N2

24π2

�
m
Mpl

�
2

; Ph ¼
1

2π2

�
m
Mpl

�
2

; (59)

where N is the number of e-foldings from the end of
inflation to the epoch at which the perturbations relevant to
the CMB anisotropies with the physical wave length a=k (a
is the scale factor) crossed the Hubble radiusH−1. From the
Planck normalization PR ¼ 2.2 × 10−9 at the pivot comov-
ing wave number k0 ¼ 0.05 Mpc−1 [12], the scalaron mass
is constrained to be

m
Mpl

¼ 1.3 × 10−5
�
55

N

�
; (60)

which corresponds to m≃ 3.2 × 1013 GeV for N ¼ 55.
Since the scalaron is very heavy, the fifth force is strongly
suppressed in the present Universe. Hence the model is
compatible with local gravity constraints in the solar sys-
tem [28,68].
The scalar spectral index ns−1≡d lnPR=d ln kjk¼aH

reads [28]

ns − 1 ¼ − 2

N
¼ −3.6 × 10−2

�
55

N

�
; (61)

whereas the tensor-to-scalar ratio r≡ Ph=PR is

r ¼ 12

N2
¼ 4.0 × 10−3

�
55

N

�
2

: (62)

Inorder to test theobservational viabilityof themodel,we run
the COSMOMC code [69,70] by setting the runnings of the
scalar and tensor spectral indices to be 0. The flat ΛCDM
model is assumed with Neff ¼ 3.046 relativistic degrees of
freedomandwith the instant reionization. InFig. 1weplot the
68% CL and 95% CL boundaries (solid curves) constrained
by the joint analysis of Planck [6], WP [10], baryon acoustic
oscillations (BAO) [71], and high-l Atacama Cosmology
Telescope/South Pole Telescope temperature data [72] (solid
curves), together with the boundaries constrained by Planck
+WP+BAO (dotted curves). We also show the theoretical
values ofns and r forN between 50 and 60. Themodel iswell
inside the 68% CL observational boundaries.
We also note that, in the Starobinsky’s model, the

nonlinear parameter fNL of scalar non-Gaussianities is
much smaller than 1 [73]. This is consistent with the
recent bounds of fNL constrained by the Planck group [9].
In the next section we will argue more on the importance

and the physical implications of the graviscalar degree of
freedom.

VII. IMPORTANCE OF THE GRAVISCALAR
DEGREE OF FREEDOM

Let us discuss the reason why it is important to consider
super-renormalizable and unitary theories with one extra
gravitational scalar degree of freedom.

ns

r 0.
05

N=50

N=60

0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985
10

−3

10
−2

10
−1

10
0

FIG. 1. 2-dimensional observational constraints on the Star-
obinsky’s inflationary model L ¼ ð2=κ2DÞ½Rþ R2=ð6m2Þ� in the
ðns; rÞ plane with the pivot wave number k0 ¼ 0.05 Mpc−1. The
bold solid curves show the 68% CL (inside) and 95% CL
(outside) boundaries derived by the joint data analysis of
Planck+WP+BAO+high-l, while the dotted curves correspond
to the 68% and 95% contours constrained by Planck+WP+BAO.
We plot the theoretical predictions forN ¼ 50, 60 as black points.

3In calculating the variation of the action (53) we used the
compatibility property of the metric ∇μgρσ ¼ 0 and the following
variation of the Ricci tensor,

δRμν ¼ − 1

2
gμαgνβ□δgαβþ

−
1

2
½∇β∇μδgβν þ∇β∇νδgβμ − ∇μ∇νδgαα�; (57)

together with ∇μGμν ¼ 0. The Starobinsky action is manifestly
generally covariant. Therefore, its variational derivative exactly
satisfies the Bianchi identity.
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The Starobinsky model, as well as any fðRÞ theory
[27–29], contains an extra scalar degree of freedom
responsible for the generation of primordial density per-
turbations. This is evident after mapping the theory from
the Jordan to the Einstein reference frame in which the
scalaron has a nearly flat potential to drive inflation [28].
Therefore, such a scalar plays a fundamental role for the
construction of a coherent cosmological model and, if it is
absent, one has to resort to different mechanisms to
generate primordial perturbations, e.g., Higgs inflation
with nonminimal couplings [21].
In Ref. [48] a super-renormalizable model characterized

by the following Lagrangian density has been proposed

L ¼ R −Gμν

�
Vð□ΛÞ−1 − 1

□

�
Rμν; (63)

with the specific choice

Vð□ΛÞ≡ expð−□ΛÞ: (64)

This corresponds to the Lagrangian (3) with the choice
V0ð□ΛÞ ¼ V2ð□ΛÞ ¼ Vð□ΛÞ, see Eq. (53). Then, the
propagator of the gravitational field on a Minkowskian
background reads

O−1 ¼ Vðk2=Λ2Þ
k2

�
Pð2Þ − Pð0Þ

D − 2

�
: (65)

Hence one has only the spin-two massless graviton and no
graviscalar degree of freedom. The Lagrangian in this
model is given by

L ¼ 2

κ2D

�
Rþ R2

6Λ2
þO

�
R□R
Λ4

��
; (66)

which reduces to

L ¼ 2κ−2D
�
Rþ R2

6Λ2

�
; (67)

for R□R=Λ2 ≪ R2. However this reduction is not coherent
with inflation since, as we have shown above, the theory
(63) contains only the spin-two graviton while the
Starobinsky model includes an additional scalar degree
of freedom, so the full theory starting from the Lagrangian
(63) and the “reduced" one have different degrees of
freedom. This means that the truncation of the
OðR□R=Λ4Þ terms from the Lagrangian (66) is not
consistent.
In Sec. IV we constructed super-renormalizable and

unitary theories containing one scalar degree of freedom,
by which gravitation is responsible for both the inflationary
expansion and the generation of perturbations. These
theories, after the truncation of (53), reduce in a coherent
way to the Starobinsky model, since the number of degrees

of freedom is preserved in the truncation procedure.
Therefore, in such a case, the graviscalar generates pri-
mordial perturbations and its mass has to fulfill the
condition (60) in order to give the correct amplitude of
primordial perturbations. In Sec. IV we have shown that the
maximal class of unitary theories verifying this requirement
contains only one extra scalar, since if any other degree of
freedom is present, it must be a ghost or a tachyon. Hence
the theory presented here is the maximal one.

VIII. STRING FIELD THEORY

In this section we show how the Starobinsky theory
emerges from string theory when the modifications sug-
gested by “string field theory" are taken into account.
In string field theory the propagator of the point-particle

effective field theory is modified to [54]

1

□
→

e− ~α0□

□
; (68)

where ~α0 ≡ ðα0=2Þ lnð3 ffiffiffi
3

p
=4Þ ≈ 0.1308α0 with α0 being

the universal Regge slope parameter of the string.
Collecting together the modification suggested by string
field theory and general covariance, we propose the
following effective Lagrangian for the bosonic sector of
string theory,

Lstring−field ¼ 2κ−2D
�
R −Gμν

e ~α
0
□ − 1

□
Rμν

�

þ 1

2
∇μϕe ~α

0
□∇μϕþ 1

2n!
ecϕF½n�e ~α0□F½n�:

(69)

This is confirmed by the analysis in Ref. [74], where the
authors make a field redefinition compatible with our
proposal. Let us now consider the low-energy expansion
of the exponential form factor in the Lagrangian (69), that is

e ~α0□ ≈ 1þ ~α0□þOðð ~α0□Þ2Þ: (70)

The gravity sector of the Lagrangian (69) simplifies to

Lstring−field ≃ 2κ−2D ðR − ~α0GμνRμνÞ

¼ 2κ−2D
�
R − ~α0RμνRμν þ 1

2
~α0R2

�
: (71)

In D ¼ 4, for the Friedmann-Lemaître-Robertson-Walker
metric, the following term turns out to be topological,

Z
d4x

ffiffiffiffiffi
jgj

p
ð3RμνRμν − R2Þ ¼ topological; (72)

so that the truncated theory (71) reads
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Lstring−field ¼ 2κ−2D
�
Rþ ~α0

6
R2 þOðð ~α0Þ2R□RÞÞ

�
: (73)

When ~α0R□R ≪ R2, the above Lagrangian reduces to the
Starobinsky model (2).
Finally, “string field theory" offers an alternative com-

pletion of the Starobinsky inflation. In order to obtain all of
the results of the perturbation spectra compatible with the
Planck data, we need to identify and select out an extra
scalar degree of freedom from the string spectrum.
However, this is not an easy task as for the theory (53)
where the scalar field is a part of the gravitational sector.
In this model the graviscalar does not appear unlike the

study in Sec. IV and the situation is exactly the same as the
one discussed in Sec. VII. The difficult task in string theory
is to pull out the extra scalar degree of freedom from the
string spectrum.

IX. CONCLUSIONS

In this paper we proposed and extensively studied a class
of super-renormalizable or finite theories of gravity which
provide an ultraviolet completion of the Starobinsky theory.
This class of theory is a generalization of the study done
previously in searching for unitary and perturbatively
consistent theory of quantum gravity [45,43,44]. The
outcome is universal once a few theoretical and observative
consistency requirements have been made.
If we require the hypothesis (1–5) listed in the intro-

duction, together with the validity of perturbative theory,
then we find only two unitary and super-renormalizable or
finite theories of gravity. The minimal one contains only the
graviton, but it is shown that a maximal extension is viable
containing one extra scalar degree of freedom (graviscalar
or scalaron). This is fundamental to generate primordial

density perturbation during inflation. The result is twofold,
on the one hand in this theory the graviton and graviscalar
fill up the maximal particle content compatible with
unitarity and renormalizablity or finiteness, on the other
hand the Starobinsky model is coherently achieved in the
low-energy limit.
We also mentioned other theories capable of giving a

completion of the Starobinsky model. We expound about
“asymptotic safe quantum gravity" where at nonperturba-
tive level the ghost pole is moved to infinity by the
renormalization group. In the string theory framework,
we studied a point-particle theory incorporating the “string
field theory" modified propagator together with general
covariance. The resulting effective theory is in our class of
super-renormalizable theories for a particular choice of the
form factor and reduces to the Starobinsky model at low
energy.
Finally, we believe the effort made in the search for a

completion of quadratic gravity to be relevant and pertinent
in the light of the recent Planck data supporting the
Starobinsky inflation [9,12]. We would like to invite expert
readers to invest time in this research. Our instinct is
confirmed by recent papers having the same aim of this
[30–39].
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