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For variable gravity models the strength of gravity, as measured by Newton’s “constant” or the Planck
mass, depends on the value of a scalar field, the cosmon. We discuss two simple four-parameter models
with a quadratic or constant cosmon potential. They are compatible with all presently available cosmo-
logical observations, including inflation. The inflaton and the scalar field of quintessence are the same
cosmon field. Dark energy constitutes a small, almost constant fraction of the energy density during
the radiation- and matter-dominated epochs (early dark energy). In the present epoch we witness a tran-
sition to a new dark energy-dominated epoch. Our models are free of a big bang singularity. The stability of
solutions generates an arrow of time. Our picture of the Universe is unusual, with a shrinking or static scale
factor, while the masses of particles increase and the size of atoms shrinks. The evolution of the Universe
can be very slow for all cosmological epochs including inflation, with typical time scale 1010 yr, and in
sharp contrast to the usual big bang picture. The map to the equivalent Einstein frame with constant particle
masses and expanding scale factor can be singular at the big bang.
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I. INTRODUCTION

Simple models of variable gravity give rise to realistic
cosmology, describing inflation and the present transition
to dark energy domination by the same scalar field. In these
models gravity is modified, the Planck mass being propor-
tional to the cosmon field χ, at least asymptotically for large
χ. During the cosmological evolution the value of χ
increases, thus reaching the asymptotic regime during or
after the inflationary period.
We present two simple models, one with a quadratic cos-

mon potential (A) and the other with a constant potential
(B) or cosmological constant. The kinetic term of the cos-
mon makes a crossover from a positive constant for small
χ to a negative constant close to the conformal value or sta-
bility bound for large χ. Both models involve only three
parameters in the scalar-graviton sector, plus an additional
cosmologically relevant parameter which quantifies the
growth of neutrino masses. This suffices for a realistic cos-
mology, compatible with all present observations. Models
with such a simple structure are subject to interesting
precision tests by forthcoming observations.
Besides the conceptual advantage of a unified descrip-

tion of all cosmological epochs we consider the simplicity
of our models as an important novel feature of our
approach. With two parameters fixed by the present frac-
tion of dark energy and the amplitude of primordial density
fluctuations it remains to be explored by future observa-
tions if the remaining two parameters are sufficient to
account for all cosmological observations, involving the
physics of primordial density fluctuations as well as present
dynamical dark energy. Furthermore, variable gravity offers
new intriguing pictures of the history of our universe, being

in the past cold, evolving slowly and without a big bang
singularity. This new view may influence research on
the “beginning” of our universe.
For a quadratic cosmon potential the Universe shrinks

during radiation and matter domination, while for the
constant potential the radiation epoch has a flat static
Minkowski geometry. Both models lead to the same pre-
dictions of all observables for the radiation-, matter- and
dark energy-dominated periods. All observable quantities
resemble closely the ones in the standard ΛCDM model.
The main distinctive features are the presence of early
dark energy and the clumping of the cosmological neutrino
background. The two models differ for the inflationary
epoch, predicting for the density fluctuations a spectral
index and tensor to scalar ratio n ¼ 0.97, r ¼ 0.13
(quadratic potential) or a typical range n ¼ 0.94–0.955,
r ¼ 0.03–0.08 (constant potential).
The asymptotic regime for χ → ∞ corresponds to the

approach to a fixed point with the associated dilatation
or scale symmetry. In this regime the electron and nucleon
masses are proportional to the dynamical Planck mass
χ. These particle masses are therefore induced by the spon-
taneous breaking of scale symmetry for a nonzero χ. Close
to the fixed point two deviations from exact scale symmetry
remain important. The first concerns the mass scales
present in the cosmon potential. They induce a time varying
mass for the cosmon, which otherwise would be an exact
Goldstone boson. The second is a scaling of neutrino
masses not proportional to χ, as induced by scale violations
in the evolution of a heavy singlet field which enters with
inverse proportionality in the seesaw mechanism. These
ingredients are sufficient to generate an overall cosmology
compatible with observation for all times after the end of

PHYSICAL REVIEW D 89, 024005 (2014)

1550-7998=2014=89(2)=024005(33) 024005-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.024005
http://dx.doi.org/10.1103/PhysRevD.89.024005
http://dx.doi.org/10.1103/PhysRevD.89.024005
http://dx.doi.org/10.1103/PhysRevD.89.024005


inflation. The inflationary epoch is followed by radiation
and matter domination, while the present cosmological
epoch is a transition to a dark energy-dominated epoch.
As compared to the dynamical Planck mass χ all scale vio-
lating effects are tiny in the asymptotic regime, explaining
the tiny value of the present dark energy density.
For the early epoch of inflation the violation of scale

symmetry is no longer a small effect. It determines the basic
properties of inflation. In order to obtain a realistic setting
with acceptable properties of the generated density fluctu-
ations the scale violation in the scalar kinetic term plays an
important role. The observed values of the spectral index
and the amplitudes of scalar and tensor fluctuations impose
constraints on the χ dependence of the kinetic term. These
constraints are of qualitative nature, while the detailed form
of the kinetic term does not matter. No fine tuning of
parameters is necessary.
For our models the radiation- and matter-dominated

epochs have an unusual geometry of spacetime. For model
(A) the scale factor of the Universe is shrinking rather than
expanding.Theusualredshiftduetotheexpansionisreplaced
by an increase of particle masses with increasing χ. Light
from distant galaxies has been emitted when the value of χ
was smaller than its present value. Hence the electron and
nucleon masses have been smaller, resulting in smaller
frequencies. While traveling to us, the radiation has sub-
sequently been blueshifted rather than redshifted. During
the radiation-dominated epoch the temperature was much
smaller than the present 2.7° K and increasing. Particle
masses mp increase even faster, however. The decrease of
the ratio T=mp triggers cosmic events as nucleosynthesis
or the emission of the cosmic microwave background
(CMB) radiation. The picture of the past is a “cold universe”.
Furthermore, the characteristic time scale for the cosmic evo-
lution is given for all cosmological epochs by the present
inverse Hubble parameter of the order of 1010 yr. This
includes inflation and the approach to the “big bang” for
t → −∞. We may call this picture the “slow cold universe”.
In model (B) the Universe expands in the matter-

dominated epoch, although with a rate different from the
usual one. For the radiation period the geometry is flat static
Minkowski space and the temperature is constant. The
usual redshift is then entirely due to the increase of particle
masses, with a simple linear increase χ ¼ cχt in flat space.
In this model the dark energy density is the same for all
times, from inflation to now, ρh ¼ ð2 × 10−3 eVÞ4.
Onlydimensionlessquantitiesareobservable.Concerning

the geometry of theUniverse this involves the ratio of distan-
ces between galaxies divided by some fixed length, say the
meter, which is in turn related to the size of atoms. Thus a
shrinking atom size can be equivalent to an expanding dis-
tancebetweengalaxies.Anincreasingmassofelectronsme ∼
χ is directly reflected in a shrinking size of atoms∼χ−1. Our
picture of a shrinking Universe can be mapped to the usual

picture of an expanding Universe by a field transformation
of the metric.
We present explicit solutions which remain regular for

arbitrary values of time t. No big bang singularity is
encountered for these solutions. (This holds even in the
absence of an inflationary epoch. Realistic cosmology
requires an inflationary epoch, however.) Despite the
unusual geometry, the radiation and matter epochs lead
to the same predictions for observables as in standard cos-
mology, except for small deviations due to the presence of a
small almost constant fraction of early dark energy. In par-
ticular, the results of nucleosynthesis are the standard ones.
The clock provided by the Hubble expansion in the stan-
dard description is now replaced by a clock associated to
the increasing value of χ. The compatibility with standard
cosmology is most easily seen by a Weyl scaling to the
Einstein frame.
The idea that Newton’s “constant” may be dynamical

has a long history, going back to Dirac [1] and Jordan
[2,3]. In most early approaches the particle masses have
been considered as constants [4,5]. Then the variation of
the ratio between Planck mass and nucleon mass—in
our notation χ=mn—is not compatible with observational
bounds. For this reason models with otherwise interesting
cosmological aspects [6,7] have not been considered as
realistic. The situation changes radically [8,9] if particle
masses also scale proportional to χ, i.e. mnðχÞ ∼ χ, such
that the ratio between Planck mass and nucleon mass,
χ=mnðχÞ, remains constant. In this case all bounds on
the time variation of fundamental constants and apparent
violations of the equivalence principle are obeyed. The idea
that the expansion of the Universe may be replaced by an
increase of masses has been pursued earlier [10–12]. These
early models are, however, not compatible with cosmologi-
cal observations as nucleosynthesis or the cosmic micro-
wave background. In contrast, the models proposed in
this paper are consistent with all present observations.
If no parameter with dimension of a mass or length

appears in the quantum effective action the theory is dila-
tation invariant or scale invariant [13–15]. The cosmology
of such models has been investigated in Refs. [9,14]. After
a Weyl scaling these models become in the Einstein frame
standard gravity theories with a cosmological constant
coupled to a massless dilaton without a potential [9].
The dilaton is the Goldstone boson of spontaneously
broken dilatation symmetry. With rather arbitrary initial
conditions it settles to a fixed value in very early cosmology
due to Hubble damping. For the observable cosmology of
the radiation or matter epochs the dilaton plays no role—it
is not generating a dynamical dark energy.
Dynamical dark energy or quintessence has been

predicted [9] from a setting where explicit scale sym-
metry breaking still plays a residual role. For example, a
cosmological constant is associated to an explicit mass
scale. This “dilatation anomaly” induces after Weyl scaling
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to the Einstein frame an exponentially decreasing
potential for the scalar field. The scalar field becomes a
pseudo-Goldstone boson, the cosmon, with a tiny mass that
vanishes asymptotically as the role of the dilatation
anomaly becomes less and less important. Our model
(B) is similar in spirit to the models with a cosmological
constant in Refs. [8,9]. A cosmological constant may also
arise as an integration constant in unimodular gravity with-
out explicit scale symmetry breaking in the effective action.
Concerning dynamical dark energy this yields the same
cosmology as explicit symmetry breaking [16–18].
Models with explicit dilatation symmetry breaking

involve two types of mass scales: the intrinsic scales that
we may denote here collectively by m, and the scale of
spontaneous scale symmetry breaking χ. For χ ≫ m many
details concerning the intrinsic scales will become irrel-
evant. One typical scenario is a “runaway cosmology,”
where χ continues to increase for increasing time, such that
a fixed point is approached. At any fixed point dilatation
symmetry is exact—the memory of intrinsic scales is
“forgotten”, up to their appearance in wave function
renormalizations in case of nonvanishing anomalous
dimensions. At the exact fixed point all particle masses
must scale precisely proportional to χ, while renormalized
dimensionless couplings as gauge and Yukawa couplings
take constant values. We will assume in this paper that
masses and couplings of the standard model of particle
physics are sufficiently close to the fixed point for large
values of χ such that corrections from explicit scale sym-
metry breaking can be neglected in this sector. We will not
make this assumption for nonrenormalizable operators in
the standard model of particle physics, as the terms gener-
ating a mass for the neutrinos. Here heavy singlet fields
which enter the neutrino mass with inverse proportionality
may not have reached a fixed point scaling ∼χ. This will
lead to models of “growing neutrino quintessence” [19,20].
For the potential VðχÞ of the cosmon a generalized “fixed

point” is reached whenever VðχÞ increases less fast than χ4
for χ → ∞. In this case, the dimensionless ratio VðχÞ=χ4
vanishes for χ → ∞, such that the cosmological constant
in the Einstein frame vanishes asymptotically [8,9,21].
Similarly, the squared cosmon mass in units of the
Planck mass vanishes asymptotically and the cosmon
becomes the massless dilaton. Obviously, in the other limit
χ ≲m the intrinsic mass scales play a crucial role. This will
be the case for the inflationary period in our models.
An important new aspect of the present paper concerns

the close link of the cosmon to inflation. During the infla-
tionary epoch the energy density of the Universe is domi-
nated by the potential energy of a scalar field, the inflaton,
causing a very rapid expansion [22–27]. We link this infla-
tionary phase to quintessence in late cosmology, where the
scalar field again plays an important role [9,21,28–33]. The
cosmon can play the role of the inflaton, realizing a sce-
nario of “cosmon inflation” [34]. (For other ideas relating

dark energy and inflation see Ref. [35,36].) In order to
obtain a realistic inflationary epoch it is sufficient that
the coefficient of the kinetic term in the action, the
“kinetial” KðχÞ, changes from a large positive value for
small χ to a negative value for large χ. Negative values
remain compatible with stability due to the mixing between
χ and the scalar component of the metric, provided K is
larger than the conformal value −6. For our models the
tight observational bounds on early dark energy [37–42]
require that K þ 6 is small for large χ. (A field dependence
of the kinetial has been invoked previously in order to
induce a crossover from matter domination to dark energy
domination [43–45].)
The value of the cosmon field increases during inflation,

typically from χ ≪ m for the early stages of inflation to
χ ≫ m at the end of inflation. The intrinsic scale m there-
fore plays an important role during the inflationary epoch.
One may view the physics of inflation as the process of
transition to the asymptotic regime during which the infor-
mation about intrinsic mass scales is lost to a large extent.
The role of the intrinsic scales m for the properties of the
density fluctuations created during inflation depends on the
value of x ¼ χ2=m2 at the time when the associated length
scales cross the horizon.
In model (A) with a quadratic cosmon potential realistic

inflation requires that x is already much larger than one at
horizon crossing. The intrinsic scale that appears in the
slow roll parameters is related to the decrease of K that
is necessary to end inflation. We assume that K decreases
in the relevant region as c=x. Horizon crossing in the
regime of large x is realized for small c. For c → 0 one
finds “universal relations” ϵ ¼ η ¼ 1=2N, with N the num-
ber of e-foldings before the end of inflation at which the
scale of the relevant fluctuations crosses the horizon. For
N ¼ 60 this yields a spectral index n ¼ 0.97 and a tensor
to scalar ratio r ¼ 0.13. The amplitude of the density fluc-
tuations involves, in addition, the scale characterizing the
size of the potential. Bounds on r have been derived from
Planck data [42] within the ΛCDM model. The compatibil-
ity of model (A) with observations has to be checked by
including in the analysis the predicted early dark energy
and the varying neutrino mass.
Model (B) has a flat cosmon potential and an effective

Planck mass
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þm2

p
[in contrast to χ for model (A)].

This form of the effective action is suggested by a recent
functional renormalization analysis of a fixed point in dila-
ton quantum gravity [46]. For the decrease of K we assume
the same form as for model (A). In this model realistic den-
sity fluctuations are obtained in the regime of small x. Other
mass scales besides the one governing the decrease of
K can play a role for the slow roll parameters. Typically,
tensor amplitudes r between 0.03 and 0.08 are found for
a spectral index n in the range between 0.94 and 0.955.
The second theme of the present paper concerns an over-

all view of the different cosmological epochs in the “Jordan
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frame” where the Planck- and particle masses depend on
χ. In this scheme dilatation symmetry is realized by a multi-
plicative rescaling of the metric and scalar field. It is
directly connected to the absence of parameters with
dimension of mass or length. We will see that in the
Jordan frame the cosmological solution has no big bang
singularity. (In this paper we associate the “Jordan frame”
with the choice of fields for which scale transformations are
defined by a multiplicative rescaling of fields. In our
approach both the Planck mass and all charged particle
masses are proportional to a scalar field χ in the limit of
large χ. Our definition therefore differs from a definition
of the Jordan frame as the one for which particle masses
are constant.)
It is possible to use a redefinition of the metric

(conformal transformation or Weyl scaling [47]) in order
to transform our model of variable gravity to the
“Einstein frame” with a fixed Planck mass. The Einstein
frame is advantageous for practical computations of
observables since in this frame both the gravitational
constant and the masses of nucleons or electrons have
fixed values. For a given quantum effective action the
Jordan and Einstein frames are completely equivalent for
all observables [8,9]. This will allow us to perform the
quantitative computations for the inflationary period in
the familiar Einstein frame. Also the later radiation-, mat-
ter- and dark energy-dominated epochs are conveniently
described in the Einstein frame where the field equations
have the usual form.
Despite the practical advantages of the Einstein frame

several important features of cosmology are understood
easier in the Jordan frame. This concerns the issue of scale
symmetry and its spontaneous breaking, together with the
associated discussion of naturalness of cosmological equa-
tions in a quantum world [48]. Furthermore, our models
correspond to a very simple setting in the Jordan frame,
while they would perhaps look contrived in a view from
the Einstein frame. Perhaps most important in our context
is the absence of a big bang singularity in the Jordan frame.
For this reason we follow here the main cosmological
epochs directly in the Jordan frame. In model (A) with a
quadratic cosmon potential the evolution of the scale factor
is given by a sequence of four de Sitter solutions for which
χ increases exponentially. In the first inflationary epoch
the Universe expands, while for radiation and matter
domination it shrinks [49]. Finally, the growth of the
neutrino masses triggers the transition to a fourth dark
energy-dominated epoch during which the Universe
expands again.
In model (B) with a constant cosmon potential the radi-

ation- and matter-dominated epochs show a linear increase
of χ, χ ∼

ffiffiffiffiffi
λ̄c

p
t, with λ̄c the cosmological constant. The

early stages of inflation feature an almost exponential
growth of χ, while the later stages turn to a linear growth.
Correspondingly the Hubble parameter is almost constant

during the early stages of inflation, while it decreases ∼t−1
towards the end of inflation. Most remarkably, the Hubble
parameter vanishes for the radiation-dominated epoch. For
radiation domination the geometry is described by flat
static Minkowski space. This turns over later to a scaling
H ¼ 1=ð3tÞ for the matter-dominated epoch.
The map between the Jordan and the Einstein frame

can be considered as a coordinate change in field space.
(It is not a coordinate transformation of general relativ-
ity.) This explains why models with a big bang singular-
ity in the Einstein frame can be free of singularities in the
Jordan frame. For our two models we may consider the
Jordan frame as a choice of “field coordinates” that is
free of singularities. The often discussed big bang singu-
larity turns out to be a singularity of a coordinate trans-
formation in field space, rather than having a physical
meaning!
The present paper is organized as follows. We display

general field equations for variable gravity cosmology in
Sec. II. Sections III–VIII deal with a quadratic cosmon
potential, model (A). In Sec. IV we specify the model,
which uses for the χ-dependent Planck mass the simple
form MpðχÞ ¼ χ, together with a quadratic cosmon poten-
tial. In Sec. V we present the four de Sitter solutions which
describe the four cosmological epochs in the limit of a
constant kinetial K. In Sec. V we show that the de Sitter
solutions with increasing χ are stable with respect to neigh-
boring solutions as time increases, while they are unstable
for decreasing time. This defines an arrow of time. A com-
bination of the scalar field and the scale factor can be used
as a cosmological clock. Section VI solves the cosmologi-
cal equations numerically. We find that the solutions
with constant K are a very good approximation except
for short transition periods. We also discuss bounce solu-
tions where χ first increases and subsequently turns to the
increase characteristic for the inflationary epoch.
In Sec. VII we bring our model to a picture closer to the

standard description of cosmology. For temporal and spa-
tial distances that are measured in units of the decreasing
Planck length the Universe shows the usual expansion of
the modified scale factor. A Weyl scaling to the Einstein
frame results in an exponential cosmon potential. For this
potential the inflationary epoch is still influenced by a field
dependent kinetial. For the later radiation- and matter-
dominated epochs the kinetial becomes almost constant
and the exponential potential provides for a cosmic
attractor (“tracker”) solution with early dark energy. A
growing neutrino mass finally stops the time evolution
of the cosmon such that the potential acts as a cosmological
constant.
The field transformation to the Einstein frame

becomes singular for χ → 0. This explains the appearance
of a big bang singularity in the Einstein frame even
though no such singularity is present in the field-
coordinates of the Jordan frame. The Einstein frame is
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used in order to give a detailed discussion of the infla-
tionary epoch in Sec. VIII.
Sections IX and X discuss our second model (B) with a

constant potential. In Sec. IX we discuss the various
cosmological epochs in the Jordan frame. A more detailed
discussion of the inflationary epoch in the Einstein frame is
presented in Sec. X. We conclude in Sec. XI.

II. COSMON FIELD EQUATIONS

The cosmological field equations can be derived by
variation of the quantum effective action Γ. This includes
already all effects of quantum fluctuations. (We do not
attempt here an explicit computation of the quantum fluc-
tuations, but rather assume that they result in a simple struc-
ture of Γ. No additional fluctuation effects should be added
to Γ.) We consider a general form of the effective action for
a scalar field χ—the cosmon—coupled to gravity

Γ ¼
Z

d4x
ffiffiffi
g

p �
− 1

2
FðχÞRþ 1

2
KðχÞ∂μχ∂μχ þ VðχÞ

�
. (1)

This is the most general form containing up to two
derivatives which is allowed by diffeomorphism symmetry.
(We assume that possible higher derivative terms play a
subleading role.)
The effective action (1) remains rather generic and it

is perhaps no surprise that realistic cosmologies can be
obtained for a suitable choice of the three functions F,
K and V. Our aim will be the discussion of simple
models. For this purpose we will later mainly concen-
trate on two models with a particularly simple action,
namely

ðAÞ∶ FðχÞ ¼ χ2; VðχÞ ¼ μ2χ2; (2)

and

ðBÞ∶ FðχÞ ¼ χ2 þm2; VðχÞ ¼ λ̄c. (3)

The detailed dynamics of both models will be specified
by the “kinetial” KðχÞ. We will follow a simple setting
where K interpolates between two different constant
values for χ → 0 and χ → ∞. The present section
discusses the general case with three functions F, V
and K.
An effective action of the type (1) has been found in the

context of “higher dimensional inflation” [27,50–54],
which describes inflation as the separation of the length
scale of three space-like dimensions from the one of addi-
tional “internal” dimensions. By dimensional reduction
such models are equivalent to four-dimensional inflation
models, typically with constant K, F ¼ ξχ2 and V a poly-
nomial of χ. After a Weyl scaling this has introduced [50]
an exponential potential for the inflaton. Exponential

potentials have later been widely studied in the context
of power law inflation [55–57].
Models of quintessence based on the action (1) are often

called “extended quintessence” if F deviates from a con-
stant. They may be regarded as a simple form of modified
gravity and have been studied widely [8,9,58–62]. If par-
ticle masses do not depend on χ a Weyl scaling to the
Einstein frame leads to an equivalent model with standard
gravity where the particle masses depend on the scalar
field [8,9]. These are models of “coupled quintessence”
[21,63–71]. For constant particle masses (in the Jordan
frame), however, the coupling is universal and therefore
severely restricted by bounds on time varying couplings
[8,44]. Since strong bounds can be found from nucleosyn-
thesis [72–76] such a coupling must be tiny since this
time. (A possible alternative for a large scalar mass is
the “chameleon effect”, whereby fundamental couplings
depend on density and not on time [77–80].) We note that
fðRÞ theories can also be cast into the form (1) [81–89],
such that the same remarks apply. In the present paper
we assume that the masses of charged particles are propor-
tional to χ, at least for the cosmology after inflation. In this
case the cosmon coupling to nucleons or electrons vanishes
in the Einstein frame [8,9], and all observational constraints
on time varying couplings or apparent violations of the
equivalence principle are obeyed.
The particular emphasis of this paper concerns the simul-

taneous description of inflation and late quintessence by a
single scalar field. We will see that this can be realized if K
changes sign, with positive values for small χ and negative
values for large χ. This prevents us from setting K ¼ 1 by a
simple field redefinition of the scalar field. We there-
fore consider the most general effective action (1) which
contains at most two derivatives.
The scalar field equation derived from Eq. (1) reads

−DμðK∂μχÞ þ 1

2

∂K
∂χ ∂μχ∂μχ ¼ −∂V

∂χ þ 1

2

∂F
∂χ Rþ qχ ; (4)

and the gravitational field equation is given by

F

�
Rμν − 1

2
Rgμν

�
þD2Fgμν −DμDνF

þ 1

2
K∂ρχ∂ρχgμν − K∂μχ∂νχ þ Vgμν ¼ Tμν. (5)

withDμ the covariant derivative andD2 ¼ DμDμ. Here Tμν

is the energy momentum tensor of matter or radiation and
qχ differs from zero if particle masses depend on χ.
Insertion of the scalar field equation (4) into the Bianchi
identity DνðRμ

ν − 1
2
RδνμÞ ¼ 0 relates qχ and Tμν [8].

For a homogenous and isotropic Universe (and for
vanishing spatial curvature) the field equations take the
form [8]
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Kðχ̈ þ 3H _χÞ þ 1

2

∂K
∂χ _χ2 ¼ −∂V

∂χ þ 1

2

∂F
∂χ Rþ qχ ; (6)

FR ¼ Fð12H2 þ 6 _HÞ

¼ 4V −
�
K þ 6

∂F
∂χ2

�
_χ2

− 6
∂F
∂χ2 ðχ̈ þ 3H _χÞχ − 12

∂2F
ð∂χ2Þ2 χ

2 _χ2 − Tμ
μ; (7)

F

�
R00 − 1

2
Rg00

�
¼ 3FH2

¼ V þ 1

2
K _χ2 − 6

∂F
∂χ2Hχ _χ þ T00. (8)

As usual, we denote the scale factor in the Robertson-
Walker metric by aðtÞ and H ¼ ∂t ln a.
The general consistency relation between qχ , T00 ¼ ρ

and Tij ¼ pδij reads

_ρþ 3Hðρþ pÞ þ qχ _χ ¼ 0. (9)

(This can be verified easily by extracting qχ from Eq. (6), ρ

from Eq. (8) and p by combining Eqs. (7) and (8).) For an
ideal fluid of particles with a χ-dependent mass mpðχÞ the
explicit form of qχ is given by

qχ ¼ −∂ ln mp

∂χ ðρ − 3pÞ. (10)

In particular, for mpðχÞ ∼ χ and ρ − 3p ¼ mpnp, with np
the number density of particles, Eq. (10) reads

qχ ¼ − ρ − 3p
χ

¼ −mp

χ
np. (11)

This will be the form assumed for charged particles, at least
for large values of χ. For neutrinos we will assume a differ-
ent form of mνðχÞ which multiplies effectively the rhs of
Eq. (11) by a factor ð2~γ þ 1Þ, cf. Sec. III. For several spe-
cies of particles with different masses qχ is a linear super-
position of the individual contributions. Due to the
variation of the mass the energy momentum tensor of
the fluid is not separately conserved if _χ ≠ 0.
We may insert Eq. (7) into Eq. (6) and use the variable

s ¼ ln

�
χ

m

�
(12)

with m a fixed mass scale. This yields

�
Kþ6

χ2

F

�∂F
∂χ2

�
2
�
ðs̈þ3H_sÞþ

�
K

�
1þχ2

F
∂F
∂χ2

�
þχ

2

∂K
∂χ þ12

χ2

F

�∂F
∂χ2

�
2

þ12 χ4

F
∂F
∂χ2

∂2F
ð∂χ2Þ2

�
_s2¼4

∂F
∂χ2

V
F
−2

∂V
∂χ2þ

qχ
χ
− ∂F
∂χ2

Tμ
μ

F
;

(13)

where χ ¼ m expðsÞ has to be inserted. For a determination
of H one uses Eq. (8),

H2 ¼ 1

3F

�
V þ 1

2
χ2K_s2 − 6χ2

∂F
∂χ2 H_sþ T00

�
. (14)

This quadratic equation has typically two solutions which
express H as a function of s, _s and T00 ¼ ρ. Insertion into
Eq. (13) yields a second order nonlinear differential equa-
tion for s. In the presence of matter and radiation this has to
be complemented by appropriate equations for Tμν and qχ .

III. QUADRATIC COSMON POTENTIAL

Let us now concentrate on the simple class of models
ðAÞ, F ¼ χ2, V ¼ μ2χ2. A given model in this class still
needs the specification of the kinetial K. Realistic cosmol-
ogies can be obtained if K is positive and sufficiently large
for the values of χ relevant for the inflationary epoch, while
it takes negative values close to the stability bound

ðK ¼ −6Þ for the large values of χ that are reached for
the subsequent radiation, matter- and dark energy-
dominated epochs. The overall cosmological picture only
depends on this qualitative behavior of the kinetial K.
Quantitative issues require, however, a more detailed

specification. We will mainly use in this work an interpo-
lation between two constants, one for small χ and the other
for large χ. This involves three parameters, namely the lim-
its K0 ¼ Kðχ → 0Þ, K∞ ¼ Kðχ → ∞Þand the scale m that
characterizes the transition between these two limits. The
details of the interpolation are less important, but have
to be specified for numerical estimates. For model ðAÞ
we take the form used in Refs. [34,49],

KðχÞ ¼ 4

~α2
m2

m2 þ χ2
þ 4

α2
χ2

m2 þ χ2
− 6. (15)

The mixing of scalar degrees of freedom in χ and gμν leads
to a stable theory since K > −6. (The special value
K ¼ −6 is the “conformal point”. Note that for F ¼ χ2

C. WETTERICH PHYSICAL REVIEW D 89, 024005 (2014)

024005-6



stability does not require K > 0, but rather K > −6). The
two limiting constants are K þ 6 ¼ 4= ~α2 for χ2 ≪ m2 and
K þ 6 ¼ 4=α2 for χ2 ≫ m2. Compatibility with observa-
tions in late cosmology (bounds an early dark energy)
requires α≳ 10, while a realistic inflationary period in early
cosmology can be realized for ~α≲ 0.02.
The present value of χ can be associated with the reduced

Planck mass M ¼ 2.44 · 1027 eV, while the present value
of V ¼ μ2χ2 accounts for the dark energy density, such that

μ ≈ 2 × 10−33 eV: (16)

Our model differs from a Brans-Dicke theory [5] by three
important ingredients: the presence of a potential
V ¼ μ2χ2, the χ dependence of K and, most important,
the scaling of the masses of nucleons, charged leptons,
gauge bosons and Higgs scalars proportional to χ [8].
For the choice (2) the field equation (13) simplifies

considerably,

ðK þ 6Þðs̈þ 3H_sþ 2_s2Þ þ χ

2

∂K
∂χ _s2 ¼ 2μ2 þ g; (17)

with

g ¼ qχ
χ
− Tμ

μ

χ2
. (18)

The Hubble parameter is determined by Eq. (14),

3ðH þ _sÞ2 ¼ μ2 þ K þ 6

2
_s2 þ ρ

m2
e−2s. (19)

The two solutions of Eq. (19),

H þ _s ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

3
þ K þ 6

6
_s2 þ ρ

3m2
e−2s

s
; (20)

are related to each other by time reversal. We observe
that for ρ ≥ 0, K > −6 the expression under the root is
always positive. Unless these conditions are violated the
sign of the root in Eq. (20) remains the same for all t.
The combination y ¼ ln aþ s either monotonically
increases or monotonically decreases.
Since for a time reflection invariant model (as the present

one) the two time directions are equivalent we can take the
positive sign in Eq. (20) without loss of generality, resulting
in the evolution equation,

ðKþ6Þs̈¼2μ2þðKþ6Þ
�
_s2− ffiffiffi

3
p

_s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þKþ6

2
_s2þ ρ

m2
e−2s

r �

−1

2

∂K
∂s _s

2þg. (21)

For radiation one has Tμ
μ ¼ qχ ¼ 0, while for a fluid

consisting of particles with mass ∼χ one finds
Tμ
μ ¼ χqχ ¼ −ðρ − 3pÞ. For both cases one has g ¼ 0,

such that effects of radiation and matter only enter via
the term ∼ρ in the square root. For constant K this is
also the only term which depends explicitly on s. Thus
for ρ ¼ 0, K ¼ const one has a shift symmetry
s → sþ const. In this case Eq. (21) reduces to a first order
differential equation for _s.
We may also ask if the value K ¼ −6 can ever be

reached by a solution of Eq. (21) with g ¼ 0. This would
require ð∂K=∂sÞ_s2 ¼ 4μ2 and therefore ∂K=∂s > 0. On
the other hand, if K ¼ −6 is to be reached for an increasing
s, starting from values K > −6, one would need
∂K=∂s < 0. One concludes thatK ¼ −6 cannot be reached
in this case. This statement is independent of the precise
choice of the kinetial KðχÞ even if the function KðχÞ
crosses the value −6 for some χc, KðχcÞ ¼ −6. It holds
provided ð∂K=∂χÞðχcÞ < 0. Then the dynamics forbid that
a solution χðtÞ reaches the value χc.

IV. DE SITTER SOLUTIONS

It is instructive to study simple explicit solutions
which obtain in the limit of constant K. They are good
approximations if K varies sufficiently slowly such that����χ ∂ lnðK þ 6Þ

∂χ
���� ¼

���� ∂ lnðK þ 6Þ
∂s

���� ≪ 1. (22)

For the choice (15) this holds for both limits χ → 0 and
χ → ∞. In Sec. VI we will check the validity of this
approximation.
For constant K the field equation (21) has solutions

where the geometry is for all times t a de Sitter space
with constant H, while the effective Planck mass increases
exponentially,

H ¼ bμ; χ ¼ χ0 expðcμtÞ; (23)

such that

_s ¼ cμ; s̈ ¼ 0. (24)

This holds for pure scalar field cosmologies ðρ ¼ 0Þ as well
as in the presence of radiation or matter, provided that the
energy density scales as

T00 ¼ ρ ¼ ρ̄μ2χ2; (25)

with constant ρ̄. For g ¼ 0 Eq. (21) reduces then to an
algebraic equation,

2þ ðK þ 6Þ
�
c2 − c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 3ðK þ 6Þ

2
c2 þ 3ρ̄

r �
¼ 0;

(26)

implying
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c2 ¼
3ðK þ 6Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6Kþ28

3Kþ18
ρ̄þ ρ̄2

q
− ρ̄Þ − 3K − 14

ðK þ 6Þð3K þ 16Þ .

(27)

The Hubble parameter follows from Eq. (20),

b ¼ −cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
þ K þ 6

6
c2 þ ρ̄

3

r
. (28)

A second solution obtains by time reversal, changing
simultaneously the sign of b and c.
The overall evolution of the Universe can be understood

qualitatively as a sequence of de Sitter solutions. Different
values of the proportionality constant ρ̄ in Eq. (25) for sca-
lar, radiation or matter domination imply different values
for b and c. Also, realistic dark energy can be described
as a de Sitter solution. Varying particle masses result in this
case in g ≠ 0, modifying the algebraic equation for b and c.
Furthermore, realistic models require different constants K
for very early and for late cosmology. It is striking that ρ̄, b,
c, g,K are all constants of order one. There is therefore only
a unique scale μ ≈ 2 × 10−33 eV that governs the time evo-
lution for all epochs in the history of the Universe. In our
picture the size of the Hubble parameter is always given by
the scale μ.

A. Scalar domination

Consider first solutions in the absence of radiation or
matter, ρ̄ ¼ 0. Provided ðK þ 6Þð3K þ 16Þ > 0 one has
the solutions,

c ¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK þ 6Þð3K þ 16Þp . (29)

The two signs are related by time reflection and we may
concentrate on the positive sign with increasing χ and s.
For K > −6 this solution exists for a range of K obeying

K > − 16

3
. (30)

The values of the Hubble parameter corresponding to the
solutions (29) follow from Eq. (20),

b ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
þ K þ 6

6
c2

r
− c

¼ � K þ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK þ 6Þð3K þ 16Þp ¼ K þ 4

2
c. (31)

The Universe is expanding ðb > 0Þ for increasing χðc > 0Þ
if K ≥ −4, otherwise it is shrinking. The sign of the
product,

bc ¼ 2ðK þ 4Þ
ðK þ 6Þð3K þ 16Þ ; (32)

is independent of the “direction of time,” i.e. independent of
the sign of the roots in Eqs. (29) and (31). [The signs in
Eqs. (29) and (31) are not independent, cf. Eq. (17).]

B. Asymptotic early cosmology

We begin with scalar field-dominated cosmology and
assume ~α2 < 2 such that for χ → 0 the condition K > −4
is obeyed. Then scalar field-dominated cosmology
describes an exponentially expanding Universe with expo-
nentially increasing effective Planck mass χ. As long as
constant K remains a good approximation the solution
(23), (29), (31), can perfectly describe the evolution of
the Universe for all times, including t → −∞. This solution
is completely regular, no singularity is encountered. Indeed,
we can take for t → −∞, χ → 0 the geometry of a de Sitter
space for which the curvature tensor,

Rμνρσ ¼ b2μ2ðgμρgνσ − gμσgνρÞ; (33)

and all its covariant derivatives are regular.
The “big bang” is now free of any singularities! The cen-

tral ingredient why the usual singularity is avoided arises
from the behavior of the effective Planck mass χ: it
approaches zero as t → −∞. From the point of view of
the field equations (6) this is in no way problematic, even
though the effective strength of gravity, characterized by
the effective Newton-constant GðχÞ ¼ 1=ð8πχ2Þ, diverges
for t → −∞.
As χ grows with increasing time the approximation of

constant K will no longer remain valid. In the region of
χ around m we will have to investigate solutions where
the χ dependence of KðχÞ is taken into account. For very
large χ2 ≫ m2 we may again use a constant K. For 2 <
α2 < 6 we have again the solution (23), (29), (31), but
now with negative b and therefore negative H. In this
region the scale factor aðtÞ decreases. For α2 > 4 we have
further the solution (23), (37) with negative H. For ~α2 < 2
and α2 > 2 a pure scalar field cosmology therefore
describes a Universe where the scale factor aðtÞ first
increases exponentially, and subsequently decreases expo-
nentially. For all times the effective Planck mass χ grows
exponentially.

C. Inflation

We will next show that the first stage of the evolution
describes an inflationary Universe. After the end of infla-
tion, entropy will be produced and the Universe is heated.
For this evolution after the end of inflation we therefore
need to add radiation and matter, such that a pure scalar
cosmology is no longer valid. Nevertheless, the main pic-
ture of cosmology is a sequence of de Sitter spaces, the first
with an expanding Universe (increasing aðtÞ) and
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subsequently with a shrinking Universe (decreasing aðtÞ).
The end of inflation will be triggered by an increase of the
kinetial K. Even though de Sitter solutions remain a good
approximation we will include the slow variation of KðχÞ
according to Eq. (15).
Let us take ~α ≪ 1. For the very early epoch with χ ≪ m

one has K þ 4 ¼ 4= ~α2 − 2 ≫ 1, such that b ≫ c. In this
case we can neglect χ̈ as compared to 3H _χ in Eq. (6).
This property is called the “slow roll approximation” for
inflation. We may continue the slow roll approximation
to larger values of χ. As long as χ2=m2 ≪ α2= ~α2 we can
neglect in Eq. (15) the term ∼α−2 such that the evolution
equations read in the slow roll approximation,

H2 ¼ μ2

3
;

_χ ¼ ~α2μχðm2 þ χ2Þffiffiffi
3

p ðm2 − 3~α2χ2Þ . (34)

The slow roll approximation breaks down once _χ=χ is
roughly of the same order as H. We may define

~ϵ ¼
�

_χ

Hχ

�
2

¼
�
~α2ðm2 þ χ2Þ
m2 − 3~α2χ2

�
2

; (35)

such that the slow roll period ends once ~ϵ is of the order
one. (For large K the criterion is rather ~ϵ≲ K.) For
χ2=m2 ¼ 1=ð4~α2Þ one reaches ~ϵ ¼ 1 and we conclude that
the inflationary slow roll phase ends once χ reaches a value
of this order of magnitude. The amplitude of density fluc-
tuations is governed by the ratio of the potential over the
fourth power of the effective Planck mass, μ2=χ2. For large
values of m2=ð ~α2μ2Þ the density fluctuations can be very
small, as required for a realistic cosmology. We will present
a more detailed quantitative description of the inflationary
epoch in Sec. VIII.

D. Radiation domination

For radiation the energy density scales ρr ∼ a−4. With
this scaling and for constant K we find again a de Sitter
solution (23), (24), (25), (27), (28). In order to realize
Eq. (25) with constant ρ̄r the scalar field has to evolve
as χ ∼ a−2. This requires

b ¼ − c
2
. (36)

The scaling value ρ̄ has to be adapted such that Eq. (27) has
a solution obeying the condition (36). One finds

c ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 6

p ; b ¼ − 1ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 6

p (37)

with

ρ̄r ¼ −3K þ 5

K þ 6
. (38)

Again, there exists also the time reversed solution with
opposite signs of b and c. For constant K the exact de
Sitter solution (37), (38) remains regular for all finite t.
For t → −∞ one has χ → 0, a → ∞. We note that no
big bang singularity occurs even within a setting equivalent
to the Friedman Universe, i.e. without invoking an infla-
tionary period.
A positive radiation density ρr requires K < −5. We

therefore consider Eq. (15) with large χ2=m2, e.g.
K þ 6 ¼ 4=α2, such that a radiation-dominated Universe
requires α2 > 4. (For K ¼ −5 the solution matches
smoothly with scalar field-dominated cosmology according
to the solution (29), (31).) We can compute the fraction Ωh
of homogenous dark energy in the total energy density
ρc ¼ ρr þ ρh, namely

ρh ¼ μ2χ2 þ 1

2
ðK þ 6Þ_χ2;

Ωh ¼
ρh

ρr þ ρh
¼ 1

K þ 6
¼ 4

α2
: (39)

Positive ρr and ρh requires 0 ≤ Ωh ≤ 1 which is obeyed
for all α2 ≥ 4. The fraction of dark energy Ωh during
nucleosynthesis cannot be too large without affecting the
successful computation of element abundancies. The strong
bound α > 10 from the CMB limit for early dark energy
suppresses Ωh sufficiently such that the role of dark energy
during nucleosynthesis is minor.
The scenario of a shrinking radiation-dominated

Universe with increasing effective Planck mass looks rather
unfamiliar and intriguing. The temperature scales
T ∼ ðρrÞ1=4 ∼ χ1=2. Since χ is monotonically increasing
the temperature during the radiation-dominated epoch
was much smaller than today’s temperature of the CMB,
and it was increasing. This contrasts with the standard
big bang picture. However, the particle masses as the elec-
tron or nucleon masses were increasing ∼χ, even faster than
the temperature. As a result, the ratiome=T was decreasing.
Cosmic events as nucleosynthesis or the combination of
protons and electrons to hydrogen are triggered when
the ratio T=me falls below a certain value.
Wewill see in Sec. VII that this scenario predicts actually

the same observations as the standard picture of radiation-
dominated Universe with expanding scale factor and con-
stant Planck mass. In particular, one recovers the same
element abundancies from nucleosynthesis, up to small
modifications from Ωh.

E. Matter domination

A realistic setting requires that the mass of the nucleon
mn or the electron me scale proportional to the growing
Planck mass χ. Otherwise the ratio mn=χ would depend
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on time, violating the strict observational bounds. (Small
deviations from this proportionality are allowed and could
result in an observable time variation of fundamental con-
stants and apparent violation of the equivalence principle
[8, 44, 90–95].) For the electron and the other charged lep-
tons and quarks this can be achieved by an effective poten-
tial for the Higgs doublet ~h for which the expectation value
h ~hi is proportional to χ. An example is

~Vh ¼
1

2
λhð ~h† ~h − ϵhχ

2Þ2 (40)

with constant ϵh, λh. Similarly, a scaling of the hadron
masses proportional to χ is realized if the gauge couplings
take fixed values at some scale Mg (for example the uni-
fication scale of a grand unified theory), and if Mg scales
∼χ, similar to h ~hi. Then ΛQCD and therefore mn is propor-
tional to χ. In such a setting dilatation symmetry is only
broken by the scale μ in the cosmon potential and by a non-
trivial χ dependence of the dimensionless kinetial K. The
latter is negligible for χ2 ≫ m2.
In this paper we will assume that dark matter consists of

particles whose mass also scales ∼χ. We will call the nucle-
ons, electrons and dark matter particles collectively
“charged particles”, in distinction to the neutrinos. As a
consequence of the proportionality of particle masses to
χ one finds for the charged particles an additional “force”
in Eq. (6), adding a term [8]

qχ ¼ −ðρm − 3pmÞ=χ (41)

on the right-hand side. Also on the rhs of Eqs. (7), (8) one
has now to add terms −Tμ

μ=χ2 ¼ ðρm − 3pmÞ=χ2 and
T00=χ2 ¼ ρm=χ2, respectively. (Generalizations to a differ-
ent form of qχ for dark matter are possible.)
For a conserved particle number the density n is diluted

as n ∼ a−3. Thus the energy density of a pressureless gas
will scale ∼χa−3. In the radiation-dominated period we
have found χ ∼ a−2 such that ρm ∼ a−5. Since the
Universe is shrinking during radiation domination the ratio
ρm=ρr ∼ a−1 increases until ρm becomes comparable to ρr
at some time. After this matter-radiation equality we can
essentially neglect radiation and follow the evolution in
a matter- dominated Universe.
For ρm ∼ χ2 (and neglecting pm) the additional terms on

the rhs of the field equations are constant (after dividing
Eq. (6) by χ). Solutions of the type (23) are again possible,
now with

ρm ¼ ρ̄mμ
4 expfð−3bþ cÞμtg;

ρm
χ2

¼ ρ̄mμ
2; 3bþ c ¼ 0. (42)

With the addition of the corresponding terms on the rhs, the
field Eqs. (6), (7), (8) or Eqs. (27), (28) are all obeyed for
constant K and

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

K þ 6

r
; b ¼ − 1

3

ffiffiffiffiffiffiffiffiffiffiffiffi
2

K þ 6

r
¼ − 1

3
c; (43)

with

ρ̄m ¼ − 2ð3K þ 14Þ
3ðK þ 6Þ : (44)

This solution exists for K < −14=3 or α2 > 3. For this sol-
ution the dark energy fraction is given by

Ωh ¼
ρh

ρm þ ρh
¼ 3ðK þ 6Þ

4
¼ 3

α2
: (45)

For both the radiation- and matter-dominated epochs a
constant fraction of the energy density corresponds to
homogenous dark energy, similar to the “tracking solution”
in Refs. [9, 21].
The matter- and radiation-dominated epochs can both be

described with the same constant value for K, provided
K < −5. The transition occurs by a change in the dominant
component of ρ. The scalar-dominated de Sitter solution (29),
(31) exists forK > −16=3. For the range−16=3 < K < −5,
all three solutions (29), (31) or (37), (38), or (43), (44) exist
simultaneously. One may start with scalar field domination
and small ρr, ρm. In order to judge the fate of this solution
we have to compare the term ρ=χ2 with μ2 in Eq. (21). For
ρ ∼ a−4 and χ ∼ aðc=bÞ one has

ρ

χ2
∼ aκ; κ ¼ −

�
2c
b
þ 4

�
: (46)

Inserting Eq. (31) yields

κ ¼ − 4ðK þ 5Þ
K þ 4

; (47)

which is negative in this range. Since a is decreasing for K <
−4ðb < 0Þ the ratio ρ=χ2 increases until it becomes compa-
rable to μ2. The scalar field-dominated cosmology makes
then a transition to radiation domination.
We will be interested in models where K decreases for

increasing χ. Starting from positive values and decreasing
to a value smaller than −5 various qualitative changes
occur. In the early epoch the Universe expands for
K > −4. Once K crosses the value −4 the Universe starts
shrinking. A second threshold is at K ¼ −5 where κ turns
from a positive to a negative value. Now the radiation
energy density ρr can become important and induce a radi-
ation-dominated epoch. The matter energy density starts
growing as compared to radiation as soon as particles
become nonrelativistic. This triggers the transition to the
matter-dominated epoch.
At this point cosmology is described by a sequence

of three (approximate) de Sitter geometries, all with
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exponentially increasing χ. For the first scalar-dominated
inflationary period the Universe is expanding, while it
shrinks for the subsequent radiation- and matter-dominated
epochs. The Hubble parameter H ¼ bμ remains always of
the same order of magnitude, changing sign, however, after
the end of inflation.

F. Dark energy domination

We may now discuss the present transition to a fourth
dark energy-dominated epoch. Let us suppose that the χ
dependence of the masses of neutrinos differs from the
one of the charged leptons or nucleons. Within the standard
model of particle physics Majorana masses for the light
left-handed neutrinos are generated by nonrenormalizable
interactions which violate lepton number. The relevant
terms are quadratic in the Higgs doublet and involve the
inverse of a heavy mass scale MB−L. Typically, MB−L cor-
responds to the mass of singlet “right-handed” neutrinos for
the seesaw mechanism [96–98], or is a combination the
mass of a heavy triplet with a cubic coupling for the cas-
cade (or seesaw II) mechanism [99–103]. This is an impor-
tant difference to the masses of charged particles which are
proportional to the Higgs doublet and arise from renorma-
lizable interactions.
The proportionality of the electron mass to the variable

Planck mass χ (or F1=2ðχÞ) is typically realized by the
attraction of the ratio of doublet expectation value over
the Planck mass to a fixed point as χ grows large
[45,104]. The same holds for dimensionless Yukawa cou-
plings and gauge couplings, ensuring that the QCD scale
ΛQCD scales also proportional to χ. A fixed point entails
dilatation symmetry for the quantum effective action. As
a result, no mass scale appears in the effective potential
(40) for the Higgs doublet.
The singlet sector responsible for lepton number viola-

tion may not have settled at a fixed point, but rather slowly
drift with χ, e.g.

MB−LðχÞ
χ

¼ FB−L −GB−L ln

�
χ2

μ2

�
: (48)

For increasing χ the ratio MB−LðχÞ=χ decreases. (This
could explain why the scaleMB−L is typically a few orders
of magnitude below the Planck mass or some grand unified
scale even though FB−L could be of the order one.) The
masses of the light neutrinos,

mν ∼
~h2

MB−L
∼

ϵhχ
2

MB−LðχÞ
; (49)

show an additional increase from this effect.
We arrive then at a simple picture: for early cosmology

the ratio of neutrino mass to the Planck mass has been much
smaller than at present, due to the additional suppression
factor MB−LðχtodayÞ=ðχtodayFB−LÞ. Only once χ approaches

the value where MB−LðχÞ=χ is substantially smaller than
FB−L the ratio of neutrino mass to the Planck mass reaches
the present size. This has happened around the present cos-
mological epoch, and we can use this for determining a
relation between FB−L and GB−L. Denoting by χ0 the value
of χ where MB−Lðχ0Þ ¼ 0 we have

MB−LðχÞ
χ

¼ GB−L ln

�
χ20
χ2

�
: (50)

The masses of the light neutrinos therefore show a scaling
violation,

mνðχÞ ¼
cνχ

ln
	
χ2
0

χ2


 : (51)

In the approximation (48) the neutrino mass diverges for
χ → χ0, but this value is actually never reached. What is
characteristic, however, is the strong dependence of
mνðχÞ on χ as χ comes close to χ0. As a typical measure
for this dependence, we introduce

~γðχÞ ¼ 1

2
χ
∂
∂χ ln

�
mνðχÞ
χ

�
: (52)

If neutrino masses would scale ∼χ, similar to the electron
mass, one would have ~γ ¼ 0, whereas for the behavior (51)
one has

~γ ¼ 1

ln
	
χ2
0

χ2


 : (53)

In the relevant range of χ only somewhat smaller than χ0
one expects large values of ~γ.
In order to gain some qualitative understanding we may

first consider some constant value of ~γ. For constant ~γ the
neutrino mass scales as

mν ¼ c̄νχ2~γþ1: (54)

As a consequence, the ratio of neutrino energy density ρν as
compared to the matter density ρm will increase with time.
The Universe will make a transition to a new scaling sol-
ution. We will see that this new epoch is dominated by dark
energy associated to the cosmon potential.
For χ-dependent neutrino masses according to Eq. (52)

or (54) the source on the rhs of the scalar field equation [37]
obeys

χqχ ¼ −ð2~γ þ 1Þðρν − 3pνÞ: (55)

This term becomes important once neutrinos get nonrela-
tivistic, such that pν can be neglected. The new scaling
solution obeys, with constant ρ̄;ν
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ρν
χ2

¼ ρ̄νμ
2: (56)

Since ρν scales ∼χ2~γþ1=a3 this requires

b ¼ 1

3
ð2~γ − 1Þc: (57)

For ~γ > 1=2 the scale factor is now again expanding.
The algebraic equation from Eq. (19) remains unmodi-

fied,

bþ c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
þ K þ 6

6
c2 þ ρ̄

3

r
; (58)

while the lhs of Eq. (26) receives an additional term from g
in Eq. (21),

g
μ2

¼ − 2~γρν
μ2χ2

¼ −2~γρ̄ν: (59)

This replaces in Eq. (26) the first term 2 by 2 − 2~γρ̄ν. In
Eq. (17) the “force” g due to the increasing neutrino mass,
g ¼ −2~γρ̄νμ2, counteracts the force 2μ2 from the gradient
of the potential. Eq. (17) implies

b ¼ 2ð1 − ~γρ̄νÞ
3ðK þ 6Þc −

2c
3
; (60)

and comparison with Eq. (57) yields

~γρ̄ν ¼ 1 − ðK þ 6Þc2
�
~γ þ 1

2

�
: (61)

From Eqs. (57), (58) we finally obtain

c2 ¼
�
K þ 6

2
þ 4~γð1þ ~γÞ

3

�−1
; (62)

and therefore

ρ̄ν ¼
8ð1þ ~γÞ − 6ðK þ 6Þ
8~γð1þ ~γÞ þ 3ðK þ 6Þ : (63)

We may compute the ratio between dark energy and the
neutrino energy density,

ρh
ρν

¼ Ωh

Ων
¼ 8~γð1þ ~γÞ þ 6ðK þ 6Þ

8ð1þ ~γÞ − 6ðK þ 6Þ ¼ ~γð1þ ~γÞ þ 3
α2

1þ ~γ − 3
α2

; (64)

or

Ωh ¼ 1 − 1

1þ ~γ
þ 3

α2ð1þ ~γÞ2 : (65)

For large α, this yields the approximate ratio,

Ωh

Ων
≈ ~γ; Ωh ≈ 1 − 1

~γ þ 1
: (66)

We conclude that dark energy dominates for large ~γ. With
mν the average neutrino mass (mν ¼

P
mνi=3) and

Ων ¼
mν

16 eV
; (67)

this yields for the dark energy density the well-known [19]
formula

ρ1=4h ¼ 1.27
�
~γmν

eV

�
1=4

10−3 eV (68)

which relates dark energy quantitatively to the neu-
trino mass.
In our context ~γ is only an approximation. Taking the

field dependence of ~γ into account we recover the growing
quintessence scenario of Ref. [20]. We observe in Eq. (62)
the relation

lim
~γ→∞

c2 ¼
ffiffiffi
3

p

2~γ
; (69)

such that _χ=χ → 0 for ~γ → ∞. For a continuously increas-
ing ~γ the time evolution of the cosmon effectively stops
before χ reaches the value χ0.

G. Intrinsic mass scales

The simplicity of the history of the Universe is striking
for our model A with a quadratic cosmon potential. It is a
sequence of four (approximate) de Sitter solutions. The
Universe expands during the early and late scalar field-
dominated epochs, while it shrinks during radiation and
matter domination. The overall size of the Hubble param-
eter and the curvature scalar is set for all four periods by the
same intrinsic scale μ.
For a fixed dimensionless ratio m=μ the parameter μ is

the only mass scale in our model. Its value is arbitrary. In
particular, it is not related to the masses of nucleons or elec-
trons that are induced by spontaneous dilatation symmetry
breaking ∼χ. (The ratio between the dynamical Fermi scale
~h—given by the minimum of ~V in Eq. (40)—and the
dynamical Planck mass χ involves a very small, so far
unexplained, dimensionless coupling

ffiffiffiffiffi
ϵh

p
.) Nevertheless,

for practical purposes it is useful to use units where todays
value of the Planck mass takes the standard value,

χtoday ¼ M ¼ 2.44 × 1027 eV: (70)

In these units one has

μ ¼ 2 × 10−33 eV: (71)

C. WETTERICH PHYSICAL REVIEW D 89, 024005 (2014)

024005-12



This follows by identifying the present value of the cosmon
potential, μ2χ2today, with the present dark energy density.
The large ratio M=μ ≈ 1060 is not a parameter of our

model. It is a “historical number”, simply reflecting how
much time has elapsed since the moment when χ was equal
to μ. (This is similar to the value ρm=χ4today ≈ 10−120 which
is also a result of the time evolution of the matter energy
density ρm and of χ.) The evolution of χ is exponential,

χðtÞ ≈ μ expðc̄μtÞ; (72)

where we fix t ¼ 0 by the condition χð0Þ ¼ μ and c̄ is some
appropriate average of c. Most of the increase of χ has hap-
pened during the radiation- and matter-dominated epochs
where c̄ ≈ α. (For radiation domination one has c ¼ α,
for matter domination c ¼ α=

ffiffiffi
2

p
.) In units of μ−1 the

present value of t is not very large,

ttoday ≈
60 ln 10

c̄
μ−1: (73)

(For an order of magnitude estimate one may take
μttoday ≈ 100=α ≤ 10.) For this model the Universe is not
extremely old in its natural time units. Only the dynamical
Planck mass has increased by a large exponential factor.
The ratio m=μ appearing in the kinetial (15) will be

fixed by the amplitude of the density fluctuations generated
during inflation, cf. Sec. VIII. It depends on ~α. For ~α ≈
10−3 one needs m=μ ≈ 100. We conclude that μ is indeed
the only relevant mass scale. For all cosmological epochs
the characteristic time scale of the evolution is given by
μ−1, which is of the order 1010 yr. Our picture describes
a “slow universe” for the whole evolution since infinite
negative time.

V. STABILITY AND ARROW OF TIME

In this section we investigate the stability of the various
de Sitter solutions in the approximation of constant K. Our
starting point is Eq. (21) with g ¼ 0, supplemented by a
suitable equation for ρ.

A. Stability for scalar-dominated epoch

We begin with the scalar field-dominated cosmology
ðρ ¼ g ¼ ∂K=∂s ¼ 0Þ. In this case Eq. (21) involves s̈
and _s, while s does not appear explicitly. Therefore,
Eq. (21) becomes a first order differential equation for
cðtÞ ¼ _sðtÞ=μ,

_c
μ
¼ 2

K þ 6
þ c2 − c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ð2þ ðK þ 6Þc2

r
Þ: (74)

(In contrast to the exact de Sitter solutions cðtÞ depends
now on cosmic time.)
For small deviations of cðtÞ from the constant c as given

by Eq. (29),

cðtÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK þ 6Þð3K þ 16Þp þ δðtÞ; (75)

one obtains the linearized equation

_δ ¼ −Acμδ; Ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3K þ 16

K þ 6

r
: (76)

The solution,

δ ¼ δ0 expð−AcμtÞ; (77)

approaches the scaling solution as t increases if Ac > 0, i.e.
δðt → ∞Þ → 0. This is indeed the case for the range
ðK þ 6Þð3K þ 16Þ > 0 for which the scaling solution
exists. We conclude that the scaling solution with increas-
ing χ is stable. It will be approached asymptotically by all
solutions in its vicinity.
In contrast, the solution is unstable in the direction of neg-

ative time where χ decreases. For our time reversal invariant
model the sign of time is a pure convention. We could also
investigate the time reflected setting with negative constant
c, i.e. cðtÞ ¼ −2ððK þ 6Þð3K þ 16ÞÞ−1=2, now with a pos-
itive sign of the root in Eq. (74). This will result in a change
of sign for Ac in Eq. (76). Now the solution with increasing
time and decreasing χ is unstable, while the direction of
decreasing time and increasing χ is stable. We arrive at
the important conclusion that the stability of the scaling
solution singles out the direction of increasing χ.
Any particular cosmological solution exists for both

directions of time, at least for a certain time interval.
The properties of the solutions with positive root in
Eq. (20) and the time reflected ones with negative root
are, however, rather different if we try to extend them
for t → ∞. For the positive root the scaling solution is
approached as t → ∞. For given initial conditions at tin this
solution exists for arbitrary t ≥ tin. In contrast, for the neg-
ative root one observes a divergence of _s and H at some
critical time tc > tin. This behavior singles out an “arrow
of time”. We may associate positive time to the direction
into which solutions can be extended to t → ∞. For generic
solutions this requirement fixes the sign of the root in
Eq. (20) to be positive. The divergence of a generic solution
occurs then in the negative time direction for some tc < tin.
There is one exception to the generic behavior of

solutions with negative root in Eq. (20), namely the
exact scaling solution (29), (31) with negative c. If the ini-
tial condition at tin is given exactly by _sðtinÞ ¼−2μððK þ 6Þð3K þ 16ÞÞ−1=2 one finds χ decreasing to
zero for t → ∞. However, any difference ϵ in the initial
condition,

_sðtinÞ ¼ − 2μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK þ 6Þð3K þ 16Þp þ ϵ; (78)
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leads to a divergence at finite tc. The smaller ϵ, the smaller
is the value of χc ¼ χðtcÞ. We see that the characteristics of
the solution depends now very sensitively on the precise
initial condition, in sharp contrast to the vicinity of the
scaling solution with increasing χ.
Let us now fix the choice of the time coordinate such that

the sign of the root in Eq. (20) is positive. It is instructive to
compare solutions with positive or negative _χðtinÞ. The sol-
utions with increasing χ soon reach the close vicinity of the
scaling solution (29), (31) after a certain time. The memory
of the precise initial conditions is rapidly lost. In contrast, a
solution with decreasing χ, _χðtinÞ < 0, will generically
reach a turning point where χ stops decreasing and
increases subsequently. (We discuss these “bounce solu-
tions” in more detail in the next section.) As time goes
on, also these solutions reach the vicinity of the scaling
solution with increasing χ.

B. Cosmic clock and arrow of time

We have already discussed in the previous section that
the combination,

y ¼ sþ ln a; (79)

either increases or decreases monotonically as long as
K > −6 and ρ ≥ 0. This quantity can be used for a defini-
tion of a physical time variable which is independent of the
coordinate choice for t. The arrow of time can now be
defined by the direction in which y increases. In this direc-
tion the solutions approach asymptotically the scaling sol-
ution and can be continued to infinite time. For the scalar
field-dominated cosmology, as well as for radiation or mat-
ter domination, the asymptotic increase of χ and the increase
of y are correlated. Still, y remains also increasing for all
parts of a given solution, even for the epoch before the
bounce where χ is decreasing. It is this monotonic behavior
that singles out y for a useful “cosmological clock.”
It is instructive to discuss our findings from the perspec-

tive of time reversal symmetry. Our model is time reflection
invariant, but any given nonstatic solution is not. Thus time
reversal symmetry is spontaneously broken for any given
cosmological solution. This explains why the evolution
equation (76) for small deviations δ from the scaling sol-
ution is no longer time reversal invariant. It is this feature
that permits us to define an arrow of time by the direction in
which the scaling solution is stable. The assignment of a
positive or negative coordinate time t remains arbitrary
and a matter of convenience, as expected for spontaneous
symmetry breaking of time reversal invariance. However,
the direction of the “physical time” y acquires as objective
measurable meaning. The positive direction is the direction
towards a stable scaling solution, while the negative direc-
tion makes the scaling solution unstable. The two directions
have therefore different properties which can be measured.
We will from now on fix the coordinate time t such that it

increases with increasing y. This fixes the positive sign of
the square root in Eq. (20).

C. Predictivity and singularities

Local solutions of Eq. (74) are characterized by one
“integration constant” or “initial condition” _sðtinÞ. For
generic initial conditions the solution becomes singular
for some tc < tin, with the exception of the regular exact
de Sitter solution for

_sðtinÞ ¼
2μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK þ 6Þð3K þ 16Þp : (80)

In view of our statement about the absence of a big bang
singularity one may wonder if the presence of nearby
singular solutions does not invalidate our argument. We
will show that the presence of neighboring local diverging
solutions is actually a characteristic feature of regular
solutions which define an arrow of time by their stability.
Universally stable solutions of the type (77) permit a

high degree of predictivity. Once a solution is in the vicinity
of the stable solution at some time t1, with small δ1 ¼ δðt1Þ,
Eq. (77) implies that for a later time t2, with sufficiently
large t2 − t1 ≫ ðAcμÞ−1, the solution is exponentially
close to the scaling solution, i.e. δðt2Þ ¼ δðt1Þ
expð−Acμðt2 − t1ÞÞ. Up to tiny corrections the solution
is predicted to be the stable scaling solution for times
around t2. This prediction becomes exact for infinite
t2 − t1, e.g. for t1 → −∞. In other words, at t2 the solution
has (almost) lost memory of possible initial conditions in
the past.
If we associate tin with t2, and we assume that the

equations for the scalar field-dominated cosmology have
been valid already for a large time interval t2 − t1 before
tin, the “initial condition” for _sðtinÞ is very severely
restricted by the predictivity of the setting. If one violates
this “prediction” and chooses at tin initial conditions not
compatible with the small predicted value of δ2, one will
typically be reminded of the inconsistency of this approach
by a solution diverging in the time interval between t1 and
t2. This argument extends qualitatively (with possible
exceptions) to rather arbitrary values of δðt1Þ (not neces-
sarily small). We conclude that a regular big bang cosmol-
ogy simply predicts the solution to be the exact de Sitter
solution. If other physics plays a role and the scalar-domi-
nated cosmology becomes insufficient before a finite t1,
one still remains with very tight restrictions for δðt2Þ.
This predictivity is directly related to the loss of memory
of the detailed physics at t1.

D. Stability and arrow of time for radiation domination

The stability of the scaling solutions for increasing y also
holds for the radiation- and matter-dominated epochs. In
the presence of radiation or matter Eq. (21) becomes a sec-
ond order differential equation. Its solution requires two
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initial conditions, sðtinÞ and _sðtinÞ. Furthermore, we have
the conservation equation for ρ which requires to fix a third
initial condition, namely ρðtinÞ. Altogether, the generic sol-
utions will therefore depend on three initial conditions,
instead of only one for scalar field-dominated cosmologies.
For the radiation-dominated epoch the energy momen-

tum tensor of radiation is conserved, resulting in the usual
evolution for ρ

_ρ ¼ −4Hρ: (81)

For Eq. (21) we only need the quantity ρ=χ2 ¼ ρe−2s=m2.
The evolution equation for this ratio reads

∂t

�
ρ

χ2

�
¼ −ð4H þ 2_sÞ ρ

χ2
: (82)

We conclude that the general solution of Eq. (21) actually
requires only two initial conditions, _sðtinÞ and ðρ=χ2ÞðtinÞ.
The third initial condition, i.e. ρðtinÞ, will not affect the sta-
bility analysis. In addition to δ, as defined by Eq. (75), we
therefore introduce a second parameter γ for deviations
from the scaling solution, namely

ρ

χ2
¼ μ2ðρ̄þ γÞ; (83)

with ρ̄ given by the scaling solution (38).
The linearized evolution equations for δ and γ read

∂tγ ¼ −μðAγγγ þ AγδδÞ;
∂tδ ¼ −μðAδγγ þ AδδδÞ; (84)

with

Aγγ ¼ − 2ðK þ 5Þffiffiffiffiffiffiffiffiffiffiffiffi
K þ 6

p ; Aγδ ¼ − 2ðK þ 5Þð2K þ 9Þ
K þ 6

;

Aδγ ¼ 1; Aδδ ¼
2K þ 11ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 6

p : (85)

Positive real parts of the eigenvalues of the 2 × 2-matrix A
correspond to stability. We find that both eigenvalues are
real and positive for −ð81=16Þ ≤ K ≤ 5,

λ1;2 ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 6

p ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16K þ 81

p Þ; (86)

while they get complex for K < −ð81=16Þ,

λ1;2 ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 6

p ð1� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−16K − 81

p
Þ: (87)

For all K < −5 the scaling solution is approached for
t → ∞ and therefore stable for increasing time. The
approach to the scaling solution is oscillatory for
K < −81=16. For the negative time direction the scaling

solution is unstable. One generically finds again a singular-
ity at tc < tin, except for initial conditions corresponding to
the exact scaling solution.
It is instructive to compare the radiation-dominated

epoch for our model with constant −6 < K < −5
with standard cosmology in the presence of radiation.
For standard cosmology Eq. (20) is replaced by

H ¼ �
ffiffiffiffiffiffiffiffiffi
ρ

3M2

r
; (88)

with M the (fixed) reduced Planck mass. We may again fix
positive time by the positive root in Eq. (88). The general
solution of the systems of equations (88) and (81) reads

ρ ¼ 3M4

ð2Mtþ ϵρÞ2
: (89)

For large t ≫ jϵρj=M it approaches the scaling solution
ρ ¼ 3M2=ð4t2Þ. This solution is stable towards positive
t. For arbitrary ϵρ it has a singularity at t ¼ −ϵρ=ð2MÞ.
The branch of the solution with increasing ρ for t <
−ϵρ=ð2MÞ corresponds to the time reversed solution.
One may define the positive time direction such that the
Universe is expanding. (In a more general setting with spa-
tial curvature this holds for an energy density smaller than
the critical density, Ω < 1, such that ln a increases mono-
tonically.) We observe that the physical time observable y
in our model corresponds to ln a in standard cosmology.
We should recall that the stability analysis of this section

assumes a spatially flat geometry. The instability of the
radiation-dominated Universe in case of nonzero spatial
curvature (instability of Ω ¼ 1) is the same as usual.
Realistic inflationary scenarios guarantee Ω extremely
close to one at the beginning of radiation domination, such
that this instability plays no role.

VI. NUMERICAL SOLUTIONS

So far we have concentrated on an analytic discussion of
the properties of solutions with constant kinetial K. They
reflect all qualitative features of our model. It is, of course,
also possible to solve numerically Eq. (21), combined with
a suitable equation for ρ. This can be done for an arbitrary
kinetial KðχÞ or KðsÞ. In this section we briefly display sol-
utions for the kinetial (15) and g ¼ 0, ρ ¼ 0. Extensions to
the later periods with ρ > 0 are straightforward. However,
except possibly for the very early stages of radiation
domination, the kinetial K is so close to the constant
K ¼ 4=α2 − 6 that effects from the χ dependence of K
are uninterestingly small.

A. Inflationary solutions

In Fig. 1 we show the dependence of s on cosmic time t
for three different initial conditions. (Parameters for the
figures are μ ¼ 1, m ¼ 5, λ̄c ¼ 0, α ¼ 10, ~α ¼ 0.3.)
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After a short initial period all curves rapidly approach the
asymptotic solution with a linear increase of sðtÞ. We have
verified that this holds for arbitrary initial conditions as
long as s remains in the range where K is sufficiently pos-
itive. This behavior illustrates the stability properties dis-
cussed in the preceding section.
In Fig. 2 we have extended the scaling solution to larger

values of t. We show the Hubble parameter HðtÞ=μ and the
derivative of s, wðtÞ ¼ _sðtÞ=μ. Both remain almost constant
until the time when the kinetial is close to zero. Around
t ¼ 60 the evolution of the scalar field accelerates and the
inflationary period ends when _s grows large. The slow
increase of _s before the end of inflation reflects the change
in the kinetialK. Despite this time-variation ofK the approxi-
mate de Sitter solutions for constantK remain valid with high
accuracy. We also plot in Fig. 2 the values of bðtÞ and cðtÞ
which are defined by Eqs. (29) and (31), inserting for K the
value of KðtÞ ¼ KðχðtÞÞ. There is no optical distinction
between HðtÞ=μ and bðtÞ or wðtÞ and cðtÞ, except for the
very end at t ≈ 60 where differences around 10% occur.

B. Bounce solutions

The system of field equations (6), (7), (8) admits regular
bouncing solutions, whereby χ first decreases, stops, and
increases subsequently. After the bounce it approaches
the de Sitter solution (29), (31). This behavior is demon-
strated by the upper curve in Fig. 1. For an analytic discus-
sion we take again constant K. Eq. (17) yields

s̈þ 3H_sþ 2_s2 ¼ 2μ2

K þ 6
¼ f; (90)

while the Hubble parameter is extracted from Eq. (20)

H ¼ � μffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _s2

f

s
− _s: (91)

(Measuring time in units of μ−1 we can put μ ¼ 1.)
The constant positive force f pushes s towards large pos-

itive values. It is reduced by a type of friction force −2_s2

which is the same for positive and negative _s. For positive
H and positive _s the term−3H_s acts as an additional damp-
ing force. For negative H_s, however, this term even enhan-
ces the constant force f. If we start a solution with some
initial negative _s and positive H the combined action of
f − 3H_s will bring s to a stop, and _s will become positive
subsequently. (Near the turning point one has s̈ ≈ f,
H ¼ μ=

ffiffiffi
3

p
.) For positive _s the damping will result in a sat-

uration of _s at a constant value c given by Eq. (29). Starting
initially with an expanding Universe and decreasing effec-
tive Planck mass χ, the point χ ¼ 0 will never be reached.
Instead, there will be a turnaround to an increasing χ.

VII. RESCALED COORDINATES AND FIELDS

In this section we map our model and its cosmological
solutions to more familiar formulations of gravity coupled
to scalars. We first discuss a rescaling of coordinates. It maps
the solutions with a shrinking Universe to an expanding
Universe. Second, we perform the field transformation from
the Jordan frame to the Einstein frame. In the Einstein frame
we will find quintessence scenarios with an exponential
potential for late time. Physical observables do not depend
on the frame. We can therefore be sure that our model
reproduces the predictions of standard cosmology for
the radiation- and matter-dominated phases, except for
small modifications due to the presence of early dark
energy.

A. Rescaled coordinates

The interpretation of cosmologies with a variable
effective Planck mass becomes more familiar if we choose
a different system for the coordinates. So far we have fixed
time intervals dt and comoving space intervals dxk in a
Robertson-Walker metric. Instead, we may want to measure
time in units of the inverse effective Planck mass χ−1,
introducing the time intervals

t
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FIG. 1 (color online). Time dependence of scalar field sðtÞ in
early cosmology.
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FIG. 2 (color online). Hubble parameter HðtÞ=μ and time
derivative of scalar wðtÞ ¼ _sðtÞ=μ for the inflationary period.
We also display bðtÞ and cðtÞ which cannot be distinguished op-
tically from HðtÞ=μ and wðtÞ.

C. WETTERICH PHYSICAL REVIEW D 89, 024005 (2014)

024005-16



dt0 ¼ χðtÞ
M

dt; t0ðtÞ ¼ 1

M

Zt
t0

χðt̂Þdt̂: (92)

(Here we choose units withM the present Planck mass such
that dt0 equals dt at the present time.) For solutions with an
exponential expansion, χ ¼ χ0 expðcμtÞ, one finds

t0 ¼ χ0
cμM

expðcμtÞ: (93)

We observe that t0 goes to zero as t → −∞. In the new time
coordinate t0 the big bang appears as the “origin of time”.
We emphasize that this is a pure coordinate effect.
Expressing the solution (23) in the t0-coordinate the field
χ increases linearly

χðt0Þ ¼ cμMt0: (94)

We may perform a similar rescaling of the space coor-
dinates. It is more convenient, however, to use again fixed
(comoving) space positions and to employ instead in the
Robertson Walker metric a rescaled scale factor

a0ðt0Þ ¼ χðtÞ
M

aðtÞ: (95)

Evaluating the Hubble parameter in the rescaled coordi-
nates yields

H0 ¼ d
dt0

ln a0 ¼ M
χ

d
dt

ðln aþ ln χÞ

¼ M
χ

�
H þ _χ

χ

�
: (96)

The rescaled Hubble parameter H0 differs from H in two
important aspects. First, for constant H ¼ bμ and _χ=χ ¼
cμ one finds H0 to be proportional to 1=t0,

H0 ¼ bþ c
ct0

: (97)

Second, even for a shrinking Universe with b < 0 the
Universe appears expanding in the new coordinates if
c > −b. In particular, for the radiation- and matter-
dominated epochs with b ¼ −c=2 (36) or b ¼ −c=3
(42) one finds an expansion H0 ¼ 1ð2t0Þ or
H0 ¼ 2=ð3t0Þ, respectively. This results in the familiar
expansion laws a0 ∼ ðt0Þ1=2 or a0 ∼ ðt0Þ32. It is in the rescaled
coordinates that cosmology takes the usual form!
The transformations (92), (95) are instructive by empha-

sizing the important role of the units in which we measure
time and space. We note, however, that they depend on the
field χðtÞ and are therefore only defined if some particular
solution χðtÞ is used. A more appropriate procedure uses

field rescalings on the level of the effective action. This
permits us to discuss all possible solutions at once.

B. Einstein frame

Instead of rescaling the coordinates we may also keep a
fixed coordinate system and change the metric. This
amounts to a nonlinear transformation in the space of field
variables which will change the form of the effective action
and the field equations. The choice of field variables does
not matter for physical observables which always concern
dimensionless numbers, as ratios of masses. This has been
demonstrated explicitly in Refs. [8,9], where it has been
argued that once the quantum effective action is computed
(or assumed) both frames are equivalent in all respects, see
also Ref. [105]. Explicit computations in the Jordan frame
strengthen this point [106–110]. (For a different point of
view and an extensive, still incomplete in important
aspects, documentation of the debate around this issue
see Ref. [111].) Based on this equivalence many practical
computations of observables are most easily done in the
Einstein frame, and we will do this later for our discussion
of cosmon inflation. Since Weyl scaling can be considered
as a coordinate change in field space we should not be
surprised that singularities may appear in certain field-
coordinate systems. We will see that the big bang singular-
ity in the Einstein frame is of this type.
A Weyl scaling defines new metric variables g0μν by

gμν ¼
M2

FðχÞ g
0
μν: (98)

In these variables the action (1) reads

Γ ¼
Z

d4x
ffiffiffiffi
g0

p �
−M2

2
R0 þM2K0

2χ2
∂μχ∂νχg0μν þ V 0ðχÞ

�
;

(99)

with R0 the curvature scalar associated to the metric g0μν.
The potential is rescaled according to

V 0 ¼ M4V
F2

; (100)

and the kinetial reads in the Einstein frame

K0 ¼ χ2
�
K
F
þ 3

2

�∂ ln F
∂χ

�
2
�
: (101)

Particle masses that scale ∼
ffiffiffiffi
F

p
in the “Jordan frame”

(using gμν) are constant in the “Einstein frame” (using
g0μν). In the following we will omit the prime on the metric.
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For the particular choice of F in Eq. (2) one finds

V 0 ¼ M4μ2

χ2
; K0 ¼ K þ 6. (102)

Now the potential decreases for χ → ∞, in contrast to
Eq. (2). In fact, the only physical observables are dimen-
sionless quantities. For the potential this is the ratio of V
divided by the fourth power of the effective Planck mass.
This yields the effective cosmological constant in units of
the Planck mass. In the Jordan frame (1), (2) the ratio reads
μ2χ2=χ4 ¼ μ2=χ2, and the same value obtains in the
Einstein frame (99), (102), V 0=M4 ¼ μ2=χ2. In the
Jordan frame the ratio vanishes asymptotically for
t → ∞ despite the fact that V increases with increasing
χ: the fourth power of the effective Planck mass χ4 simply
increases faster. This explains why the effective cosmologi-
cal constant vanishes asymptotically in our model. In fact, it
has been observed long ago that models where in the Jordan
frame the potential VðχÞ increases for large χ less fast than
χ4 solve the cosmological constant problem asymptotically
[8]. This setting was the reason for the first proposal
of dynamical dark energy or quintessence [9]. In the
Einstein frame the asymptotic vanishing of the cosmologi-
cal constant is reflected by the vanishing of V 0 for χ → ∞,
i.e. by the absence of a nonzero constant for V 0ðχ → ∞Þ.
The naturalness of this scenario in the presence of quantum
and thermal fluctuations has been discussed extensively
in Ref. [48].
The discussion of stability of our model is also

particularly transparent in the Einstein frame. The condition
K > −6 simply translates toK0 > 0, which provides for the
correct sign of the scalar kinetic term. We can bring the
scalar field closer to a canonical form by using for the scalar
field the variable

φ ¼ 2M
α

ln

�
χ

μ

�
: (103)

Then the action (1) reads

Γ ¼
Z

d4x
ffiffiffi
g

p �
−M2

2
R

þ k2

2
∂μφ∂μφþM4 exp

�
− αφ

M

��
; (104)

with

k2 ¼ α2ðK þ 6Þ
4

: (105)

In the limit of constant k2 the exponential potential in
Eq. (104) provides the prototype for scaling solutions
for dynamical dark energy [9,21,28,32,112,113].

We may now concentrate on the particular kinetial (15).
For large χ2=m2 the function k2 becomes very close to one
such that the scalar “cosmon” field has a kinetic term with
standard normalization. The effective action (105)
describes a standard model for quintessence with an expo-
nential potential. One recovers the known scaling solutions
[9] for the radiation- ðn ¼ 4Þ and matter- ðn ¼ 3Þ domi-
nated epochs, with a constant fraction of early dark energy
(EDE)

Ωe ¼
n
α2

: (106)

This is precisely the amount of EDE found in the Jordan
frame, cf. Eqs. (39), (45). One may verify that the de
Sitter solutions (37), (38) and (43), (44) are in one to
one correspondence with the standard scaling solutions.
Observational bounds set typical limits Ωe ≲ 0.01
[37–42], and we will adopt here a conservative
bound α2 > 100.
On the other hand, the very early stages of inflation with

small ~α2 and therefore large k2 ≈ α2= ~α2 correspond to
power law inflation. We can rescale the field ϕ in order
to work with a standard kinetic term, which amounts to
replace α by ~α in the exponential potential. We will see
below that the phase of inflation which determines the
properties of density fluctuations differs from standard
power law inflation.
At this point it may beworthwhile to discuss the origin of

the apparent singularity of the big bang in the Einstein
frame for the metric. For the solutions of model (A) we
can associate the “big bang” with χ → 0. In the coordinate
t this happens for t → −∞, while for the coordinate t0 the
big bang occurs for t0 → 0. The curvature tensor formed
from the metric gμν remains finite, while it becomes singu-
lar for the metric g0μν at the time when χ reaches zero. The
reason is simply that R0 is related to R by a multiplicative
factor M2=χ2 which diverges for χ → 0. (The precise rela-
tion contains also additive terms involving derivatives of χ.)
We conclude that the usual “big bang singularity” is a
“coordinate effect” in the space of field variables. There
exist simple choices of fields where solutions are regular
for all time. In particular, we will discuss below a different
frame where the geometry becomes flat Minkowski space
with a constant scale factor as t → −∞.
We emphasize that the big bang singularity in the

Einstein frame is not a coordinate singularity. Coordinate
transformations leave invariants as R or RμνλσRμνλσ

unchanged and can therefore not remove singularities in
these quantities. Field transformations are a much wider
concept than coordinate transformations. They can indeed
remove singularities in quantities as R as we just have dem-
onstrated. We argue that a singularity which disappears for
an appropriate choice of fields should not be considered as
a “true” or “physical singularity”. It is rather an artefact of a
choice of field-coordinates that becomes inappropriate
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under certain conditions. We also note that the issue of a big
bang singularity is not related to inflation. For constant K
we have found a de Sitter solution for the radiation- domi-
nated Universe (37), (38), (25) which is regular for all t.

C. Flat geometry for radiation or matter domination

For the radiation- and matter-dominated epoch we have
replaced the expanding Universe with constant Planck mass
by a shrinking Universe with increasing Planck mass. We
can also find coordinates where the Universe is static, while
the Planck mass grows with a different rate. For this pur-
pose we choose a more general coordinate t0 and rescaled
scale factor a0 according to

dt0 ¼
�
χ

M

�
η

dt; a0 ¼
�
χ

M

�
η

a; (107)

(with Eqs. (92), (95) realized for η ¼ 1.) This yields a
rescaled Hubble parameter

H0 ¼
�
M
χ

�
η
�
H þ η

χ
:

χ

�
: (108)

Solving Eq. (107) for the scaling solution (23) one finds

H0 ¼ 1

t0

�
1þ b

ηc

�
: (109)

Choosing

η ¼ −b
c

(110)

the Hubble parameter vanishes, leading to a static scale fac-
tor. For the matter- and radiation-dominated epochs the
choice of coordinates for which the Universe is static cor-
responds to η ¼ 1=3 or η ¼ 1=2, respectively. For this
choice the geometry is flat Minkowski space.
This observation guides us to a use of field variables for

which either the radiation- or matter-dominated epoch is
realized with flat Minkowski space. We can transform
the action (1), (2) by a different choice for the metric

gμν ¼ w2g0μν; w2 ¼
�
M2

χ2

�
η

; (111)

resulting in

R ¼ w−2½R0 − 6g0μνðDμDν ln wþ ∂μ ln w∂ν ln wÞ�:
(112)

For F ¼ χ2 the Weyl scaling (98) corresponds to η ¼ 1.
With ϕ defined by Eq. (103) and omitting the primes
the effective action reads in the new frame

Γ ¼
Z

d4x
ffiffiffi
g

p ��
M2

μ2

�
η−1

exp

�ð1 − ηÞαφ
M

�

×

�
−M2

2
R þ α2

8
ðK þ 12η − 6η2Þ∂μφ∂μφ

�

þ μ4
�
M2

μ2

�
2η

exp

�ð1 − 2ηÞαφ
M

��
: (113)

Different choices of η define different choices of the metric
or different “frames”.
For η ¼ 1=3 or η ¼ 1=2 the Hubble parameter vanishes

in the matter- or radiation-dominated epoch, respectively.
Using the general formalism of Sec. II on infers from
Eq. (8) the condition for a vanishing Hubble parameter,

V þ 1

2
~Kφ

: 2 þ ρ ¼ 0; (114)

with ðχ2 ≫ m2Þ

~K ¼ α2μ

4M
exp

�
αφ

2M

�
ðK þ 12η − 6η2Þ

¼ μ

M
exp

�
αφ

2M

��
1 − 3α2

2
ð1 − ηÞ2

�
: (115)

Since ~K is negative both for the matter- and radiation-
dominated phase (recall α2 > 3 or α2 > 4, respectively)
the negative contribution ∼ _φ2 can cancel the positive con-
tribution V þ ρ.
It is instructive to consider the radiation-dominated

epoch in a frame with η ¼ 1=2. The potential V ¼ μ2M2

is constant, and for a vanishing Hubble parameter also
the radiation density ρ is constant. Eq. (114) yields

_φ2 ¼ − 2ðV þ ρÞ
~K

;

~K ¼ −
�
3α2

8
− 1

�
μ

M
exp

�
αφ

2M

�
: (116)

Renormalizing the scalar field,

σ ¼
ffiffiffiffiffiffiffi
Mμ

p
exp

�
αφ

4M

�
; (117)

Eq. (116) is easily solved,

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2fρ

3α2 − 8

s
Mμt; fρ ¼ 1þ ρ

V
: (118)

The ratio fρ ¼ 3α2=4 − 2 is determined by the solution of
the scalar field equation, such that
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σ ¼ αMμt
2

: (119)

In terms of σ the effective action (113) takes a simple
form

Γ ¼
Z

d4x
ffiffiffi
g

p �
− 1

2
σ2Rþ μ2M2 þ 1

2
Kσ∂μσ∂μσ

�
;

(120)

with

Kσ ¼ −6þ 16

α2
: (121)

We conclude that it has the same form as Eq. (1), except for
a replacement of the potential μ2χ2 by a constant μ2M2,
accompanied by a shift in the constant kinetial from −6þ
4
α2
to −6þ 16

α2
. (The possibility of this interesting rescaling

of the potential has already been noted in the appendix of
Ref. [8].) We observe that for large χ2 ≫ m2 the effective
action (120) actually corresponds to our model (B), Eq. (3).
The radiation-dominated epoch of this model will be dis-
cussed in Sec. IX. While the geometry is static flat space,
all particle masses increase proportional to the effective
Planck mass σ. This is how the predictions of nucleosyn-
thesis are reproduced to be the same as in standard
cosmology.
For a frame with η ¼ 1=3 the geometry turns out to be

Minkowski space for the matter-dominated period. Now ρ
increases proportional to the particle masses, that are in turn
proportional to the effective Planck mass ∼ expðαφ=3MÞ.
This permits us to realize a matter-dominated Universe
without expansion, as pursued in the very early days of cos-
mology based on general relativity. The prize to pay is,
however, a nonstatic behavior of the particle masses.
We observe that for the frame with η ¼ 1=3 the future
scalar-dominated Universe is expanding, according to the
positive sign of bþ ηc ¼ 2~γc=3, cf. Eq. (57).
For η ≠ 0,1 the choice of the metric corresponds neither

to the Einstein frame (fixed Planck mass) nor to the Jordan
frame (scale transformations realized by multiplicative
scaling of fields). A “flat frame”may be defined by a choice
of fields for which the geometry of the Universe is flat and
static Minkowski space. Thus the choice η ¼ 1

2
constitutes a

flat frame for the radiation-dominated epoch, while η ¼ 1
3

corresponds to the flat frame for the matter-dominated
epoch. We observe that no choice of η provides for a flat
frame for both the radiation- andmatter-dominated epochs.
(Formally, it may be possible to construct a frame with flat
space for the whole period of radiation and matter domina-
tion, using a rather complicated function wðχ=MÞ in the
Weyl scaling (111). This function would have to mimic
the details of the transition from radiation to matter

domination, involving in turn detailed particle masses
and interactions. Such a formulation looks not very
natural.)
A flat frame for the matter-dominated epoch has been

proposed earlier in Refs. [10–12]. Our model differs from
this proposal by the form of the cosmon coupling to the
matter fields which involves the different particle masses
according to Eq. (10) or (11), and by the different kinetic
term for the cosmon. This allows us to obtain a realistic
description of nucleosynthesis or the cosmic microwave
background, in contrast to the earlier proposals [10–12].
Furthermore, the presence of a cosmon potential VðχÞ plays
an important role in our model. It dominates the cosmic
evolution during inflation and in the present dark
energy-dominated epoch.

D. Initial state with flat geometry

It is also possible to describe the scaling solutions
describing the inflationary epoch in a frame where geom-
etry becomes flat Minkowski space in the limit χ → 0. In a
somewhat different context this property has been observed
in Ref. [114] for other models of inflation.
In our context we choose

η ¼ −K þ 4

2
¼ 1 − 2

~α2
: (122)

Defining

σ ¼
�
μ

M

� 1

2~α2M exp

�
αφ

~α2M

�
; (123)

the effective action reads

Γ ¼
Z

d4x
ffiffiffi
g

p �
− σ2

2
Rþ μ̄ ~α2σ4− ~α2 þ 1

2
Kσ∂μσ∂μσ

�
;

(124)

where

Kσ ¼ ~α2 − 6 (125)

and

μ̄ ¼
�
μ

M

� 6

~α4
þ 1

2~α2M: (126)

With these field variables the intrinsic scale μ̄ is tiny as
compared to μ if ~α is small. Comparing with the equivalent
effective action (1), (2) this demonstrates that the role
of the intrinsic scale strongly depends on the choice of
coordinates in field space.
For the initial scaling solution at the beginning of

inflation one has
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V þ 1

2
Kσσ

: 2 ¼ 0; (127)

such that H ¼ 0 according to Eq. (8). The solution of
Eq. (127),

σ ¼ σ0

�
1 − μ̄t

κ

�−
	

1

1− ~α2=2



;

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − ~α2=2

p
1 − ~α2=2

�
μ̄

σ0

�
1− ~α2

2

; (128)

remains regular for t → −∞ where σ goes to zero. On the
other hand, σ becomes singular for μ̄t → κ. This “future
singularity” occurs, however, far outside the region of inter-
est. (We know already that it is absent for other choices of
field coordinates.) For the inflationary epoch one has
μ̄t=κ ≪ 1 and therefore to a good approximation the linear
increase

σ ¼ σ0 þ
σ20ffiffiffiffiffiffiffiffiffiffiffiffi
3 − ~α2

2

q �
μ̄

σ0

� ~α2

2

t: (129)

The “initial period” of the cosmological history is
strikingly simple in the field coordinates (124). It is
described by a slow increase of a scalar field in flat
Minkowski space. The potential realizing this picture is
almost the scale invariant σ4-potential, up to a small anoma-
lous dimension ∼ ~α2. It has a minimum at σ ¼ 0. The field
equations have a particular static solution

σ ¼ 0; H ¼ 0; a ¼ const: (130)

This solution will be approached for t → −∞. Thus what is
called usually the “big bang” becomes in this picture
Minkowski space with a static vanishing value of the scalar
field.
The solution (130) is unstable for increasing t as given by

Eq. (128) for arbitrarily small nonzero σ0. For small initial
σ0 the field σðtÞ remains almost constant. Nevertheless, for
σ0 > 0 the small gradient ∂V=∂σ generates a slow time
evolution, and the field increases due to the negative value
of Kσ. In flat space and for constant Kσ the scalar field
equation,

Kσσ̈ ¼ −∂V
∂σ ; (131)

implies the conservation of

Eσ ¼ V þ Kσσ
: 2=2; (132)

and the particular solution consistent with flat space
according to Eq. (127) is the one for Eσ ¼ 0. We have seen

in sect V that this solution is stable and attractive as time
increases. On the other hand, solutions of Eq. (131) with
Eσ ≠ 0 do not solve the combined system of field equations
due to the gravitational coupling σ2R.
In this context we may work out the general condition for

the existence of a solution with flat space in the framework
of the effective action (1) in the absence of matter and radi-
ation. The field equations (6)–(8) have to be obeyed for
R ¼ 0, H ¼ 0, Tμν ¼ 0, qχ ¼ 0. Eq. (7) reads

Kχ̈ ¼ −∂V
∂χ − 1

2

∂K
∂χ _χ2; (133)

implying that V þ 1
2
K _χ2 is conserved. For K ≠ 0 Eq. (133)

becomes

_χ2 ¼ − 2V
K

: (134)

We consider the particular case ∂F=∂χ2 ¼ 1 such that
insertion of Eqs. (133), (134) into Eq. (8) yields the
condition

∂ ln V
∂ ln χ

− ∂ ln K
∂ ln χ

¼ −ðK þ 2Þ: (135)

This is in accordance with Eqs. (124), (125), with χ
replaced by σ.

E. Future flat space

The future cosmology of our model is dominated by the
cosmon coupled to neutrinos. The choice of a frame for
which the Universe approaches flat space in the future
therefore depends on the detailed χ dependence of the neu-
trino mass. We report here only briefly the approximation
of constant ~γ according to Eq. (54). In this case we can
employ again a frame (111) with constant η. The condition
(114) for a vanishing Hubble parameter requires for the flat
frame that V and ρ scale with the same power of χ. For
mν ∼ χ2~γþ1 in the Jordan frame one has m0

ν ¼ wmν ∼
χ2~γþ1−η in the frame with constant η. In this frame the
potential scales as V 0 ¼ Vw4 ∼ χ2−4η, such that the required
scaling property is realized for

η ¼ 1 − 2~γ

3
: (136)

According to Eq. (57) this reproduces η ¼ −b=c. (For
~γ ¼ 0 one recovers the flat frame for matter domination.)
As a consequence, the flat frame is characterized by the

scaling

m0
ν ∼ V 0 ∼ χ

2
3
ð1þ4~γÞ: (137)

In this “future flat frame” the masses of the charged par-
ticles increase as well
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m0
c ∼mcw ∼ χ1−η ∼ χ

2
3
ð1þ2~γÞ: (138)

Due to the slower increase as compared to the neutrino
mass their role becomes negligible in the future. In the
future flat frame (136) the Universe is shrinking during
matter domination, according to the negative sign
of bþ ηc ¼ −2~γc=3.

F. Present Universe in different frames

The present epoch is characterized by a transition from
the matter-dominated epoch to a future dark energy-
dominated epoch for which the charged particles become
irrelevant. Due to this transition character the geometry
is, in general, nonstatic for all the simple frames with con-
stant η. It may be instructive to describe the behavior in
some of the different frames discussed above.
In the Einstein frame ðη ¼ 1Þ we have the accelerated

expansion of standard cosmology in the presence of dark
energy. In contrast, for the Jordan frame ðη ¼ 0Þ the present
epoch witnesses a transition from a shrinking Universe dur-
ing matter domination to an expanding Universe in the
future. This implies that there is a turning point for the scale
factor at some given moment of the present cosmological
era. For the flat frame for matter domination ðη ¼ 1

3
Þ the

Universe has started to expand only recently, while for red-
shift z≳ 10 it has been in the static state for matter domi-
nation. Finally, for the future flat frame ðη ¼ ð1 − 2~γÞ=3Þ
the Universe makes a transition from a shrinking scale fac-
tor during matter domination to a static state in the future.
A turning point from a shrinking to an expanding

Universe exists for a large range of frames with

1 − 2~γ

3
< η <

1

3
: (139)

The precise location of the turning point depends on the
choice of η. For η → 1=3 this point moves to the far past,
and for η → ð1 − 2~γÞ=3 it occurs in the far future. By con-
tinuity there exists a value ηt for which the Universe is static
just at the present time. In this particular frame the scale
factor shrinks in the past and expands in the future.
Just at the present time the Universe is static and the usual
redshift of not too distant objects is purely due to the
change of the mass of particles.

VIII. COSMON INFLATION FOR QUADRATIC
COSMON POTENTIAL

The early inflationary phase of the cosmology of our
model is most easily described in the Einstein frame.
The effective action (104) describes a standard theory of
gravity coupled to a scalar field with an exponential poten-
tial. The ϕ dependence of the kinetial k2ðφÞ will, however,
lead to quantitative differences from power law inflation.

A. Kinetial and slow roll parameters

The exponential form of the potential makes the slow roll
formalism particularly simple. We will use in the next sec-
tion a more general form of the potential in the Jordan
frame that can be brought to a standard exponential form
in the Einstein frame by a suitable choice of φ. This will
modify the particular form of the kinetial k2ðφÞ, and we
keep our formulae therefore general for arbitrary positive
k2ðφÞ. Our models are particular cases of “cosmon infla-
tion” as it has been discussed recently in a wider context
[34]. For the particular model (2), (15) the kinetial reads

k2ðφÞ ¼
�
α2

~α2
− 1

�
m2

m2 þ μ2 expðαφ=MÞ þ 1: (140)

It only varies substantially once χ2 ¼ μ2 expðαφ=MÞ
reaches values of the order m2.
The properties of primordial density fluctuations with a

given scale are governed by the properties of the potential
and kinetial at the value of φ at which the corresponding
scale has left the horizon. The Hubble parameter during
the slow roll phase can be approximated by

H2 ¼ V
3M2

¼ M2

3
exp

�
− αφ

M

�
: (141)

We will see that important properties of the density fluctu-
ations, as the spectral index n and the tensor to scalar ratio r
depend only on the kinetial k2. The overall amplitude of the
fluctuations involves, in addition, the overall magnitude of
V at horizon crossing as given by the corresponding value
of ϕ. We present here only the most important features and
refer for more details to Ref. [34].
The scalar field σ with canonical normalization of the

kinetic term is related to φ by

dσ
dφ

¼ kðφÞ: (142)

We can use this relation in order to make direct contact
with the usual treatment of single field inflation. In particu-
lar, it is straightforward to compute the standard slow roll
parameters of inflation as a function of φ

ϵ ¼ M2

2

�∂ ln V
∂σ

�
2

¼ M2

2k2

�∂ ln V
∂φ

�
2

¼ α2

2k2
;

η ¼ M2

V
∂2V
∂σ2 ¼ 2ϵ −M

α

∂ϵ
∂φ : (143)

They depend only on the kinetial k2ðϕÞ.
The number of e-foldings before the end of inflation

obeys the simple relation
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NðφÞ ¼ 1

αM

Zφf

φ

dφ0k2ðφ0Þ: (144)

Inverting this relation and inserting into Eq. (143) yields ϵðNÞ
and ηðNÞ. The formulae (143), (144), are valid for an arbi-
trary form of the kinetial k2ðφÞ. Only the kinetial k2ðφÞ
enters in the computation of ϵðNÞ, ηðNÞ and N. In turn,
the spectral index n and the tensor to scalar ratio r for the
density perturbations generated during inflation are given by

n ¼ 1 − 6ϵðNÞ þ 2ηðNÞ;
r ¼ 16ϵðNÞ; (145)

where N ≈ 50–60, depending on details of the entropy pro-
duction after the end of inflation. Thus n and r can be deter-
mined for any given form of kðφÞ. We observe that by a
multiplicative rescaling of φ in Eq. (104) one can obtain
α ¼ 1. Thus ϵ, η and N involve only the combination k2=α2.

B. Slow roll parameters for quadratic cosmon potential

In our context, these quantities depend on the two param-
eters ~α and α. For the specific form of the kinetial (140) the
integral (144) can be solved explicitly,

NðφÞ ¼ αðφf − φÞ
~α2M

−
�
1

~α2
− 1

α2

�

× ln

�
m2 þ μ2 expðαφf=MÞ
m2 þ μ2 expðαφ=MÞ

�
: (146)

This makes a numerical computation of nðNÞ and rðNÞ
very easy and we will present results below. The qualtita-
tive features can be understood by simple analytic
considerations.
An inflationary phase requires a range of φ for which

ϵ ≪ 1, jηj ≪ 1. This can be realized for small or negative
φ provided ~α ≪ 1. Then the φ dependence of k2 can be
neglected such that ϵ ¼ ~α2=2, η ¼ ~α2. On the other hand,
for large φ the kinetial approaches k2 ¼ 1. For the large
values of α2 > 100 needed in order to obey the restrictions
on early dark energy this implies that the slow roll period
has to end for a sufficiently large value of φ. For large α ≫
1 and small ~α ≪ 1 we can approximate the slow roll period
and its end by

ϵ ¼ ~α2

2

�
1þ μ2

m2
expðαφ=MÞ

�
; η ¼ ϵþ ~α2

2
: (147)

The inflationary phase ends when ϵ reaches one, corre-
sponding to a value ϕf obeying

exp

�
αφf

M

�
¼ 2m2

~α2μ2
: (148)

Inserting this value in Eq. (146) and neglecting α−2 as
compared to ~α−2 yields

NðφÞ ≈ 1

~α2

�
ln

�
m2

μ2
þ exp

�
αφ

M

��
− αφ

M
− ln

�
1þ ~α2

2

��
:

(149)

At this point we can extract the value of φ for a given
number of e-foldings before the end of inflation and deter-
mine ϵ, η, n, r according to Eqs. (147), (145). Since α
appears only in the combination αφ=M the result does
not depend on α. We display the values of n and r for differ-
ent values of ~α in Table I. The first number corresponds to
N ¼ 60, and the second number in brackets refers
to N ¼ 50.

C. Late horizon crossing

We may distinguish two scenarios for the ratio

x ¼
�
χ2

m2

�
¼

�
μ2

m2

�
expðαφ=MÞ (150)

at the time of horizon crossing of the fluctuations. In terms
of x the kinetial reads

k2 ¼
�
α2

~α2
− 1

�
ð1þ xÞ−1 þ 1: (151)

For large x ≫ 1 we can approximate the kinetial and slow
roll parameters by

k2 ¼ α2

~α2x
; ϵ ¼ 1

2
η ¼ 1

2
~α2x: (152)

They only depend on the parameter ~α or equivalently
Kðχ ¼ 0Þ. No intrinsic mass scale appears for the slow roll
parameters. Their determination needs for a given ~α the
value xð ~αÞ for horizon crossing. In principle, the combina-
tion ~α2xð ~αÞ depends on ~α. We find, however, that horizon
crossing in the asymptotic regime requires small ~α. Since
~α2xð ~αÞ has a finite value for ~α → 0, this value will yield a
“universal value” (independent of all parameters) for the
properties of density fluctuations.

TABLE I. Properties of density fluctuations, model (A).

~α 0.001 0.02 0.1

n 0.975 (0.97) 0.975 (0.97) 0.972 (0.967)
r 0.13 (0.16) 0.13 (0.16) 0.18 (0.2)
m
μ 120 (100) 2400 (2000) 12 000(10 000)
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In order to determine xð ~αÞ we use

NðφÞ ≈ m2

~α2μ2
exp

�
− αφ

M

�
¼ 1

~α2x
: (153)

In the large-x-region we therefore find the simple relations

x ¼ 1

N ~α2
; ϵ ¼ η ¼ ~α2x

2
¼ 1

2N
: (154)

As a consequence, the spectral index n and the tensor to
scalar ratio of the primordial density fluctuations do not
depend on the parameters α, ~α, μ2=m2,

n ¼ 1 − 6ϵþ 2η ¼ 1 − 2

N
;

r ¼ 16ϵ ¼ 8

N
¼ 4ð1 − nÞ: (155)

For N ¼ 60 Eq. (155) implies

n ≈ 0.97; r ≈ 0.13: (156)

Comparison with Table I shows that for ~α ¼ 0.001 or ~α ¼
0.02 both n and r are well approximated by Eq. (155).

D. Early horizon crossing

The other limiting regime corresponds to x ≪ 1, where
one approximates

N ¼ 1

~α2

�
ln

�
1

x

�
þ x − ln

�
1þ ~α2

2

��
: (157)

Concentrating on the leading term ∼ lnð1=xÞ one finds

x ¼ expð− ~α2NÞ (158)

and therefore, for x → 0,

ϵ ¼ 1

2
η ¼ ~α2

2
: (159)

The transition between the two limiting regions occurs for
~α2 ≈ 1=N, with x ≫ 1 realized for ~α2 ≪ 1=N and x ≪ 1
for ~α2 ≫ 1=N. Thus ϵ tends to increase from the value
(155) as ~α increases. In view of the limits on r extracted
from the CMB anisotropies [42] a horizon crossing in
the large x region is favored. It has to be investigated if
the rather strong tensor amplitude r ≈ 0.13 is compatible
with observation once EDE and growing neutrino masses
are included in the analysis of the CMB anisotropies.

E. Amplitude of density fluctuations

The dimensionless parameters ~α, α and μ2=m2 are further
restricted by the requirement that the amplitude of primor-
dial density fluctuations coincides with the observed one,

24π2Δ2 ¼ V
ϵM4

¼ 2N exp

�
− αφ

M

�
≈ 5 × 10−7: (160)

This requires (for N ¼ 60)

exp

�
− αφ

M

�
¼ μ2

m2x
≈ 4 × 10−9: (161)

For ~α2 ≪ 1=N this results in the condition

~α2μ2

m2
≈
2

3
× 10−10: (162)

The values ofm2=μ2 for other values of ~α are also indicated
in Table I. Typical parameters for the realization of a real-
istic inflationary phase arem ≈ 100μ, ~α2 ¼ ð2=3Þ10−6 such
that the value of x relevant for the density fluctuations
becomes x ¼ 2.5 × 104.

F. More general kinetials

For the parameter region of very small ~α2 the function K
becomes very large for χ2 → 0. The behavior for χ2 → 0
obeys then the de Sitter solution (29), (31) with almost
constant χ,

b ≈
1ffiffiffi
3

p ; c ≈ 0; 3H2 ≈ μ2: (163)

We emphasize that our setting holds for a wide variety of
kinetials ~k2ðxÞ ¼ KðxÞ þ 6 ¼ 4k2ðxÞ=α2 ¼ 2=ϵðxÞ, pro-
vided they have the property that they become very large
for x → 0 and small for x → ∞. For example, one could
replace Eq. (15) by

K þ 6 ¼ m̂2

χ2
þ g
lnðχ2=m̂2Þ ; m̂2 ¼ 4m2

~α2
: (164)

IX. FLAT COSMON POTENTIAL WITH
EINSTEIN TERM

So far we have concentrated on the simple class of models
obeying Eq. (2). The basic features of our setting hold for a
much wider class of models of the type (1). Whenever the
potential VðχÞ increases for large χ less fast than F2ðχÞ the
effective cosmological constant vanishes for asymptotic time
as χ → ∞. For Fðχ → ∞Þ ¼ ξχ2 and Kðχ → ∞Þ → K∞
the evolution for χ → ∞ corresponds to the approach to a
fixed point with exact dilatation symmetry. Whenever the
effective kinetic term obeys asymptotically ðK∞ þ 6Þ=ξ ≪
1 the late cosmology obeys scaling solutions with a small
fraction of early dark energy. On the other hand, an inflation-
ary epoch occurs if χ2K=F is large for some range of χ.
In this section we discuss our second model (B), as

defined by Eqs. (1), (3). The potential V is now given
by a cosmological constant λ̄c. Due to the increase of
F ∼ χ2 for large χ its dynamical role is very different from
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the one in Einstein gravity. We have already encountered a
model with constant V in Sec. VII, Eqs. (120), (121). For
χ2 ≫ m2 model (B) will indeed coincide with Eqs. (120),
(121). For the radiation- and matter-dominated epochs
there will be no difference between models (A)
and (B), and this extends to the late dark energy-
dominated epoch.
Besides the different potential a second important differ-

ence between the models (A) and (B) concerns the presence
of an “Einstein term” ∼ −m2R in the effective action. The
coefficient of the curvature scalar no longer vanishes for
χ → 0. In short, the limiting behavior of the effective action
for χ → ∞ realizes dilatation symmetry for both models
(A) and (B). The predictions of both models are the same
after the onset of radiation domination. On the other hand,
the inflationary phase and its end is related to explicit scale
symmetry breaking. Here both models differ.

A. Effective action and field equations
for flat cosmon potential

The effective action of model (B) involves

FðχÞ ¼ χ2 þm2; VðχÞ ¼ λ̄c: (165)

The explicit scale symmetry breaking occurs by the pres-
ence of parameters with nonzero dimension. In the class of
models (165) this concerns a cosmological constant (in the
Jordan frame) λ̄c and a violation of the scaling F ∼ χ2 for
small χ by a constant m2. Since F approaches now a con-
stant for small χ the kinetial must be positive in this region,
Kðχ → 0Þ ≥ 0. Realistic values for early dark energy
require that Kðχ → ∞Þ is close to the critical value −6.
Thus the form F ¼ m2 þ χ2 requires that the scale sym-
metry breaking is also present in the kinetial KðχÞ in the
form of a nontrivial χ dependence. We will again take
KðχÞ similar to Eq. (15). We will, however, choose a
different normalization of α and ~α such that

K þ 6 ¼ 16

~α2
m2

m2 þ χ2
þ 16

α2
χ2

m2 þ χ2
: (166)

The contribution ∼ ~α−2 ensures the positivity for χ → 0 pro-
vided ~α2 < 8=3. The inflationary phase of this model is
again a special case of cosmon inflation, as discussed
in Ref. [34].
Our model (B) has two characteristic mass scales, ðλ̄cÞ1=4

and m. We can associate λ̄c with the present dark energy
density,

λ̄c
M4

≈ 7 × 10−121; ðλ̄cÞ1=4 ¼ 2 × 10−3 eV: (167)

In the Jordan frame the potential energy for the scalar field
remains the same at all time—it is the same during inflation
and today. Only the ratio of V to the fourth power of the

effective Planck mass F1=2ðχÞ changes as χ increases. In
the Einstein frame this will lead again to an exponential
potential for large φ.
We will find that the second mass scale m has to be

somewhat larger than ðλ̄cÞ1=4 in order to ensure the correct
amplitude for the density perturbations generated during
inflation. We will find below m ≈ 1 eV. The two mass
scales m and ðλ̄cÞ1=4 are the only intrinsic mass scales of
our model. In addition, we have the mass scale generated
by the spontaneous breaking of dilatation symmetry by a
nonzero value of χ. The masses of hadrons and charged
leptons are supposed to scale proportional to χ for large χ.
For the model (165) the field equations (13), (14) read

�
K þ 6χ2

χ2 þm2

�
ðs̈þ 3Hs

: þ 2_s2Þ þ
�

χ
2
∂K
∂χ − m2K

χ2þm2

�
_s2

¼ 4λ̄c
χ2 þm2

þ qχ
χ
− Tμ

μ

χ2 þm2
; (168)

and

�
Hþ χ2

χ2þm2
_s
�

2

¼ 1

3ðχ2þm2Þ
�
λ̄cþ

χ2

2

�
Kþ 6χ2

χ2þm2

�
_s2þT00

�
: (169)

For our choice (166) for K the stability requirement

K > − 6χ2

χ2 þm2
(170)

is obeyed for ~α2 < 8=3.
We will take λ̄c > 0. For ρ ¼ T00 > 0 the rhs of

Eq. (169) is positive for all s and _s such that the sign of
the combination

H þ χ2

χ2 þm2
_s ¼ H þ χχ

:

χ2 þm2

¼ ∂t

�
ln aþ 1

2
lnðχ2 þm2Þ

�
(171)

cannot change during the time evolution. Similar to our
model (A) the combination

y ¼ ln aþ 1

2
ln

�
χ2 þm2

m2

�
(172)

is either monotonically increasing or decreasing. We
choose time conventions such that _y is positive, resulting
in a positive root

H ¼ − χ2

χ2 þm2
s
: þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̄c þ T00

3ðχ2 þm2Þ þ
K0 _s2

6

s
;
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with

K0 ¼ χ2

χ2 þm2

�
K þ 6χ2

χ2 þm2

�
: (173)

B. Radiation domination

We are interested in simple scaling solutions and concen-
trate first on χ2 ≫ m2. In this limit one finds a negative
constant [cf. Eq. (121)]

K ¼ −6þ 16

α2
: (174)

A simple scaling solution is found for

ρ ¼ ρ̄ ¼ const; H ¼ 0: (175)

In this case Eq. (169) becomes

λ̄c þ ρ̄þ K
2
_χ2 ¼ 0; (176)

with solution

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 2

K
ðλ̄c þ ρ̄Þ

r
ðtþ t0Þ: (177)

Inserting

_s2 ¼ − 2ðλ̄c þ ρ̄Þ
Kχ2

; s̈ ¼ −_s2; (178)

Eq. (168) yields

− 2ðK þ 6Þ
K

ðλ̄c þ ρ̄Þ ¼ 4λ̄c þ qχχ − Tμ
μ: (179)

Our assumption of constant ρ has to be compatible
with the conservation of the energy momentum tensor.
For H ¼ 0 this holds for radiation, while matter with par-
ticle masses ∼χ would have ρ changing ∼χ. Our ansatz
therefore describes the radiation-dominated epoch, for
which qχ ¼ 0, Tμ

μ ¼ 0. Eq. (179) turns to a simple algebraic
equation fixing ρ̄=λ̄c,

ρ̄

λ̄c
¼ − 3ðK þ 2Þ

K þ 6
: (180)

This is compatible with positive ρ provided ðK > −6Þ
K < −2: (181)

For the asymptotic form of our choice for K (166) this
requires, similar to our first model (A),

α > 2: (182)

We conclude that the radiation-dominated epoch
becomes very simple for the model (B) (165), (166).
The static geometry is given by flat Minkowski space.
The only time evolution concerns the linear increase of
the effective Planck mass

χ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
λ̄c

K þ 6

s
ðtþ t0Þ ¼

α

2

ffiffiffiffiffi
λ̄c

q
ðt − t0Þ: (183)

This increase of the Planck mass replaces the expansion
in the usual description. The energy density in radiation
does not change with time. Since particle masses
grow ∼χ the radiation-dominated epoch will end once
the energy density of matter becomes comparable to
radiation.
Comparing with model (A) with field coordinates (120),

(121) we find that both models coincide for χ2 ≫ m2 with
the same value of α and λ̄c ¼ μ2M2. For χ2 ≫ m2 the two
models (A) and (B) are therefore equivalent, related by a
simple conformal transformation. For a sufficient time after
the end of inflation χ has grown so far that correc-
tions ∼m2=χ2 can be neglected. The cosmological solutions
of models (A) and (B) become then equivalent.
Nevertheless, it is instructive to understand the matter-
dominated epoch also in the field basis (1),(3), for model
(B) and we will display this next.

C. Matter domination

For the subsequent matter-dominated epoch the geom-
etry remains no longer static. The scaling solution will cor-
respond again to a static ρm ¼ ρ̄. However, since for matter
ρm scales ∼χ=a3, a constant ρ requires the relation

H ¼ 1

3
_s: (184)

For increasing χ the Universe is now expanding, although
with a rate different from the usual description. Neglecting
terms ∼m2=χ2 and using for particle masses ∼χ the relation
Tμ
μ ¼ χqχ the Eqs. (168), (169) become again algebraic

equations,

_χ2 ¼ 2

K þ 6
λ̄c;

14 − 3K
6

χ
: 2 ¼ λ̄c þ ρ̄; (185)

with solution

ρ̄

λ̄c
¼ − 2ð2þ 3KÞ

3ðK þ 6Þ : (186)
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For positive ρ̄ and λ̄c þ ρ̄, the existence of this solution
requires

K < − 2

3
; α2 > 3. (187)

The picture of the matter-dominated Universe is again
rather simple. Both the particle masses and the scale factor
increase in a way such that the energy density remains con-
stant. While particle masses increase ∼χ ∼ t, the scale
factor increases ∼t1=3,

H ¼ 1

3
t−1: (188)

This differs from the expansion rate in cosmologies with a
constant Planck mass. For both the radiation- and matter-
dominated epoch the scaling solution includes a constant
fraction of early dark energy. The matter-dominated epoch
will end if some other particle species as neutrinos have a
mass that increases faster than χ. As for model (A) this can
trigger a transition to a dark energy-dominated epoch.

D. Inflation

For the inflationary epoch the intrinsic scale m2 plays a
role. Thus the two models (A) and (B) will yield different
predictions. For model (B) two different types of scaling
solutions are found in the approximation of constant K.
Consider first the approximation χ2 ≫ m2 which may
become relevant towards the end of inflation. We make
the ansatz (with constant e, f)

H ¼ f_s; _χ ¼ e; (189)

such that Eq. (169) reads

3ð1þ fÞ2e2 ¼ λ̄c þ
K þ 6

2
e2: (190)

With s̈ ¼ −_s2 Eq. (168) yields a second quadratic equation

ðK þ 6Þð1þ 3fÞe2 ¼ 4λ̄c: (191)

The scaling solution obeys

f ¼ K þ 2

4
; e ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̄c

ðK þ 6Þð3K þ 10Þ

s
(192)

and requires K > −10=3. It describes a linear increase of χ
with time, with a decreasing Hubble parameter H ¼ f=t.
A second type of scaling solution is appropriate for the

range χ2 ≪ m2. Here we make the ansatz

H ¼ ~bm; _s ¼ ~cm (193)

and find the algebraic expressions for the field equations

Kð3~b ~cþ~c2Þ ¼ 4λ̄c
m4

; ~b2 ¼ λ̄c
3m4

: (194)

For this solution both the scale factor a and the scalar field
χ increase exponentially

H ¼
ffiffiffiffiffiffiffiffiffi
λ̄c
3m2

s
;

_χ

χ
¼

ffiffiffiffiffiffiffiffiffi
3λ̄c
4m2

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16

3K

r
− 1

�
: (195)

This solution exists for K > 0 or ~α2 < 8=3. It is regular for
t → −∞ with χðt → −∞Þ → 0. Again, the cosmology is
free of a big bang singularity.
As χ increases beyond m the exponential growth (195)

will turn over to the linear growth according to Eq. (189).
Also the Hubble parameter does not remain constant but
rather decays as H ¼ f=t. Typical inflationary scenarios
describe a transition between the two scaling solutions.
A more quantitative description of the inflationary epoch
will be given after performing a Weyl scaling to the
Einstein frame.

E. Weyl scaling

For a quantitative discussion of the various cosmological
epochs we perform again the Weyl scaling (98) to the
Einstein frame, resulting in the effective action (99) with

V 0 ¼ λ̄cM4

ðχ2 þm2Þ2 ;

K0 ¼ χ2K
χ2 þm2

þ 6
χ4

ðχ2 þm2Þ2 : (196)

For model (B) we define φ by

φ ¼ M
α

ln
ðχ2 þm2Þ2

λ̄c
; (197)

such that the exponential potential in Eq. (84) is again real-
ized. In this convention χ ¼ 0 corresponds to a minimal
value φmin ¼ ðM=αÞ lnðm4=λ̄cÞ. The kinetial k2ðφÞ obeys
now

k2 ¼ α2

4

�
χ2 þm2

2χ2

�
2

K0

¼ α2

16

�
m2 þ χ2

χ2
K þ 6

�

¼ 1þ α2
�
1

~α2
− 3

8

�
m2

χ2
: (198)

It equals unity for large enough values of χ2=m2. With the
convention (166) the cosmology of the radiation- and
matter-dominated epochs is governed by k2 ¼ 1. As

VARIABLE GRAVITY UNIVERSE PHYSICAL REVIEW D 89, 024005 (2014)

024005-27



expected, this is the same as for model (A). In particular, the
early dark energy fraction Ωe is again given by Eq. (106).
This holds despite the fact that in the Jordan frame the sol-
utions have rather different characteristics.

X. COSMON INFLATION FOR FLAT COSMON
POTENTIAL

The inflationary period is again characterized by the
kinetial k2 according to Eqs. (143), (144). Its form (198)
for model (B) differs from model (A) for small
x ¼ χ2=m2. We will find values of ~α for which n ≈ 0.95
and r ≈ 0.05, well compatible with present observations.
On the other hand, a spectral index larger than 0.96 will
lead to unacceptably high tensor fluctuations.
Defining ᾱ by

1

ᾱ2
¼ 1

~α2
− 3

8
(199)

we infer from

k2 ¼ 1þ α2

ᾱ2x
(200)

the slow roll parameters

ϵ ¼ ᾱ2x
2

�
1þ ᾱ2x

α2

�−1
;

η ¼ 2ϵ − 1þ x
2

∂ϵ
∂x

¼ ᾱ2

4
	
1þ ᾱ2x

α2



0
BB@−1þ 3xþ ᾱ2xð1þ xÞ

α2
	
1þ ᾱ2x

α2



1
CCA: (201)

The relation between x and the number of e-folding before
the end of inflation at xf is given by

NðxÞ ¼ 2

α2

Z
xf

x
dx

k2ðxÞ
1þ x

¼ 2

ᾱ2

Z
xf

x
dx

�
1

xð1þ xÞ þ
ᾱ2

α2ð1þ xÞ
�
: (202)

We observe that η becomes negative for x → 0, correspond-
ing to the concave region of V 0 in Eq. (196).
With

NðxÞ ¼ 2

ᾱ2
ln

�
xf
x

�
−
�
2

ᾱ2
− 2

α2

�
ln

�
1þ xf
1þ x

�
; (203)

and ϵðxfÞ ¼ 1,

xf ¼ 1

2ᾱ2
	
1 − 1

2α2


 ≈
1

2ᾱ2
; (204)

we can now compute ϵðNÞ and ηðNÞ. The corresponding
values of n and r are given in Table II for different values
of ~α. There the first number refers to N ¼ 60, and the
second number in brackets to N ¼ 50.
We may again distinguish between the regime of large x

at the time of horizon crossing of density perturbations and
the small-x regime. For x ≫ 1 one has

NðxÞ ≈
�
2

ᾱ2
− 2

α2

��
1

x
− 2ᾱ2

�
− 2

α2
lnð2ᾱ2xÞ

≈
2

ᾱ2x
− 4; (205)

and therefore

ϵ ¼ ᾱ2x
2

¼ 1

N þ 4
;

η ¼ 3

2
ϵ ¼ 3

2ðN þ 4Þ : (206)

The resulting large tensor component r ≈ 0.25 is disfavored
by observation.
On the other side, for x ≪ 1 one finds

N ¼ 2

ᾱ2

�
ln

�
1

x

�
− lnð1þ 2ᾱ2Þ þ x

�

≈
2

ᾱ2
ln

�
1

x

�
: (207)

This yields

ϵ ≈
ᾱ2

2
exp

�
− ᾱ2N

2

�
;

η ≈ − ᾱ2

4

�
1 − 3 exp

�
− ᾱ2N

2

��
; x ≈ exp

�
− ᾱ2N

2

�
;

(208)

and therefore

n ¼ 1 − ᾱ2

2
ð1þ 3xÞ;

r ¼ 8ᾱ2x: (209)

TABLE II. Properties of density fluctuations, model (B).

~α 0.24 0.28 0.325

n 0.954 (0.95) 0.95 (0.944) 0.94 (0.936)
r 0.08 (0.12) 0.054 (0.085) 0.027 (0.049)

m
ðλ̄cÞ1=4 129 (114) 150 (131) 182 (156)
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For ᾱ2 substantially larger than 2=N the horizon crossing
of characteristic fluctuations occurs at very small x and
therefore leads to very small r,

r ¼ 8ᾱ2 exp

�
− ᾱ2N

2

�
;

n ¼ 1 − ᾱ2

2
− 3r
16

: (210)

Since both r and n are determined by ᾱ2 we can establish
a relation between these two quantities. An approximate
form for small r reads

r ¼ 16ð1 − nÞ expð−Nð1 − nÞÞ
1 − 3½Nð1 − nÞ − 1� expð−Nð1 − nÞÞ : (211)

For n ¼ 0.95 this yields the prediction ðN ¼ 60Þ

r ¼ 0.05: (212)

This model of cosmon inflation seems to be compatible
with all present data. The predicted amplitude of tensor
fluctuations may be detectable in the data of the Planck sat-
ellite. We can interpret the measurement of the spectral
index as a measurement of ~α. For n ¼ 0.95 one finds

ᾱ2 ¼ 0.08; ~α ¼ 0.28: (213)

For model (B) a value of n larger than 0.96 would require
an unacceptable high power of tensor fluctuations.
We finally determine the mass scalem from the observed

amplitude of the density fluctuations

24π2Δ2 ¼ V 0

ϵM4
≈ 5 × 10−7; (214)

with

V 0

M4
¼ λ̄c

m4
ð1þ xÞ−2: (215)

The corresponding values of m are displayed in Table II.
They are about two orders of magnitude larger than the
characteristic scale for the potential ðλ̄cÞ1=4. With the
numerical value (167) one obtains values m ≈ 0.3 eV.

XI. CONCLUSIONS AND DISCUSSION

We have found that models of gravity coupled to a single
scalar field can connect inflation with the present dark
energy-dominated epoch. It is remarkable that the same
simple potential for the cosmon can describe the whole his-
tory of dark energy—from its domination during inflation
to a subleading early dark energy during radiation and mat-
ter domination, and finally again to domination in the

present Universe. This evolution spans 60 orders of mag-
nitude in time or 120 orders of magnitude in the ratio
between the potential and the fourth power of the effective
Planck mass.
It may be expected that by using arbitrary functions F, K

and V in Eq. (1) such a unified description of inflation and
present dark energy becomes possible. This extends to
other (equivalent) formulations of a scalar degree of free-
dom coupled to the graviton as fðRÞ-theories. The novelty
of our approach concerns the simplicity of our models. The
scalar potential V involves only one mass parameter, μ ¼
2 · 10−33 eV for model (A) and ðλ̄cÞ1=4 ¼ 2 · 10−13 eV for
model (B). No free dimensionless couplings appear. The
effective Planck mass being a dynamical variable there
is no fixed mass parameter for it. Thus no dimensionless
parameters have to be tuned to render the tiny observed
ratio between the present dark energy density and the fourth
power of the present Planck mass.
The mass parameter in the potential sets the typical time

scale for the evolution of the universe. For model (B) the
Hubble parameter never exceeds the eV-region. Even more
striking, for model (A) the Hubble parameter remains of the
order of the present Hubble parameter H0 ¼ 0.69μ for all
cosmological epochs, including inflation and the approach
to the “big bang”! In contrast to the diverging Hubble
parameter for the standard big bang picture we deal here
with a “slow universe”. For all times from minus infinity
to plus infinity the characteristic time scale of the cosmic
evolution is of the order 1010 yr. This time scale also
governs the evolution of particle masses.
Our models are characterized by two different asymp-

totic regions: very early cosmology corresponds to the limit
χ → 0, and late cosmology is characterized by χ → ∞. The
transition between the asymptotic regions involves a mass
scale m, such that we can form a dimensionless quantity
x ¼ χ2=m2. Early cosmology corresponds to x ≪ 1, late
cosmology to x ≫ 1. The transition scale m introduces a
dimensionless parameter m=μ (A) or mðλ̄cÞ−1=4 (B). Its
value can be fixed by the amplitude of the primordial
density fluctuations. For model (B) the function F for
the scalar-gravity coupling involves no parameter besides
m. There is no parameter at all for model (A).
The kinetial K multiplies the derivative term for the cos-

mon in the effective action. It plays a similar role as the
wave function renormalization, with the particularity that
stability requires K > −6 if the effective Planck mass is
proportional to the cosmon field χ. (For a fixed Planck mass
the stability bound would be K > 0.) Compatibility with
the observed properties of the density fluctuations gener-
ated during inflation requires K to take a large positive
value during inflation. On the other hand it has to be close
to the conformal value −6 in the later stages of the cosmic
evolution in order to keep the amount of early dark energy
small. We therefore introduce two dimensionless parame-
ters K0 ¼ Kðχ → 0Þ and K∞ ¼ Kðχ → ∞Þ. In model (A)
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they are connected to the parameters α and ~α by
K0 þ 6 ¼ 4= ~α2, K∞ þ 6 ¼ 4=α2, while there is an addi-
tional factor four for model (B). The sector of the scalar
field coupled to gravity is therefore described by only three
dimensionless parameters α, ~α and m=μ or mðλ̄cÞ−1=4. For
definiteness we have chosen a specific form (15), (166) for
KðχÞ. The precise shape of the transition between K0

and K∞ at x ≈ 1 is not very important for a description
of realistic cosmology.
Additional couplings appear in the matter sector. Our

models assume that for large χ the masses of all particles
except neutrinos are given by mi ¼ hiχ. The values of the
dimensionless couplings hi are determined by the present
particle masses mð0Þ

i in units of the Planck mass M,
hi ¼ mð0Þ

i =M. They therefore do not involve new parame-
ters besides the standard fixed particle masses in the con-
ventional big bang picture. We do not need to specify the
couplings hi for small χ since particles play no role in the
very early cosmological epochs. It is well conceivable that
these couplings differ for early epochs from the present val-
ues. This may play a role for the entropy production after
inflation. We have left this interesting topic out of the scope
of the present work.
An important ingredient of our models is the assumption

that neutrino masses do not scale ∼χ, due to a mass param-
eter in the sector of heavy singlets (of the standard model
gauge group) that decreases rather than to scale ∼χ. This
mass parameter enters the light neutrino masses by some
type of seesaw mechanism. The resulting increase of the
neutrino masses faster than χ stops the evolution of the cos-
mon once neutrinos become nonrelativistic, thereby trig-
gering the onset of the accelerated expansion. The
crucial parameter in the neutrino sector is the (present)
effective growth parameter ~γ, as determined by
mν ∼ χ2~γþ1. This parameter enters the striking relation
(70) which determines the present dark energy density in
terms of the neutrino mass. The observation of dark energy
yields

~γ ¼ 6.15

�
mð0Þ

ν

eV

�−1
; (216)

withmð0Þ
ν the present average neutrino mass. The parameter

~γ may be considered as the equivalent of Λ=M4 ≈ 10−120 in
the ΛCDM-model. While it needs to be fixed (for given
mð0Þ

ν ) in order to account for the present fraction of 70%
dark energy, it is a quantity roughly of order one that does
not need fine tuning. (Depending on the details of the neu-
trino sector ~γ may actually be a growing function
of lnðχ=mÞ.)
Due to its few parameters our models are subject to many

observational tests. Let us compare our model (A) with the
standard ΛCDM-model. The parameter ~γ corresponds to
the parameter Λ, fixing the present dark energy density
or Ωm (assuming Ωtot ¼ 1). The parameter m=μ is fixed

by the amplitude of the primordial density fluctuations
which is also a free parameter in the ΛCDM model. The
spectral index n of the primordial fluctuations depends
weakly on ~α. This may be used to fix this parameter.
Then our model has only one additional parameter, namely
α, which determines the fraction of early dark energy. This
is subject to observational tests which already constrain this
parameter to α≳ 10.
With all parameters fixed in this way our model leads to

several testable predictions. The tensor to scalar ratio r is
computable. The predictions of ðn; rÞ in Table I make the
model falsifiable in the sense that an additional parameter,
as a constant in VðχÞ, may be needed. (For the time being
the estimate of the allowed parameter range ðn; rÞ has to
wait until the nonstandard neutrino sector is included in
the analyses.) Also non-Gaussianities or other features
beyond the simple single field inflation may make exten-
sions of the model necessary. Concerning the present dark
energy, our models predict an equation of state w rather
close to −1, but somewhat above. More striking, the pre-
dicted formation of large scale neutrino lumps renders the
cosmic neutrino background observable. Furthermore, the
large coupling between neutrinos and dark energy will lead
to deviations of the present value of the Hubble parameter
from the CMB-inferred value for the ΛCDM model.
The evolution of the Universe after the inflationary

epoch can be understood as the approach to a fixed point.
This is realized by a cosmological “runaway solution”
where χ increases continuously. Dimensionless couplings
or mass ratios are, in general, functions of χ. An asymptotic
fixed point means that these quantities become independent
of χ for χ → ∞. For a fixed point dilatation symmetry
becomes exact—the memory of all intrinsic mass scales
is lost. All particle masses and the Planck mass scale pro-
portional to χ. The observed nonzero masses are therefore
connected to a spontaneous breaking of dilatation sym-
metry. The corresponding Goldstone boson corresponds
to the cosmon which becomes massless for χ → ∞. At
the present time the Universe has not yet reached the fixed
point. Residual scaling violation in the effective action is
responsible for the present tiny dark energy density.
Dilatation symmetry is most easily visible in the Jordan

frame where scale transformations act multiplicatively on
all fields. In the Jordan frame all explicit mass parameters
reflect a violation of dilatation symmetry. For this reason
we have presented a comprehensive discussion of all cos-
mological epochs in the Jordan frame, even though easy
contact to the standard cosmological observables is facili-
tated in the Einstein frame. Furthermore, the cosmology in
the Jordan frame is free of a big bang singularity.
For observations the new aspects of the present investi-

gation, beyond tests of existing models of growing neutrino
quintessence [19,20,115–124] or early dark energy, con-
cern the predictions for the amplitude and shape of the den-
sity fluctuations generated during inflation. The unified
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description of “primordial and dark energy” raises the inter-
esting question if observable properties of the inflationary
epoch can be linked to observations of the present dark
energy. Unfortunately, the parameters α and ~γ determine
the properties of late dark energy (quintessence), but play
no role for primordial dark energy (inflation). In turn, ~α and
m determine the primordial fluctuations, but do not show
up in late cosmology. Only the mass scale μ (A) or ðλ̄cÞ1=4
(B) plays a crucial role both of primordial and late dark
energy. It is not a dimensionless parameter, however,
and cannot be used for relating predictions for early and
late cosmology.
The two examples of simple models presented here dem-

onstrate that a rather wide class of inflationary models can
be realized within the framework of “cosmon inflation.”
Generalizations are straightforward. One example uses

F ¼ m2 þ χ2; V ¼ λ̄c þ μ2χ2; (217)

another may employ a modified form of the shape of the
kinetial. For late cosmology only the leading term for large
χ matters, disconnecting again the predictions for early and
late cosmology. Late cosmology for the model (217) cor-
responds to model (A), such that we may view this setting
as an extension of model (A) which matters for the infla-
tionary period. It modifies the predictions ðn; rÞ for the pri-
mordial fluctuation spectrum, for example n ¼ 0.96,
r ¼ 0.04 for ~α ¼ 0.18 [34].
One may ask if a closer connection between primordial

and late dark energy may be found if other degrees of free-
dom as the Higgs scalar are taken into account. In this paper
we have concentrated on a single scalar field. This is suf-
ficient for a description of the overall cosmology. On the
other hand, it is clear that additional scalar fields are needed
for a realistic scenario of particle physics. In particular, the
Higgs doublet ~h is responsible for the masses of the charged
particles in the standard model. Furthermore, it seems very
likely that other fields besides the cosmon play an impor-
tant role for the entropy production and heating at the end
of inflation. This is the reason why we have left out this
subject in the present paper. (For a short discussion
see Ref. [34].)
At this place we only comment that a minimal setting

where the Higgs doublet mediates the entropy production
can be realized within the general framework discussed
here. We may write the interactions between the Higgs
doublet and the cosmon as

~Vh ¼
1

2
λhð ~h† ~hÞ2 þ λχχ

4 þ γ ~h† ~hχ2; (218)

with dimensionless functions λh, λχ and γ depending on
x ¼ χ2=m2. For x → ∞ these functions should approach
the constants specified by Eq. (40), corresponding to a very
small negative γ ¼ −εhλh and λχ fixed in terms of λh and γ.
Not much is known about these functions for the values of x
characteristic for the inflationary period. For example, one
could imagine that γ is positive for small x, turns to a sub-
stantial negative value at the end of inflation and finally
settles at a tiny negative value for x → ∞. In the early
stages of inflation the Higgs doublet could perform small
oscillations around ~h ¼ 0, leaving potentially a periodic
imprint in the spectrum of primordial density fluctuations
[125]. Once γ turns negative the value ~h ¼ 0 becomes
unstable. Substantial oscillations around the new minimum
for ~h could produce incoherent particles of all species cou-
pling to ~h. This would result in efficient entropy produc-
tion. Other fields besides the Higgs doublet could take
this role as well.
Again, possible direct links between predictions of

observable quantities during inflation and properties of
the Higgs scalar are obscured by our lack of knowledge
of the cosmon potential and kinetial and its couplings to
the Higgs field or other relevant fields.
One new situation may arise if it becomes possible to

compute the fluctuations F, K and V. A first attempt in this
direction are functional renormalization group computa-
tions in dilaton quantum gravity [46]. If it is possible to
establish the suggested fixed point (scaling solution) this
would not only constitute a viable candidate for a nonper-
turbatively renormalizable quantum field theory for gravity.
It would also provide the fixed point towards which cos-
mology converges for χ → ∞. For a given fixed point also
the deviations from the fixed point are often computable,
which concerns in our context the role of the explicit mass
scales m, μ or ðλ̄cÞ1=4. The functions F, K and V would
become computable. In this event the unified picture
sketched in the present paper could develop its full power,
relating observables for the primordial and late time
cosmology.
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