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The recent Planck data of cosmic microwave background temperature anisotropies support the Starobinsky
theory in which the quadratic Ricci scalar drives cosmic inflation. We build up a multidimensional quantum
consisted ultraviolet completion of the model in a phenomenological “bottom-up approach.” We present the
maximal class of theories compatible with unitarity and (super-)renormalizability or finiteness which
reduces to the Starobinsky theory in the low-energy limit. The outcome is a maximal extension of the
Krasnikov-Tomboulis-Modesto theory including an extra scalar degree of freedom besides the graviton
field. The original theory was afterwards independently discovered by Biswas-Gerwick-Koivisto-
Mazumdar starting from first principles. We explicitly show power counting super-renormalizability
or finiteness (in odd dimensions) and unitarity (no ghosts) of the theory. Any further extension of the
theory is nonunitary, confirming the existence of at most one single extra degree of freedom, the scalaron.
A mechanism to achieve the Starobinsky theory in string (field) theory is also investigated at the

end of the paper.
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I. INTRODUCTION

Inflation not only resolves a number of cosmological
puzzles plagued in the standard big bang cosmology [1,2],
but also it can account for the origin of large-scale structure
in the Universe [3]. The standard slow-roll single-field
inflationary scenario gives rise to nearly scale-invariant and
adiabatic primordial perturbations by stretching out quan-
tum fluctuations over super-Hubble scales. This prediction
was confirmed by the COBE [4] and WMAP [5] groups
from the observations of the cosmic microwave back-
ground (CMB) temperature anisotropies.

Recently, the Planck group provided high-precision data
of the CMB temperature anisotropies [6-9], by which the
spectral index n; of curvature perturbations, the tensor-to-
scalar ratio r, the nonlinear parameter fy; of primordial
non-Gaussianities were tightly constrained relative to the
bounds derived by the WMAP 9-year data [10]. Since these
observables are different depending on the models of
inflation [11], we can discriminate between a host of
inflationary models from the Planck data. In particular
the bound of the nonlinear estimator of the squeezed shape
is flocal =27+ 5.8 (68% CL) [9], by which all of the
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single-field slow-variation inflationary models are consis-
tent with the bound of local non-Gaussianities.

The joint data analysis combined with Planck and the
WMAP polarization (WP) measurement shows that the
scalar spectral index is constrained to be ny; = 0.9603+
0.0073, by which the Harrison-Zel’dovich spectrum is
excluded at more than 50 CL [8]. The tensor-to-scalar
ratio is bounded to be r < 0.12 (95% CL), which corre-
sponds to an upper bound for the inflationary energy scale
of about (1.9 x 10' GeV)*. In Ref. [12] the authors
discriminated between single-field inflationary models
which belong to the class of most general scalar-tensor
theories with second-order equations of motion
(Horndeski’s theory [13]).

There are many slow-roll single-field models which are
tension with the Planck data [8,12]. For example, power-
law inflation with the exponential potential V =
A" exp(—Ap/ M) [14] (where M, = 2.435 x 10'8 GeV
is the reduced Planck mass) and chaotic inflation with
the potential V = A¢"/n (n > 2) [15] are outside the
95% CL boundary because of the large tensor-to-scalar
ratio. Even chaotic inflation with the powers n =1, 2/3
[16] is under an observational pressure due to the
large scalar spectral index. Hybrid inflation with the
potential V = A* + m?¢?/2 + --- [17] gives a blue-tilted
scalar spectrum (n, > 1) and hence it is disfavored from
the data. Other models such as hilltop inflation with
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V =A*(1—¢?/u*>+---) [18] or natural inflation with
V = A*[1 + cos(¢/f)] [19] are viable for a restricted range
of parameters (e.g. f 2 SMy, for natural inflation).

The models favored from the Planck data are the “small-
field” scenario in which the tensor-to-scalar ratio is sup-
pressed because of the small variation of the field during
inflation with the scalar spectral index ng=1-—2/N,
where N = 50 — 60 is the number of e-foldings from the
end of inflation [12]. This includes the Starobinsky model
with the Lagrangian f(R) = R + eR? (R is the Ricci scalar)
[1] and the nonminimally coupled model (¥R¢?/2) with the
self-coupling potential V(¢) = A¢*/4 [20] or the Higgs
potential V(¢p) = A(¢p?> — p?)?/4 [21]. In fact, the resulting
power spectra of scalar and tensor perturbations in the
Starobinsky model is the same as those in the nonminimally
coupled model in the limit |&| > 1 [22].

In the Starobinsky model the quadratic curvature term R?
drives inflation, which is followed by the gravitational reheat-
ing with the decrease of R? [23-26] (see Refs. [27-29] for
reviews). If we make a conformal transformation to the Einstein
frame, there appears a scalar degree of freedom ¢ called
“scalaron” [1] with a nearly flat potential in the regime
¢ > M. The presence of the scalaron is crucial to generate
density perturbations consistent with the Planck data. Recently
there have been numerous attempts to construct the Starobnisky
model in the context of supergravity [30-39].

In this paper we go in search of an ultraviolet completion
of Starobinsky’s f(R) action, assuming a pure gravitational
origin of inflation. We start restricting our attention on the
most general local quadratic action for gravity [40-42],

‘Cquadratic =R+eR* + Ccuupacﬂypg + e, (1)
where C,,,, is the Weyl tensor and yp is the density
of the Euler number. Assuming a Friedmann-Lemaitre-
Robertson-Walker (homogeneous and isotropic) metric the

Weyl term vanishes because the metric is conformally flat
and the Lagrangian simplifies to the Starobinsky theory,

EStarobinsky =R+ eR. ()

The goal of this paper is to find a (i) Lorentz invariant,
(ii) (super-)renormalizable or finite, (iii) unitary theory of
gravity which reduces to the Starobinsky theory in the low-
energy limit. In trying to achieve this goal we are looking
for a new classical theory of gravity which is renormaliz-
able at quantum level. This point of view opposes to the
emergent gravity scenery.

We can resume as follows the theoretical and observative
consistency requirements for a full quantum gravity theory.

(1) Unitarity (theoretical). A general theory is well

defined if “tachyons" and “ghosts" are absent, in
which case the corresponding propagator has only
first poles at k* — M? =0 with real masses (no
tachyons) and with positive residues (no ghosts).
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(2) Super-renormalizability or finiteness (theoretical).
This hypothesis makes consistent the theory at
quantum level in analogy with all the other funda-
mental interactions.

(3) Lorentz invariance (observative). This is a symmetry
of nature well tested below the Planck scale.

(4) The theory must be at least quadratic in the curvature
(observative) to achieve the agreement with the
recent Planck data confirming the viability of the
Starobinsky theory.

(5) The energy conditions are not violated from the
matter side (observative), but can be violated be-
cause higher-derivative operators are present in the
classical theory.

Possible candidate theories which satisfy the above

requirements are listed below.

() We have several candidate theories, but only one
fulfills all the above requirements at perturbative
level. We call it: “super-renormalizable or finite
gravity" [43-49]. This is the theory we are going
to mainly concentrate on in this paper. Another
candidate perturbatively renormalizable and unitary
theory has been studied in Ref. [50].

(IT) At nonperturbative level a natural candidate theory
is “asymptotic safe quantum gravity" in which the
mass of the ghost diverges when the momentum
scale goes to infinity and the mode decouples from
the theory in the ultraviolet regime or the ghost
pole is moved further by the renormalization group
running [51-53].

(IIT) String theory or its field redefinition could do the job

because the modification of the propagator coming
from “string field theory" [54] makes it possible to
get the Starobinsky model in the low-energy limit.
We can easily extend supergravity in ten dimensions
incorporating the modification suggested by string
field theory together with diffeomorphism invari-
ance [55-57]. We will come back to this point at the
end of the paper.
The problem lies in the spectrum of the theory which
contains extra massless degrees of freedom besides
the graviton field and an infinite tower of massive
states. It is not clear how to select out only one scalar
degree of freedom to sustain inflation and reproduce
the correct perturbation spectrum, while the other
massive scalars will be suppressed by a higher mass
scale involving the volume of the compact space or
the extra dimensions in a brane-cosmology scenery.
However, a priori we cannot exclude this possibility
and we strongly suggest one should investigate and
engineer in this direction.

The last very important feature of the theory we are
looking for is the presence of one extra scalar degree of
freedom in the gravitational spectrum, without voiding
unitarity and renormalizability. We call this degree of
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freedom graviscalar or scalaron, which is of fundamental
importance to generate primordial perturbations during
inflation.

A previous work [48] presented a super-renormalizable
and ghostfree theory of gravity, which, under a natural
exponential ansatz of the form factor and a suitable
truncation, gives rise to the Starobinsky model. However
the problem with such a model is that, at quantum level, the
linearized theory on a flat background has only two tensor
degrees of freedom corresponding to the spin-two graviton
of general relativity and no extra scalar degree of freedom.
Therefore, there is no consistent way to generate primordial
density perturbations in this framework due to the lack of
an extra scalar playing the role of the inflaton field.

This fact could be quite obscure since the Starobinsky
theory to which the super-renormalizable theory reduces, as
well as any f(R) gravity model [27-29], naturally encloses
an extra degree of freedom. However, this apparent paradox
is solved if one remembers that the super-renormalizable
model introduced in Ref. [48] reduces to R + eR? gravity
only after a truncation up to terms O(1/A*), where
A~107°M pl 18 a parameter with energy dimension.
Meanwhile, the full theory where all orders in 1/A” are
considered, which contains infinite derivatives, does not
coincide with the Starobinsky model with different degrees
of freedom. In particular the full theory has no extra scalar
degree of freedom. Therefore in some sense, the truncation
procedure adopted in Ref. [48] is not completely consistent
with the Starobinsky theory, since it does not preserve the
degrees of freedom of the starting theory.

The aim of this paper is to show that the most general class
of super-renormalizable theories compatible with unitarity
contains at most one extra degree of freedom besides the
graviton field and reduces to the Starobincky R + eR? theory
under a suitable truncation. The truncation is coherent in this
case, since it preserves the degrees of freedom of the theory
after truncation. Here we achieve this result and define the
maximal class of such theories; we use the term “maximal” to
indicate that any other extension of the theory must contain a
ghost or a tachyon and therefore unitarity is violated.

This paper is organized as follows. In Sec. II we intro-
duce the super-renormalizable action for gravity in a D-
dimensional spacetime. In Sec. Il we calculate the propagator
for the gravitational field fluctuation and in Sec. IV we show
that, requiring unitarity, the theory contains at most the spin-
two graviton field plus one scalar degree of freedom that we
call graviscalar or scalaron. In Sec. V we show that the theory
is super-renormalizable in even dimension and finite in odd
dimension. In Sec. VI the Starobinsky theory is recovered
through a suitable and coherent truncation of the Lagrangian
density. In Sec. VII we expand about the importance of the
graviscalar degree of freedom of the theory. Finally in Sec. IX
we resume the results of this paper and conclude.

Hereafter the spacetime metric tensor g,, has the
signature  (+,—,...,—), the curvature tensor is
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R}, = —0,I", + - - -, the Ricci tensor is R,, = Ry, the
curvature scalar is R = ¢**R,,,, Moreover, we use natural
units ¢ =1 and 2 = 1.

Hw

II. THE MULTIDIMENSIONAL THEORY

In this section we introduce a general action for the class
of super-renormalizable or finite theories under consider-
ation in D-dimensional spacetime. Let us start with the
following nonpolynomial or semipolynomial Lagrangian
density

L=2%2R+ 1+ "R+ 4 NpNe2
N
+ Z [@,R(—CJ\)"R + bnR,w(—DA)”R’”’}
n=0

+ Rho(—=0)R + R, hy (=05 R™, (3)

where k%, = 322G, G is Newton’s gravitational constant,
[0, = 0/A? and the operator (I = ¢V, V, is constructed
with covariant derivatives. The nonpolynomial operators
have been introduced in the last line of (3) making use of
the following two entire functions

() =~V =S
=0

kH A%z £
Va2 =1 s
hy(z) =222 3N, 4
Z(Z) K%)AQZ ; n< ( )

where V((z) and V,(z) are two entire functions that we
are going to select consistently with unitarity and renor-
malizability. The constants a, and b, are just nonrunning
parameters, while the running coupling constants are

a; € {KD’/_Lanv me(ll)v ) CEN)} = {KD’Zvan}' (5)

The integer N is defined as follows in order to avoid
fractional powers of the D’Alembertian operator, namely,

2N +4 =D, +1 in odd dimension, (6)

2N + 4 = Deyen in even dimension. @)
The “form factors" V;(z)~! (i = 0,2) will be defined later
for the compatibility with unitarity and renormalizability.

The goal of this paper is to find an ultraviolet completion
of the Starobinsky theory with exactly the same particle
spectrum: the massless graviton and the massive gravisca-
lar. We will see later in Sec. IV that this is the maximal
particle content compatible with unitarity and super-
renormalizability or finiteness at quantum level.
However, a nonpolynomial minimal theory reproducing
the Starobinsky action in the low-energy limit has been
already introduced and studied in Refs. [45,48,49]. This
action satisfies all the requirements (1-5) listed in the
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previous section, but only the massless graviton propagates.
The Lagrangian in Refs. [45,48,49] is the same as Eq. (3),
with the identification of the two form factors as V(z) ™! =
Vo(z)~' = e [49,54]. In Sec. VII we see that this
prescription gives rise to the Starobinsky Lagrangian, but
the problem is that it lacks the graviscalar degree of
freedom required to generate scalar metric perturbations

during inflation.

III. PROPAGATOR

We shall explicitly calculate the two-point propagator for
the action (3) and then we impose the condition that the
nonpolynomial functions hy(z) and h,(z) defined in (4)
have to fulfill in order to achieve a theory which satisfies
the theoretical and observative consistency requirements
stated in the introduction. We stress that it is important here
to obtain the expression of the two-point function since
from the poles of the propagator the number of propagating
degrees of freedom will be clear.

We proceed to split the spacetime metric into the flat
Minkowski background plus a fluctuation £, defined by

9w = Muw + KDh/wv ®)
and then we expand the Lagrangian to second order in the

gravitational fluctuation h,,. Omitting total derivative
operators, we end up with the following outcome [58]

h;th/w +A12/ + (AI./ _¢,u)2]

N[ —

Llinear =
Kb
8
+(A%—0¢) (B(O) +4(D)) (A% —T)l, ()

+— [Oh, p(O)OR - ALp(CO)AL — FB(O)F,,

where the vector and antisymmetric tensor are below
defined in terms of the gravitational fluctuation,

AF = n",,
¢ =h, (trace of h,,),
Fo,=A4,,,—A,, (10)

while the functionals of the d’Alembertian operators a([J),
A(0) are defined by

a,(—Op)" + 2h(—0y),

b, (=0,))" + 2k, (=0y). (1)

The d’Alembertian operator in Lj,er and (11) should
be evaluated on the flat spacetime. The linearized
Lagrangian (9) is invariant under infinitesimal coordinate
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transformations x* — x* + kp&#(x), where &(x) is an
infinitesimal ~ vector field of dimensions [£(x)] =
M(P=4/2 Under this transformation, the graviton field
turns into h,, — hy,, —&(x),, —&(x), - The presence of
the local gauge symmetry calls for the addition of a gauge-
fixing term to the linearized Lagrangian (9). Hence, we
choose the usual harmonic gauge

Lap = &' Ao(—0y)A%, (12)

where w(—[J,) is a gauge weight function [40,44]. The
linearized gauge-fixed Lagrangian reads

1
[’]inear + EGF = Eh”yolwﬁo'h/mv (13)

where the operator O has two contributions coming from
the linearized Lagrangian (9) and from the gauge-fixing
term (12). Inverting the operator O [58], we find the
following two-point function

o1 _EePY+PO) PO
2w (k> /A%) g2 (1 4 k2, 2
PO

_ i . (14
k(D —2— k2 (D2E) 1 (D —1)a(k?))) .

where the projectors in D dimensions are defined by [58,59]

1 1

2

PLU).PD‘(k) = E (6/4/)9110' =+ elmeup) - meﬂvepm
1

1
Pfll/)»/”’(k) = E (eypwuo + e;wwz/p + eva;w + Gvo'wﬂp)1

0 1 = (0
Pl(ll’),/”’(k) = mg;wgpm PI(UJ),/)O'(k> = Wy Wpg,

kuk, k.k,
9/41/ =N — 7! oy, = 2 (15)

Note that the tensorial indices for the operator O~! and the
projectors PO, P p(), P(O) have been omitted.'

'The following identities are useful to split the terms propor-
tional to the gravitational momentum from the remaining:

) 1 1
P/gu).pa = E (nyp”lm + ’7/40"]11/)) - ﬁ’]/ﬂ/ﬂpd
_pn P=2p0 L po|
D—1 D—-1 v po
0 1 = =(0
PY . = B lle ~ 5T (PO 4 p )]/wﬁ"’ (16)
where
PO (k) = 0,,0,5 + @,,0,. (17)
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The functions «(k?) and p(k*) are achieved by
replacing —[J — k? in the definitions (11). By looking
at the last two gauge-invariant terms in Eq. (14), we deem
convenient to introduce the following definitions,

K2 A2 N K2 A2
b_ . Z b, 7" + D
N

ho(e) = 1— 0 [sz (o)

712(1) =

th(Z),

220y N
2’<DA(D D [Zaz + ho(z } (18)

where again z = —[],. Through the above definitions (18),
the propagator greatly simplifies to

E2PM + pO))
2k w '

1 [p® PO
i { ] (19)

Tk, (D=2)h

In the above formula we missed the argument k> for the
entire functions h,, hy and the weight function .

Once established that 4, and h, are not polynomial
functions, to achieve unitarity, we demand the following
general properties for the transcendental entire functions
hi(z) (i = 0,2) and/or h;(z) (i = 0,2) [44]:

(i) h,(z) is real and positive on the real axis and it has no
zeroes on the whole complex plane |z| < +oo.
ho(z) is real with at most one zero on the real axis and
then at most one zero in the whole complex plane
|z| < 4+00. We will show in the next section that these
requirements imply the maximal particle content
compatible with unitarity.
(i) |h;(z)| has the same asymptotic behavior along the real
axis at +oo.
(iii) There exists ® > 0 such that
lim [h;(z)| = |z,
[z[=+e0
yi >D/2 for D= D, and
D—l)/2 fOfD:DOdd,

vi > ( (20)

for the argument of z in the following conical

regions
C={z]| —®@<argz<+0, 7—0O <argz <7+ 0O}
for 0 <O < x/2.

This condition is necessary to achieve the super-
renormalizability of the theory that we are going to
show here below. The necessary asymptotic behavior
is imposed not only on the real axis, but also on the
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conic regions that surround it. In a Euclidean space-
time, the condition (ii) is not strictly necessary if
(iii) applies.
We suppose that the theory is renormalized at some scale
1o Therefore, if we set
a, = a,(4). by = bako). (21)
we can express /,(z) and hg(z) in terms of the form factors
V,(z) and V(z) replacing (4) in (18), namely

hy(z) = Va(2)™",
2 D

ho(z) = —— Evz(z)_l + (D

53 —DVo(2)']. (2)

Let us assume for the moment that the entire functions
h,(z) and hg(z) are each a polynomial multiplied by the
exponential of an entire function, namely

hz(z) = eHz(Z)p(’1z)(Z>’

ilo(Z) = eHO(Z)p(r‘O) (Z), (23)

while p("f)(z) are two polynomials of degree n;, respec-
tively. The two polynomials will be fixed shortly in Sec. IV
compatibly with unitarity. Using (22), we can invert (23)
for V,(z)~! and V(z)7!,

VZ(Z)*I — eHZ(Z)p("Z)(Z)’

(D —2)eEpt)(z) + DV, (2)
2(D-1)

Vo(z)™! = (24)

A class of entire functions H;(z) (i = 2,0) compatible
with the required properties (i)-(iii) and the definitions (4),
(23) are

H(2) = 3 16+ T0. P 11 (2) + 108 (s (D)

Re(p? \n:1(2)) >0, (25)

where T'(a.z) is defined in the footnote® and the form
factors can be written as

eHid) = eﬂr(o’pi*N“(Z))Hd |Pyan1(2)]- 27)

If we choose p, nyi(z) =21, H;(z) simplifies
to:

ZyE = 0.577216 is Euler’s constant and
+o0
I'(a,z) :/ tLe~tdt (26)

is the incomplete gamma function.
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1
H(z) = 5 [y + (0, 22 F2NT2) 4 Jog (272N +2)]
T
Re(z2"N2) >0 =5 @=— "
| ) 4y +N+1)
20 FANF2 Ay AN+A
H(z) = 3 - 3 + ... for z~0, (28)

where © is the angle defining the cone C of the property
(iii). The first correction to the form factor () goes to
zero faster than any polynomial function for z — +oo,
namely,

lim ") = 675/2|Z|71-+N+1,

z—+0o0
1) " =

The main result in this section is the propagator (19)
together with the definitions (23) and (25).

. eHild)

IV. UNITARITY AND DEGREES
OF FREEDOM

In this section we discuss the unitarity of the
theory (3). In particular we tackle the problem of
defining a theory of pure gravity with the maximal
number of degrees of freedom compatible with
unitarity.

If both tachyons and ghosts are absent, the stability of the
theory is ensured at classical and quantum levels. In this
case the corresponding propagator has only first poles at
k* — M? = 0 with real masses M; (no tachyons) and with
positive residues (no ghosts).

For the evaluation of the propagator (19) we make use
of the explicit definitions (23) of h; (i = 2,0) written in
terms of the entire functions H;(z) and the polynomial
functions p™) defined through (23),

where /7 > 0 and m3 > 0. If we couple the propagator
(19) to the conserved stress-energy tensor 7+ satisfying
the relation V, 7" =0, the contributions coming from
the terms P and P© vanish from the definition (15).
Dropping those contributions and using Eq. (30), the
propagator (19) reads

PHYSICAL REVIEW D 89, 024029 (2014)

P®? PO
Oil(k)zzﬂ () 2 Hy (1)
k*ef2p\m) (D —2)k*etoplno
P(2)e_H2 P(O)e_HO
I (-5 (D=2, (1-5)
_P(z) A0+ A - A,
e\ K —m? k2 — 2,
PO A0+ A, + - Ay,
(D—2)efo \K* k> — k* — 3” '
(31)
where A;, A;, are constants, and m} =0, m} = 0.

Let us assume that we have two real monotonic sequences
of masses: my <my < ...<imm,, m <my<..<m,.
In this case the signs of the corresponding residues alternate,
ie., sign[ResA;] = —sign[ResA; ] and sign[ResA;] =
—sign[ResA; +1] [41]. From the propagator (31) we see that
the residues in k* =0 and k*> = m? are positive but the
residues in k> = m} and k* = m3 are negative. It follows
that in order to avoid ghosts the polynomials must have,

respectively, degrees

2

n, =0, ny < 1. (32)
In fact, this meets the requirement (i) introduced and
discussed in Sec. III.

Let us consider the explicit example for n, =1 and
ny = 2. The spin-two and spin-zero sectors of the propa-
gator respectively read

P (1 1
spin 2: <k2 o _2>

s
PO 1A
(D —2)efo Kk —m?

. Ay
0: ., (33
spin + m%) (33)

where the constants A, A, are

m2
Al=—2-5>0, Ay=——-1-<0. (34
m5 — mj m5 — my

The quantum states have positive-definite norms and
energies if the poles in the propagator have positive
residues. In the example given above the residues in
k> =0 and k*> =mj are positive, but the residues in
k* = m? and in k> = m3 are negative.

This example confirms that the maximal theory com-
patible with unitarity has n, = 0 and n < 1. The case with
ng = n, =0 corresponds to the model presented in
Ref. [48], which will be discussed with more details in
Sec. VIL

In the case n, = 0 and ny = 1, defining m} = m?, the
propagator further simplifies to
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. P m2p©)
~ e T K2eflo (k> — m?)(D —2)
P2 PO PO

T 12e T (D—2)i2efn T (D= 2)eo (% — )’

35)

with two single poles at k> = 0 and k*> = m? that do have
positive residues because H;(0) = 0. We now expand on
the tree-level unitarity coupling the propagator to external
conserved stress-energy tensors 7/, and examining the
amplitude at the poles [58,59]. When we introduce a
general source operator, the linearized action is replaced by

‘Clinear + EGF - gh;wT’w’ (36)
and the transition amplitude in momentum space is

A — QZTﬂyO—l

/w,po'Tpg’ (37)

where ¢ is an effective coupling constant.

To make the analysis more explicit, we can expand the
sources using the following set of independent vectors in
the momentum space [58],

= (K, —k),
i=1,....D=2, (38)

k= (k9 k).
e =(0.6).

where é are D — 2 unit vectors orthogonal to each other
and to k,

k-&=0 - k' =0, -8 =26

K1 J 7

(39)

The most general symmetric stress-energy tensor can be
expressed as

T = ak'k* + bR'K + clel'e”) + dkk”
+elkle?) + fike?), (40)

where we used the notation a(,b,, = (a,b, + b,a,)/2. The
conditions k, 7" = 0 and k,k, 7" = 0 provide the follow-
ing constraints and consistency conditions on the coeffi-
cients a, b, d, €', f' [58]:

ak* + d(k3 + k*)/2 =0,

b(K2 + k) + dk?*/2 =0, (41)
eI+ fi(kE + k%) = 0.

k" =0 =

= d=0,b=0, /=0 for B:==kA—k =0, (42)

kyk, T =0 (consistency relation for a,b, andd )
= ak* +b(K2+K) +dikP (K2 +K2)=0.  (43)

Introducing the spin-projectors and making use of the
identities (16) together with the conservation of the
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stress-energy tensor k, 7" =0, the amplitude (37) for
n, =0 and n; = 1 reads

P P,

— 27T HYpo po
A T |:k2eH2p("2) (D — Z)kzeHOp(n0>:| T

v 2 2
LS R
k*e* (D —2)k%ef (1 - %)

] . (44

where T = n*“T,,.

We now calculate the residue of the amplitude in k> = 0
and k> = m?. Using the properties H;(0) = 0 and (42), the
residue in k*> = 0 reads

2 v T2
RCSA|k2:O - g T”DT - D _ 2

k=0
ii\2
_ 2l L 20 forp> 3
D - 2 k2:0

(45)

When D = 3, the graviton is not a dynamical degree of
freedom and the amplitude is zero. The residue in k> = m?
results

T2 e~ Ho (m?/A?)

ResA | R=m? = g2

in which case the scalar mode propagates. Thus, in the
case n, =0 and ny =1, the spectrum consists of two
particles: the graviton and the graviscalar (scalaron). We
conclude that the maximal class of super-renormalizable
unitary theories includes a graviscalar besides the
graviton.

V. RENORMALIZABILITY AND FINITENESS

In this section we study the power counting renor-
malizability of the theory, showing that it is renorma-
lizable in even spacetime dimension and finite in odd
dimension.

The theory can be renormalizable if we assume the same
ultraviolet behavior for the functions /,(z) and h(z). For
n, = 0 and ny = 1, it follows that

hg(Z) — €H2 N Zy2+N+1’ and

2
ho(z) —eHo(1—A—f> — glotN+2, (47)
m

If y, = yo + 1 =y, then the functions /,(z) and /(z) have
the same scaling property.

Replacing y, = y and yo = y — 1 and using Eqgs. (3), (4),
(18), and (19), the high-energy scaling of the propagator in
the momentum space and the leading interaction vertex are
schematically given by
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O~ (k) in the ultraviolet,

~ J2rFIN+4

L0 ~ Ok hy(=0y) O,h - #0005 0,0, (48)

where U, := #**0,,0,.1In (48) the indices for the gravitational
fluctuations /,, are omitted (replaced by &), and h;(—[,) is
the entire function defined by the properties (i)-(iii). From
(48), the upper bound to the superficial degree of divergence
in a spacetime of “even" or “odd" dimension is

W(G)even = Deven - Zj/(L - 1)9
W(G)ogd = Doaa — 2y + 1)(L — 1), 49)

where we used the topological relation between vertices V,
internal lines /, and number of loops L: I =V + L — 1.
Thus, if y > Deyen/2 or ¥y > (Dogq — 1)/2, only 1-loop
divergences survive in this theory. Therefore, the theory is
super-renormalizable, unitary, and microcausal as pointed out
also in Refs. [43,60-63]. For y sufficiently large the divergent
contributions to the f-functions (f;) are independent from
the running coupling constants (5) and then the -functions
do not depend on the energy scale u defined trough
t:=1log (1/pg). It follows that we can easily integrate the
renormalization group equations [45], i.e.,

da,»
)

o =P = ) ~ailt) + fit. (50)

The mass of the graviscalar is not subject to renormaliza-
tion and the logarithmic quantum corrections to the propa-
gator leave its value almost invariant because the damping
factor e~#0(2) suppresses any high energy shift, namely

P(2) 67H2
K[+ eI (co + ..+ exk®™) log (5)]

mZP(O> e_HO

T D=2 =) + e k(e + ) log (5]

o' =

where c, ¢..., cy are dimensionful constants and u is a
renormalization group invariant sale.

However, in odd dimension there are no local invariants
(using dimensional regularization) with an odd number of
derivatives which could serve as counterterms for pure gravity.
This is a consequence of the rational nature of the entire
functions which characterize the theory (one example of a
nonrational function is /;(,/z)). We conclude that all the
amplitudes with an arbitrary number of loops are finite and all
the beta functions are identically zero in odd dimension,

Pa, = Py, =B = 0.
i € {1,..., (number of invariants of orderN)},

n=1,...,N. Gh
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It follows that we can fix to zero all the couplings cl(")

constants the couplings a, (¢) and b, (u), namely,

and setto

cl(»n) =0,
a,(u) = constant = a,,,

b, (1) = constant = b,. (52)

Therefore, quantum gravity is finite in even dimension,
as well, once the Kaluza-Klein compactification is applied
[64]. The finiteness of the theory in even dimensions
follows from the inclusion of an infinity tower of states
which drastically affects the ultraviolet behavior.

VI. STAROBINSKY LIMIT

In the following we show how the Lagrangian (3)
reduces to the Starobinsky R + eR? theory after a suitable
truncation for large values of the A parameter. We also
discuss how to fix the value of such a mass scale and the
value of the graviscalar mass m.

The Lagrangian (3) can be recast as follows

2 vil—1 1 val—v;!
L=—|R-G -2 ____Rw4_RO "2 p ,
K‘%)( W +2 U

_ _ D-2 O
Vol —Vzl :m |:€H0 <1+n12> —eH2:| s (53)

where G, is the Einstein tensor. Expanding the above
Lagrangian (53) for large A, we find

. 2 27+2N—1
L=2 [R+(D72)R2+ O(RLR)] (54)

K% 4(D—1)m A#r+aN
When
DZ}/+2N—1 (D _ 2)R2
R < , 55
A¥r+N 4(D—1)m? (53)

the last term in (54) is negligible and in D = 4 dimen-
sions the Lagrangian (54) reduces exactly to (2) with
e=1/(6m?).

It seems natural to identify A and the graviscalar mass m
to avoid a further mass scale in the classical theory. Unlike
the previous model [47], we obtain the Starobinsky
R + eR? theory with exactly the same spectrum, the
massless graviton and the massive graviscalar essential
to generate proper primordial density perturbations.

The equation of motion up to operators O(RCIR) and
O(R?) reads [65-67],

G, + b=2 rlr -1, &
WD — Dm0
D_2 KD
-~ % (¢ ,O0-V,VI)R="2T (56
2(D _ l)mz (gﬂl/ H 1-/) 4 y24 ( )
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which is exactly the Starobinsky equation of motion in D
dimensions’.

Let us discuss observational signatures for the model
described by the Lagrangian (54) with D = 4 under the
condition (55), i.e.,

2
e (R as) (58)

K7 6m

The density perturbations generated in the inflationary
models based on f(R) gravity and scalar-tensor theory
were studied in detail in Refs. [22]. The resulting power
spectra of curvature perturbations R and gravitational
waves h;; are given, respectively, by [28]

N? [(m\? 1 m \?2
=[], = —(—1]. 9
PR = 242 (Mpl) Ph=5p (Mpl) >9)

where N is the number of e-foldings from the end of
inflation to the epoch at which the perturbations relevant to
the CMB anisotropies with the physical wave length a/k (a
is the scale factor) crossed the Hubble radius H~!. From the
Planck normalization P = 2.2 x 10~° at the pivot comov-
ing wave number k, = 0.05 Mpc~! [12], the scalaron mass
is constrained to be

M a0 (E) , 60)
M, N

which corresponds to m =3.2 x 10"* GeV for N = 55.
Since the scalaron is very heavy, the fifth force is strongly
suppressed in the present Universe. Hence the model is
compatible with local gravity constraints in the solar sys-
tem [28,68].

The scalar spectral index ny—1=dInPg/dInk|;,_,y
reads [28]

2 55
ng—1 :__:_3.6x10—2<—>, (61)
N N

whereas the tensor-to-scalar ratio r = P, /Py is

12 55)\2
r=-—=40x 1073 <> . (62)
N N

In calculating the variation of the action (53) we used the
compatibility property of the metric Vg, = 0 and the following
variation of the Ricci tensor,

1
5R;u/ = _Egﬂagy/imégaﬁ+
1
- E [Vﬁvuégﬂu + vﬁvvﬁg/}ﬂ - vuvy(sgaa]’ (57)

together with V#G,,, = 0. The Starobinsky action is manifestly
generally covariant. Therefore, its variational derivative exactly
satisfies the Bianchi identity.
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FIG. 1. 2-dimensional observational constraints on the Star-
obinsky’s inflationary model £ = (2/x%)[R + R?/(6m?)] in the
(n,, r) plane with the pivot wave number k, = 0.05 Mpc~'. The
bold solid curves show the 68% CL (inside) and 95% CL
(outside) boundaries derived by the joint data analysis of
Planck+WP+BAO+high-#, while the dotted curves correspond
to the 68% and 95% contours constrained by Planck+WP+BAO.
We plot the theoretical predictions for N = 50, 60 as black points.

In order to test the observational viability of the model, we run
the CosMOMC code [69,70] by setting the runnings of the
scalar and tensor spectral indices to be 0. The flat ACDM
model is assumed with N4 = 3.046 relativistic degrees of
freedom and with the instant reionization. In Fig. 1 we plot the
68% CL and 95% CL boundaries (solid curves) constrained
by the joint analysis of Planck [6], WP [10], baryon acoustic
oscillations (BAO) [71], and high-£ Atacama Cosmology
Telescope/South Pole Telescope temperature data [72] (solid
curves), together with the boundaries constrained by Planck
+WP+BAO (dotted curves). We also show the theoretical
values of ny and r for N between 50 and 60. The model is well
inside the 68% CL observational boundaries.

We also note that, in the Starobinsky’s model, the
nonlinear parameter fy; of scalar non-Gaussianities is
much smaller than 1 [73]. This is consistent with the
recent bounds of fy; constrained by the Planck group [9].

In the next section we will argue more on the importance
and the physical implications of the graviscalar degree of
freedom.

VII. IMPORTANCE OF THE GRAVISCALAR
DEGREE OF FREEDOM

Let us discuss the reason why it is important to consider
super-renormalizable and unitary theories with one extra
gravitational scalar degree of freedom.

024029-9



BRISCESE, MODESTO, AND TSUJIKAWA

The Starobinsky model, as well as any f(R) theory
[27-29], contains an extra scalar degree of freedom
responsible for the generation of primordial density per-
turbations. This is evident after mapping the theory from
the Jordan to the Einstein reference frame in which the
scalaron has a nearly flat potential to drive inflation [28].
Therefore, such a scalar plays a fundamental role for the
construction of a coherent cosmological model and, if it is
absent, one has to resort to different mechanisms to
generate primordial perturbations, e.g., Higgs inflation
with nonminimal couplings [21].

In Ref. [48] a super-renormalizable model characterized
by the following Lagrangian density has been proposed

V(O =1
L—R_Gw (%) Ro. 63)
with the specific choice
V(Oy) = exp(—0,). (64)

This corresponds to the Lagrangian (3) with the choice
Vo(Op) = Vo(O,y) = V(Od,), see Eq. (53). Then, the
propagator of the gravitational field on a Minkowskian
background reads

V(K> /A?) PO
o 2 PP ——— ). (65)

Hence one has only the spin-two massless graviton and no
graviscalar degree of freedom. The Lagrangian in this
model is given by

2 R? ROR
E—K%[R+6A2+0(A4>}, (66)

which reduces to

2 R?
L =2k <R + W) (67)
for ROIR/A? < R*. However this reduction is not coherent
with inflation since, as we have shown above, the theory
(63) contains only the spin-two graviton while the
Starobinsky model includes an additional scalar degree
of freedom, so the full theory starting from the Lagrangian
(63) and the “reduced" one have different degrees of
freedom. This means that the truncation of the
O(ROR/A*) terms from the Lagrangian (66) is not
consistent.

In Sec. IV we constructed super-renormalizable and
unitary theories containing one scalar degree of freedom,
by which gravitation is responsible for both the inflationary
expansion and the generation of perturbations. These
theories, after the truncation of (53), reduce in a coherent
way to the Starobinsky model, since the number of degrees
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of freedom is preserved in the truncation procedure.
Therefore, in such a case, the graviscalar generates pri-
mordial perturbations and its mass has to fulfill the
condition (60) in order to give the correct amplitude of
primordial perturbations. In Sec. IV we have shown that the
maximal class of unitary theories verifying this requirement
contains only one extra scalar, since if any other degree of
freedom is present, it must be a ghost or a tachyon. Hence
the theory presented here is the maximal one.

VIII. STRING FIELD THEORY

In this section we show how the Starobinsky theory
emerges from string theory when the modifications sug-
gested by “string field theory" are taken into account.

In string field theory the propagator of the point-particle
effective field theory is modified to [54]

1 e @0
—
O O’

(68)

where & = (//2) In(3/3/4) ~ 0.1308¢' with o being
the universal Regge slope parameter of the string.
Collecting together the modification suggested by string
field theory and general covariance, we propose the
following effective Lagrangian for the bosonic sector of
string theory,

—2 ea/D —1 v
Estringfﬁeld = 2K'D R — G/,w ] R*

1 &0 . &0

+§Vﬂ¢e V”¢+2—n!e ¢F[n]€ F[n]
(69)
This is confirmed by the analysis in Ref. [74], where the
authors make a field redefinition compatible with our
proposal. Let us now consider the low-energy expansion
of the exponential form factor in the Lagrangian (69), that is
U x 1+ &0+ o((@0)?). (70)

The gravity sector of the Lagrangian (69) simplifies to

£stringfﬁe]d = ZKBZ (R - &/G;wR;w)

1
= 2kp° (R — &R, R + E5/1%2) . (7D

In D = 4, for the Friedmann-Lemaitre-Robertson-Walker
metric, the following term turns out to be topological,

/ d*x+/|g|(3R,,R* — R*) = topological,  (72)

so that the truncated theory (71) reads
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~/!
Loring_fiea = 2K52 | R + %RZ +O((&@)?ROR))|.  (73)

When & RCIR < R?, the above Lagrangian reduces to the
Starobinsky model (2).

Finally, “string field theory" offers an alternative com-
pletion of the Starobinsky inflation. In order to obtain all of
the results of the perturbation spectra compatible with the
Planck data, we need to identify and select out an extra
scalar degree of freedom from the string spectrum.
However, this is not an easy task as for the theory (53)
where the scalar field is a part of the gravitational sector.

In this model the graviscalar does not appear unlike the
study in Sec. IV and the situation is exactly the same as the
one discussed in Sec. VII. The difficult task in string theory
is to pull out the extra scalar degree of freedom from the
string spectrum.

IX. CONCLUSIONS

In this paper we proposed and extensively studied a class
of super-renormalizable or finite theories of gravity which
provide an ultraviolet completion of the Starobinsky theory.
This class of theory is a generalization of the study done
previously in searching for unitary and perturbatively
consistent theory of quantum gravity [45,43,44]. The
outcome is universal once a few theoretical and observative
consistency requirements have been made.

If we require the hypothesis (1-5) listed in the intro-
duction, together with the validity of perturbative theory,
then we find only two unitary and super-renormalizable or
finite theories of gravity. The minimal one contains only the
graviton, but it is shown that a maximal extension is viable
containing one extra scalar degree of freedom (graviscalar
or scalaron). This is fundamental to generate primordial
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density perturbation during inflation. The result is twofold,
on the one hand in this theory the graviton and graviscalar
fill up the maximal particle content compatible with
unitarity and renormalizablity or finiteness, on the other
hand the Starobinsky model is coherently achieved in the
low-energy limit.

We also mentioned other theories capable of giving a
completion of the Starobinsky model. We expound about
“asymptotic safe quantum gravity" where at nonperturba-
tive level the ghost pole is moved to infinity by the
renormalization group. In the string theory framework,
we studied a point-particle theory incorporating the “string
field theory" modified propagator together with general
covariance. The resulting effective theory is in our class of
super-renormalizable theories for a particular choice of the
form factor and reduces to the Starobinsky model at low
energy.

Finally, we believe the effort made in the search for a
completion of quadratic gravity to be relevant and pertinent
in the light of the recent Planck data supporting the
Starobinsky inflation [9,12]. We would like to invite expert
readers to invest time in this research. Our instinct is
confirmed by recent papers having the same aim of this
[30-39].
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