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I consider the weak-field limit (WFL) of the bimetric, relativistic formulation of the modified Newtonian
dynamics (BIMOND)—the lowest order in the small departures hμν ¼ gμν − ημν, ĥμν ¼ ĝμν − ημν from
double Minkowski space-time. In particular, I look at propagating solutions, for a favorite subclass of
BIMOND. The WFL splits into two sectors for two linear combinations, h�μν, of hμν and ĥμν. The hþμν sector
is equivalent to the WFL of general relativity (GR), with its gauge freedom, and has the same vacuum
gravitational waves. The h−μν sector is fully nonlinear even for the weakest h−μν, and inherits none of the
coordinate gauge freedom. The equations of motion are scale invariant in the deep-MOND limit of purely
gravitational systems. In these last two regards, the BIMOND WFL is greatly different from that of other
bimetric theories studied to date. Despite the strong nonlinearity, an arbitrary pair of harmonic GR wave
packets of hμν and ĥμν moving in the same direction, is a solution of the (vacuum) BIMOND WFL.
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I. INTRODUCTION

Modified Newtonian dynamics (MOND) [1] has become
a wide paradigm that replaces Newtonian dynamics and
general relativity (GR); its goal is to account for all the mass
discrepancies in the Universe without invoking dark matter
(and “dark energy”). Reference [2] is an extensive recent
review of MOND.
Bimetric MOND (BIMOND) [3] is one of several

relativistic formulations of MOND (see Ref. [2]). Aspects
of it that have been considered so far are matter-twin-matter
interactions [4], matter fluctuations in cosmology [5], and
aspects of cosmology [6]. Still, BIMOND remains largely
unexplored, despite its promise in several regards: it tends to
GR for a0 → 0 (a0 is the MOND constant); it has a simple
and elegant nonrelativistic (NR) limit; it describes gravita-
tional lensing correctly; and, it has a generic appearance of a
cosmological constant that is of order a20=c

4—a well-known,
observed coincidence.
In particular, the important issue of propagating gravi-

tational waves (GWs) has not been addressed. Here I
begin to consider this question. Of the various aspects of
GWs, such as emission, propagation in vacuum, propa-
gation on a background, and interaction with matter (and
detection), I treat here mainly the simplest—propagation
on a doubly Minkowski space-time background. This is
important as it concerns the speed of propagation and
existence of superluminal or subluminal GWs, with the
issue of causality. It also concerns stability and the
possible appearance of ghost modes. Aspects of emission
and detection are touched on briefly in Sec. VI. Waves in
another relativistic MOND theory, TeVeS [7]—with a
very different behavior than BIMOND—have been stud-
ied in Refs. [7,8].
In Sec. II, I present BIMOND in brief, Sec. III describes

the weak-field limit, Sec. IV discusses phenomenological

constraints on the BIMOND interaction, Sec. V discusses
GW propagation, and Sec. VI discusses briefly emission
and detection of GWs.

II. BIMOND IN BRIEF

In BIMOND, gravity is described by two metrics, gμν
and ĝμν. Its action is

I ¼ − c4

16πG

Z
½βg1=2Rþ αĝ1=2R̂þ 2vgĝl−2

M M�d4x

þ IMðgμν;ψ iÞ þ ÎMðĝμν; χiÞ: (1)

Here, G is Newton’s constant, R and R̂ are the Ricci scalars
of gμν and ĝμν, whose determinants are −g and −ĝ, and vgĝ
is a combined volume form.1 The MOND length,
lM ≡ c2=a0, naturally sets the strength of the
coupling. The dimensionless interaction, M, is a function
of the “relative-acceleration” tensors lMCα

βγ , where

Cα
βγ ¼ Γα

βγ − Γ̂α
βγ , and Γα

βγ , Γ̂
α
βγ are the Levi-Civita connec-

tions.2 IM and ÎM are the matter actions for matter and twin
matter (TM), respectively. Hereafter I take c ¼ 1.
BIMOND is required to reduce to GR in its decoupling

limit jCα
βγj ≫ a0 (or a0 → 0), where it has to reduce to

two uncoupled copies of GR. MOND, in general, and
BIMOND in particular, may well not be perturbatively
expandable in powers of a0 near a0 ¼ 0.3 The assumption
that such an expansion is possible strongly underlies the

1It makes sense to take vgĝ to be symmetric in the two metrics,
and to reduce to g1=2 when the metrics are equal; e.g.,
vgĝ ¼ ðg1=2 þ ĝ1=2Þ=2, or vgĝ ¼ ðgĝÞ1=4.

2M may also depend on scalars such as κ ≡ ðg=ĝÞ1=4, or
gμνĝμν.

3For example if the MOND interpolating function behaves as
tanhða=a0Þ.
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damning verdict of Ref. [9] regarding multimetric theories.
BIMOND, thus, may well escape this verdict.

III. THE WEAK-FIELD LIMIT

We consider the weak-field limit (WFL) in the context of
a matter-TM symmetric universe, which makes the most
sense for BIMOND [5]. Then, the homogeneous cosmo-
logical metrics are equal, and locally there is a coordinate
frame in which they are both Minkowskian. The WFL
pertains to small departures from this background,

gμν ¼ ημν þ hμν; ĝμν ¼ ημν þ ĥμν; hμν; ĥμν ≪ 1;

(2)

where we take the lowest order in hμν, ĥμν.
First, we replace R in Eq. (1) by

−Γð2Þ ≡−gμνðΓγ
μλΓλ

νγ − Γγ
μνΓλ

λγÞ; (3)

and, similarly, R̂ by −Γ̂ð2Þ. This only adds a divergence to
the Lagrangian density.
Now we replace Γð2Þ and Γ̂ð2Þ by their weak-field

expressions Γ̄ð2ÞðhμνÞ and Γ̄ð2ÞðĥμνÞ. These are of order
ðhμν;λÞ2 and ðĥμν;λÞ2. Close scrutiny shows that inM and its
volume prefactor we can replace everywhere gμν and ĝμν by
ημν, gμν;σ by hμν;σ, and ĝμν;σ by ĥμν;σ.
Note importantly that while the WFL is defined by

jhμνj ≪ 1, j∇hj=a0, is not assumed small (∇h stands
schematically for hμν;λ , ĥμν;λ): in our approximation scheme,
a0 is considered of order ∇h. Seen differently, up to a
cosmological-constant term of order a20, in the WFL we
can write a20M, schematically, as ð∇hÞ2ða0=∇hÞ2
fM½ð∇h=a0Þ2� −Mð0Þg. In MOND, u−1½MðuÞ−Mð0Þ�
isboundedbyanumberoforderunity(seebelow).Thisjustifies
our handling of a20M in the WFL, as any correction that we
leave out is of higher order in ∇h.
In our approximation, Cα

βγ become linear in first deriv-
atives of h−μν ≡ hμν − ĥμν. Thus, M becomes a functional,
M�ðq−Þ, of h−μν through q−, which stands for variables
of the form ðh−μν;σ=a0Þ2. They are of zeroth order in our
approximation (and so are all appearances of M in
the WFL).
Also,

IM ≈
1

2

Z
hμνT μνd4x; ÎM ≈

1

2

Z
ĥμνT̂

μνd4x;

where T μν , T̂ μν are the Minkowskian energy-momentum
tensors. Assuming αþ β ≠ 0 (the case αþ β ¼ 0 requires
special treatment), we define

M̄ðq−Þ≡M�ðq−Þ − αβ

2a20ðαþ βÞ Γ̄
ð2Þðh−μνÞ: (4)

[Equation (4) is all zeroth order.] Putting all this together,
we have

ðαþ βÞI ≈ − 1

16πG

Z
½−Γ̄ð2ÞðhþμνÞ þ 8πGhþμνT þμν

þ 2ðαþ βÞa20M̄ðq−Þ þ 8πGh−μνT −μν�d4x; (5)

where hþμν ≡ βhμν þ αĥμν, T þμν ≡ T μν þ T̂ μν, and T −μν≡
αT μν − βT̂ μν.
So, the WFL gravitational action reduces to two

decoupled terms for hþμν and h−μν. The field equations for
hþμν are identical with the WFL of GR, but are sourced by
T þμν. The equations for the h−μν sector are sourced by T −μν,
and carry the MOND modification.
The gauge freedom is afforded by invariance under

xμ → x0μ ¼ xμ þ ϵμðxÞ, with ϵμ;ν ≪ 1 of the same order
as hμν, ĥμν. These transform hμν → hμν − ϵμ;ν − ϵν;μ,
ĥμν → ĥμν − ϵμ;ν − ϵν;μ. So h−μν is not affected, while hþμν →
hþμν − ðαþ βÞðϵμ;ν þ ϵν;μÞ. So, the hþμν sector enjoys the
same gauge freedom as in the WFL of GR, while the h−μν
sector is not subject to the above coordinate gauge freedom.
A particularly apt choice [3] of the scalar arguments of

M are ϒ≡ gμνϒμν, and Υ̂≡ ĝμνΥμν, where

Υμν ¼ Cγ
μλC

λ
νγ − Cγ

μνCλ
λγ: (6)

These scalars have the same structure as Γð2Þ; Γ̂ð2Þ. This
choice leads to a particularly simple NR limit, and, as we
shall see, endows this version of BIMOND with a certain
welcome affinity to GR.
In the WFL, ϒ ≈ ϒ̂ ≈ ϒ̄≡ Γ̄ð2Þðh−μνÞ. Thus, for this

choice of variables, M̄ depends on h−μν;γ through a single
variable, z≡−ϒ̄=2a20,

z ¼ 1

8a20
½h−νρ;γðh−νρ;γ − 2h−νγ;ρÞ − h−;

γðh−;γ − 2h−ργ;ρÞ�: (7)

(Indices are raised and lowered with ημν in the WFL.)
The field equations for h−μν then read

Σμν ≡ ½M̄0ðzÞS̄λμν�;λ ¼
8πG
αþ β

T −
μν; (8)

where

S̄λμν ≡ Cλ
μν − 1

2
δλμCν − 1

2
δλνCμ þ

1

2
ημνðCλ − C̄λÞ; (9)

and in the WFL, Cα
βγ ≈

1
2
ηασðh−βσ;γ þ h−γσ;β − h−βγ;σÞ.

[Cν ¼ ð1=2Þhλ−λ;ν, Cμ ≡ ημνCν.]
−S̄λμν;λ ¼ Ḡμνðh−αβÞ is the WFL of the Einstein tensor for

ημν þ h−μν; it satisfies the Bianchi identities S̄λμν;λ;
ν ¼ 0.

The equations of the hþμν sector satisfy the usual four
Bianchi identities. Since Σμν do not satisfy Bianchi iden-
tities (if M̄0 is not constant), Eq. (8) constitutes ten
independent equations for the components of h−μν.
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In both the h�μν sectors there is also a cosmological
constant of order a20Mð0Þ, which I neglect, consistent with
the approximation (in the Lagrangian such a term is of
order ha20).
For thespecial choiceofparametersαþ β ¼ 0 (and taking

β ¼ 1 for concreteness), the field equations can bewritten as

Ḡμνðh−λρÞ ¼ −8πGðT μν þ T̂ μνÞ; (10)

ḠμνðhλρÞ ¼ Σμνðh−λρÞ − 8πGT μν: (11)

Equation (10) is identically divergenceless, but h−μν has no
gauge freedom. Equation (11) implies the four equations
Σμν
;μ ðh−λρÞ ¼ 0, which together with the six independent

equations in Eq. (10) give a well-defined Cauchy problem
for h−μν. After h−μν is solved for, it is substituted into Eq. (11),
which gives exactly theWFLofGR forhμν (which has all the
gauge freedom, and to which matter couples) only with the
extra source −ð8πGÞ−1Σμνðh−λρÞ, which plays the role of
phantom (“dark”) matter for the hμν (matter) sector. MOND
phenomenology in theNR limit of this theory [4,10] requires
here M̄0ðz → ∞Þ → 0, and M̄0ðz ≪ 1Þ ≈ −z−1=4.

IV. PHENOMENOLOGICAL CONSTRAINTS ON
THE FORM OF THE INTERACTION

To further investigate theh−μν sector in theWFLweneed to
know M̄ðzÞ, which is constrained by MOND phenomenol-
ogy in the NR limit. This limit is a special case of the WFL
where, further to the smallness of hμν and ĥμν, the metrics
are time independent. It was thoroughly investigated in
Refs. [3,4,10] for the subclassofBIMONDwith thevariables
ϒ, ϒ̂, which proved to be particularly felicitous.4 It was
shownthat thereisachoiceofgaugeforwhichhμν ¼ −2ϕδμν,
ĥμν ¼ −2ϕ̂δμν (as in GR), in which case

z ¼ ð∇⃗ϕ − ∇⃗ϕ̂Þ2=a20: (12)

NRMOND phenomenology thus probes only non-negative
values of the argument of M̄.
The low-acceleration, or deep-MOND limit (DML) is

defined by applying a space-time scaling transformation
[ðt; rÞ → λðt; rÞ], with the scale factor λ → ∞ (so accel-
erations a → λ−1a → 0). Equivalently, we can always
normalize the various degrees of freedom such that the
limit is attained by taking in the theory a0 → ∞, G → 0,
with A0 ≡Ga0 finite [11]. If such a limit exists for some
theory, it is automatically scale invariant (SI). This is a
defining property of the MOND paradigm, and yields
MOND phenomenology (for example, asymptotic flatness
of rotation curves) [12].
The limit also has to be nontrivial, i.e., retain A0 as a

pivotal dimensioned constant. (For example, the limit for

Newtonian dynamics exists, but gives instead of the
Poisson equation Δϕ ¼ 0, which is uninteresting, or
trivial.) These require for the case αþ β ≠ 0 that

M̄0ðz ≪ 1Þ ∝ z1=2: (13)

[With a power < 1=2 the theory becomes trivial (A0

disappears); with a power > 1=2 the limit does not exist.]
This behavior has been verified down to z ∼ 10−3 (e.g.,

Ref. [13]), and, one usually assumes it down to z ¼ 0.
In this case, the field equations (8) for the h−μν sector—

now reading ½ð−ϒ̄Þ1=2S̄λμν�;λ ∝ A0T −
μν—are nonlinear

down to zero field. Furthermore, they are SI for purely
gravitational systems.5 In these regards, the WFL of
BIMOND is very different from that of other bimetric
theories studied to date.
Also, the equations for hþμν become the vacuum Einstein

equations, ḠμνðhþαβÞ ¼ 0 (since in the DML,G → 0), which
are also SI, as are the geodesic equations and the gauge
conditions, which do not involve dimensioned constants.
So, not only is the DML of NR BIMOND SI, but also, more
generally, the DML of its WFL: given a solution of the
theory with metrics h�μνðxÞ, and particles i having world
lines xμi ðqÞ, the metrics h�μνðx=λÞ, with world lines λxμi ðqÞ
are also a solution (with initial and boundary conditions
transformed correspondingly).
It follows, for example, that the light-bending angle is

independent of the impact parameter, b, for a static lensing
mass M, well within b (so it can be considered a point
mass), and b ≫ rM ≡ ðMG=a0Þ1=2 (rM is the MOND
radius of the mass), so that the DML applies.
The order of taking the WFL and the deep-MOND

(z → 0) limit is of consequence. Scrutiny shows that it is
proper to take the WFL first: the MOND length, lM, is
larger than the Hubble distance. If the metric(s) vary on the
scale L, the DML corresponds to hμν=L ≪ l−1

M . So, in all
sub-Hubble applications, where L ≪ lM, the MOND small
parameter is much larger than the relativity small param-
eter: hμν=La0 ≫ hμν.
The WFL theory with α ¼ −β [Eqs. (10) and (11)] also

has a formal, nontrivial DML, which is thus SI: we define
h�λρ ≡ a0h−λρ, taken to scale as h�λρ → λ−1h�λρ, to match its
dimensions. Then in the DML, Ḡμνðh�λρÞ ¼ −8πA0

ðT μν þ T̂ μνÞ, with Σμν
;μ ðh�λρÞ ¼ 0 [in the DML, Σ scales

as dðdh�=dxÞ1=2=dx]. And, hλρ ¼ ĥλρ,
6 satisfy ḠμνðhλρÞ ¼

Σμνðh�λρÞ (and SI gauge conditions), which involves no
constants.
It is an interesting, open question whether BIMOND, not

restricted to the WFL, has a nontrivial DML.
In the decoupling limit, z → ∞ (a0 → 0), the NR theory

has to approach Newtonian dynamics. This implies that

4Reference [3] also explored the more general case.

5The action is not SI, but is multiplied by a constant under
scaling.

6So the initial and boundary conditions have to satisfy this.
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M̄0ðzÞ has to approach a certain constant value a(α, β) there.
For β ¼ 1 (α ≠ −1), aðα; 1Þ ¼ −α=ð1þ αÞ. This ensures
also that the fully relativistic BIMOND, for the gμν sector,
tends toGRinthis limit.SuchGRcompatibility,whichcanbe
made as fast as desired with an appropriate form of M, is
required for BIMOND to comply with Solar-System and
binary-pulsar limits. For β ≠ 1 it is not known whether the
condition for Newtonian compatibility also ensures GR
compatibility. If it does not, we would have a good reason
to prefer β ¼ 1, in addition to other reasons [3].
As mentioned already, M̄0ðzÞ may not be expandable in

powers of a0 near a0 ¼ 0. If true, this would hopefully
obviate the obstacles raised in Ref. [9] regarding general
multimetric theories. But this is yet to be checked.

V. GRAVITATIONAL WAVES

A general comment is in order here regarding the
characteristic accelerations of GWs in comparison with
a0. Away from sources, GWs are weak in the relativity
sense (jhμνj ≪ 1). However, they need not be so in the
MOND sense. In the WFL of BIMOND, the relevant
measure of this is a=a0 ∼ lMj∇h−μνj. For wavelength λ,
and amplitude h, a=a0 ∼ lMh=ðλ=4Þ ≈ ð8πDH=λÞh≈
1019hðν=HzÞ, where DH ≈ lM=2π is the Hubble distance.
This can be much larger than 1 even very far from sources.
Wewrite the (Einsteinian) amplitude of GWs produced by a
source of massM at a distanceD as h ¼ fMG=D, where f
is a numerical factor that depends on details of the emitter:
how relativistic it is, the fraction of the “nonspherical
mass,” geometry, etc. Also, we write for the typical
wavelength λ ¼ qRs, where Rs ¼ 2MG=c2. Then a=a0 ∼
4πfDH=qD. So, for f=q ≪= 1 we can have a=a0 > 1 even
to the Hubble distance.7 This fact rather complicates the
analysis of GW in MOND. For example, it means that the
“accelerations” produced by the GW itself may sometimes
be comparable, or even much larger than those produced by
the background on which the GW is moving.
In the WFL of BIMOND, vacuum gravitational waves

are solutions of the equations

ḠμνðhþÞ ¼ 0; Σμν ¼ ½M̄0ð−Ῡ=2a20ÞS̄λμν�;λ ¼ 0. (14)

For hþμν, which satisfy a vacuum Einstein equation, we may
take the standard harmonic gauge, and we get for them
the two standard modes of GR. The equation for h−μν is
nonlinear even for the smallest of amplitudes.
Interestingly, despite the strong nonlinearity, an arbitrary

Einsteinian,plane-wavepacket,8 h−μν, satisfying the harmonic

gauge, is a solution of the second field equation (14).9 This
follows since such a packet annuls Ῡ, the argument of the
WFL interaction. To see this, consider the momentum-
space representation. In k space, all the scalars, such as Ῡ,
are sums of terms containing k0αϵβγðk0ÞkμϵνλðkÞ, with
indices contracted in pairs by three ησρ; ϵμνðkÞ is the k
component of h−μν. The harmonic condition reads
kμϵνμðkÞ ¼ ð1=2ÞkνϵðkÞ, where ϵ≡ ϵμμ. For vacuum solu-
tions of the WFL Einstein equation, this implies k2 ¼ 0 for
all k: all momenta are mutually proportional null vectors;
so, for any two kμk0μ ¼ 0, and k0μϵ

μ
λðkÞ ¼ ð1=2Þk0λϵðkÞ.

Contracting all indices in the above expression must thus
lead to the contraction of two momenta and gives zero.
Seen differently, we apply a longitudinal Lorentz boost
under which the scalars, which are also Lorentz scalars,
should not vary. The transverse components of ϵμνðkÞ are
unaffected, and the longitudinal ones, which can be written
as kνeμ þ kμeν for some eμ, do not contribute since they
lead to products of three k’s. But, all momenta are
multiplied by the same Lorentz factor, so to be invariant
the scalars must vanish. So even though rough scaling may
imply high accelerations for such waves, in fact they annul
the argument of M̄.
A similar situation occurs in nonlinear theories of

electromagnetism, such as the Born-Infeld theory, where
Maxwellian plane-wave packets annul the electromagnetic
invariants. There, however, the (Lorentz) invariants are
also gauge invariant, while here the scalars are not invariant
to changes of the longitudinal components: ϵμνðkÞ →
ϵμνðkÞ þ kνeμðkÞ þ kμeνðkÞ.
So, we can write in Eq. (14) M̄0ð0ÞS̄λμν;λ ¼ 0, and

S̄λμν;λðh−αβÞ ¼ 0 is the WFL Einstein equation. So, if M̄0ðzÞ
does not diverge at z ¼ 0 [it vanishes at z ¼ 0, by Eq. (13)],
twoarbitraryEinsteinianwavepackets forhþμν andh−μν, satisfy
Eq. (14).This is true for thechoiceofϒ , ϒ̂asvariablesofM,
since it is for this case thatwehave S̄λμν;λ ¼ 0. So, it is not clear
that our packet is also a solution of BIMOND for a more
general choice of variables ofM.
Thus, a pair of arbitrary, Einsteinian, plane-wave, har-

monic packets of hμν and ĥμν moving in the same direction,
is a vacuum solution of BIMOND, since they can be
combined into such packets of h�μν.

VI. EMISSION AND DETECTION

The objects and phenomena we have in mind as sources
of potentially detectable GWs are all characterized by
accelerations much higher than a0.

10 Thus, in versions of
BIMOND that are compatible with GR, as we assume, GW

7Because of the inherent nonlinearity of MOND we cannot
consider separately the typical “acceleration” of different
frequencies as done here. So this estimate is only a rough
indication.

8Namely, an arbitrary superposition of Einsteinian plane waves
with various momenta, all in the same direction.

9No gauge freedom for h−μν is employed; we simply find that an
Einsteinian packet that satisfies the harmonic gauge, whose
momenta are thus all null, is a solution.

10Any relativistic system much smaller than the Hubble length
is of high acceleration.
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emission occurs as in GR: only gμν waves are emitted by
matter systems (and ĝμν waves by TM systems), and they
have GR characteristics. When leaving the high-acceleration
region around the emitter, such waves would gradually (and
in a manner yet to be studied) be transfigured into modes of
well-defined propagation properties in that regime (for
example h�μν modes). Thus for example, an asymptotic
hþμν wave, which is a combination of gμν and ĝμν waves
can be produced by matter or TM sources.
Foreseeable terrestrial and space detectors (but not

pulsar timing arrays) are within the very-high-acceleration
field of the inner Solar System. Any BIMOND GWs that
enter this region are describable within the inner Solar
System as combinations of hμν and ĥμν waves, each with
the two polarization modes as in GR, and with only the hμν

waves coupling to the (matter) detectors. So BIMOND
does not predict that GWs with polarizations other than
those predicted by GR will be detected. However the
relation between the GWs that are detected and their
sources are expected to be different than in GR. For
example, both matter and TW sources may produce GWs
that arrive in the inner Solar System as a combination
containing gμν waves, which are detectable by matter
detectors. This may lead to GWs without an electromag-
netically detectable (TM) source. Also, propagation prop-
erties on backgrounds, which have not yet been studied,
may lead to different propagation times for gravitational
waves and light: GW propagation may respond to both gμν
and ĝμν backgrounds, while photons are affected only by a
gμν background.
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