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We consider the thermal corrections to the Casimir energy of a massless scalar field in the space-time
with topology S3 × R1 (Einstein and Friedmann universes) containing an idealized cosmic string. The
vacuum energy of the field under consideration, in this background, can be separated in two terms: one term
that is simply the known vacuum energy of the massless scalar field in the Einstein and Friedmann
cosmological models and the other term that formally corresponds to the vacuum energy of the
electromagnetic field, also in the Einstein and Friedmann universes, multiplied by the cosmic string
parameter λ ¼ ð1=αÞ − 1, where α is a constant related to the cosmic string tension, Gμ. The Casimir free
energy and all the other thermodynamic expressions can also be separated in the same way. Thus, we use
the expressions calculated in previous works for the massless scalar and electromagnetic fields in the closed
Einstein and Friedmann models to investigate the low- and high-temperature limits of the Casimir free
energy, internal energy, and entropy and show the role played by the presence of a cosmic string.
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I. INTRODUCTION

The Casimir effect [1] is a physical phenomenon with
applications in different areas such as condensed matter and
atomic physics, elementary particle physics, gravitation,
and cosmology. In its original form, this effect arises
associated to quantum fluctuations in the vacuum of the
electromagnetic field due to the presence of metallic plates
and, as a consequence, a finite vacuum energy appears
induced by these material boundaries if compared with
the Minkowski space. In fact, the effect occurs with any
quantum field and is strongly depending on the geometry
under consideration [2–6]. From a purely formal perspec-
tive, this phenomenon offers a large realm of studies [7–9]
(see also references therein).
Measurements of the Casimir force have been performed

(see [10–12] for a review), and the obtained results have
been used to model phenomena in context of standard
model [13], as well as to impose constraints on parameters
coming from theories beyond it [14–18].
It was noticed that in gravitation and cosmology, the

Casimir effect also occurs as a consequence of a nontrivial
topology of space-time [19–22]. In this case the conditions
due to material boundaries are substituted by some iden-
tification conditions imposed on the field and dictated by
the topology of space. Along this line of research, some
cosmological models with non-Euclidean topology have
been investigated by many authors [23–30].
The evolution of the Universe is based on its thermal

history. Taking into account that the Casimir effect is a
quantum phenomenon, it is reasonable to expect that it may
play an important role at the early stages of the Universe’s

evolution. Therefore, the studies of the thermal Casimir
effect in the cosmological models scenario are of great
physical importance. For this reason, some of the works on
this phenomenon in cosmology were devoted to the thermal
Casimir effect [31–36], and corrections of the Casimir
energy [37,38]. The Casimir effect at nonzero temperature
of a massive scalar field in a closed universe with three-
torus topology was studied in [39]. More recently, the
thermal Casimir effect in the closed Friedmann and
Einstein universes was revisited using an updated approach
[40,41]. In these papers, the vacuum energy and its thermal
correction, together with the Casimir free energy, internal
energy, pressure, and the Casimir entropy were calculated
for a massless scalar [40], and electromagnetic and neutrino
fields [41].
The cosmic string is a topological defect predicted in

some gauge field theories and may have been formed as a
result of a spontaneous symmetry breaking due to a phase
transition in the very early universe [42,43], via the Kibble
mechanism [44]. It can either form closed loops or extend to
infinity, and is characterized by its tension, μ, which depends
on the mass per unit length of the string, and is of the order of
μ ∼ η2, where η is the energy scale of symmetry breaking.
The strength of the gravitational interaction of the cosmic
string is characterized by the dimensionless cosmic string
tension Gμ ∼ ðη=MpÞ2, where G is the Newton’s gravita-
tional constant and Mp is the Planck mass. For grand
unification scales, observations of the cosmic microwave
background (CMB) [45] provide an upper bound on the
string tension of the order of Gμ ∼ 10−7. This topological
defect offered the possibility to explain the origin of the
primordial density perturbations leading to the formation of
the observed structures in the Universe, as an alternative to
inflation. This idea was abandoned with the confirmation*celio.muniz@uece.br
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that this scenario is not consistent with the anisotropies of the
CMB. However, recently it was shown that cosmic strings
are formed at the end of an inflationary era and should be
taken into account as a subdominant partner of inflation [46].
In view of these, in recent years, there has been a

renewed interest in cosmic strings due to the fact that
supersymmetric grand unified theory (GUTs) and string
theory also predict and seems to demand the existence of
macroscopic defects such as cosmic string [47]. This new
prediction establishes a connection between cosmic strings
and fundamental strings. Besides, cosmic superstring (how
it is called in the framework of supersymmetric GUTs) can
play the role of cosmic string in the braneworld cosmology
[48], and certainly, it makes sense to include cosmic string
in the framework of cosmological models.
The space-time associated with a straight and infinite

cosmic string has an azimuthal deficit angle given by
Δφ ¼ 8πGμ. This means that this space-time is locally flat,
but globally it is slightly curved [49–51]. The local flatness
of the space-time surrounding a cosmic string also means
that there is no local gravity. However, there exist some
interesting gravitational effects associated with the non-
trivial topology of the spacelike section around the cosmic
string. Among these effects, a cosmic string can act as a
gravitational lens [52], it can produce the Casimir effect
[53] and many others in different contexts [54,55].
It is known that in the very early universe the temperature

was extremely hot and that cosmic strings may have been
formed through the process mentioned before. Thus, in this
paper we study the thermal Casimir effect of a massless
scalar field in the Einstein and Friedmann universes in the
presence of a cosmic string. We notice that the vacuum
energy in this background can be separated in two terms:
one that is simply the vacuum energy of the massless scalar
field in the Einstein and Friedmann universes, plus another
term that can be interpreted as the vacuum energy of the
electromagnetic field, also in the Einstein and Friedmann
universes, multiplied by the cosmic string parameter
λ ¼ ð1=αÞ − 1. Therewith, we can simply use the results
obtained previously for the massless scalar field [40] and
for the electromagnetic and neutrino fields [41]. We also
notice that the additional electromagneticlike term is the
dominant one if one considers the constraint Gμ≲ 10−7
arising from CMB observation. In spaces with nontrivial
topology, the stress-energy tensor of a quantum field in its
vacuum state depends strongly on the topological features
of the manifolds. For instance, in the space-time of a
cosmic string, the vacuum expectation value of the stress-
energy tensor of the electromagnetic field is affected by the
quantity that codifies the gravitational interaction of the
cosmic string, namely, its tension [56].
Taking into account that the Casimir effect is a relativistic

quantum phenomenon, we should expect that it may play an
important role in the earlier stages of the Universe, as well
as in the present problem of dark energy [57]. In other

cosmological models, as in braneworlds, the Casimir effect
is also a key element [58]. On the other hand, if cosmic
strings exist they were formed at the end of inflationary era
[59] and would be equally important in a cosmological
scenario. Thus, taking into account cosmological models
including string configuration, investigating the thermal
correction to the Casimir effect may be important to under-
stand the role played by the geometrical features of the
Friedmann universe, as well as by the topological features of
the cosmic string on this quantum physical phenomenon.
This paper is organized as follows. In Sec. II we present

the Einstein and Friedmann cosmological models in the
presence of a cosmic string and obtain the eigenfrequencies
of the massless scalar field in these models. The vacuum
energy and its thermal correction, together with other
thermodynamic expressions, are discussed in Sec. III.
The limits of low and high temperatures are considered
in Sec. IV, and finally the conclusion is presented in Sec. V.

II. MASSLESS SCALAR FIELD IN THE EINSTEIN
AND FRIEDMANN COSMOLOGICAL MODELS

WITH A COSMIC STRING

In this section we present the closed Einstein cosmo-
logical model with a cosmic string and discuss how all the
results obtained in this model can also be extended to
the closed Friedmann cosmological model with a cosmic
string. We also obtain the eigenfrequencies which will be
used to calculate the vacuum energy and the corresponding
thermal correction.
The line element of a space-time with an infinitely thin

and straight cosmic string can be constructed by the
following way: write the metric in cylindrical or spherical
coordinates and insert into the metric a deficit of polar
angle. Doing this procedure, the line element correspond-
ing to the Einstein cosmological model with a topology
S3 × R1 and an angular deficit in the azimuthal angle, due
to the presence of a cosmic string, can be written as [42]

ds2 ¼ c2dτ2 − a20dσ
2; (1)

where

dσ2 ¼ dψ2 þ sin2 ψðdθ2 þ α2 sin2 θdϕ2Þ; (2)

0 ≤ ψ ≤ π, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π are dimensionless coor-
dinates on a three-space of constant curvature þ1, τ is the
proper synchronous time, a0 ¼ const is the scale factor and
α ¼ 1 − 4Gμ is the angular parameter of the cosmic string.
This is a model with a finite spatial volume

Vα ¼
Z ffiffiffiffiffiffiffiffiffiffiffi

−gð3Þ
q

dψdθdϕ

¼ a30α
Z

π

0

sin2 ψdψ
Z

π

0

sin θdθ
Z

2π

0

dϕ ¼ 2π2αa30;

(3)
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with gð3Þ being the determinant of the spatial part of the line
element given by Eq. (2).
The Friedmann metric with a cosmic string is obtained

from Eq. (1) by doing the conformal transformation

ds̄2 ¼ Ω−2ds2; (4)

where ΩðtÞ ¼ a0=aðtÞ, with aðtÞ being the scale factor in
the expanding universe. One should notice that it is also
necessary to rescale the time coordinate in (1), first by
dτ ¼ a0dt and then, after doing the transformation (4), by
dt ¼ a−1ðtÞdτ. Moreover, as pointed out in Ref. [41], the
stress-energy tensor has additional contributions in the
Friedmann cosmological model that are due to creation of
particles and conformal anomaly [60,61]. Therefore, by
doing the changing a0 → aðtÞ in all expressions obtained
below in the Einstein model, we can apply all the obtained
results to the Friedmann model.
We are going to consider a real massless quantum scalar

field in thermal equilibrium, at some temperature T, in the
geometry of the closed universe described by the Einstein
cosmological model, with a cosmic string embedded along
the axis of rotational symmetry. In the Einstein universe,
the vacuum energy and the thermodynamic quantities are
not affected by the time dependence of the metric in the
Friedmann model so that all the results obtained here are
also applicable for the Friedmann cosmological model
[26,40,41].
Now, let us determine the eigenfrequencies of a real

massless quantum scalar field conformally coupled to the
backgorund under consideration. This field, φ, satisfies the
following Klein-Gordon equation:

□φþ 1

6
Rφ ¼ 0; (5)

where □ ¼ ∂ν∂ν is the D’Alembertian operator and
R ¼ 6a−20 [for the line element (1)] is the scalar curvature.
The solution of Eq. (5), in the background described by
Eq. (1), can be written as

φðt;ψ ; θ;ϕÞ ¼ RðψÞPmα
lα
ðcos θÞeimϕe−iωt; (6)

where Pmα
lα

is the associated Legendre function and

lα ¼ nþmα; n ¼ 0; 1; 2;…;

mα ¼
m
α
; −l ≤ m ≤ l: (7)

The quantum number n does not depend on the parameter
α, so that we can obtain the following relation from Eq. (7):

lα ¼ lþ jmj
�
1

α
− 1

�
; l ¼ 0; 1; 2;…; (8)

with l ¼ nþm. Putting Eq. (6) into Eq. (5), we get

d
dψ

�
sin2ψ

dR
dψ

�
þ
�
ω2

c2
−1

6
R

�
a20 sin

2ψR− lαðlαþ1ÞR¼0:

(9)

The solution of Eq. (9) is given in terms of the Gegenbauer
functions Clþ1

n−l as

RðψÞ ∝ ðsin ψÞlαClαþ1
n−lαðcos ψÞ: (10)

Thus, the eigenfrequencies of the massless scalar field in
the Einstein cosmological model with a cosmic string are

ωn;λ ¼
cn
a0

þ cjmjλ
a0

; n ¼ 1; 2; 3…; (11)

where λ ¼ ð1α − 1Þ. If λ ¼ 0 (no string), we recover the
well-known eigenfrequencies of the massless scalar field in
the Einstein universe,

ωn ¼
cn
a0

; n ¼ 1; 2; 3…: (12)

Therefore, the presence of a cosmic string changes the
eigenfrequencies (12) by a factor proportional to λ, as it can
be seen from Eq. (11).

III. THE CASIMIR ENERGY

The vacuum energy at zero temperature of the real
massless quantum scalar field conformally coupled to
the gravitational background of the static Einstein universe
with a cosmic string, is given by

E0;λ ¼ Vh0jT0
0j0i

¼ ℏ
2

X∞
n¼1

Xn
l¼0

Xl

m¼−l
ωð0Þ
n;λ;

¼ ℏ
2

X∞
n¼1

n2ωð0Þ
n þ λ

6
ℏ
X∞
n¼2

ðn2 − 1Þωð1Þ
n ; (13)

where V is the three-volume of the universe, ωð0Þ
n and ωð1Þ

n

are the eigenfrequencies of the scalar and electromagnetic
fields, respectively, in the Einstein space-time with no
cosmic string. It is interesting to call attention to the fact
that ωð0Þ

n ¼ ωð1Þ
n and both are given by the expression for ωn

in (12).
The first term in the second line of Eq. (13) is the vacuum

energy of the massless scalar field in the Einstein universe,
and the summation in the second term multiplying the
factor λ=6 can be interpreted as the vaccum energy of the
electromagnetic field, also in the Einstein universe [41].
Thus, Eq. (13) can be rewritten as

E0;λ ¼ Eð0Þ
0 þ λ

6
Eð1Þ
0 ; (14)
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where

Eð0Þ
0 ¼ ℏ

2

X∞
n¼1

n2ωð0Þ
n ;

Eð1Þ
0 ¼ ℏ

X∞
n¼2

ðn2 − 1Þωð1Þ
n ; (15)

where the superscripts 0 and 1 in the vacuum energy
expressions indicate the spins of the fields.
The above results show us that the effect of the presence

of a cosmic string in the Einstein universe is to add to the
usual vacuum energy of the massless scalar field, Eð0Þ

0 , a
term that can be seen as the usual vacuum energy of the
electromagnetic field multiplied by λ=6. Thus, instead of
working with a background in which the volume is given
by Eq. (3), we can work in the background described by
the usual Einstein universe which has volume given
by V ¼ 2π2a30.
The renormalization of the vacuum energy E0;λ in

Eq. (14) is obtained through the renormalization of the
vacuum energies Eð0Þ

0 and Eð1Þ
0 for the massless scalar and

electromagnetic fields, respectively. The renormalization
procedure is performed by using the Abel-Plana formula
[19,21,62,63], which is given by

X∞
n¼1

ΦðnÞ −
Z

∞

0

ΦðtÞdt

¼ − 1

2
Φð0Þ þ i

Z
∞

0

ΦðitÞ − Φð−itÞ
e2πt − 1

dt; (16)

where ΦðxÞ is an analytic function. The renormalization of
the vacuum energy Es

0, where s ¼ 0 or s ¼ 1, for scalar and
electromagnetic fields, respectively, is performed by sub-
tracting the vacuum energy of the tangential Minkowsky
space at zero temperature. The result corresponding to the
renormalized vacuum energy of the scalar was obtained
some time ago and is given by [23–26].
In this way, the renormalized energies for the massless

scalar and electromagnetic fields are [40,41]

Eð0Þ
0;ren ¼

ℏc
240a0

: (17)

For the electromagnetic field, the renormalized vacuum
energy was already obtained [26,33], and the result is

Eð1Þ
0;ren ¼

11ℏc
120a0

: (18)

Thus, the renormalized energy which corresponds to
Eq. (14) is written as

E0;λ;ren ¼ Eð0Þ
0;ren þ

λ

6
Eð1Þ
0;ren: (19)

If one considers the CMB data that constrains the cosmic
string tension as Gμ ≲ 10−7, the cosmic string parameter in

Eq. (19) will be λ ∼ 107. As Eð0Þ
0;ren and Eð1Þ

0;ren are approx-

imately of the same order of magnitude (actually Eð1Þ
0;ren is

one order of magnitude bigger), thus we have

E0;λ;ren ∼
λ

6
Eð1Þ
0;ren: (20)

In this case, the term proportional to the renormalized
vacuum energy of the electromagnetic field is the dominant
one since it is multiplied by λ=6. Therefore, the presence of
a cosmic string not only is responsible for generate an
electromagnetic vacuum energylike but it also increases the
vacuum energy, by a factor which depends on the mass
density of the cosmic string.

IV. THERMAL CORRECTION IN THE
CASIMIR FREE ENERGY

In the last section we considered the vacuum state j0i to
calculate the free energy. Now, let us consider a state
describing the thermal equilibrium of the scalar field, φ,
at some nonzero temperature T. In this case, the
vacuum energy given by Eq. (13) is substituted by the
free energy [32,33]

FλðTÞ ¼ E0;λ þ ΔFλðTÞ; (21)

where E0;λ is the vacuum energy at zero temperature given
by Eq. (14). If one considers the renormalized vacuum
energy E0;λ;ren in Eqs. (19), (21) turns into the expression
for the total free energy, which can be written as

Ftot;λðTÞ ¼ E0;λ;ren þ ΔFλðTÞ: (22)

The renormalization procedure for the thermal Casimir free
energy will be the same one discussed and adopted in
Refs. [40,41], in which the obtained results for this
quantity, at high temperature, are in agreement with the
classical limit.
According to [36], the asymptotic expression for the

Casimir free energy at high temperature T, in a finite
volume V contains the following terms of quantum nature:

α0
ðkBTÞ4
ðℏcÞ3 ; α1

ðkBTÞ3
ðℏcÞ2 ; α2

ðkBTÞ2
ℏc

; (23)

where the coefficients α0, α1, α2 depend on the spin of the
field to be considered. For a massless scalar field in the
Einstein universe, these coefficients are given by [40]

αð0Þ0 ¼ − π2

90
V; αð0Þ1 ¼ 0; αð0Þ2 ¼ 0: (24)
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If we consider the electromagnetic field, these coefficients
are given by [41]

αð1Þ0 ¼ − π2

45
V; αð1Þ1 ¼ 0; αð1Þ2 ¼ π2a0

3
: (25)

The finite renormalization of the thermal correction
ΔFðsÞðTÞ is obtained also by using Eq. (16), which
corresponds to the Abel-Plana formula and the results
are given in [40], for the massless scalar field, and in [41],
for the electromagnetic field. Then, after doing the renorm-
alization of ΔFλðTÞ in Eq. (21), one obtains the Casimir
free energy

FC;λðTÞ ¼ E0;λ;ren þ ΔFC;λðTÞ; (26)

where ΔFC;λðTÞ is the renormalized thermal correction
which is obtained from ΔFðsÞ

λ ðTÞ by using the Abel-Plana
formula in the following way:

ΔFC;λðTÞ ¼ ΔFλðTÞ −
Z

∞

0

ΦλðtÞdt: (27)

The thermal correction ΔFλðTÞ of the vacuum energy
(14) is given by

ΔFλðTÞ ¼ ΔFð0ÞðTÞ þ λ

6
ΔFð1ÞðTÞ; (28)

where

ΔFð0ÞðTÞ ¼ kBT
X∞
n¼1

n2 ln½1 − e−ðℏω
ð0Þ
n =kBTÞ�; (29)

ΔFð1ÞðTÞ ¼ 2kBT
X∞
n¼1

ðn2 − 1Þ ln½1 − e−ðℏω
ð1Þ
n =kBTÞ�; (30)

for the massless scalar and electromagnetic fields [40,41],
respectively. Equation (29) was written in this way in order
to recover the same structure of the vacuum energy, given
by Eq. (19). The identification of the free energy for each
field, scalar or electromagnetic, comes from the degener-
acies n2 n2 − 1, which contain the information about the
presence of the cosmic string according to Eqs. (14)
and (15).
To obtain the Casimir free energy, we need to calculate

the integral in the right-hand side of Eq. (27). The result of
this integral is given byZ

∞

0

ΦλðtÞdt¼αð0Þ0

ðkBTÞ4
ðℏcÞ3 þ λ

6

�
αð1Þ0

ðkBTÞ4
ðℏcÞ3 þαð1Þ2

ðkBTÞ2
ℏc

�
:

(31)

The integral (31) provides the quantum contributions given
by Eqs. (24) and (25). Thus, one can see that for the

massless scalar field in the Einstein universe with a cosmic
string, the integral (31) has not only the term proportional
to αð0Þ0 in Eq. (24) but also the terms proportional to αð1Þ0

and αð1Þ2 , which are given in (25) and are related to the
electromagnetic field. Then, the Casimir free energy can be
obtained from Eq. (26) as

FC;λðTÞ ¼ Ftot;λðTÞ − αð0Þ0

ðkBTÞ4
ðℏcÞ3

− λ

6

�
αð1Þ0

ðkBTÞ4
ðℏcÞ3 þ αð1Þ2

ðkBTÞ2
ℏc

�
: (32)

Once again, if we consider the approximated value λ ∼ 106,
Eqs. (28) and (32) turn into

ΔFλðTÞ ≅
λ

6
ΔFð1ÞðTÞ; (33)

FC;λðTÞ ≅ Ftot;λðTÞ − λ

6

�
αð1Þ0

ðkBTÞ4
ðℏcÞ3 þ αð1Þ2

ðkBTÞ2
ℏc

�
:

(34)

V. LIMITS OF LOW AND
HIGH TEMPERATURES

First, we will consider the low-temperature limit
kBT ≪ ℏc=a0. In this limit, in order to obtain the asymp-
totic expression for the Casimir free energy, it is most
convenient to write Eq. (26) in the following form:

FC;λðTÞ ¼ Fð0Þ
C ðTÞ þ λ

6
Fð1Þ
C ðTÞ; (35)

where

Fð0Þ
C ðTÞ ¼ ℏc

240a0
þ π2

90
V
ðkBTÞ4
ðℏcÞ3 − kBTe−ðℏc=a0kBTÞ (36)

is the low-temperature limit for the Casimir free energy of
the massless scalar field [40] and

Fð1Þ
C ðTÞ ¼ 11ℏc

120a0
þ π2

45
V
ðkBTÞ4
ðℏcÞ3 − π2a0

3

ðkBTÞ2
ℏc

− 6kBTe−ð2ℏc=a0kBTÞ (37)

is the low-temperature limit for the Casimir free energy of
the electromagnetic field [41]. The Casimir internal energy
can also be obtained in this limit. Let us, then, use the
expression for the internal energy, at a temperature T,
which is defined by [64]

UðTÞ ¼ −T2
∂
∂T

�
FðTÞ
T

�
: (38)

THERMAL CASIMIR EFFECT IN CLOSED COSMOLOGICAL … PHYSICAL REVIEW D 89, 024015 (2014)

024015-5



Using Eqs. (38) and (26), we get the Casimir internal
energy

UC;λðTÞ ¼ Uð0Þ
C ðTÞ þ λ

6
Uð1Þ

C ðTÞ; (39)

where

Uð0Þ
C ðTÞ ¼ ℏc

240a0
− π2

30
V
ðkBTÞ4
ðℏcÞ3 þ ℏc

a0
e−ðℏc=a0kBTÞ (40)

is the Casimir internal energy of the massless scalar field
[40] and

Uð1Þ
C ðTÞ ¼ 11ℏc

120a0
− π2

15
V
ðkBTÞ4
ðℏcÞ3 þ π2a0

3

ðkBTÞ2
ðℏcÞ

þ 12ℏc
a0

e−ð2ℏc=a0kBTÞ (41)

is the Casimir internal energy of the electromagnetic field
[41]. A quantity which is closely related to the free energy
is the entropy. It is defined by

SðTÞ ¼ −∂FðTÞ
∂T : (42)

The Casimir entropy for the massless scalar field can be
obtained from Eq. (42) by using the expression for the
Casimir free energy given by Eq. (26). Thus, we get

SC;λðTÞ ¼ Sð0ÞC ðTÞ þ λ

6
Sð1ÞC ðTÞ; (43)

where

Sð0ÞC ðTÞ ¼ − 2π2

45
kB

�
kBT
ℏc

�
3

V þ ℏc
a0T

e−ðℏc=a0kBTÞ (44)

is the Casimir entropy of the massless scalar field obtained
in [40] and

Sð1ÞC ðTÞ ¼ 2π2kB
a0kBT
3ℏc

�
1 − 4π2

15

ða0kBTÞ2
ðℏcÞ2

�

þ 12ℏc
a0T

e−ð2ℏc=a0kBTÞ: (45)

is the Casimir entropy of the electromagnetic field [41].
From Eqs. (44) and (44) we conclude that the Casimir
entropy goes to zero when the temperature vanishes, in
accordance with the third law of thermodynamics (Nernst
heat theorem).
Now, let us consider the limiting case of high temper-

ature, which means that kBT ≫ ℏc=a0. The asymptotic
expression for the Casimir free energy, in this limit, can be
obtained from Eq. (35), with Fð0Þ

C ðTÞ and Fð1Þ
C ðTÞ given by

Fð0Þ
C ðTÞ ¼ kBT

4π2
ζð3Þ þ 4π2

�
a0kBT
ℏc

�
3 ℏc
a0

e−4π2ða0kBT=ℏcÞ;

(46)

which is the asymptotic expression for the Casimir free
energy of the massless scalar field [40] in the high-
temperature limit, and

Fð1Þ
C ðTÞ ¼ −kBT ln

a0kBT
ℏc

− RkBT

þ 8π2a20
ðkBTÞ3
ðℏcÞ2 e−ð4π2a0kBT=ℏcÞ; (47)

which is the Casimir free energy of the electromagnetic
field, in the high-temperature limit, with R ¼ 1.77698
being a constant [41].
In this limit, the Casimir internal energy can be calcu-

lated by using Eq. (39), with Uð0Þ
C ðTÞ and Uð1Þ

C ðTÞ, in the
high temperature limit, being given by

Uð0Þ
C ðTÞ ¼ 16π4

�
a0kBT
ℏc

�
4 ℏc
a0

e−4π2ða0kBT=ℏcÞ (48)

for the internal energy of the massless scalar field [40] and

Uð1Þ
C ðTÞ ¼ kBT þ 32π4a30ðkBTÞ4

ðℏcÞ3 e−ð4π2a0kBT=ℏcÞ (49)

for the internal energy of the electromagnetic field [41].
The total free energy and its limits of low and high

temperatures can be obtained from Eq. (32). It is worth
calling attention to the fact that as the cosmic string
parameter is of order of λ ∼ 107, then the Casimir free
energy, internal energy, and Casimir entropy, which are
given by Eqs. (35), (39), and (43), are dominated by the
electromagneticlike terms, which means that the presence
of the cosmic string increases these quantities as compared
with a scenario without this topological defect.

VI. CONCLUDING REMARKS

We have considered the thermal Casimir effect for a
massless scalar field in the Einstein and Friedmann uni-
verse with a cosmic string with mass per unit length μ
embedded along the axis of rotational symmetry. This
embedding does not locally affect the Einstein and
Friedmann universes, but globally it does. In these
space-times with original topology S3 × R1, we investi-
gated how the topological features arising from the pres-
ence of the cosmic string will affect the Casimir effect.
Using the appropriate method of renormalization

adopted in [40,41], we have shown that the renormalized
quantum vacuum energy is expressed as a sum of known
terms, namely, one associated with the scalar field in
Einstein universe without the cosmic string and another
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electromagneticlike term induced by the presence of the
cosmic string. This second term is given by the Casimir
energy of the electromagnetic field in an Einstein universe
with no cosmic string multiplied by a parameter which
depends on the linear mass density of this defect, contained
in the parameter λ ¼ ð1=αÞ − 1. It is worth stressing that the
contribution which arises due to the presence of the cosmic
string is the dominant one, due to the upper limit on λ
obtained from cosmological observations.
The expression for the renormalized free energy was

obtained in a form which is convenient to obtain the high
and low temperature limits of the internal energy and
entropy. Taking into account the expressions for the
Casimir free energy and the internal energy, the high
and low temperature limits of these thermodynamical
quantities are found. They are in agreement with the results
already known, when we take the appropriate limit, in
which λ goes to zero, which means that the cosmic string is
absent. The Casimir free energy at high temperature has the
terms directly proportional to the temperature independent
of the cosmological parameter a0.
The expression for the renormalized free energy, and

consequently for all the thermodynamical quantities such
as internal energy, entropy, and pressure can also be written
as a single sum whose first term is associated with the
contribution arising from the massless scalar field in an
Einstein universe without a cosmic string and whose
second term corresponds to the contribution arising from
the electromagnetic field in the Einstein universe without a
cosmic string multiplied by a parameter that depends on the

linear mass density of the cosmic string. Based on this, the
high- and low-temperature limits of the considered ther-
modynamical quantities are given in terms of the known
thermodynamical quantities associated with the massless
scalar and electromagnetic fields in the closed Einstein and
Friedmann cosmological models [40,41].
In low-temperature limit, the Casimir entropy of the

systemwas found obeying the third law of thermodynamics;
i.e., it goes to zero for vanishing temperature. Specifically,
for the Friedmann cosmological model, if one considers
the relation T ∝ 1=aðtÞ [65] in the radiation-dominated era,
we find that the Casimir entropy tends to a constant value
independent of the geometrical parameter a0. Furthermore,
the Casimir pressure in the low-temperature limit is negative
and goes to zero when the temperature vanishes. In the
opposed limit, this pressure is negative and grows illimitably
for T → ∞, which suggests a relevant role played by the
vacuum energy in primordial inflationary processes.
Finally, we have calculated the internal energy of the

massless scalar field and conclude that in very high
temperatures it tends to ðλ=6ÞkBT; and in the low-
temperature limit it goes to a constant value as shown in
Eq. (19). One can note that without the cosmic string, the
Casimir internal energy in the Einstein universe vanishes
when T → ∞.
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