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The growth rate of the large-scale structure of the Universe has been advocated as the observable par
excellence for testing gravity on cosmological scales. By considering linear-order deviations from general
relativity, we show that corrections to the growth rate, f, can be expressed as an integral over a “source”
term, weighted by a theory-independent “response kernel.” This leads to an efficient and accurate “plug-
and-play” expression for generating growth rates in alternative gravity theories, bypassing lengthy theory-
specific computations. We use this approach to explicitly show that f is sensitive to a degenerate
combination of modified expansion and modified clustering effects. Hence the growth rate, when used in
isolation, is not a straightforward diagnostic of modified gravity.
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I. INTRODUCTION

The formation of large-scale cosmological structure is
acutely sensitive to the nature of gravitational collapse. It
has been argued that an accurate measure of the growth
rate, fðaÞ, defined as

fðaÞ≡ d ln ΔMðaÞ
d ln a

; (1)

where ΔMðaÞ is the amplitude of the growing mode of
matter density perturbations, can be used to constrain
deviations from general relativity (GR).
The method of choice for measuring fðaÞ [or equiv-

alently, fðzÞ] is through redshift-space distortions (RSDs)
[1–4]. The two-point correlation function of galaxies in
redshift space is both anisotropic and scale dependent, due
to two competing effects. On small scales, the virialized
motions of galaxies dominate over the Hubble flow,
resulting in the elongation of the contours of the correlation
function along the line of sight—the fingers of god effect.
On larger scales, gravitational infall leads to a squashing of
the contours that is detectable on scales of 10–30 h−1Mpc.
There has been substantial progress in modelling this effect,
both analytically [5,6] and numerically [7,8], and a number
of systematic effects (nonlinearity, the role of bias) have
been studied. We will not discuss these difficulties here (see
Ref. [9] for further details); the focus of this paper is what
we can learn from a measurement of fðzÞ once it has been
extracted from the data.

The current observational status of fðzÞ is promising and
intriguing. The surveys of Refs. [10–14] have measured the
growth rate from z ¼ 0.2 to z ¼ 1.3 on a range of scales,
with errors of approximately 10%–20%. These measure-
ments have provided decisive evidence for ruling out some
extreme theories of modified gravity [15]. We will show in
this paper that other theories give rise to more subtle
signatures that still lie within current experimental error
bars; however, this situation should change with the next
generation of galaxy surveys (see Sec. V).
The growth rate is a particularly attractive observable

from a theoretical point of view. For a start, we expect to
measure it predominantly on scales where linear cosmo-
logical perturbation theory is valid. There is a battery of
well-seasoned techniques associated with linear perturba-
tion theory, and it is possible to adapt these for use with
nearly all modified gravity theories [16]. Extending
growth-rate calculations to the mildly nonlinear regime
is possible [8,17] but still in its infancy; furthermore, the
reliance on theory-specific N-body simulations prevents
one from making general statements about the effects of
modified gravity on these scales.
A key advantage of fðzÞ is that the range of scales

probed is well inside the cosmological horizon, where the
quasistatic approximation can be applied (see Ref. [18] for
a detailed discussion). This means that the dependence on
extra degrees of freedom (an almost inevitable feature of
modified gravity) can be simplified and much of the time
dependence of the gravitational field can be discarded. As a
result, the equations of motion for density perturbations and
the growth rate are easy to work with.
In this paper we wish to explore the power of the growth

rate as a probe of gravity. To do so, we first briefly
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introduce the quasistatic approximation in Sec. II, and then
use it in Sec. III to derive a generalized evolution equation
for fðzÞ. We show how, in the quasistatic regime, it depends
on a) modified gravitational clustering properties, and
b) modifications to the background expansion history. In
Sec. IV we propose a simple and efficient method for
linking the observable quantity fσ8ðzÞ to functions para-
metrizing deviations from GR . In Sec. V we discuss the
tradeoff between the degree of agnosticism about gravity a
parametrization implements and the resulting constraints
on it from growth-rate data. A particularly convenient way
of mapping specific gravity models onto the formalism of
this paper is to use the parameterized post-Friedmann
formalism [16]; we demonstrate this in Sec. VI by
calculating a suite of examples. We discuss our findings
in Sec. VII. The busy reader may like to focus on Sec. IV in
particular.

II. THE QUASISTATIC REGIME

This paper focuses on gravitational collapse in the
quasistatic regime. This is defined as the range of length
scales which are sufficiently large enough for linear
perturbation theory to be accurate, but still significantly
less than the cosmological horizon length. This permits two
approximations to be made:

1. The consideration of significantly subhorizon scales
implies that, when working in Fourier space, terms
containing factors of H=k can be safely neglected.

2. On these spatial length scales, the time derivatives of
scalar perturbations are negligible relative to their
spatial derivatives. Here “scalar perturbations”
means both the usual gravitational potentials and
any new perturbations not present in GR (e.g. δϕ for
theories involving a new scalar field ϕ).

A careful discussion of these two features was presented in
Ref. [18], which we will not repeat here.
Whilst at first our use of the quasistatic approximations

may seem to limit the application of our work, we
emphasize that quasistatic scales dominate current and
near-future galaxy redshift surveys. Testing modified grav-
ity in the nonlinear regime requires theory-specific N-body
simulations. As mentioned in the Introduction, these are
only available for a limited handful of theories at present
[19–22].
An appealing feature of the quasistatic regime is that it

allows many theories to be packaged in a simplified,
generic form, as follows. Consider a gravity theory involv-
ing a single additional scalar degree of freedom, e.g.
Galileon gravity, fðRÞ gravity or scalar-tensor theories.
Perturbations of the scalar follow an equation of motion
which, schematically, has the form

δφ00 þ 2Hδφ0 þ ½k2 þ a2mðaÞ2�δφ ¼ Sða;Φ;ΨÞ; (2)

where the effective mass of the scalar is set by its potential,
mðaÞ2 ¼ ∂2VðϕÞ=∂ϕ2, and the source term S depends
upon the specifics of the theory in question [23].
When the quasistatic approximations above are applied,

Eq. (2) reduces to an algebraic relation between perturba-
tions of the scalar and the gravitational potentials,

δϕ ≈
Sða;Φ;ΨÞ

ðk2 þ a2mðaÞ2Þ : (3)

This relation can then be used to eliminate δϕ from the
linearized gravitational field equations. Furthermore, terms
in the linearized field equations containing δ _ϕ can be
dropped under point 2) above. One then finds that the
Poisson equation and the “slip” relation between the two
metric potentials can be written in the form

2∇2Φ ¼ κa2μða; kÞρ̄MΔM; (4)

Φ
Ψ

¼ γða; kÞ; (5)

where we have defined two time- and scale-dependent
functions, μða; kÞ and γða; kÞ. Equations (4) and (5) can be
thought of as a simple parametrization of modified gravity
in the quasistatic regime: a theory corresponds to a
particular choice of functional forms for μða; kÞ and
γða; kÞ. A more detailed derivation of these relations can
be found in Sec. IV C of Ref. [16]; for some theory-specific
examples see Refs. [24,25].
The results presented in this paper should apply to any

theory for which the quasistatic reduction to Eqs. (4) and
(5) is valid. This covers any model with a single new scalar
degree of freedom; note that this is not restricted to only
simple scalar field models. For example, the spin-0
perturbations of a new vector field or the Stückelberg
field used to restore Lorentz invariance to Hořava-Lifschtiz
gravity both act as scalar degrees of freedom. We highlight
that the entire broad family of Horndeski models is subject
to our analysis [24,26,27].

III. THE LINEAR GROWTH RATE
IN MODIFIED GRAVITY

We will begin our calculations by clearly laying out
how modifications to the gravitational field equations will
affect the evolution of the growth rate of density perturba-
tions, as defined in Eq. (1). Consider the pressureless
matter component of the universe. Small inhomogeneities
in the energy density, δM, are defined through ρM ¼
ρ̄Mð1þ δMÞ, where ρ̄M is the mean energy density. In
the conformal Newtonian gauge the evolution equations for
the velocity potential θ (where the velocity perturbation is
vi ¼ ∇iθ) and the gauge-invariant density contrast Δ ¼
δþ 3Hð1þ ωÞθ are
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_ΔM ¼ 3ð _ΦþHΨÞ − θM½k2 þ 3ðH2 − _HÞ�; (6)

_θM ¼ −HθM þΨ: (7)

Equation (6) is derived by combining Eq. (7) with the usual
energy conservation equation for a pressureless fluid. We
use dots to denote derivatives with respect to conformal
time, and our conventions for the metric potentials are
displayed in the perturbed line element,

ds2 ¼ a2ðηÞ½−ð1þ 2ΨÞdη2 þ ð1 − 2ΦÞdxidxi�: (8)

In what follows, we will sometimes suppress the arguments
of functions for ease of expression. We warn the reader that
ΩM should always be interpreted as a time-dependent
quantity; we will use ΩM0 to indicate the fractional energy
density in matter today.
In the quasistatic regime (see Sec. II) the k2 term

dominates Eq. (6), so to a good approximation

_ΔM ≈ −k2θM: (9)

Differentiating this expression with respect to conformal
time and combining it with Eq. (7) we obtain

Δ̈M þH _ΔM þ k2Ψ ≈ 0: (10)

Combining Eqs. (4), (5) and (10) and using the Friedmann
equation to express κa2ρ̄M ¼ 3H2ΩM, we obtain

Δ̈M þH _ΔM − 3

2
H2ΩMξΔM ¼ 0; (11)

where we have defined ξ≡ μ=γ. The quantity ξða; kÞ will
appear frequently throughout this paper; it is equal to 1 in
GR. For convenience we rewrite Eq. (11) using x ¼ ln a as
the independent variable,

Δ″
M þ

�
1þH0

H

�
Δ0

M − 3

2
ΩMξΔM ¼ 0: (12)

Primes denote derivatives with respect to x. It is helpful to
convert this second-order equation for ΔM into a first-order
equation for the growth rate. Employing the usual defi-
nition of Eq. (1), we have f ¼ Δ0

M=ΔM, and the conse-
quential result Δ00

M=ΔM ¼ f00 þ f2. In terms of f Eq. (12)
becomes

f0 þ qðxÞf þ f2 ¼ 3

2
ΩMξ; (13)

where

qðxÞ ¼ 1

2
½1 − 3ωðxÞð1 −ΩMðxÞ�: (14)

We have introduced a free function, ωðxÞ, acting as an
effective equation of state of the nonmatter sector. The
unperturbed expansion history of any dark energy or
modified gravity theory can be written in the form of
the usual GR Friedmann equation with a new fluid
component, through a suitable choice of ωðxÞ [28,29].
Also, note that ξ can generally be a function of scale, so we
must allow for a possible scale dependence of the growth
rate, f ¼ fðx; kÞ; this is a common property of modified
gravity theories which distinguish them from GR.
Whilst the growth rate is of prime importance, in practice

one actually measures the density-weighted or observable
growth rate, fσ8ðx; kÞ, where σ8 is the root-mean-square of
mass fluctuations in spheres of radius 8 h−1Mpc [30]. σ8
evolves with the same growth factor Dðx; kÞ as the matter
overdensity, i.e.

σRðzÞ
σRðz ¼ 0Þ≃D

�
z; k ¼ 2π

R

�
¼ ΔMðz; k ¼ 2π

R Þ
ΔMð0; k ¼ 2π

R Þ
; (15)

where R ¼ 8 h−1Mpc. This will prove useful in Sec. IV B.

IV. THE LINEAR RESPONSE APPROACH

We can assume that any viable theory of modified
gravity must result in observables that match the
ΛCDMþ GR model to a high degree of accuracy. We
then ask the question: what small deviations from
ΛCDMþ GR are still permissible within the error bars
of current and near-future experiments? Wewill answer this
question by considering linear perturbations about the
“background” solution of ΛCDMþ GR, which corre-
sponds to ω ¼ −1, μ ¼ γ ¼ ξ ¼ 1.
Our approach should not be confused with the standard

cosmological perturbation theory of a Friedmann-
Robertson-Walker universe. We are already working
within the context of spacetime linear perturbation theory.
We are now going to perturb around ΛCDMþ GR in
model space by assuming that the functions ξ and ω source
small deviations δf from the growth rate predicted by the
ΛCDMþ GR model. We will see shortly that this an
excellent approximation to the full solution of the nonlinear
Eq. (13).
For simplicity we will first investigate the impact of these

small perturbations in model space on the (unobservable)
growth rate f, before extending our treatment to the
observable fσ8 in Sec. IV B.

A. The response function of the growth rate f

We begin by decomposing f into a zeroth-order part and
a perturbation. As stated above, the zeroth-order solution is
that of GR and hence is scale independent, but the
perturbation may not be,
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fðx; kÞ ¼ fGRðxÞ þ δfðx; kÞ: (16)

Likewise we perturb ξ, ω andΩM about their GRþ ΛCDM
values by writing

ξ ¼ 1þ δξðx; kÞ;
ω ¼ −1þ βðxÞ;

ΩM ¼ Ωð0Þ
M þ δΩMðxÞ; (17)

where Ωð0Þ
M ¼ ρ̄M=ðρ̄M þ ρ̄ΛÞ, and ρ̄Λ is the energy density

of the nonmatter sector in the zeroth-order ΛCDM solution,
i.e. it evolves as a perfect fluid with equation of state
ω ¼ −1. Substituting these expansions into Eq. (13) and
equating first-order parts (and continuing to suppress some
arguments for clarity),

δf0 þ qGRðxÞδf þ 2fGRδf ¼ 3

2
Ωð0Þ

M ðxÞδξðx; kÞ

þ 3

2
ð1þ fGRÞδΩM

þ 3

2
ð1 −Ωð0Þ

M ÞfGRβ; (18)

where qGRðxÞ ¼ 1
2
½4 − 3ΩMðxÞ�. In Appendix A we show

that

δΩM ¼ 3Ωð0Þ
M ð1 −Ωð0Þ

M ÞuðxÞ; (19)

where uðxÞ ¼ R
x
0 βðx0Þdx0 such that uð0Þ ¼ 0. Using this in

Eq. (18), we obtain

δf0 þ qGRðxÞδf þ 2fGRδf

¼ 3

2
Ωð0Þ

M ðxÞδξðx; kÞ

þ 3

2
ð1 −Ωð0Þ

M Þ½ð1þ fGRÞ3Ωð0Þ
M uþ fGRβ�: (20)

It is more convenient to work with the fractional deviation
of the growth rate from the ΛCDMþ GR prediction, which
we define as

ηðx; kÞ ¼ δfðx; kÞ
fGRðxÞ

¼ fðx; kÞ
fGRðxÞ

− 1: (21)

In terms of this new variable [and using the zeroth-order
part of Eq. (13)], Eq. (20) becomes

η0 þ η

�
fGR þ 3

2

Ωð0Þ
M

fGR

�
¼ 3

2

Ωð0Þ
M

fGR
δS; (22)

where

δS ¼ δξþ ð1 −Ωð0Þ
M Þ

Ωð0Þ
M

½3Ωð0Þ
M ð1þ fGRÞuþ fGRβ�: (23)

This first-order equation can be solved using an integrating
factor, leading to the expression

ηðx; kÞ ¼ 3

2

Z
x

−∞
Ωð0Þ

M ð~xÞ
fGRð~xÞ

δSð~x; kÞKðx; ~xÞd~x; (24)

where

Kðx; ~xÞ ¼ exp

�
−
Z

x

~x
dx̄

�
fGRðx̄Þ þ

3

2

Ωð0Þ
M ðx̄Þ

fGRðx̄Þ
��

: (25)

We see that the solution for ηðx; kÞ takes the form of an
integral over a “source” term δSð~x; kÞ and a “kernel”
Kðx; ~xÞ. Crucially, note that the kernel only depends on
the ΛCDMþ GR background, meaning that it is theory
independent and simple to calculate. Effectively, the kernel
acts purely as a weighting function. The entire theory
dependence of the modified growth rate is encoded in the
source term δSðx; kÞ which at each moment in time (or x) is
a degenerate combination of δξ, β and u. This makes clear
how modifications to different parts of the gravitational
field equations propagate through to affect the growth rate
(see below).
As one might expect, we need to know the background

solution we are expanding about (due to the factors of Ωð0Þ
M

and fGR) in order to solve for the deviation ηðx; kÞ. The
background solution is found by solving Eq. (13) with
ξ ¼ 1. In general this must be done numerically, but as the
computation is done in standard GR it is straightforward
and rapid to calculate.
Let us interpret Eq. (24) physically. It says that the

fractional deviation from fGR is an integral from early times
(x → −∞) up to the time of observation. One expects that
an observer will be more sensitive to non-GR behavior
occurring at times recent to him/her than at high redshift.
This sensitivity is encoded in the kernel Kðx; ~xÞ; it gives an
exponential suppression factor depending on the interval
between the time of the deviation from GR (~x) and the time
of observation (x). For deviations occurring at the time of
observation there is no suppression, Kðx; xÞ ¼ 1. Causality
imposes that Kðx; ~xÞ ¼ 0 for ~x > x; clearly observables
cannot be affected by deviations from GR that occur after
the time of observation.
We can also apply some physical interpretation to the

function δS [Eq. (23)] that sources corrections to the GR
growth rate. It contains three contributing factors:
(i) The first term, δξ, can be interpreted as the modified

clustering properties stemming from the modified
Poisson equation [Eq. (4)].

(ii) The second term, uðxÞ ¼ R
x
0 βðx0Þdx0, arises from the

modified expansion history.
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(iii) The third term, βðxÞ, describes the instantaneous
modified expansion rate, i.e. at the time that δS is
being evaluated.

It is important to note that the background expansion rate of
the universe contributes significantly to the modified
growth rate, i.e. fðzÞ is not solely a probe of linear
perturbations. The degeneracy between β and δξ was also
highlighted in Ref. [9]; the authors further considered the
Alcock-Paczynski-related issues that a non-ΛCDM back-
ground would pose for the extraction of fσ8ðzÞ from a
galaxy power spectrum. The analysis of this paper has
instead focused on how to best use the growth rate signal
once we have it in hand.
We will put Eq. (24) to use by considering some toy

examples. These will illustrate the response of the growth
rate to arbitrary deviations from GR; they are not intended
to represent any particular theory of modified gravity. Let
us first consider a simple case where the background
expansion precisely matches that of a cosmological con-
stant (i.e. β ¼ 0), and only the behavior of perturbations is
modified. Figure 1 shows the fractional deviation of the
growth rate [defined in Eq. (21)] triggered by two forms of
modifications to matter clustering: a Gaussian and a cubic-
order Taylor series in ½1 −Ωð0Þ

M ðxÞ�, where Ωð0Þ
M ðxÞ evolves

as predicted by the ΛCDMþ GR model. In each case we
have assumed a scale-independent δξ, but one could
construct a more complicated function of k and consider
Fig. 1 as snapshots at a given scale.
We see from the left panel of Fig. 1 that after a transient

δξ source the growth rate gradually returns to its GR value,

decaying approximately as a−5
2 for a reasonably narrow

Gaussian. [The index can be inferred by considering
Eq. (24) during a matter-dominated epoch.] The rate of
return to GR is slightly suppressed at late times when the
background expansion starts to accelerate, which acts to
“freeze in” perturbations.
Sustained modifications to GR such as those considered

in the right-hand panel of Fig. 1 lead to growing deviations
from fGR, and hence will generally be more tightly con-
strained by data. For example, the cubic polynomial shown
results in a ∼6% effect on the growth rate at z ¼ 0,
substantially larger than the subpercent deviations shown
in the left-hand panel.
Note that there is a time lag between changes in δξ and

the response of the growth rate. For example, in the right-
hand panel of Fig. 1 the non-GR source begins to die away
after z ∼ 0.5, but ηðzÞ has insufficient time to follow suit.
One could imagine generalizations of this situation, in
which GR is the correct description of our Universe today,
but the effects of past non-GR behavior still persist for a
limited time. (Such late-time changes in the dynamics of
the dark sector were explored in Ref. [31].)
One may justifiably ask what kind of error is introduced

by approximating Eq. (13) as a linear equation. In fact the
error is extremely small for the situations we are consid-
ering here. For an example with a ΛCDM background
(such as the one shown in the left-hand panel of Fig. 1), the
full (nonlinearized) evolution equation for δfðxÞ ¼ fðxÞ −
fGRðxÞ given by Eq. (13) has a solution with the same form
as Eq. (24), but with a modified kernel,

FIG. 1 (color online). Examples of how the growth rate is affected by different source terms in Eq. (13), where δξ ¼ ξ − 1. Effects on
the growth rate are expressed as a percentage deviation from the GR prediction, i.e. η ¼ f=fGR − 1. For the right-hand panel

δξ ¼ 1þ 0.75ð1 −Ωð0Þ
M Þ − 1.5ð1 − Ωð0Þ

M Þ2 þ 0.75ð1 − Ωð0Þ
M Þ3.
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KFullðx; ~xÞ ¼ exp

�
−
Z

x

~x
dx̄

�
fðx̄Þ þ 3

2

ΩMðx̄Þ
fGRðx̄Þ

��
: (26)

The first term of the integrand is now the modified growth
rate instead of fGR. That is to say,

Kð~x; xÞ ¼ KFullð~x; xÞ exp
�
−
Z

x

~x
fGRðx̄Þ − fðx̄Þdx̄

�

¼ KFullð~x; xÞ exp
�Z

x

~x
δfðx̄Þdx̄

�
: (27)

For the small deviations from ΛCDMþ GR the exponen-
tial factor above is of order unity, so the linearized kernel is
a very good approximation to the real kernel for η. For the
examples shown in Fig. 1 the error on ηðzÞ introduced by
linearizing the growth rate equation is≤ 1%. We emphasize
that here we are not talking about a 1% error on the growth
rate fðzÞ; we are talking about a 1% error on δf=fGR, a
quantity that is itself a small percentage of the growth rate.

B. The response function of the observable
growth rate fσ8

Extending the linear response analysis of the previous
subsection to the observable growth rate, fσ8, is straight-
forward. We will continue to focus on scale-independent
modifications. Using Eq. (15), the fractional deviation of
fσ8 from its value in GR is given by

δfσ ¼
δ½fσ8�ðzÞ
fσ8jGRðzÞ

¼ δfðzÞ
fðzÞGR

þ δσ8ðzÞ
σ8ðzÞjGR

¼ ηðz; kÞ þ δΔMðz; kÞ
ΔMðzÞjGR

; (28)

where the first equality defines δfσ, and δΔM is the
deviation of the gauge-invariant matter density perturbation
from its corresponding value in the ΛCDMþ GR scenario.
We have already calculated the first term in the last line
above, so we now tackle the second. For convenience we
define a new symbol for this,

δΔðz; kÞ ¼
δΔMðz; kÞ
ΔMðzÞjGR

: (29)

By perturbing Eq. (12) about the ΛCDMþ GR model we
obtain

δ00Δ þ δ0Δ

�
1þH0

H
þ 2fGR

�
¼ 3

2
Ωð0Þ

M δSðxÞ; (30)

where δS is again given by Eq. (23).

Equation (30) can be solved for δ0Δ using an integrating
factor, then integrated once more to obtain δΔ. Reversing
the order of the integrations allows us to write the solution
in the form “source × kernel”, as we did for η in the
previous subsection,

δΔðx; kÞ ¼
3

2

Z
x

−∞
δSð~x; kÞIðx; ~xÞd~x; (31)

where, as before, the kernel Iðx; ~xÞ is a function of the
zeroth-order ΛCDM cosmology only,

Iðx; ~xÞ¼
Z

x

~x
dy exp

�
−
Z

y

~x
dx̄

�
2−3

2
Ωð0Þ

M ðx̄Þþ2fGRðx̄Þ
��

;

(32)

and we have used the Friedmann equation for the GR
background en route.
Finally, using Eq. (28) and the results of Sec. IVA, the

fractional deviation of fσ8 from its ΛCDMþ GR value can
be expressed in a Green’s function-like form,

δ½fσ8ðx; kÞ�
fσ8ðxÞjGR

¼
Z

x

−∞
δSð~x; kÞGðx; ~xÞd~x; (33)

where the kernel Gðx; ~xÞ is

Gðx; ~xÞ ¼ 3

2
ΩMð~xÞ

�
Kðx; ~xÞ
fGRð~xÞ

þ Iðx; ~xÞ
�
; (34)

and the factors Kðx; ~xÞ and Iðx; ~xÞ are given by Eqs. (25)
and (32). Figure 2 shows uses of this formula. The left-hand
panel shows the same case considered in the left panel of
Fig. 1, where δξ has a Gaussian form. Whilst ηðzÞ declined
to zero, δfσðzÞ settles to a constant. The difference in
behavior arises from the second term of Eq. (28), as
follows: during the time the source δS is “switched on”
the growth of density perturbations is either enhanced or
suppressed relative to the ΛCDMþ GR case. When the
source switches off density perturbations return to growing
at the GR rate, but their absolute value has now been
shifted from that of a pure ΛCDMþ GR universe. This
shift is the constant term seen in Fig. 2.
The right-hand panel of Fig. 2 shows the effect of allowing

the background effective equation of state to evolve too, i.e.
βðxÞ ≠ 0. In this plot we have considered a Chevallier-
Polarski-Linder (CPL)-like equation of state, that is,

ωðaÞ ¼ ω0 þ ωað1 − aÞ; (35)

but left the clustering properties of GR unaffected (i.e.
δξ ¼ 0). Clearly a realistic analysis would need to allow both
δξ ≠ 0 and β ≠ 0 simultaneously. We have treated the two
contributions separately here to compare them: note that
whilst the upper plots of Fig. 2 have roughly the same peak
amplitude, the right-hand panel shows a much larger impact
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on fσ8ðzÞ. This is because fσ8 is sensitive to a time-
integrated effect [see Eq. (33)], and an evolving background
equation of state constitutes a more sustained source (δS)
than the transient Gaussian shown in the left-hand panel.
Equations (33) and (34) are a key result of this paper, so

let us summarize what has been achieved. Accepting that
the ΛCDMþ GR model is an excellent description of the
Universe at leading order, we have found a general way to
calculate the impact that modifications to the general
relativistic field equations have on the observable growth
rate of structure. All the modifications are encapsulated in a
single function δSðx; kÞ, which can be matched to a specific
gravity theory or constrained in a model-independent,
phenomenological manner.
We will see in Sec. VI that for fully specified gravity

models δSðx; kÞ depends only on background-level quan-
tities of that theory, so there is no need to perform the full
perturbation analysis. This represents a significant decrease
in the mathematical workload. Similarly, our formalism
bypasses the need to write a separate growth-rate numerical
code for every gravity theory of interest; a simple back-
ground solver is enough (this usually amounts to solving a
few uncomplicated ordinary differential equations).
On a practical note, we reiterate that the kernel Gðx; ~xÞ is

a function of the zeroth-order ΛCDM cosmology only, and
hence is relatively simple to compute. It only needs to be
calculated once and stored (as a function of x and ~x) to
allow rapid calculation with different source functions.
Furthermore, for the examples considered in this paper, we
have found our method is remarkably accurate; the error on

δfσ incurred using our linearized treatment (instead of the
exact calculation) is of order 2% for the example shown in
the left-hand panel of Fig. 2, and of order 10% for the right-
hand panel [32]. This is equivalent to a small fraction of a
percentage error on fσ8ðzÞ itself, well within the accuracies
forecast for next-generation galaxy surveys.

V. PARAMETRIZATION VS CONSTRAINTS—
THE TRADEOFF

We now proceed to show how the formalism of the
previous sections is connected to galaxy redshift surveys.
Let us assume that we have measurements of δfσ [defined
in Eq. (28)] from a survey in N redshift bins, with centers xi
(recall x ¼ ln a) and widths wi, where i ¼ 1;…; N. The
first step is to discretize Eq. (33),

δifσ ¼
Xi

j¼1

�Z
xjþ

wj
2

xj−wj
2

Gð~x; xÞd~x × δSj

�
¼

Xi

j¼1

GijδSj: (36)

δifσ and δSi are vectors containing the mean values of δfσðxÞ
and δSðxÞ in each redshift bin; for the present we will
assume a negligibly weak scale dependence over the range
of interest (the linear regime). Gij is a triangular matrix due
to the causality requirement discussed in Sec. IV.
Next we must consider how to choose the quantities we

wish to constrain. We will see below, as is often the case
with parameterized methods, that one must strike a balance
between the generality of the parametrization and the size
of the error bars obtained on the parameters/functions

FIG. 2 (color) (color online). Lower panels show the fractional deviation of the density-weighted growth rate from its ΛCDMþ GR
model caused by the source functions in the upper panels; see Eq. (33). The left panel shows the same Gaussian considered in the left
panel of Fig. 1. The right panel shows the effect of an evolving background of the CPL variety, that is, ωðaÞ ¼ ω0 þ ωað1 − aÞ. We have
fixed ω0 ¼ −1, ωa ¼ 0.05, which is equivalent to βðxÞ ¼ 0.05ð1 − exÞ. Note that δS → 0 at high redshifts (not shown) since

Ωð0Þ
M ðzÞ → 1 there [see Eq. (23)].
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involved. Inputting more information (via, for example,
constraint equations or specifying the time/scale depend-
ence of free functions) will result in a parametrization that
is more tightly constrained but less widely applicable.
We will investigate three degrees of parametrization:
(i) Full agnosticism—One simply constrains the source

function δSi in each redshift bin, where i ¼ 1;…; N.
(ii) Compromise—One uses Eq. (23) for δS and supplies

a functional form for δξðxÞ and βðxÞ. The functional
form used can be an approximation over the redshift
range relevant to the observations. Effectively, one is
inputting some prejudices about how we expect
modifications to GR to evolve with time, without
being specific about the origin of those modifications.
In this case one constrains the set of M parameters
used in specifying the form of δSðxÞ. We will denote
these collectively as fδξag, where a ¼ 1; :::::;M.

(iii)Model specific—One uses the field equations of a
particular gravity theory to express δξðxÞ and βðxÞ in
terms of the Lagrangian parameters of that theory. We
will denote the Lagrangian parameters to be con-
strained by fλyg, where y ¼ 1;…; R.

We assume a multivariate Gaussian likelihood with mean
zero for the deviation of the density-weighted growth rate
measurements from ΛCDM, that is,

ln L ¼ − ln

�
ð2πÞN=2

YN
i¼1

σifσ8

�
− 1

2
χ2; (37)

where

χ2 ¼
XN
i¼1

ðfσi8;ΛCDM − fσi8;thÞ2
ðσifσ8Þ2

: (38)

fσi8;th is the density-weighted growth rate in bin i predicted
by a modified gravity theory, and ðσifσ8Þ2 is the exper-
imentally determined variance on fσ8 in that bin.
First we consider constraining a “fully agnostic” para-

metrization. Using the standard formalism of Fisher matri-
ces, the inverse covariance matrix for the δSi is given by

ðCδSÞ−1ij ¼ FδS
ij ¼ h∂δSi∂δSjχ

2i (39)

¼
�XN

k¼1

1

ðσkfσ8Þ2
∂ðfkσ8;thÞ
∂δSi

∂ðfkσ8;thÞ
∂δSj

�
: (40)

To obtain the derivatives above we make use of Eq. (36),

fσk8;th ¼ fσk8;ΛCDM þ δfσk8 (41)

¼ fσk8;ΛCDM

�
1þ

XN
j¼1

GkjδSj

�
(42)

⇒
∂ðfkσ8;thÞ
∂δSi ¼ fσk8;ΛCDMGki: (43)

Using Eq. (43) in Eq. (40) and defining

~σkfσ8 ¼ σkfσ8=fσ8;ΛCDM; (44)

we obtain

FδS
ij ¼

XN
k¼1

1

ð ~σkÞ2G
T
ikGkj: (45)

For this simplified analysis we will neglect correlations
between the redshift bins of our survey. Then, by defining
the diagonal covariance matrix Σij ¼ 1=ð ~σkÞ2δij, we can
rewrite Eq. (40) in matrix form,

ðCδSÞ−1 ¼ FδS ¼ GTΣG: (46)

Inverting Fδξ yields the covariance matrix of interest.
Figure 3 shows a representative example for the constraints
on δS as a function of redshift obtained using a next-
generation RSD survey. The results are surprisingly unin-
formative—an input ∼1% error on measurements of fσ8
has resulted in a ∼10% error on δS (at 1σ confidence).
Now let us investigate what happens when we impose

more restrictions on the parametrization. Let us consider
the simplest possible example of a “compromise” para-
metrization, in which we take the functions δξðxÞ and βðxÞ
to be approximately constant over the redshift range of
interest. Using Eq. (23) we then have

δS ¼ δξ0 þ αðxÞβ0; (47)

where δξ0 and β0 are constants and

FIG. 3 (color online). Forecast constraints on δS for a typical
next-generation galaxy survey, where δS sources deviations from
the GR growth rate [see Eq. (23)]. The contours shown represent
1σ and 2σ uncertainties.
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αðxÞ ¼ ð1 −Ωð0Þ
M Þ

Ωð0Þ
M

½3Ωð0Þ
M xð1þ fGRÞ þ fGR�: (48)

The covariance matrix for the parameters δξa ¼ fδξ0; β0g
is given by an expression analogous to Eq. (40), but with
the derivatives now being taken with respect to the
parameters fδξag. The chain rule allows us to rewrite
this as

ðCδξÞ−1ab ¼ Fδξ
ab (49)

¼
�XN

k¼1

XN
i¼1

XN
j¼1

1

ðσkfσ8Þ2
∂δSi
∂δξa

∂ðfkσ8;thÞ
∂δSi

∂ðfkσ8;thÞ
∂δSj

∂δSj
∂δξb

�
:

(50)

Repeating steps similar to the fully agnostic case, we reach
the matrix expression,

ðCδξÞ−1 ¼ Fδξ ¼ PTGTΣGP; (51)

where P is the N ×M Jacobian matrix Pia ¼ ½∂δSi∂δξa�. For the
example of Eqs. (47) and (48) this is simply

P ¼

0
BBB@

1 α1
1 α2
..
. ..

.

1 αN

1
CCCA; (52)

where αi are discretized values of αðxÞ [from Eq. (48)],
evaluated at the midpoint of each redshift bin. Figure 4
shows the constraints obtained on the model of Eq. (47)
using the same representative next-generation RSD survey
as Fig. 3. The plot makes plain the benefit of combining
growth-rate measurements with probes of the background
expansion rate. If β0 is left free, the anticorrelation visible in
Fig. 4 allows the growth rate to accommodate of order
∼10% modifications to GR. However, if we can pin
ω ¼ −1 to 1% accuracy using other data, we can achieve
similar ∼1% constraints on deviations from GR.
Finally we consider a model-specific analysis, where the

situation becomes a little more subtle. The quantities fδSig
and fδξag were related by a linear transformation, which
preserves the (assumed) Gaussian nature of the joint
probability distribution for either set of parameters. This
enabled us to move straightforwardly from Eq. (40) to
Eq. (50) via the chain rule. However, in general the
parameters fδξag will not be linearly related to the
model-specific Lagrangian parameters fλyg. This means
that we cannot assume a Gaussian probability distribution
for the parameter set fλyg, and it would be risky to continue
applying a Fisher matrix analysis.
Instead we will make use of the normalized probability

distribution that we have already obtained for the

“compromise” parametrization. We reexpress the (non-
constant) δξðxÞ and βðxÞ in terms of the Lagrangian
parameters of a particular theory. [One way to do this is
via the parameterized post-Friedmann (PPF) formalism; see
Sec. VI.] The elements of the covariance matrix for fλyg
can then be calculated directly, i.e.,

Cλ ¼
Z

…

Z
dλydλz…dλR

×
1

n
λyλz exp

�
− 1

2
u⃗TðλÞFδξu⃗ðλÞ

�
; (53)

where n is a normalization factor. u⃗ðλÞ is a column vector of
length 2N; it holds the expressions for of δξðxÞ and βðxÞ in
terms of the parameters fλyg, evaluated in each redshift bin.
Table I gives some examples of model-specific con-

straints obtained using Eq. (53) and the same survey
specifications as Figs. 3 and 4. The relevant expressions
for these theories are given in Sec. VI. It is difficult to
exactly quantify the results of Table I as percentages since
these parameters are all zero in the GR limit (compare to
δS, δξ and β, which we know to be perturbations about
quantities that are of order unity in GR).
However, one generally obtains tighter constraints than

those of the agnostic or compromise parametrizations,
because model-specific expressions severely restrict how
fσ8ðzÞ is allowed to evolve from one redshift bin to the
next. We now see the aforementioned tradeoff between
generality and constraining power at work. As we added
more information into the analysis, moving from fully
agnostic → compromise → model-specific cases, our 2σ
constraints decreased. Hence an advantage of the formalism

FIG. 4 (color online). Constraints on the simplest example of a
“compromise” parametrization (described in the text) using a
next-generation RSD survey. β0 is a (constant) deviation of the
equation of state from −1. δξ0 encapsulates the novel clustering
properties of a non-GR gravity theory. The contours shown
represent 1σ and 2σ uncertainties.
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presented in this paper is its flexibility: the user can choose
where they would like to position themselves on the sliding
scale of generality versus constraining power.
As a final comment, our formalism makes it clear that

parameters will always be degenerate within a single
redshift slice of a survey. Let us define the matrix
A ¼ PTGT , so that Eq. (51) can be written as
Fδξ ¼ AΣAT . If we only have one redshift bin, this
becomes

Fδξ ¼ 1

~σ2fσ8
A⃗A⃗T; (54)

where A⃗ denotes a column of A and A⃗A⃗T is an outer
product. It can be shown that the matrix formed by taking
the outer product of a vector with its transpose is always
singular (the reader may like to briefly consider any two-
dimensional example). The singularity of Fδξ in this case
implies that one of its eigenvectors has the eigenvalue zero.
This is equivalent to a direction of complete degeneracy in
the parameter space of fδξag.
This situation is rectified by combining different redshift

bins. Equation (55) then becomes a sum, which prevents
the singularity of the matrix Fδξ,

Fδξ ¼
XN
k¼1

1

ð ~σkfσ8Þ2
A⃗kA⃗k

T; (55)

where A⃗k denotes the kth column of A. Equation (55) is
equivalent to Eq. (51).

VI. DERIVING δξ AND β FROM THE
PARAMETERIZED POST-FRIEDMANN

FORMALISM

In this paper we have aimed to keep our treatment of
modified gravitational growth as theory independent as
possible. So far we have required only that the quasistatic
approximation be valid for some range of scales, and made
use of the widely applicable quasistatic equations (4) and
(5). Nevertheless, one may often be interested in testing a
particular gravity theory. In this section we describe how
fully specified theories map onto our general formalism.
We will do this first of all by using the PPF framework of

Ref. [16] (not to be confused with a different work of the
same name by other authors [33]). However, we stress that
it is not obligatory to use PPF to apply the earlier results of
this paper.

A. The quasistatic limit of PPF

PPF, inspired by the well-established parameterized
post-Newtonian formalism (PPN) [34–36], is a framework
for model-independent tests of deviations from the field
equations of GR using cosmological data. It describes the
mathematically possible extensions of the linearized field
equations (modulo some very mild restrictions; see
Ref. [16]) in terms of a set of redshift-dependent functions.
This set of functions acts as a cosmological analogy to the
set of ten PPN parameters: different theories of modified
gravity correspond to different specifications of them. And
just like the PPN parameters, they can be constrained by
calculating observable quantities and comparing to data.
The quantity ξ ¼ μ=γ that appears in Eq. (13) can be

written in terms of the PPF coefficient functions. For the
present we will consider theories which

a) contain no higher than second-order time derivatives
in their equations of motion (a generic, but not
absolute, stability criterion [37]), and

b) contain one new non-GR degree of freedom, which
we denote by χ (this could be a spin-0 perturbation
of a new field, for example).

The quasistatic form of the PPF field equations in the
conformal Newtonian gauge is

−a2δG0
0 ¼ κa2GρMδM þ A0k2Φþ α0k2χ̂; (56)

−a2δG0
i ¼ ∇i½κa2GρMð1þ ωMÞθM þ B0kΦþ β0kχ̂�; (57)

a2δGi
i ¼ 3κa2GρMΠM þ C0k2Φþ γ0k2χ̂; (58)

a2δ ~Gi
j ¼ κa2GρMð1þ ωMÞΣM þD0Φþ ε0χ̂; (59)

where δ ~Gi
j ¼ δGi

j − 1
3
δijδG

k
k and Dij ¼ ∇⃗i∇⃗j−

1=3δij∇⃗2. Linear pressure perturbations are denoted by
δPM ¼ ρMΠM and ΣM is an anisotropic stress perturbation,
which we will neglect hereafter. The hat over χ̂ indicates
that it is a gauge-invariant combination of perturbations
constructed using the algorithm of Ref. [16], i.e. it contains
both χ and metric perturbations.
The alphabetic and greek coefficients in Eqs. (56)–(59)

are not constants; they are functions of time and scale, but
we have suppressed those arguments here for clarity. These
are the PPF coefficients that one maps a theory of gravity

TABLE I. Constraints obtained on model-specific Lagrangian
parameters for three example theories, using the procedure
described in Sec. V.

Theory Parameter Fiducial value 2σ

Brans-Dicke 1=ωBD 0.0 4.19 × 10−4

Einstein-aether
c1 0.0 0.222
c3 0.0 1.736
α 0.0 0.244

DGP 1=ð~rcH0Þ 0.0 0.004
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onto. In fact, the scale dependence of these functions is
fixed [16,18,38], so they can be considered purely as
functions of time.
For many theories the equation of motion (hereafter

e.o.m.) of χ corresponds to a conservation equation [39].
This includes scalar-tensor gravity, quintessence, Einstein-
aether theory, Hořava-Lifschitz gravity and theories which
fall into the Horndeski class [24,26,27,40]. When
expressed in terms of the PPF coefficients, the quasistatic
limit of the e.o.m. for χ is

χ̂½ _α0 þ kβ0� þ Φ½ _A0 þ kB0� ¼ 0: (60)

Combining Eq. (60) with Eqs. (56) and (59), the connection
between the quasistatic fμ; γg parametrization and the PPF
functions is

μðz; kÞ ≈
�
1þ A0

2
− α0

2

�
_A0 þ kB0

_α0 þ kβ0

��−1
; (61)

γðz; kÞ ≈
�
1 −D0 þ ε0

�
_A0 þ kB0

_α0 þ kβ0

��−1
: (62)

The authors of Ref. [18] recently derived a result relating
the two quasistatic functions fμ; γg for the Horndeski class
of theories. When converted into our notation, their result is
equivalent to the statement that the numerator of μ must be
equal to 1, which is manifest in Eq. (61).
Below we give some examples of the modified clustering

and background functions, δξ and β, that were utilized in
Secs. III and IV. Although Eqs. (61) and (62) were derived
for theories with only one non-GR degree of freedom, more
complicated theories can still be mapped onto specifica-
tions of δξ and β under the quasistatic approximation.
However, they need to be treated on a case-by-case basis
rather than via Eqs. (61) and (62); see the example of Dvali-
Gabadadze-Porrati (DGP) gravity below.
We should also highlight an interesting subtlety here

with regards to the popular family of fðRÞ models. It is
often assumed that any results pertaining to scalar-tensor
theories automatically incorporate fðRÞ gravity, since a
conformal mapping exists between the two classes of
theories. Whilst this is true at the action level, the perturbed
e.o.m.s for the new degree of freedom derived from their
actions are not equivalent. The e.o.m. of scalar-tensor
theory is a conservation equation of the kind described
above [41]; the e.o.m. for the “scalaron” δfR originates
from the trace of the fðRÞ gravitational field equations.
Hence Eqs. (61) and (62) do not apply to fðRÞ gravity.
Nevertheless we can still take the quasistatic limit of the
theory; see below.

B. Examples

Here we present some examples for the clustering
function δξ and the background modification β. The
relevant actions and references can be found in
Ref. [16]. Note that all the expressions below are functions
of the modified cosmological background only, making
them relatively simple to evaluate.
We also highlight that δξ is scale independent in all the

cases presented here, except possibly scalar-tensor theory,
where it depends on the choice of potential VðφÞ. We will
not impose the requirement that the modifications to the
field equations are the sole cause of acceleration. For
example, we treat the “normal branch” of DGP gravity,
which requires a cosmological constant in addition to the
brane-based modifications.

1. Scalar-tensor theory

δξSTða; kÞ ¼ −1þ
�
ϕþ

_ϕ

H
− Y
Z

�

×

�
ϕþ 1

2

�
1 − a2

k2
V 0ðϕÞ

��
_ϕ

H
− Y
Z

��−1
;

(63)

where

Y ¼ a2

k2
V 0ðϕÞ

�
ϕ
::

H
− _H
H

_ϕ

�
þ

_ϕ2

H
a2

k2
V 00ðϕÞ

þ _ϕ

�
ωðϕÞ _ϕ
Hϕ

− 3

�
; (64)

Z ¼ a2

k2
ðV 00ðϕÞ _ϕþ 2HV 0ðϕÞÞ þ ω

_ϕ

ϕ
−H; (65)

βSTðaÞ¼
2ðH2− _HÞð1−ϕÞþωðϕÞ _ϕ2

ϕ þϕ
:: −2H _ϕ

3H2ð2−Ωð0Þ
M0−ϕÞþ 1

2
ωðϕÞ _ϕ2

ϕ −3H _ϕþa2VðϕÞ
:

(66)

The scale dependence of δξ in this case has arisen because
we have been careful not to make any assumptions about
the form of the potential VðϕÞ. It is likely that once a form
is chosen for VðϕÞ further terms can be dropped due to the
quasistatic approximation.

2. Brans-Dicke theory

In the Brans-Dicke case of scalar-tensor theory
[ω ¼ constant, VðϕÞ ¼ 0] Eq. (63) simplifies considerably,

δξBDðaÞ ¼
�
φþ _φ

H
− X

�
×

�
φþ 1

2

�
_φ

H
− X

��−1 − 1;

(67)
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where

X ¼ _φ

H

ðωBD _φ
Hφ − 3Þ

ðωBD _φ
Hφ − 1Þ : (68)

Applying the condition ωBD ≫ 1 (note that GR is recov-
ered in the limit ωBD → ∞) we have approximately

δξBDðaÞ ∼
1

ωBD
: (69)

The expression for βBD can be trivially obtained by
substituting the conditions ω ¼ ωBD, VðϕÞ ¼ 0
into Eq. (66).

3. f ðRÞ Gravity
We define the fðRÞ action such that the GR limit is given

by fðRÞ ¼ R. Then

δξfRðaÞ ¼
4

3

�
1

fR
− 1

�
; (70)

βfRðaÞ ¼
2ðH2 − _HÞð1 − fRÞ þ f

::

R − 2H _fR
3H2ð1 − fRÞ − 3H _fR þ 1

2
a2ðRfR − fðRÞÞ ;

(71)

where fR ¼ dfðRÞ=dR.

4. Einstein-aether theory

δξAEðaÞ ¼ − ½α − ðc1 þ c3Þ _H
H2 þ c1ð _H

2H2 − 1Þ�
α − 1þ c1ð _H

2H2 − 1Þ
; (72)

βAEðaÞ ≈
α

2

�
1

ð1 −Ωð0Þ
M Þ

− 1

�
; (73)

where ci are parameters of the theory, α ¼ c1 þ 3c2 þ c3,
and we have assumed α ≪ 1. This last condition is
necessary to prevent extreme modifications to the effective
gravitational constant that are already ruled out by
present data.

5. DGP

We consider here the “normal” branch of DGP, since the
self-accelerating branch suffers from ghostly pathologies
[42,43], and is essentially ruled out by present data [44].

δξDGPðaÞ ¼
1

3

�
1þ 2

3
H~rc

�
2þ

_H
H2

��−1
; (74)

βDGPðaÞ ¼
1

3H~rc

1

ð1 −Ωð0Þ
M Þ

�
_H
H2

− 1

�
: (75)

~rc ¼ rc=a is the comoving crossover scale.

6. Horndeski’s theory

Even in the simplified quasistatic limit, the relevant
expressions for Horndeski’s most general second-order
scalar-tensor theory are nontrivial. Therefore we have
chosen to relegate them to Appendix B, borrowing heavily
from the results of Refs. [45,25].

VII. CONCLUSIONS

We need to ready our tools for extracting the maximum
amount of information from the next generation of large
galaxy surveys. In this paper we have presented one such
tool: a powerfully general and efficient method for calcu-
lating the density-weighted growth rate, fσ8ðzÞ, in modi-
fied gravitational scenarios. Our formalism bypasses the
need for lengthy theory-specific calculations or multiple
theory-specific growth-rate codes.
Working at the level of linear perturbation theory, we

have found that the response of the growth rate to
departures from GR can be written as a Green’s func-
tion-like integral over two contributions: a source term and
a kernel. The source term depends on the deviations from
GR under consideration; it encodes how modifications to
the clustering of matter and the expansion rate both affect
fσ8ðzÞ. The kernel is the same in all situations: it depends
only on the properties of ΛCDMþ GR, and acts as a
weighting factor. It controls the extent to which the growth
rate at a given redshift is affected by earlier non-GR
behavior.
As a result of expressing our calculation this way, we are

able to clearly identify the degeneracy between the conven-
tional source of modified gravity effects [the modified
Newton-Poisson equation and the “slip relation,” Eqs. (4)
and (5)] and changes to the background expansion. While
measurements at different redshifts can help to mildly break
this degeneracy, it is clear from our results that, contrary to
what is usually claimed, measurements of the growth rate
are simply not enough to distinguish modified gravity
theories from models of dark energy. Geometric measures
will play a crucial role in breaking this degeneracy.
From a practical point of view, our formalism has several

modi operandi. The conventional approach is to constrain
the Lagrangian parameters of a fully specified gravity
theory. Using the formulas presented in this paper removes
the need to calculate (both analytically and numerically) the
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perturbation theory for every gravity model of interest.
Alternatively, one can turn the usual approach around,
instead using the data to ascertain the departures from GR
that are still allowable. This information can then be used to
guide the development of new theories.
However, remaining agnostic about gravity when ana-

lyzing the data incurs different penalties. It seems that the
best option is to find a compromise between the generality
of a parametrization and the usefulness of the constraints
obtained. This kind of balancing act occurs frequently in
model-independent analyses (for another example
see Ref. [46]).
There remain a number of systematic effects to be

mastered before growth rates can be used to make decisive
statements about gravity theories; our exclusively linear
formalism does not provide insight into these. It has been
argued that the statistical scatter between current measure-
ments of the growth rate is somewhat smaller than one
might expect from the error bars cited [47], pointing to the
need for a clear and accurate understanding of the sys-
tematic effects at play. Likewise, our linear formalism does
not capture any novel nonlinear phenomena that might be
present in an underlying theory, such as screening
mechanisms.
A logical extension of the work presented here would be

to determine whether similar Green’s function-like expres-
sions can be derived for other relevant quantities, such as
weak lensing shear and cross correlations of the integrated
Sachs-Wolfe effect. That is, can we develop a simple plug-
and-play toolbox for generating modified gravity observ-
ables? Such an item would be invaluable for observers
working with fresh data, allowing them to make rapid
analyses of gravity theories without being overburdened by
model specifics.
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APPENDIX A: PERTURBATION OF ΩMðXÞ
Here we derive the relation Eq. (19).
First observe that the general fluid evolution equation

ρ0 ¼ −3ρð1þ ωðxÞÞ (A1)

has the following solution, where we write
ωðxÞ ¼ −1þ βðxÞ:

ρðxÞ ¼ ρð0Þe−3
R

x

0
βðx0Þdx0 : (A2)

Now consider two universes. The first is a perfect
ΛCDMmodel. In the second universe, the nonmatter sector
is not a true a cosmological constant; there is a modification
to gravity that can be recast in the form of a perfect fluid
with an evolving equation of state [28,33]. Recall that
nearly any gravity theory can be written in this form, even if
the expression for the effective equation of state is
extremely complex. Observational viability restricts that
the equation of state can only differ from −1 by a small
amount, i.e. β in Eq. (A2) must be small for all x.
In the first universe we have

ΩMðxÞ ¼
ρMðxÞ

ρMðxÞ þ ρΛ0
¼ 1

1þ Re3x
; (A3)

where we have used ρMðxÞ ¼ ρM0e−3x and defined
R ¼ ρΛ0=ρM0. In the second universe, denoting the energy
density of the effective fluid by ~ρXðxÞ and analogously
defining ~R ¼ ~ρX0=~ρM0,

~Ωð0Þ
M ðxÞ ¼ ~ρMðxÞ

~ρMðxÞ þ ~ρXðxÞ
¼ 1

1þ ~R exp ½3x − 3
R
x
0 βðx0Þdx0�

; (A4)

where we have used Eq. (A2).
We are interested in the small perturbation to the matter

fraction ΩMðxÞ that results from perturbing about a ΛCDM
universe. This is given by the difference between Eqs. (A3)
and (A4). Since β is small at all times we can expand,

e−3
R

x

0
βðx0Þdx0 ≈ 1 − 3

Z
x

0

βðx0Þdx0 ¼ 1 − 3uðxÞ; (A5)

where the last equality defines uðxÞ. Furthermore, we argue
that R ¼ ~R, because the ratio of the nonmatter energy
density to the matter energy density is an experimentally
determined quantity. Whether we are living in the ΛCDM
or non-ΛCDM universe, we would simply measure one
value for this ratio and call it R.
Collecting expressions then, we have

δΩMðxÞ ¼ ~ΩMðxÞ −Ωð0Þ
M ðxÞ

¼ 1

1þ Re3x½1 − 3uðxÞ� −
1

1þ Re3x

≈
3Re3xuðxÞ
½1þ Re3x�2

¼ 3uðxÞΩð0Þ
M ðxÞð1 −Ωð0Þ

M ðxÞÞ; (A6)
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where the last step uses Eq. (A3) to eliminate Re3x in
favour of Ωð0Þ

M . This is the result stated in Sec. IV A.

APPENDIX B: DEVIATION SOURCE TERM FOR
HORNDESKI’S THEORY

Given the complexity of the Horndeski Lagrangian
[24,26,27], it is beyond the scope of this paper to carry
out the intricate reduction to the quasistatic limit.
Fortunately, this calculation has recently been presented
in Refs. [45,25], from which we adopt results. The
calculation first appeared in Ref. [45] (see Ref. [48] for

very closely related work). However, the notation of
Ref. [25] is closer to that used in this paper, so we will
use this as our source.
In the expressions below M̄i are parameters and ΩðηÞ,

ΛðηÞ and cðηÞ are functions of conformal time that appear
in the Lagrangian of the effective field theory of dark
energy—we refer to Refs. [25,49] for precise definitions.
MP is the Planck mass. The notational equivalence between
metric potentials used in this paper and Ref. [25] is Φ≡ ψ ,
Ψ≡ ϕ. We have also converted the expressions of Ref. [25]
from physical time to conformal time.

βHDðaÞ ¼
2ðH2 − _HÞð1 −ΩÞ þ 2M−2

P a2cþ Ω
:: − 2H _Ω

3H2ð2 −Ωð0Þ
M0 −ΩÞ þM−2

P a2½2c − Λ� − 3H _Ω
; (B1)

δξHDðaÞ ¼
BπCΦ − BΦCπ − BΦCπ2

a2

k2

AΦðBΨCπ þ BΨCπ2
a2

k2 − BπCΨÞ þ AπðBΦcΨ − BΨCΦÞ
; (B2)

where

AΦ ¼ 2ðM2
PΩþ M̄2

2Þ; Aπ ¼ −
�
M2

P

_Ω
a
þ M̄3

1

�
; (B3)

BΦ ¼ −1; BΨ ¼ 1þ M̄2
2

ΩM2
P
; (B4)

Bπ ¼
_Ω
aΩ

þ M̄2
2

ΩM2
Pa

�
Hþ 2

_̄M2

M̄2

�
; CΦ ¼ M2

P

_Ω
a
þ M̄2

a

�
Hþ 2

_̄M2

M̄2

�
; (B5)

CΨ ¼ −M2
P

2

_Ω
a
− M̄3

1

2
; Cπ ¼ c − M̄3

1

2a

�
Hþ 3

_̄M1

M̄1

�
þ M̄2

2

a2

�
2H2 − _Hþ 2H

_̄M2

M̄2

�
; (B6)

Cπ2 ¼
M2

P

4a2
_Ω _R0 − 3c

a2
ð _H −H2Þ þ 3M̄3

1

2a3

�
3
_̄M1

M1

ð _H −H2Þ þH
:: −H _H −H3

�
þ 3

M̄2
2

a4
ð _H −H2Þ2: (B7)
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