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We consider the total energy loss and spectral density of uniformly moving electrically charged particles
in the spacetime of a wormhole with an infinitely short throat. We show that the total energy loss
E ∼ e2vγa2=b3, where γ is relativistic factor, a is the radius of the wormhole’s throat, and b is the impact
factor. The spectrum of the energy for particles radially moving through the wormhole’s throat is
E ∼ e2vγ=a. The spectral density of the total energy has a maximum at frequency ωm ∼ vγ=b and at
ωm ∼ vγ=a for radial motion.
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I. INTRODUCTION

Wormholes are topological handles that join different
regions of the Universe or different universes. A wormhole
has to violate energy conditions and thus a source of the
wormholegeometry shouldbean exoticmatter.Bynowmany
different approaches were suggested to avoid this problem
and find a self-consistent solution for the wormhole space-
time. Vacuum fluctuations of quantum fields may serve this
purpose [1–4]; in the framework of multidimensional gravity
the additional dimensions contribute to the3þ 1dimensional
Einstein equations [5] used by Bronnikov [6] to find possible
metrics of wormholes. The cosmic phantom energy [7,8] or
reverse sign of the kinetic term [9] were used to solve this
problem.An introduction inwormhole physicsmay be found
in the Visser book [10] and the Lobo review [11]. Some
astronomical aspects of the astrophysics of wormholes were
discussed in Refs. [12–14].
A charged particle in the spacetime of a wormhole is

attracted to the wormhole’s throat by an additional gravi-
tationally induced self-interaction force [15–19]. This force
is a manifestation of the nonlocal essence of the electro-
magnetic field. A charged particle will be attracted by
wormholes, even though it is at rest. From an astrophysical
point of view this means that a wormhole’s throat should be
surrounded by a cloud of cosmological particles.
It is well known that in flat Minkowsky spacetime, a

uniformly moving charged particle does not produce
electromagnetic radiation. In the framework of quantum
electrodynamics, the bremsstrahlung process corresponds
to the emission of radiation by a charged particle when it
changes its momentum in collisions with obstacles such as
other particles or when it is accelerated due to the presence
of electromagnetic fields. In curved spacetime, the situation
is quite different—a uniformly moving charged particle
produces radiation. Uniform motion in curved spacetime is
motion along the geodesic line. Aliev and Galtsov in

Ref. [20] were the first to establish this effect in the context
of cosmic strings. The spacetime of the cosmic string is
everywhere flat except at its origin with infinite curvature at
the core and a uniformly moving particle moves on a
straight line. They calculated the total energy loss and its
spectral density for particles moving on these lines. This
classical result was reviewed and recovered in the frame-
work of quantum field theory in Refs. [21–23]. In
Refs. [21,22] the bremsstrahlung was considered for a
simple scalar model in which the electron-positron quan-
tum field models by a charged scalar field and photon field
were considered as an uncharged scalar field. In Ref. [23]
this process was considered in the framework of quantum
electrodynamics. The same approach was applied for a
pointlike global monopole spacetime in Ref. [24].
In the present paper we consider an electrically charged

and uniformly moving particle in the wormhole spacetime
and calculate its total energy loss and spectral density of the
energy. All trajectories may be roughly divided into two
classes. The first class contains the world lines of particles
which move through the wormhole throat. These particles
disappear from the point of view of an observer situated
in one part of the wormhole spacetime. The rest of the
trajectories belong to the second class. We consider
radiation for both kind of trajectories.
There are many different metrics of wormholes; a review

of some may be found in Ref. [11]. We consider the
simplest spherically symmetric wormhole with metric

ds2 ¼ −dt2 þ dρ2 þ r2ðρÞdΩ; (1)

considered by Bronnikov [25] and Ellis [26], where dΩ is
the metric of the unit two-dimensional sphere and t, ρ ∈ R.
The spacetime is divided into two parts in which ρ > 0 and
ρ < 0. The function rðρÞ describes the profile of the
wormhole’s throat. The radius of the throat, a, is defined
as the minimum of this function at the point ρ ¼ 0:
rð0Þ ¼ a. Nonzero components of the Ricci tensor and
scalar curvature read*nail.khusnutdinov@gmail.com
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Rρ
ρ ¼ −2 r

00

r
; Rθ

θ ¼ Rφ
φ ¼ − rr0 þ r02 − 1

r2
;

R ¼ − 2ð2rr00 þ r02 − 1Þ
r2

: (2)

The metric with profile rðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p
is commonly

called a “drainhole.” [26] In the present paper we consider
the simplest model of the wormhole with an infinitely short
throat described by profile rðρÞ ¼ aþ jρj which was
suggested in Ref. [2]. This spacetime is two copies of
Minkowsky spacetimes which is glued on the sphere with
the radius of the throat a. The spacetime is everywhere flat
except this sphere where the tensor Ricci has a singular
form

Rρ
ρ ¼ − 4

a
δðρÞ; Rθ

θ ¼ Rφ
φ ¼ − 2

a
δðρÞ; R¼ − 8

a
δðρÞ;

(3)

because r0 ¼ sgnρ, r00 ¼ 2δðρÞ. Here δðxÞ is the delta
function. The drainhole with profile rðρÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ρ2

p
has a regular Ricci tensor

Rρ
ρ ¼ R ¼ − 2a2

ða2 þ ρ2Þ2 : (4)

The organization of this paper is as follows. In Sec. II we
consider the Maxwell equations and find the vector Green
functions we need. In Sec. III we develop a general
approach to calculate of the total energy loss and its
spectral density. We apply this approach to a particle which
uniformly moves with a nonzero impact parameter as well
as for the radial motion of the particle and analyze the
expression obtained for nonrelativistic and ultrarelativistic
cases. We conclude with a discussion of the results
in Sec. IV.

II. ELECTROMAGNETIC FIELD OF THE
CHARGED PARTICLE

The Maxwell equations in the Lorentz gauge Aν
;ν ¼ 0

read

□Aμ − Rν
μAν ¼ −4πJμ; (5)

where □ ¼ gμν∇μ∇ν, and the electrical current density has
the following form:

Jμ ¼ effiffiffiffiffiffi−gp
Z

dτδð4Þðx − xðτÞÞuμðτÞ

¼ effiffiffiffiffiffi−gp uμðτ�Þ
utðτ�Þ δ

ð3Þðx⃗ − x⃗ðτ�ÞÞ: (6)

The proper time moment, τ�, is found from the
condition t − tðτ�Þ ¼ 0.

The manifest form of the Maxwell equations in the
background (1) with arbitrary profile rðρÞ read

−4πJρ ¼ Aρ
;ρρ þ 2r0

r2
Aρ
;ρ − 1

r2
L̂2Aρ − Aρ

;tt − 2r02

r2
Aρ

− 2

r
ðcot θAθ þ Aθ

;θ þ Aφ
;φÞ − Rρ

ρAρ; (7a)

−4πJθ ¼ Aθ
;ρρ þ

4r0

r
Aθ
;ρ − 1

r2
L̂2Aθ − Aθ

;tt

− 1

r2
Aθðcot2θ − r02 − rr00Þ

þ 2

r3
ðAρ

;θr
0 − r cot θAφ

;φÞ − Rθ
θA

θ; (7b)

−4πJφ ¼ Aφ
;ρρþ 4r0

r
Aφ
;ρ− 1

r2
L̂2Aφ−Aφ

;tt

þ 2 cot θ
r2

Aφ
;θ − 1− r02− rr00

r2
Aφ

þ 2

r3

�
r0

sin2θ
Aρ
;φþ r cos θ

sin3 θ
Aθ
;φ

�
−Rφ

φAφ; (7c)

−4πJt ¼ At
;ρρ þ

2r0

r2
At
;ρ − 1

r2
L̂2At − At

;tt; (7d)

where L̂2 ¼ ∂2
θ þ cot θ∂θ þ csc2 θ∂2

θ. Let us apply these
equations for the case of the infinitely short throat rðρÞ ¼
aþ jρj (r0 ¼ sgnðρÞ, r00 ¼ 2δðρÞ). As usual in this case we
consider the Maxwell equations out of the throat ρ ¼ 0 and
additionally we find matching conditions on the throat by
integrating the Maxwell equations over ρ around the throat
ð−ϵ; ϵÞ followed by the limit ϵ → 0. The potential Aμ

remains to be continuous on sphere ρ ¼ 0. A discontinuous
potential produces a discontinuous electromagnetic field
which means emergence of charges and currents on
the throat. Integrating as noted above we obtain the
conditions

½Ai
;ρ� ¼ − 4

a
Aið0Þ; (8a)

½At
;ρ� ¼ 0; (8b)

where ½f� ¼ fðþ0Þ − fð−0Þ. Therefore, we have to set
Aið0Þ ¼ 0 and consider the Maxwell equation (7) out of the
sphere ρ ¼ 0. In this case we obtain the Maxwell equations
in two flat Minkowsky spacetimes,

□Aμ ¼ −4πJμ; (9)
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with matching conditions (8) where Aið0Þ ¼ 0 on this
sphere. Therefore, the potential is C1 regular on the throat
and it has to vanish on the throat.
To solve the Maxwell equations (9) we find the cova-

riantly constant vectors field must obey the equations

∇νξ
�a

μ ¼ 0; (10)

for both parts of the wormhole spacetime with ρ > 0 and
ρ < 0. We mark over these parts by signs �. The solutions
read

ξ
�1

μ ¼ ð� sin θ sin φ; rðρÞ cos θ sin φ; rðρÞ sin θ cos φ; 0Þ;
(11a)

ξ
�2

μ ¼ð� sin θ cos φ; rðρÞ cos θ cos φ;−rðρÞ sin θ sin φ;0Þ;
(11b)

ξ
�3

μ ¼ð� cos θ;−rðρÞ sin θ; 0; 0Þ; (11c)

ξ
�4

μ ¼ð0; 0; 0; 1Þ; (11d)

with detðξ
�
Þ ¼ ffiffiffiffiffiffi−gp

. Let us define four scalar functions
Aa ¼ Aμξaμ for ρ ≠ 0. These functions obey four scalar
equations

□Aa ¼ −4πJa (12)

out of the sphere ρ ¼ 0. The solution of these equations,
ðdx0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi−gðx0Þp

d4x0Þ,

AaðxÞ ¼
Z

Gðx; x0ÞJaðx0Þdx0; (13)

is expressed in terms of the scalar Green function which
satisfies the equation,

□G ¼ −δðx; x0Þ; (14)

with appropriate boundary conditions.
The potential Aμ itself maybe found from Eq. (13) by the

following expressions:

AμðxÞ ¼
Z

ξμaðxÞξaνðx0ÞGðx; x0ÞJνðx0Þdx0; (15)

or in manifest form

Ai¼
Z

GZ0
;ik0J

k0dx0; A4¼
Z

GJ4
0
dx0; (16)

where we have used the two-point function
Z ¼ rðρÞrðρ0Þ cos γ, and cos γ¼ sin θ sin θ0 cosðϕ−ϕ0Þþ
cos θ cos θ0. As a consequence of the conditions on the
throat Aið0Þ ¼ 0, we have to obey the relations
Gð0; x0Þ ¼ Gðx; 0Þ ¼ 0.
To find the scalar Green function satisfying Eq. (14) we

solve the additional eigenvalue problem

□Ψ ¼ −λ2Ψ: (17)

The solution of the problem has the following form
(λ2 ¼ p2 − ω2):

Ψp;ω;l;m ¼ p
π
e−iωtYlmðΩÞΦpðρÞ; (18)

where

Φp ¼
�
ϕ1 ¼ k1jl½pðaþ ρÞ� þ k2yl½pðaþ ρÞ�; ρ > 0

ϕ2 ¼ k3jl½pða − ρÞ� þ k4yl½pða − ρÞ�; ρ < 0;

(19)

is the radial C1 regular at the throat functions, and (q ¼ pa)

k3 ¼ þk1ð2q2ylðqÞj0lðqÞ þ 1Þ þ k2ð2q2ylðqÞy0lðqÞÞ; (20a)

k4 ¼ −k2ð2q2ylðqÞj0lðqÞ þ 1Þ − k1ð2q2jlðqÞj0lðqÞÞ: (20b)

Here jl and yl are the spherical Bessel functions. This set of
functions is orthogonal

Z þ∞

−∞
dt
Z

dΩ
Z þ∞

−∞
r2ðρÞdρΨp;ω;l;mðxÞΨ�

p0;ω0;l0;m0 ðxÞ

¼ δl;l0δm;m0δðω−ω0Þδðp−p0Þ; (21)

due to the relation

jk1j2 þ jk2j2 þ jk3j2 þ jk4j2 ¼ 1: (22)

Therefore we have three conditions for four constants.
Now we demand the last condition that the vector
potential should be zero at the throat ρ ¼ 0. This gives
the relations

k2 ¼ −k1 jlðqÞylðqÞ
; k3 ¼ −k1; k4 ¼ −k2; (23)

and we obtain the following radial function:

Φp ¼
8<
:

ϕ1 ¼ þk1
�
jlðprÞ − jlðqÞ

ylðqÞ ylðprÞ
�
; ρ > 0

ϕ2 ¼ −k1
�
jlðprÞ − jlðqÞ

ylðqÞ ylðprÞ
�
; ρ < 0:

(24)
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The condition of orthogonality (22) defines the last constant

jk1j2 ¼
1

2

y2l ðqÞ
y2l ðqÞ þ j2l ðqÞ

: (25)

The fullness condition,

X
lm

Z þ∞

−∞
dω

Z
∞

−∞
dpΨp;ω;l;mðxÞΨ�

p;ω;l;mðx0Þ ¼ δðt − t0Þ δðρ − ρ0Þ
r2ðρÞ

δðθ − θ0Þδðϕ − ϕ0Þ
sin θ

; (26)

is fulfilled with help of the relations jlð−xÞ ¼ ð−1ÞljlðxÞ; ylð−xÞ ¼ ð−1Þlþ1ylðxÞ. Indeed, integrating over ω we obtain the
following expression:

δðt − t0Þ
X
lm

YlmðΩÞY�
lmðΩ0Þ

Z
∞

0

2

π
p2Qlðpr; pr0; paÞdp; (27)

where

Qlðu; u0; qÞ ¼
fjlðuÞylðqÞ − ylðuÞjlðqÞgfjlðu0ÞylðqÞ − ylðu0ÞjlðqÞg

y2l ðqÞ þ j2l ðqÞ

¼ π

2p
ffiffiffiffiffiffi
rr0

p fJνðuÞYνðqÞ − YνðuÞJνðqÞgfJνðu0ÞYνðqÞ − Yνðu0ÞJνðqÞg
Y2
νðqÞ þ J2νðqÞ

: (28)

To calculate the integral over p we use the Weber-Orr transformation ([27] Sec. 7.10.5). This transformation leads to the
relation

Z
∞

0

fJνðuÞYνðqÞ − YνðuÞJνðqÞgfJνðu0ÞYνðqÞ − Yνðu0ÞJνðqÞg
Y2
νðqÞ þ J2νðqÞ

pdp ¼ δðr − r0Þ
r

: (29)

Therefore,

Z
∞

0

2

π
p2Qlðpr; pr0; paÞdp ¼ δðρ − ρ0Þ

r2
; (30)

and the relation (26) is fulfilled.
Taking into account this set of functions we obtain the retarded and advanced scalar Green functions in the following

form:

Gret
advðx; x0Þ ¼

1

π

X
lm

YlmðΩÞY�
lmðΩ0Þ

Z
∞

−∞
dω
2π

Z
∞

0

p2dpe−iωðt−t0Þ
p2 − ðω� i0Þ2 Qlðu; u0; qÞ; (31)

where

Qlðu; u0; qÞ ¼
fjlðuÞylðqÞ − ylðuÞjlðqÞgfjlðu0ÞylðqÞ − ylðu0ÞjlðqÞg

y2l ðqÞ þ j2l ðqÞ
; (32)

and u ¼ pðaþ jρjÞ, u0 ¼ pðaþ jρ0jÞ, q ¼ pa. The radiative Green function,

Grad ¼ 1

2
ðGret −GadvÞ; (33)

is expressed in the following form:

Gradðx; x0Þ ¼ i
π

X
lm

YlmðΩÞY�
lmðΩ0Þ

Z
∞

−∞
sgnðωÞdω

Z
∞

0

p2dpe−iωðt−t0Þδðp2 − ω2ÞQlðu; u0; qÞ: (34)
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III. BREMSSTRAHLUNG

The total energy radiated by a particle throughout its
lifetime reads

E ¼
Z

Tν
μ;νξ

μdx; (35)

where Tμν is the energy-momentum tensor of the electro-
magnetic field, and ξμ is the timelike Killing vector of the
spacetime. The spacetime under consideration with metric
(1) admits the timelike Killing vector. Taking into account
the electromagnetic energy-momentum tensor, we arrive at
the following expression:

E ¼ 4π

ZZ
Grad

μν0;tJ
μJν

0
dxdx0: (36)

This expression was obtained by Aliev and Galtsov in
Ref. [20] and was applied for the case of the cosmic string
spacetime. Taking into account Eqs. (6), (11), (15), and (34)
we arrive at the following formula for the total energy loss:

E ¼ 2πe2
X
lm

Z
∞

0

dωωMðaÞ
lm MðaÞlm

J2νðωaÞ þ Y2
νðωaÞ

; (37)

where

MðaÞ
lm ¼

Z þ∞

−∞
dteiωt

vaðtÞYlmðθðtÞ;ϕðtÞÞffiffiffiffiffiffiffiffi
rðtÞp

× fJνðωrðtÞÞYνðωaÞ − YνðωrðtÞÞJνðωaÞg; (38)

and vaðtÞ ¼ ξaμðtÞvμðtÞ. Here ðrðtÞ ¼ aþ jρðtÞj; θðtÞ;ϕðtÞÞ
is a trajectory of the particle. Also we define the spectral
density of the energy loss by the relation

EðωÞ ¼ 2πe2
X
lm

ωMðaÞ
lm MðaÞlm

J2νðωaÞ þ Y2
νðωaÞ

: (39)

Let us apply this expression for a uniformly moving
particle in the background of a wormhole with an infinitely
short throat. The trajectory of the particle moving in one
part of the wormhole spacetime is described by the relations

rðtÞ ¼ aþ ρðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ v2t2

p
; ϕ ¼ arctan

vt
b
;

θ ¼ π

2
; ut ¼ γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p : (40)

Here b ≥ a–impact parameter. This is the closest distance
to wormhole’s throat and we set at the moment t ¼ 0
and angle ϕ ¼ 0. The 3-velocity components read
vρ ¼ v2t=rðtÞ, vϕ ¼ vb=r2ðtÞ, vθ ¼ 0, vt ¼ 1. For this

trajectory vaðtÞvaðt0Þ ¼ v2 − 1 and the total energy reads
(ν ¼ lþ 1=2)

E ¼ 2πe2

γ2
X
lm

����Ylm

�
π

2
; 0

�����2
Z

∞

0

dωωjNm
l ðωÞj2

J2νðωaÞ þ Y2
νðωaÞ

; (41)

where

Nm
l ðωÞ ¼

Z þ∞

−∞
dt

eiωt−imϕðtÞffiffiffiffiffiffiffiffi
rðtÞp

× fJνðωrðtÞÞYνðωaÞ − YνðωrðtÞÞJνðωaÞg

¼
ffiffiffi
b

p

v
fJ m

l ðωÞYνðωaÞ − Ym
l ðωÞJνðωaÞg; (42)

and (t ¼ bx=v)

J m
l ðωÞ ¼

Z þ∞

−∞
dxei

ωb
v x−im arctan x Jνðωb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p ; (43a)

Ym
l ðωÞ ¼

Z þ∞

−∞
dxei

ωb
v x−im arctan x Yνðωb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p : (43b)

The spherical functions above,

Ylm

�
π

2
; 0

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞ!
ðlþmÞ!

s
Pm
l ð0Þ; (44)

equal zero if lþm ¼ 2kþ 1 is an odd number, because
Pm
l ð0Þ ¼ 0 in this case. For this reason the sum,

lþm ¼ 2k, has to be an even number.
Let us consider the first expression (43a) as an integral

over the complex plane of x. There are two branch points
x ¼ �i and two cuts, ð−i∞;−iÞ and ði; i∞Þ. We shift the
contour of the integration to the upper half-plane and put it
to the left and right banks of the cut and small circle around
branch point x ¼ i. The integral over the branch point
equals zero and the two integrals over banks give the
following expression:

J m
l ðω; pÞ ¼ −2 sin

π

2

�
ν −m − 1

2

�

×
Z

∞

1

dye−ωb
v y

�
y − 1

yþ 1

�−m
2 Iνðpb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1
p ;

(45)

where Iν is the modified Bessel function. As noted
above, the sum lþm ¼ 2k, then ν −m − 1

2
¼ 2ðk −mÞ

and J m
l ðω; pÞ ¼ 0 because sin π

2
ðν −m − 1

2
Þ ¼

sin πðk −mÞ ¼ 0. The same approach cannot be applied
for the integral (43b). Indeed, the integral the over circle is
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divergentbecause the Neumann function has a singu-
larity for th ezero argument and we cannot obtain a
finite expression. Therefore we arrive at the following
expression:

E ¼ 2πe2b
v2γ2

X
lm

����Ylm

�
π

2
; 0

�����2

×
Z

∞

0

dωωJ2νðωaÞ
J2νðωaÞ þ Y2

νðωaÞ
jYm

l ðωÞj2; (46)

where

Ym
l ðωÞ ¼

Z þ∞

−∞
dxei

ωb
v x−im arctan x Yνðωb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p : (47)

Then the spectral density reads

EðωÞ ¼ 2πe2b
v2γ2

X
lm

����Ylm

�
π

2
; 0

�����2 ωJ2νðωaÞjYm
l ðωÞj2

J2νðωaÞ þ Y2
νðωaÞ

:

(48)

We are coming now to numerical calculations of the
spectral density of the energy (48) with its preliminary
analysis in some limiting cases. Let us define the new
variable σ ¼ ωb

vγ and new function ĒðσÞ ¼ b2

e2a2 Eðσ vγ
b Þ. Then

the full energy has the following form:

E ¼ e2a2

b3
vγ

Z
∞

0

ĒðσÞdσ: (49)

In the case of nonrelativistic particles, v ≪ 1, the main
contribution comes from the term with l ¼ m ¼ 0. For
these numbers [28, 2.4.16(3)]

Y0
0ðωÞ ¼ −

ffiffiffiffiffiffiffiffiffi
8

πωb

r
K0

�
ωb
vγ

�
; (50)

and we obtain the following expression for the spectral
density

ĒðσÞ ≈ 4

π
σ2K2

0ðσÞ; (51)

where K0ðσÞ is the modified Bessel function. This expres-
sion does not depend on the velocity v and impact factor b.
The spectrum falls down exponentially fast, ĒðσÞ ≈ 2σe−2σ
and tends to zero as 4σ2 ln2 σ=π at the origin. Integrating
over σ we arrive at the following expression for the total
energy loss in the nonrelativistic case:

E ≈ e2
πva2

8b3
: (52)

Therefore, the total energy is proportional to the first power
of the velocity. In the case of the cosmic string [20] and
global monopole [24] spacetimes the energy is proportional
to the third degree of the velocity. The spectral density of
the energy has a maximum at the point σ ≈ 3=5, which is at
the frequency

ωm ¼ 3γv
5b

: (53)

Let us consider the ultrarelativistic case, v → 1. First of
all we extract the divergent (in this limit) part in the integral
(47). It is easy to see that

Ylþ1=2ðtÞffiffi
t

p ¼
�Pn

cos t
t þQn−1 sin t

t2 ; l ¼ 2n

Mn
cos t
t2 þ Nn

sin t
t ; l ¼ 2nþ 1;

(54)

where Pn, Qn, Mn, Nn are polynomials of the nth order of
the variable 1=t2. The integrand (54) incorporates this
expression with t ¼ ωb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
. The divergence for v → 1

appears only for the lowest power t in the denominator in
Eq. (54), which is for

Ylþ1=2ðtÞffiffi
t

p
����
div

¼ −
ffiffiffi
2

π

r
ð−1Þn

t

�
cos t; l ¼ 2n
sin t; l ¼ 2nþ 1:

(55)

First of all let us consider the case m ¼ 0. The divergent
part for v → 1 reads

Y0
l ðωÞjdiv ¼ −

ffiffiffiffiffiffiffiffiffi
2

πωb

r
ð−1Þn

Z þ∞

−∞
ei

ωb
v xffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

×

�
cosðωb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þ

sinðωb
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þ

�
dx; (56)

where the upper case is for l ¼ 2n and the lower case is for
l ¼ 2nþ 1. By using Eq. 2.5.25(15) from textbook [28] we
obtain

Y0
2nðωÞjdiv ¼ −

ffiffiffiffiffiffiffiffiffi
8

πωb

r
ð−1ÞnK0

�
ωb
vγ

�
; (57)

which is zero for l ¼ 2nþ 1 [see Eq. 2.5.25(9)
in Ref. [28]].
For the casem ≠ 0we have an additional factor eim

π
2
sgnðxÞ

in the integrand. Because the sum lþm must be an even
number, the parities of m and l should be the same. For
even l ¼ 2n and m ¼ 2j we obtain
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Y2j
2nðωÞjdiv ¼ −

ffiffiffiffiffiffiffiffiffi
8

πωb

r
ð−1Þn

Z
∞

0

cos

�
ωb
v

x

�

×
cosðωb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p dx

¼ −
ffiffiffiffiffiffiffiffiffi
8

πωb

r
ð−1ÞnþjK0

�
ωb
vγ

�
: (58)

For odd l ¼ 2nþ 1 and m ¼ 2jþ 1 the integral,

Y2jþ1
2nþ1ðωÞjdiv ¼

ffiffiffiffiffiffiffiffiffi
8

πωb

r
ð−1Þnþj

×
Z

∞

0

sin

�
ωb
v

x

�
sinðωb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p dx;

(59)

cannot be found in manifest form. Nevertheless we may
extract the divergent part of this integral:

Y2jþ1
2nþ1ðωÞjdiv ¼

ffiffiffiffiffiffiffiffiffi
8

πωb

r
ð−1ÞnþjK0

�
ωb
vγ

�
−

ffiffiffiffiffiffiffiffiffi
8

πωb

r
ð−1Þnþj

×
Z

∞

0

cos ðωbv xþ ωb
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p dx: (60)

The last integral is finite even for v ¼ 1. Therefore,
in the limit v → 1 for all cases we obtain the main
contribution

jYm
l ðωÞj2 ≈

8

πωb
K2

0

�
ωb
vγ

�
; (61)

and the spectral density reads

EðωÞ ≈ 16e2

v2γ2
K2

0

�
ωb
vγ

�X
lm

����Ylm

�
π

2
; 0

�����2

×
J2νðωaÞ

J2νðωaÞ þ Y2
νðωaÞ

: (62)

The numerical analysis of the function

fðxÞ ¼
X
lm

����Ylm

�
π

2
; 0

�����2 J2νðxÞ
J2νðxÞ þ Y2

νðxÞ

¼
X∞
l¼0

2lþ 1

4π

J2νðxÞ
J2νðxÞ þ Y2

νðxÞ
(63)

with a subsequent Pade approximation shows that

fðxÞ ¼ 1

16π
ð2.4xþ x2Þ: (64)

Taking into account this expression we obtain the
spectral density

EðωÞ ≈ e2ωa
πv2γ2

K2
0

�
ωb
vγ

�
ð2.4þ ωaÞ; (65)

and

ĒðσÞ ≈ σ

π
K2

0ðσÞ
�
2.4b
avγ

þ σ

�
: (66)

In the case of γ ≫ b=a we arrive at the simple formula

ĒðσÞ ≈ σ2

π
K2

0ðσÞ: (67)

The spectrum falls down exponentially fast, ĒðσÞ ≈
σe−2σ=4 and tends to zero as σ2 ln2 σ=π at the origin.
Integrating this function [see Eq. (49)] we obtain the total
energy in the ultrarelativistic case

E ≈ e2
πγa2

32b3
; (68)

with characteristic frequency

ωm ¼ 3γv
5b

: (69)

The numerical evaluations of ĒðσÞ are shown in Fig. 1
for different values of velocity and impact factors b=a ¼ 2,
100. We observe agreement between theoretical and
numerical considerations.
Let us consider a particle which moves through the

wormholes throat by radial trajectory rðtÞ ¼ aþ vjtj,
ϕ ¼ 0, θ ¼ π=2 with velocity vρ ¼ v, vθ ¼ vϕ ¼ 0.
Positive and negative time corresponds to different parts
of the wormhole spacetime. In this case vaðtÞvaðt0Þ ¼
v2sgnðtÞsgnðt0Þ − 1 and the spectral density of energy reads

EðωÞ ¼ 2e2

av2
X∞
l¼0

ð2lþ 1Þω̄
J2νðω̄Þ þ Y2

νðω̄Þ

×

�����
Z

∞

0

dx cos ω̄x
vffiffiffiffiffiffiffiffiffiffiffi

1þ x
p ½Jνðω̄ð1þ xÞÞYνðω̄Þ

− Yνðω̄ð1þ xÞÞJνðω̄Þ�
����2

− v2
����
Z

∞

0

dx sin ω̄x
vffiffiffiffiffiffiffiffiffiffiffi

1þ x
p ½Jνðω̄ð1þ xÞÞYνðω̄Þ

− Yνðω̄ð1þ xÞÞJνðω̄Þ�
����2
�
; (70)

where ω̄ ¼ ωa is a dimensionless frequency.
Let us define in this case the new variable σ ¼ ωa

vγ , and
new spectral density ĒðσÞ ¼ a

e2 Eðσ vγ
a Þ. The full energy

reads
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E ¼ e2

a
vγ

Z
∞

0

ĒðσÞdσ: (71)

In the nonrelativistic case, v ≪ 1, the energy density has
the following form:

ĒðσÞ ¼ 4

π
σ2
����
Z

∞

0

sin xdx
ðxþ σÞ2

����2; (72)

and the total energy E ¼ 2v
3a e

2. The integral above may be
expressed in terms of integral sine and cosine special
functions

Z
∞

0

sin xdx
ðx þ σÞ2 ¼ − cos σCiðσÞ þ sin σ

�
π

2
− SiðσÞ

�
:

(73)

Taking into account this expression we find maximum of
spectral density at point σ ≈ 0.77, which is for

ωm ¼ 0.77
γv
a
: (74)

The spectral density falls down slowly, Ē ≈ 4=πσ2 for
σ → ∞. In Fig. 2 we show numerical simulations of the
energy density ĒðσÞ for different values of the velocity.

IV. DISCUSSION AND CONCLUSION

Let us here summarize the results obtained in the above
sections. We calculated the total energy loss and spectral
density for uniformly moving electrically charged particles
in a wormhole spacetime with an infinitely short throat. If a
particle moves uniformly with impact parameter b the total
energy is given by Eq. (46). It is better to analyze the energy
as a function of the new dimensionless variable
σ ¼ ωb=vγ:

E ¼ e2a2

b3
vγ

Z
∞

0

ĒðσÞdσ: (75)

In the nonrelativistic case, v ≪ 1, the spectral density
Ē ∼ σ2K2

0ðσÞ. The density exponentially falls down,
Ē ∼ σe−2σ , for large frequency σ → ∞ and tends to
zero, Ē ∼ σ2 ln2 σ, for small frequencies, σ → 0. The
maximum of the density is for σ ∼ 1, which is is for ω ∼
v=b and the total energy loss E ∼ va2=b3. In the opposite
case of ultrarelativistic motion we have the same behavior
of the spectral density for small and large σ. The total
energy loss now is E ∼ γa2=b3 with a maximum at the point
ω ∼ γ=b. We may combine both cases by the statement that
the total energy loss E ∼ e2vγa2=b3 with a maximum at
ω ∼ vγ=b. The spectrum exponentially falls down for large
σ ¼ ωb=vγ and tends to zero at the origin. The typical plots
of the spectral densities are shown in Fig. 1.
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FIG. 1. The spectral density of the energy (48) as a function of σ ¼ ωb
vγ : (a) v ¼ 0 (thin line), v ¼ 0.9 (middle thickness line), and

v ¼ 0.99 (thick line). (b) The thin line is for v ¼ 0 up to v ¼ 0.99 and the thick line is for v ¼ 0.999. The extrema of the energy are
located at σ ∼ 1, which is for frequency ω ∼ vγ=b.
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FIG. 2. The spectral density of the energy loss (70) for v ¼ 0
(thin line), v ¼ 0.1 (middle thickness line), and v ¼ 0.3 (thick
line) as a function of σ ¼ ωa

vγ . The extrema are located at σ ∼ 1,
which is for ω ∼ vγ=a.
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For particles which move radially through the wormhole
throat, we obtain a similar picture. The spectral density has
the form given by Eq. (70) and E ∼ vγ=a. The spectral
energy has a maximum at frequency ω ∼ vγ=a. In this case
the energy falls down more slowly E ∼ 1=σ2, where
σ ¼ ωa=vγ. A typical spectral density of the energy is
shown in Fig. 2.
The wormhole spacetime considered here is everywhere

flat except at the sphere with a singular curvature. We
observe that even uniformly moving particles radiate an
electromagnetic field and the spectral density of the energy
loss has a maximum at a specific frequency. In Minkowsky
spacetime this effect is forbidden due to the energy
conservation law.
It is also important to compare the above results with

radiation in a different spherically symmetric background.
This is interesting in the context of the wormhole’s mimicry
[29]. It was claimed that all classical phenomena in a static
spherically symmetric wormhole spacetime are the same as
in an appropriate black hole spacetime and the only way to
distinguish them is through the observation of Hawking
radiation. We already noted in Ref. [15] that this is not the
case for a self-interaction force, which has an opposite sign
in these two geometries. The origin may be connected with
the fact that the self-force is obtained by a renormalization
procedure and for this reason it is, in fact, a quantum
phenomenon.
In the geometry under consideration the trajectories of

uniformly moving particles are straight lines. This is not the
case for a Schwarzschild geometry and the main interest
connects with close orbits of particles around the central
mass. In this case, there is a well-known flat spacetime
synchrotron radiation. The synchrotron radiation of a
particle moving along a geodesic in the black hole
spacetime was considered in detail in many papers. Let
us refer here for papers [30,31] and book [32]. In these
papers the spectral density of radiation was calculated for
scalar (s ¼ 0), electromagnetic (s ¼ 1), and gravitational
(s ¼ 2) fields in the background of a black hole. The main
result is that the power spectrum has the following form:

dEs

dω
∼
�
ω

ωc

�
1−s

e−
2ω
ωc ; (76)

where ωc is some critical frequency. We observe from this
formula that in the case of the electromagnetic field (s ¼ 1)
the spectrum is exponentially steadily decreasing without a
characteristic frequency. Therefore we expect a great differ-
ence in the radiation of plasma surrounding a black hole or a
wormhole. The difference may be explained by a nontrivial
topology of the wormhole’s spacetime. We have two copies
of Minkowsky spacetime which are glued together on the
sphere. Some part of the electromagnetic field may go
through the wormhole’s throat to a second universe [15].
The radiation of uniformly moving particles in the

background of cosmic strings was considered in
Ref. [20] and in the background of a global monopole
in Ref. [24]. The spacetime of an infinitely thin cosmic
string has cylindrical symmetry and is everywhere flat
except at the origin where it has infinite curvature. The
spacetime of a pointlike global monopole has spherical
symmetry with nonzero curvature. In both cases the
spectrum of radiation has no specific frequency and
steadily falls down.
Let us now speculate about result obtained. A particle

moving near or through a wormhole will radiate
electromagnetic waves. The magnitude and character-
istic frequency of the radiation of each particle depends
on the velocity and impact parameter of the particle’s
trajectory. If a particle moves through a wormhole, the
characteristic frequency depends on the radius of the
throat only. Therefore, we observe specific radiation
from the plasma surrounding the wormhole’s throat with
a specific frequency. To obtain this frequency we should
average the energy over specific particles’ distribution
and then find the maximum of the spectral density
obtained. These calculations will be considered in
separate paper.
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