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We examine the consequences of Lorentz violation during slow-roll inflation. We consider a canonical

scalar inflaton coupled, through its potential, to the divergence of a fixed-norm timelike vector field, or

‘‘aether.’’ The vector is described by Einstein-aether theory, a vector-tensor model of gravitational Lorentz

violation. We derive and analyze the cosmological perturbation equations for the metric, inflaton, and

aether. If the scale of Lorentz violation is sufficiently small compared to the Planck mass, and the strength

of the scalar-aether coupling is suitably large, then the spin-0 and spin-1 perturbations grow exponentially

and spoil the inflationary background. The effects of such a coupling on the cosmic microwave

background (CMB) are too small to be visible to current or near-future CMB experiments; unusually,

no isocurvature modes are produced at first order in a perturbative expansion around the aether norm.

These results are discussed for both a general potential and a worked example, m2�2 inflation with a

quadratic scalar-aether coupling term.
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I. INTRODUCTION

Lorentz invariance is a cornerstone of modern physics.
Two separately successful theories have been constructed
upon it: general relativity (GR) to explain the structure of
spacetime and gravity, and the standard model of particle
physics to describe particles and nongravitational forces in
the language of quantum field theory. Each apparently
contains Lorentz symmetry as a crucial underlying tenet.

What do we gain from exploring this fundamental sym-
metry’s breakdown? Given its foundational significance,
the consequences of violating Lorentz invariance deserve
to be fully explored and tested. Indeed, while experimental
bounds strongly constrain possible Lorentz-violating
extensions of the standard model [1], Lorentz violation
confined to other areas of physics—such as the gravita-
tional, dark, or inflationary sectors—is somewhat less con-
strained, provided that its effects are not communicated to
the matter sector in a way that would violate the standard
model experimental bounds. Moreover, it is known that
general relativity and the standard model should break
down around the Planck scale and be replaced by a new,
quantum theory of gravity. If Lorentz symmetry proves not
to be fundamental at such high energies—for instance,
because spacetime itself is discretized at very small
scales—this may communicate Lorentz-violating effects
to gravity at lower energies, which could potentially be
testable. The study of possible consequences of its viola-
tion, and the extent to which they can be seen at energies
probed by experiment and observation, may therefore help
us to constrain theories with such behavior at extremely
high energies.

A pertinent recent example is Hořava-Lifschitz gravity,
a potential UV completion of general relativity which
achieves its remarkable results by explicitly treating space
and time differently at higher energies [2]. The consistent

nonprojectable extension [3–5] of Hořava-Lifschitz grav-
ity is closely related to the model we will explore.
Moreover, since we will be dealing with Lorentz violation
in the gravitational sector, through a vector-tensor theory
of gravity, the usual motivations from modified gravity
apply to this kind of Lorentz violation. Indeed, there are
interesting models of cosmic acceleration, based on the
low-energy limit of Hořava-Lifschitz gravity, in which the
effective cosmological constant is technically natural [6,7].
Generalized Lorentz-violating vector-tensor models have
also been considered as candidates for both dark matter and
dark energy [8,9].
Lorentz violation need not have such dramatic, high-

energy origins. Indeed, many theories with fundamental
Lorentz violation may face fine-tuning problems in order
to avoid low-energy Lorentz-violating effects that are sev-
eral orders of magnitude greater than existing experimental
constraints [10]. However, even a theory which possesses
Lorentz invariance at high energies could spontaneously
break it at low energies, and with safer experimental
consequences.
Spontaneous violation of Lorentz invariance will

generally result when a field that transforms nontrivially
under the Lorentz group acquires a vacuum expectation
value (VEV). A simple example is that of a vector field
whose VEV is nonvanishing everywhere. As mentioned
above, in order to avoid the experimental constraints such a
vector field should not be coupled to the standard model
fields, but in order to not be completely innocuous we
would like it to couple to gravity. Moreover, to model
Lorentz violation in gravity without abandoning the
successes of general relativity—in particular, without
giving up general covariance—the (spontaneously)
Lorentz-violating field must be dynamical.
A particularly simple, yet quite general, example of

a model with these features is Einstein-aether theory
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(æ-theory) [11,12]. It adds to general relativity a dynami-
cal, constant-length timelike vector field, called the aether
and denoted by ua, which spontaneously breaks Lorentz
invariance by picking out a preferred frame at each point in
spacetime while maintaining local rotational symmetry
(breaking only the boost sector of the Lorentz symmetry)
[12,13]. The constant-length constraint renders nondynam-
ical a length-stretching mode with a wrong-sign kinetic
term [14], while also ensuring that the aether picks a
globally nonzero VEV and so breaks Lorentz symmetry
everywhere. It has been shown that æ-theory is the most
general effective field theory in which the rotation group is
unbroken [15], so all the results of this work are applicable
to any theory which spontaneously violates boost Lorentz
invariance while maintaining rotations.

Recently a generalization of æ-theory has been consid-
ered in which a scalar field, �, can couple to the aether via
its divergence, � � rau

a [16–18]. This is of particular
interest for cosmology because � is related to the local
Hubble expansion rate. The aether is forced by symmetry
to align with the cosmic rest frame in a spatially homoge-
neous and isotropic background [12,19–21], and purely on
geometric grounds we find � ¼ 3mH, with H ¼ _a

a the

cosmic time Hubble parameter and m the constant norm
of ua. The ability to use the expansion rate so freely in the
field equations is a departure from general relativity and
other purely metric theories, where H is not a covariant
scalar as its definitions are all coordinate dependent. Thus,
this extension of pure æ-theory opens up the interesting
possibility of cosmological dynamics depending directly
on the expansion rate in a way that is not allowed by
general relativity or many modified gravity theories.

This coupling also allows the aether to affect cosmo-
logical dynamics directly. This is not possible in ‘‘pure’’
æ-theory, as the aether tracks the dominant matter source
and hence can only slow down the expansion, via a
rescaling of Newton’s constant. If the scalar field coupled
to � is identified with the inflaton, the aether modifies
inflationary dynamics. In a simple case, it adds a driving
force which can slow down or speed up inflation [16].
This theory with another simple form of the coupling
is also closely related (up to the presence of transverse
spin-1 perturbations) to the �CDM theory, a dark energy
theory in which the small cosmological constant is tech-
nically natural [6,7].

The coupling between the aether and scalar is contained
in the scalar potential, which is allowed to depend on �.
This is a reasonably general approach to coupling the
aether to a scalar field: any terms one can write down
which do not fit in this framework would have mass
dimension five or higher and hence not be power-counting
renormalizable. We will perform our analysis with the
important assumption that � drives a period of slow-roll
inflation. Hence we consider this theory to be a fairly
general model of Lorentz violation in the inflaton sector.

Our aim is to explore the effects of such a coupling at the
level of linear perturbations to a cosmological background,
and in particular to find theoretical and observational con-
straints. For reasonable values of the coupling between the
aether and the inflaton, these perturbations are unstable and
can destroy the inflationary background. This places a
constraint on the coupling which is several orders of mag-
nitude stronger than the existing constraints. If the parame-
ters of the theory are chosen to remove the instability,
while satisfying existing constraints on the aether VEV,
then the effects of the coupling on observables in the
cosmic microwave background will be far below the
sensitivity of modern experiments.
The remainder of this paper is organized as follows. In

Sec. II we review Einstein-aether theory and its coupling to
a scalar field through �. In Sec. III we discuss the behavior
of linearized perturbations of the aether and the scalar
around a (nondynamical) flat background, deriving a
stability constraint (previously found by another method
in Ref. [16]) which provides a useful upper bound on the
aether-scalar coupling. In Sec. IV, we discuss the equations
of motion for a homogeneous and isotropic cosmology, and
set up the cosmological perturbation theory. In Sec. V we
examine the spin-1 cosmological perturbations of the
aether and metric during a phase of quasi–de Sitter infla-
tion. This provides a clear example of the tachyonic insta-
bility, which we explore in some depth. In Sec. VI we look
at the spin-0 perturbations, finding the same instability and
calculating the scalar power spectrum. Unusually, isocur-
vature modes do not appear to first order in a perturbative
expansion around the aether norm. We give a worked
example in Sec. VII which elucidates the arguments
made for a general potential in the preceding sections,
and conclude with a discussion of our results in Sec. VIII.

II. EINSTEIN-AETHER THEORY

A. Pure aether theory

Einstein-aether theory (which we will often refer to as
‘‘pure’’ Einstein-aether theory or æ-theory) is a theory of
the spacetime metric g�� and a vector field (the ‘‘aether’’)

u�. It is the most general effective theory of Lorentz
violation which preserves invariance under rotations [15].
The action is [12,19]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
R� K��

��r�u
�r�u

�

þ �ðu�u� þm2Þ
�
; (1)

where

K��
�� � c1g

��g�� þ c2	
�
�	�

� þ c3	
�
�	�

� þ c4u
�u�g��:

(2)

The action (1) contains an Einstein-Hilbert term for
the metric, a kinetic term for the aether with four
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dimensionless coefficients ci (coupling the aether to the
metric through the covariant derivatives), and a nondynam-
ical Lagrange multiplier �. Varying this action with respect
to � constrains the aether to be timelike with a constant
norm, u�u� ¼ �m2.

The action (1) is the most general diffeomorphism-
invariant action containing the metric, aether, and up to
second derivatives of each. Most terms one can write down
are eliminated by the fixed norm condition, and other terms
such as R��u

�u� are equivalent to terms in Eq. (1) under

integration by parts. In what follows we will follow much
of the literature on aether cosmology (e.g., Refs. [19,20])
and ignore the quartic self-interaction term by setting
c4 ¼ 0.

It is generally assumed that (standard model) matter
fields couple to the metric only. Any coupling to the aether
would lead to Lorentz violation in the matter sector by
inducing different maximum propagation speeds for dif-
ferent fields, an effect which is strongly constrained by
experiment [1]. As we are primarily interested in exploring
and constraining Lorentz violation in the gravitational
sector and in a single nonstandard model scalar, we need
not worry about such a coupling. These problematic stan-
dard model couplings may, however, be forbidden by a
supersymmetric extension of æ-theory [22].

The gravitational constant G that appears in Eq. (1) is
to be distinguished from the gravitational constants which
appear in the Newtonian limit and in the Friedmann equa-
tions, both of which are modified by the presence of the
aether [19]. The Newtonian gravitational constant,GN , and
cosmological gravitational constant, GC, are related to the
bare constant G by

GN ¼ G

1þ 8�G	
; (3)

Gc ¼ G

1þ 8�G

; (4)

where

	 � �c1m
2; (5)


 � ðc13 þ 3c2Þm2: (6)

We have introduced the notation c13 � c1 þ c3, etc., which
we will use throughout.

B. Coupling to a scalar inflaton

We now introduce to the theory a canonical scalar field
� which is allowed to couple kinetically to the aether
through its expansion, ��r�u

� [16]. The full action

reads

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
R� K��

��r�u
�r�u

�

þ �ðu�u� þm2Þ � 1

2
ð@�Þ2 � Vð�;�Þ

�
: (7)

Let us pause to motivate the generality of this model.
The aim of this paper is to constrain couplings between a
Lorentz-violating field and a scalar, particularly a canoni-
cal, slowly rolling scalar inflaton, in as general a way as
possible. The model of Lorentz violation is quite general:
Einstein-aether theory is the unique Lorentz-violating
effective field theory in which rotational invariance is
maintained [15] (although we note that there is an allowed
term, the quartic self-interaction parametrized by c4, which
we have turned off). Hence, any theory which spontane-
ously violates Lorentz symmetry without breaking rota-
tional invariance will be described by the vector-tensor
sector of our model at low energies.
As for the scalar sector, we have assumed a canonical

kinetic term. Moreover, it is clear that there are coupling
terms between the aether and the scalar which do not fall
under the form Vð�;�Þ. It would be difficult, and is beyond
the scope of this paper, to consider such couplings in full
generality. However, this form does capture all terms up to
mass dimension four, which one might consider to be
dominant, for example, for power-counting renormaliz-
ability. This is because the aether, scalar, and derivative
operators all have mass dimension one, the aether norm is
constant and cannot be used in the coupling, and because
the aether and derivative operators carry spacetime indices
which need to be contracted. Any allowed terms involving
both u� and � up to mass dimension four which are not of
the form Vð�;�Þ can be recast into such a form under
integration by parts.
Note that in a homogeneous and isotropic background,

the aether aligns with the cosmic rest frame so � is essen-
tially just the volume Hubble parameter, � ¼ 3mH. Hence,
the introduction of the aether allows a scalar inflaton to
couple directly to the expansion rate. This is impossible in
GR whereH is not proportional to any Lorentz scalar. This
was the physical motivation for introducing this type of
coupling in Ref. [16].
The aether equation of motion, obtained by varying the

action with respect to u�, is

�u� ¼ r�J
�� � 1

2
r�V�; (8)

where the current tensor is defined by

J�� � �K��
��r�u

�: (9)

Projecting this equation along u� allows us to obtain the
Lagrange multiplier �,

� ¼ � 1

m2
u�r�J

�� þ 1

2m2
u�r�V�: (10)

The stress-energy tensor for the combined aether-scalar
system, taking into account the contribution from the
Lagrange multiplier term, is

T�� ¼ 2
	L
	g�� þ u�

	L
	u�

u�u� �Lg��; (11)
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where L is the Lagrangian for the aether and scalar. Using
this formula we find the stress-energy tensor,

T�� ¼ 2c1ðr�u
�r�u� �r�u�r�u�Þ

� 2½r�ðuð�J��ÞÞ þ r�ðu�Jð��ÞÞ � r�ðuð�J�Þ�Þ�
� 2m�2u�r�J

��u�u� þ g��Lu þr��r��

�
�
1

2
r��r��þ V � �V�

�
g��

þ ðu�r�V�Þðg�� þm�2u�u�Þ; (12)

where Lu � K��
��r�u

�r�u
� is the Einstein-aether

Lagrangian.
Finally, the inflaton obeys the usual Klein-Gordon

equation,

h� ¼ V�; (13)

though this is coupled to the aether since generally we will
have V� ¼ V�ð�;�Þ.

III. STABILITY CONSTRAINT IN
FLAT SPACETIME

Before moving on to the main focus of this paper,
perturbations around a cosmological background, we
briefly examine perturbation theory in flat spacetime. Our
goal is to derive a constraint on the coupling V�� by

requiring the aether and scalar perturbations be stable
around a Minkowski background. This will set an upper
limit relating the coupling to the effective mass of the
scalar,

V2
��ð0; 0Þ � 2c123V��ð0; 0Þ; (14)

which we will find useful when we examine the cosmo-
logical perturbations.

We assume that the potential is analytic around ð�;�Þ ¼
ð0; 0Þ, because if it diverges there the aether-scalar stress-
energy tensor (12) will be nonzero and we cannot have a
flat spacetime solution. We will also assume that Vð0; 0Þ is
either vanishing or negligibly small; if not, then this con-
tributes a cosmological constant term to the stress-energy
tensor, and our background is (anti–)de Sitter rather than
flat. Observations constrain such a term, barring a non-
linear screening mechanism, to be very small.1

In flat spacetime the field equations are solved by a
constant-field configuration,

�u� ¼ ðm; 0; 0; 0Þ; (15)

�� ¼ 0; (16)

�� ¼ 0: (17)

We introduce small perturbations fv�; 	�; 	�g defined by

u� ¼ �u� þ v�; (18)

� ¼ ��þ 	�; (19)

� ¼ ��þ 	�: (20)

Writing the action (7) as

S ¼
Z

d4xL; (21)

we expand the Lagrangian to quadratic order,

L ¼ �Lþ 	1Lþ 	2L; (22)

where 	1L and 	2L are of linear and quadratic order,
respectively. The background and linear Lagrangians
recover the background equations of motion, leaving us
with the quadratic Lagrangian,

	2L ¼ �c1@�v
�@�v� � c2ð@�v�Þ2

� c3@�v
�@�v� þ 2	�ð �u�v�Þ

� 1

2
@�	�@�	�� 1

2
½V��ð0; 0Þð@�v�Þ2

þ V��ð0; 0Þ	�2 þ 2V��ð0; 0Þ	�ð@�v�Þ�; (23)

whose variation yields the equations of motion of the
perturbed variables. From here we drop the (0, 0) evalu-
ation on the derivatives of the potential (although they
remain implicit). The 	� equation of motion is

�u�v� ¼ 0: (24)

It constrains the timelike component of the aether pertur-
bation to vanish,

v0 ¼ 0: (25)

Inserting this result into Eq. (23) and splitting vi into
spin-0 and spin-1 fields2 as

vi ¼ Si þ Ni; (26)

where the spin-0 piece Si is the divergence of a scalar
potential (Si ¼ @iV ) and the spin-1 piece Ni is transverse
to Si (@iN

i ¼ 0), we find that the quadratic potential
decouples for these two pieces,

	2L ¼ Lð0Þ þLð1Þ; (27)

where the spin-0 Lagrangian is

1The scalar field is canonical, coupled minimally to gravity,
and not coupled at all to the matter sector, so we would not
expect any screening mechanisms to be present in this theory.

2The aether perturbation is in a reducible subgroup of SO(3),
so by decomposing vi like this we single out the real dynamical
degrees of freedom.
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Lð0Þ ¼ c1 _S2 � c1@iS
j@iSj � c2ð@iSiÞ2 � c3@iS

j@jS
i

þ 1

2
ð _	�2 � 	ij@i	�@j	�Þ

� 1

2
½V��ð@iSiÞ2 þ V��	�

2 þ 2V��	�ð@iSiÞ�
(28)

and the spin-1 Lagrangian is

Lð1Þ ¼ c1 _N2 � c1@iN
j@iNj: (29)

We have eliminated the cross terms between the spin-0 and
spin-1 pieces, and the c3 term in the spin-1 piece, using
integration by parts.

Notice that a consequence of the spin-1 perturbation Ni

being divergence-free is that the scalar-field coupling does
not affect the spin-1 Lagrangian, because� only couples to
the aether through � ¼ r�u

�. In particular, this allows us

to use the constraint

c1 > 0 (30)

from the start. This was derived in pure æ-theory from
requiring positivity of the quantum Hamiltonian for both
the spin-0 and spin-1 fields [20], and is suggested by the
fact that for c1 � 0 the kinetic terms for Si and Ni in
Eqs. (28) and (29) are of the wrong sign. Since this was
proven to be true for the spin-1 perturbations in æ-theory
and they remain unchanged in this extension of it, this
condition on c1 must continue to hold.

Finally, we can vary the action with respect to our three
perturbation variables—Si, Ni, and 	�—to obtain the
equations of motion,

€Si � c123 þ 1
2V��

c1
@2Si � 1

2c1
V��	

ij@j	� ¼ 0; (31)

€Ni � @2Ni ¼ 0; (32)

h	�� V��	�� V��@iS
i ¼ 0: (33)

In æ-theory, � ¼ 0 ¼ Vð�;�Þ and both aether equations
are simply wave equations with plane-wave solutions [20],

Sið ~kÞ / e�icð0Þs ktþi ~k� ~x; (34)

Nið ~kÞ / e�icð1Þs ktþi ~k� ~x; (35)

with the propagation speeds for the spin-0 and spin-1
perturbations given by

cð0Þ2s ¼ c123
c1

; (36)

cð1Þ2s ¼ 1: (37)

The scalar coupling modifies the æ-theory situation in
twoways. First, c123 is shifted by

1
2V�� evaluated at (� ¼ 0,

� ¼ 0) (remember that implicitly we are evaluating all the
derivatives of V there, so they are just constants). This is
to be expected: the expansion of the potential around
(0, 0) includes, at second order, the term 1

2V��	�
2 ¼

1
2V��ð@iSiÞ2, which can be absorbed into the c2 term in

the (quadratic) Lagrangian by redefining c2 ! c2 þ 1
2V��.

We will find this same redefinition of c2 appears in the
cosmological perturbation theory.
The second change from æ-theory is more significant for

the dynamics. When V�� is nonzero—i.e., when the cou-

pling between u� and� is turned on—it adds a source term
to the wave equation for Si (the Ni equation is unmodified
because neither � nor� contain spin-1 pieces, as discussed
above). Similarly, a u�-dependent source is added to the
quadratic-order Klein-Gordon equation for 	�.
The equations of motion for Si and 	� are those of two

coupled harmonic oscillators. To simplify these, we move
to Fourier space, where the spin-0 degrees of freedom
SikðtÞ ¼ @iV kðtÞ and 	�kðtÞ obey the coupled wave

equations (dropping the k subscripts and absorbing 1
2V��

into c2),

€V þ cð0Þ2s k2V � 1

2c1
V��	� ¼ 0; (38)

€	�þ ðk2 þ V��Þ	�� V��k
2V ¼ 0: (39)

This system can be diagonalized3 by defining

~V � V þ V��

2c1ðk2 þ V2
�� �!2�Þ

	�; (40)

~	� � 	�þ V��k
2

cð0Þ2s k2 �!2þ
V ; (41)

where the !� are defined by

2!2� � k2ð1þ cð0Þ2s Þ þ V2
��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½k2ð1� cð0Þ2s Þ þ V2

���2 þ
2V2

��k
2

c1

s
: (42)

Under this transformation, the equations of motion are
simply

€~V þ!2� ~V ¼ 0; (43)

€~	�þ!2þ ~	� ¼ 0: (44)

Note that in the limit V�� ! 0 where the two fields

decouple, !2þ goes to k2 þ V2
��, the squared frequency

3We thank the referee for this suggestion, which simplifies a
calculation done in an earlier draft while obtaining the same
result.
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of a 	� mode, and !2� goes to c2sk
2, the equivalent for V

modes. We see that ~V and ~	� are noninteracting, mixed
modes which reduce to V and 	�, respectively, in the
absence of a scalar-aether coupling.

For stability, we require the !� to be real, so that the
solutions to Eqs. (43) and (44) are plane waves rather than
growing and decaying exponentials. Note that !þ is man-

ifestly real, so the ~	� modes are always stable. It is the

aether modes, ~V , which can be destabilized by the cou-
pling to the scalar, while the reverse is not true. Stability
imposes a constraint on V��,

V2
�� � 2c1c

ð0Þ2
s ðk2 þ V��Þ; (45)

which, since we would like it to hold for arbitrarily large
wavelength modes (small k), can be written (substituting

back in the definition cð0Þ2s ¼ c123=c1)

V2
��ð0; 0Þ � 2c123V��ð0; 0Þ; (46)

where for clarity we have put back in the ð�;�Þ ¼ ð0; 0Þ
evaluation which has been implicit. Equation (46)
constrains the coupling between the aether and the scalar
field in terms of the aether kinetic free parameters
(or, equivalently, its no-coupling propagation speed) and
the effective mass of the scalar in flat spacetime. It agrees
with the spin-0 stability constraint in Ref. [16] which was
derived in a slightly different fashion for a specific form of
Vð�;�Þ.4 The ci are dimensionless, so we might expect
them to naturally beOð1Þ: Assuming this, Eq. (46) roughly
constrains the coupling V��ð0; 0Þ to be less than the scalar

field mass around flat spacetime. Note that this constraint
also implies c123 � 0,5 which is the combined constraint
from subluminal propagation and positivity of the
Hamiltonian of the spin-0 field in pure æ-theory [20].

IV. COSMOLOGICAL PERTURBATION THEORY

The goal of this paper is to explore the impact of the
coupling between � and u� on small perturbations to a
homogeneous and isotropic cosmology. We will be par-
ticularly interested in a period of slow-roll inflation driven
by �. As has been explored in great depth over the past
three decades, a scalar field rolling slowly down its poten-
tial can lead to cosmic inflation and all of the interesting
cosmological consequences for explaining the structure of
the observed universe that follow from it [23]. In this
section we present the metric and scalar field equations

in a homogeneous and isotropic universe and set up the
cosmological perturbations.

A. Background cosmology

We restrict to a flat Friedmann-Robertson-Walker
(FRW) background geometry evolving in conformal
time, �,

ds2 ¼ a2ð�Þð�d�2 þ d~x2Þ: (47)

The 0� 0 and trace Einstein equations give us the
Friedmann equations,

H 2 ¼ 8�Gc

3
a2
�
V � �V� þ �m þ 1

2
�02a�2

�
; (48)

H 0 ¼ 4�Gc

3
a2
�
�3

m

a

�
3
m

a
V��ðH 0 �H 2Þ þ V���

0
�

� �mð1þ 3wÞ þ 2ðV � �V�Þ � 2�02a�2

�
; (49)

where H � a0=a ¼ d ln a=d� is the conformal time
Hubble parameter, and, as discussed in Sec. II, the effective
cosmological gravitational constant, Gc, is related to the
bare constant, G, by

Gc ¼ G

1þ 8�G

; (50)

with 
 ¼ ðc1 þ 3c2 þ c3Þm2. This modification of
Newton’s constant arises because in a homogeneous and
isotropic background the Einstein-aether terms for the
vector field only contribute stress-energy that tracks the
dominant matter fluid, so the associated energy density is
proportional to H2 [19]. The only dynamical stress-energy
from the aether, in the background, is that due to the scalar
coupling. However, the aether perturbations do carry some
dynamics even in the absence of the coupling to � [20].
For completeness we have included a matter component
with equation of state w, although from now on we will
assume that � is gravitationally dominant and ignore
any �m.
The scalar field obeys the usual cosmological Klein-

Gordon equation,

�00 þ 2H�0 þ a2V� ¼ 0: (51)

The coupling to � is contained in the function V�. In the

background, � ¼ 3mH, with H ¼ H =a the cosmic time
Hubble parameter, so this contributes extra Hubble friction
or driving [16].
We need not write down the aether field equations, at

least in the background. The vector field must be aligned
with the cosmic rest frame due to homogeneity and iso-
tropy, and its value, u� ¼ ma�1	�

0, is determined com-

pletely by the normalization condition u�u
� ¼ �m2. One

can check that this solution satisfies the spatial component
of the aether equation, while the temporal component only

4Our notation is different than that used in Ref. [16] and as a
result their constraint looks slightly different. They define the
aether to be dimensionless (and unit norm) while we give it a
norm m with mass dimensions. To compensate for this, their ci
are 16�Gm2ci in our notation. We have checked, translating
between the two notations, that our constraint matches theirs.

5Assuming that the scalar field is nontachyonic.
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determines the Lagrange multiplier. In pure æ-theory this
solution is stable perturbatively [20,24–26] and that stabil-
ity holds nonlinearly for most large perturbations [21].
This statement is subject to several constraints on the ci
parameters which can be found in, e.g., Refs. [12,20,26],
and we will assume throughout our analysis that these
constraints hold. One of the important results of this paper
is that the coupling between u� and � can render this
solution unstable for large regions of parameter space that
are allowed by other experimental, observational, and
theoretical constraints.

When the scalar potential is Vð�;�Þ ¼ Vð�Þ, the back-
ground aether is irrelevant apart from rescaling Newton’s
constant, and many choices for the potential can lead to
periods of slow-roll inflation [27]. Adding a coupling to the
aether will change the dynamics but may still allow for
inflation [16]. We will therefore aim to be as general about
Vð�;�Þ as possible when discussing perturbation theory.

B. Perturbation variables

Let us consider linear perturbations about the FRW
background (47). We will work with the perturbed metric

ds2 ¼ a2ð�Þf�ð1þ 2�Þd�2 � 2Bid�dx
i

þ ½ð1þ 2�Þ	ij þ 2HTij�dxidxjg; (52)

so the perturbed metric components are

g00 ¼ �a2ð1þ 2�Þ; g0i ¼ �a2Bi;

gij ¼ a2½ð1þ 2�Þ	ij þ 2HTij�:
Inverting, and keeping terms to first order, we have

g00 ¼ �a�2ð1� 2�Þ; g0i ¼ �a�2Bi;

gij ¼ a�2½ð1� 2�Þ	ij � 2Hij
T �:

Indices on spatial quantities like Bi are raised and lowered
with 	ij. The Christoffel symbols are (with background

parts in bold)

�0
00 ¼ Hþ�0;

�0
0i ¼ �;i �HBi;

�0
ij ¼ ðHð1þ 2�Þ þ�0 � 2H�Þ	ij

þ Bði;jÞ þ ð2HHTij þH0
TijÞ;

�i
00 ¼ �;i �HBi � B0i;

�i
0j ¼ H�i

j þ 	ikB½j;k� þ�0	i
j þH0i

Tj;

�i
jk ¼ HBi	jk þ�;k	

i
j þ�;j	

i
k ��;i	jk

þHTj;k
i þHTk;j

i �HTjk
;i:

We do not reproduce the Einstein tensor components here;
they can be found in the literature [28].

The aether in the background has only u0 ¼ m
a .

Imposing the constant norm constraint, u�u
� ¼ �m2, to

first order the aether is

u� ¼ m

a
ðð1��Þ; ViÞ; (53)

and with lowered indices we have

u� ¼ mað�ð1þ�Þ; Vi � BiÞ; (54)

where spatial indices on Vi and Bi are raised and lowered
using the spatial metric 	ij. Taking the divergence of

Eq. (53) we find the perturbed expansion to be

� ¼ m

a
½3H ð1��Þ þ 3�0 þ Vi

;i�: (55)

The scalar field � is split into a background piece and a
small perturbation,

� ¼ ��þ 	�; (56)

where �� satisfies the Klein-Gordon equation in the back-
ground metric.

C. Perturbed equations of motion

In deriving the perturbation equations we will need to
expand Vð�:�Þ around its background value,

Vð�;�Þ ¼ �V þ �V�	�þ �V�	�

þ 1

2
½ �V��	�

2 þ �V��	�
2 þ 2 �V��	�	��

þOð	�3Þ; (57)

where

	� ¼ m

a
ð3�0 � 3H�þ Vi

;iÞ; (58)

so the relevant expansions are

Vð�;�Þ ¼ �V þ �V�	�þ �V�	�þOð	�2Þ;
V�ð�;�Þ ¼ �V� þ �V��	�þ �V��	�þOð	�2Þ;
V�ð�;�Þ ¼ �V� þ �V��	�þ �V��	�þOð	�2Þ;
V��ð�;�Þ ¼ �V�� þ �V���	�þ �V���	�þOð	�2Þ;
V��ð�;�Þ ¼ �V�� þ �V���	�þ �V���	�þOð	�Þ2:

(59)

We use overbars throughout this paper to denote back-
ground values.
The perturbed equations of motion in real space are

given in the Appendix. However, the symmetries of the
FRW background allow us to decompose the perturbations
into spin-0, spin-1, and spin-2 components [29]. In
particular, because the background variables (including
the aether, which points only in the time direction) do
not break the SO(3) symmetry on spatial slices, these
components conveniently decouple from each other.
Hence we perform this decomposition both to isolate the
fundamental degrees of freedom from each other and
to make close contact with the rest of the literature on
cosmological perturbation theory.
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We decompose the variables as

	� ¼ X
k

	�kY
ð0Þ; (60)

� ¼ X
k

�kY
ð0Þ; (61)

� ¼ X
k

�kY
ð0Þ; (62)

Vi ¼ X
k

X
m¼0;1

Vð�mÞ
k Yið�mÞ; (63)

Bi ¼ X
k

X
m¼0;1

Bð�mÞ
k Yið�mÞ; (64)

Hij
T ¼ X

k

X
m¼0;1;2

Hð�mÞ
Tk Yijð�mÞ; (65)

where the Yð0Þ, etc., are eigenmodes of the Laplace-
Beltrami operator @2 þ k2 (see Refs. [20,28] for the forms
of these mode functions and some of their useful proper-
ties). From here on, we will drop the k subscripts. The spin-
0, spin-1, and spin-2 perturbation equations can then be
found by plugging these expansions into the real-space
equations listed in the Appendix.

V. SPIN-1 COSMOLOGICAL PERTURBATIONS

We begin our analysis by focusing on the spin-1 pertur-
bations. The spin-2 perturbations are unmodified by the
aether-scalar coupling because Vð�;�Þ only contains spin-0
and spin-1 terms. The only physical spin-2 perturbations
are the transverse and traceless parts of the metric pertur-
bationHTij, or gravitational waves, and they behave as they

do in pure æ-theory [20]. The spin-0 perturbations, dis-
cussed in Sec. VI, are more complicated than the spin-1
perturbations due to the presence of 	� modes. The im-
portant physical result—the existence of unstable perturba-
tions for large, otherwise experimentally allowed regions of
parameter space—will therefore be easier to see and under-
stand in the context of the simpler spin-1 modes.

The only nontrivial spin-1 component of the aether field
equation is � ¼ i,��
�2




m2
H 2 þ 


m2

a00

a
� c1

a00

a

�
ðBð�1Þ � Vð�1ÞÞ

þ 2c1H ðV 0ð�1Þ � B0ð�1ÞÞ þ 1

2
ðc3 � c1Þk2Bð�1Þ

þ c1k
2Vð�1Þ � c13

k

2
H0ð�1Þ

T � c1ðB00ð�1Þ � V00ð�1ÞÞ

þ 1

2

�
3 �V��

�
a00

a
� 2H 2

�
þ a

m
�V��

��0
�
ðBð�1Þ

� Vð�1ÞÞ
�
Yð�1Þ
i ¼ 0; (66)

while the spin-1 perturbations of the stress-energy tensor
are

	T0ð�1Þ
0 ¼ 0; (67)

	T0ð�1Þ
i ¼

�
2

�
m

a

�
2
��

�2



m2
H 2þ 


m2

a00

a
� c1

a00

a

�
�ðVð�1Þ �Bð�1ÞÞ� c1a

�2½a2ðV 0ð�1Þ �B0ð�1ÞÞ�0

þ 1

2
ðc1� c3Þk2ðBð�1Þ �Vð�1ÞÞ

�

þm

a

�
3m

a
�V��

�
a00

a
� 2H 2

�
þ �V��

��0
�
ðVð�1Þ

�Bð�1ÞÞ
�
Yð�1Þ
i ; (68)

	Tið�1Þ
j ¼ 2

�
m

a

�
2
c13fa�2½a2ð�kVð�1Þ þH0ð�1Þ

T Þ�0gYi
j
ð�1Þ;

(69)

where 
 ¼ ðc13 þ 3c2Þm2 as defined in Eq. (6). As a
consistency check, these expressions reduce to those
found in the literature for a scalar field uncoupled to the
aether [30] [setting Vð�;�Þ ¼ Vð�Þ] and for æ-theory [20]
[setting Vð�;�Þ ¼ 
�2, with c2 ! c2 þ 
]. For conve-
nience, from here on we will absorb 1

2
�V�� into c2 and

indicate the change with a tilde, e.g.,

~
 �
�
c1 þ 3c2 þ c3 þ 3

2
�V��

�
m2; (70)

and similarly for quantities like ~Gc. While this is conve-
nient notation we should remember that �V�� and hence all
tilded quantities are not necessarily constant, although they
are nearly so during a slow-roll phase.6

We should first note that due to its direct coupling to the
aether, the scalar field does source spin-1 perturbations,
which is impossible in the uncoupled case as the scalar
field itself contains no spin-1 piece. In pure æ-theory the
spin-1 perturbations decay away as a�1 [20]. We may
wonder if the scalar-vector coupling can counteract this
and generate a nondecaying spin-1 spectrum.
Using the gauge freedom in the spin-1 Einstein equa-

tions, we choose to work in a gauge where Hð�1Þ
T ¼ 0; that

is, we foliate spacetime with shear-free hypersurfaces. The
i� j Einstein equation in the spin-1 case is unmodified
from the æ-theory case [20] and gives a constraint relating

the shift Bð�1Þ and the spin-1 aether perturbation Vð�1Þ,

Bð�1Þ ¼ 
Vð�1Þ; (71)

6A nonconstant �V�� requires cubic- or higher-order terms in
the potential. For the quadratic Donnelly-Jacobson potential
discussed in Sec. VII, �V�� is constant, and can be freely set to
zero by absorbing it into c2.
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where


 � 16�Gm2c13: (72)

It is tempting to notice the similarities between the v ¼ i
aether field equation (66) and the 0� i Einstein equa-
tion (68), but this is just hinting at the underlying redun-
dancy between the two equations. Indeed, using Eq. (66) to
eliminate the scalar field term in Eq. (68) just leaves us
with 0 ¼ 0. This is because, due to the constraint equation,
the two perturbations B and V are related, and hence
(by the Bianchi identities) these two equations have to
contain the same content. We choose to use the 0� i
Einstein equation to derive our equation of motion for
the spin-1 perturbations. In this equation, the scalar field
couples to the vector perturbations of the aether and the
metric via m

a
�V��

��0. In the quadratic coupled potential of

Donnelly and Jacobson, discussed in detail in Sec. VII, the
coupling �V�� is exactly constant. In general, we will take
�V�� to be constant to first order in slow roll.

Inserting the constraint into the 0� i Einstein equation
we find�

2



m2
H 2 � 


m2

a00

a
þ c1

a00

a

�
Vð�1Þ

þ 1

2

�
ðc1 � c3Þ þ c13

1� 


�
k2Vð�1Þ

þ c1ð2HVð�1Þ0 þ Vð�1Þ00Þ

� 1

2

�
3 �V��

�
a00

a
� 2H 2

�
þ a

m
�V��

��0
�
V ¼ 0: (73)

Following Ref. [20], we define � ¼ aVð�1Þ to eliminate the
first-derivative terms, so Eq. (73) becomes

�00 þ cð�1Þ2
s k2�þ

�
A

~


m2c1
� 1

2

a

mc1
�V��

��0
�
� ¼ 0; (74)

where the no-coupling sound speed cð�1Þ
s is the de Sitter

propagation speed of the spin-1 aether and metric pertur-
bations when the coupling to the scalar field is absent [20],

cð�1Þ2
s ¼ 1

2

�
ð1� c3=c1Þ þ 1þ c3=c1

1� 


�
; (75)

and as before we have absorbed the background �V�� into c2
and noted the redefined constants (here, 
) with a tilde.
The background quantity A is defined by

A � 2H 2 � a00

a
¼ H 2 �H 0 ¼ �a

�
H
a

�0
(76)

and vanishes in the de Sitter limit.

A. Slow-roll solution

The equation of motion (74) for the spin-1 aether and
metric perturbations is difficult to solve in full generality. It
was solved in pure de Sitter spacetime (A ¼ 0) in æ-theory

(i.e., in the absence of the scalar field) in Ref. [20]. In that
limit, Eq. (74) is a wave equation with real frequency, so �
was found to be oscillatory. Therefore, in æ-theory the

spin-1 shift perturbation Bð�1Þ ¼ 
�=a decays exponen-
tially,7 leaving the post-inflationary universe devoid of
spin-1 perturbations. To investigate whether the inflaton
coupling term will change this conclusion, we solve
Eq. (74) in the slow-roll limit.
We define the slow-roll parameters

" ¼ � _H

H2
¼ 1� H 0

H 2
; (77)

� ¼ _"

H"
¼ "0

H"
: (78)

The slow-roll limit is ", � 	 1. In this limit, both parame-
ters are constant at first order and we can find

a 
 � 1

H�
ð1þ "Þ; (79)

H 
 � 1

�
ð1þ "Þ: (80)

Taking conformal time derivatives we find

A ¼ H 2 �H 0 
 "

�2
: (81)

Using these relations, as well as the Klein-Gordon
equation in the slow-roll limit and the fact that H ¼aH,
we can write the � equation of motion to first order in slow
roll as

�00 þ cð�1Þ2
s k2�þ 1

�2

�
~


m2c1
"þ 1

6mc1

1þ 2"

H3
�V��

�V�

�
�

¼ Oð"2Þ: (82)

�Vð�;�Þ and its derivatives will be constant to first order in
the slow-roll parameters, so if we ignore Oð"Þ terms then
�V� and �V�� in Eq. (82) are constants. Our equation of

motion for the spin-1 perturbations can then be written
simply as

�00 þ cð�1Þ2
s k2�� �

�2
� ¼ 0; (83)

where we have defined the constant

� � �
�V�

�V��

6mc1H
3
þOð"Þ: (84)

We have also assumed that � dominates ~
"=ðm2c1Þ � "
[which is�Oð10�2Þ [31,32]], the term from pure æ-theory.
In principle this need not be true, if the coupling term �V��

7Here and in the rest of the paper, ‘‘exponential’’ growth or
decay should be taken to mean exponential in cosmic time, or as
a power law in conformal time.
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were extraordinarily small. If the aether-scalar coupling is
to do anything interesting, then �V�� must be larger than

that, so we will continue to assume that it is.
Notice that the aether perturbation, V ¼ �=a, has an

effective mass in the slow-roll regime,

M2
eff ¼ ð2��ÞH2 ¼ 2H2 �

�V�
�V��

6mc1H
ð1þOð"ÞÞ: (85)

We expect a tachyonic instability for negativeM2
eff , i.e., for

�> 2. We proceed to demonstrate that just an instability
arises.

B. Full solution

Noticing the similarity between Eq. (83) and the usual
Mukhanov-Sasaki equation [30], which has solutions in

terms of Bessel functions, we change variables to g ¼
x�1=2� with x ¼ �cð�1Þ

s k� to recast Eq. (83) as Bessel’s
equation for gðxÞ,

x2
d2g

dx2
þ x

dg

dx
þ ðx2 � �2Þg ¼ 0; (86)

with the order � given by

�2 � 1

4
þ�: (87)

Depending on the sign and magnitude of�, the order � can
be real or imaginary. We will find it convenient to write the
general solution in terms of the Hankel functions as

� ¼
ffiffiffiffi
�

p
2

ffiffiffiffiffiffiffi��
p ½
kH

ð1Þ
� ð�cð�1Þ

s k�Þ þ �kH
ð2Þ
� ð�cð�1Þ

s k�Þ�:
(88)

To determine the values of the Bogoliubov coefficients 
k

and �k we need to match this solution in the subhorizon

limit �cð�1Þ
s k� ! 1 to the quantum vacuum state of the

aether perturbations in flat spacetime. This is desirable
because we can assume that at such short wavelengths,
these modes do not ‘‘see’’ the cosmic expansion. In
Sec. IVB of Ref. [20] the quantum mode functions Nk

for the aether perturbation vi were demonstrated to satisfy

Nk ¼ 1

4
ffiffiffiffiffiffiffiffiffiffijc1jk

p e�ikt: (89)

This function is related to � byNk ¼ m
a V ¼ m

a2
�. The mode

Nk is defined in Minkowski spacetime, where a � 1 with
t � �, so we only need to follow a factor of m. Using the
asymptotic formula

lim
�cð�1Þ

s k�!1
Hð1;2Þ

� ð�cð�1Þ
s k�Þ ¼

ffiffiffiffi
2

�

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�cð�1Þ
s k�

q e�iðcð�1Þ
s k�þ	Þ;

(90)

with 	 ¼ �
2 ð�þ 1=2Þ, we find that in the subhorizon limit,

� ! 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cð�1Þ

s k

q ½
ke
�iðcð�1Þ

s k�þ	Þ þ �ke
þiðcð�1Þ

s k�þ	Þ�: (91)

Matching to Eq. (89), and ignoring the unimportant phase
factors e�i	, we see that we need


k ¼ 1

4m

ffiffiffiffiffiffiffiffi
2

jc1j

s
; (92)

�k ¼ 0; (93)

where we have (consistently) put in some factors of cð�1Þ
s

which do not appear in the flat spacetime calculation
because it ignores gravity, but would have appeared if we
had included gravity.8 Substituting in this value of 
k, we
find the full solution for the spin-1 perturbation,

Vð�1Þ ¼ 1

a

ffiffiffiffi
�

2

r
1

4m
ffiffiffiffiffiffiffiffijc1j

p ffiffiffiffiffiffiffi��
p

Hð1Þ
� ð�cð�1Þ

s k�Þ: (94)

As a consistency check, if we turn off the scalar-aether
coupling, we have � ¼ 1=2, and (up to an irrelevant phase
of ��=2) we recover Eq. (91) in Ref. [20].

C. Tachyonic instability in the vector modes

On superhorizon scales, the Hankel functions behave as

lim
cð�1Þ
s k�!0

Hð1Þ
v ð�cð�1Þ

s k�Þ ¼ i

�
�ð�Þ

��cð�1Þ
s k�

2

���
: (95)

Plugging this into Eq. (94), we see that the large-scale
vector perturbations to the aether and metric depend on
time as

Vð�1Þ � a�1
ffiffiffiffiffiffiffi��

p ð��Þ�� � ð��Þ32��: (96)

When the aether-scalar coupling (proportional to �) is
small or absent, such that �1=4<�< 2, the vector per-
turbations decay and are unobservable, as in pure æ-theory
[20]. If � is outside that range, then the coupling is large
enough to change the nature of the vector perturbations.
The coupling has two possible effects, depending on its
sign. If � is imaginary (�<�1=4), then the vector modes
are both oscillatory and decaying.9 This corresponds to a
large coupling which significantly damps the perturbations.
On the other hand, the vector modes will experience run-
away growth if 3=2� � is real and negative, or �> 2. In
this case the coupling is large, but with the opposite sign to
the previous case, and this large coupling drives runaway

8To see this, consider Eq. (74) in the case a ¼ 1, which is the
spin-1 perturbation equation in flat spacetime with gravitational
perturbations turned on. Since this requires � ¼ 0, the equation

of motion (74) just becomes �00 þ cð�1Þ2
s k2� ¼ 0. This has the

same solution as we found in the case with gravity turned off in
Sec. III, but with the sound speed modified, as expected.

9Recall that, during inflation, � runs from �1 to 0.

ADAM R. SOLOMON AND JOHN D. BARROW PHYSICAL REVIEW D 89, 024001 (2014)

024001-10



production of aether modes. This is precisely the tachyonic
instability we anticipated in Sec. VA, as it results from the
aether perturbations acquiring an imaginary effective mass.

Since this growth is exponential (in cosmic time, or in
number of e-foldings), it seems quite probable that this
growing vector mode will overwhelm the slow-roll back-
ground solution and therefore lead to an instability. In this
subsection we will calculate the growth of a single vector
mode and compare it to the background evolution.

In order to maintain a homogeneous and isotropic
background spacetime, the time-space term in the stress-
energy tensor must be zero at the level of the background
( �T0

i ¼ 0). The spin-1 perturbations do contribute to these
terms in the stress-energy tensor (68) through terms pro-

portional to Vð�1Þ
k Yð�1Þ

i;k . In particular, we will focus on the

scalar-aether coupling term

T0
i;k ¼ � � � þm �V��

��0

a
Vð�1Þ
k Yð�1Þ

i;k þ � � � ; (97)

which we will write as

T0
i;k 
 m �V��

��0

a
Vð�1Þ
k Yð�1Þ

i;k : (98)

Our strategy will be to focus on a single mode, picking
one of the larger modes available to us. Because Vk grows
with decreasing k, we choose a mode which crosses the
sound horizon at some early conformal time �i. Such a
mode has wave number

k ¼ 1

�cð�1Þ
s �i

: (99)

The perturbation Vð�1Þ
k is given by Eq. (94), which for a

superhorizon perturbation becomes

Vð�1Þ
k ðNÞ ¼ � i

2�

H

4m
ffiffiffiffiffiffiffiffijc1j

p �ð�Þ2�ð��iÞ32eð��3
2ÞN; (100)

where N is the number of e-folds after the mode crossed
the sound horizon.

The mode function Yð�1Þ
i;k is given by [20]

Yð�1Þ
i;k ð ~xÞ ¼ 1ffiffiffi

2
p

k
½ð ~k� ~nÞi � ið ~k� ~nÞi�ei ~k� ~x; (101)

where ~n is a unit vector orthogonal to ~k. We can always
choose three orthogonal coordinates such that ki ¼ k	i

1

and ni ¼ 	i
2, so the mode function is

Yð�1Þ
i;k ð ~xÞ ¼ 1� iffiffiffi

2
p ei

~k� ~x	3
i: (102)

This oscillates throughout space; we will choose ~x

such that Re½ði� 1Þei ~k� ~x� has its maximum value of 1.

(The other terms in Vð�1Þ
k Yð�1Þ

i;k are all manifestly real.)

Therefore, this particular mode has a contribution to
the 0� i component of the stress-energy tensor which
includes a term

T0
i;k 
�m �V��

��0

a

1

2�

H

4m
ffiffiffiffiffiffiffiffijc1j

p �ð�Þ2�ð��iÞ32eð��3
2ÞN 1ffiffiffi

2
p 	3

i:

(103)

Using the slow-roll equation for ��, 3H ��0 
 �a2 �V�, we

can write this as

T0
i;k 


�V�
�V��

24�
ffiffiffiffiffiffiffiffijc1j

p �ð�Þ2��1
2ð��iÞ32eð��3

2ÞN	3
i: (104)

Comparing this to the background 0� 0 component of

T�
�, �T0

0 ¼ �� ¼ 3H2=8� ~Gc, we find

T0
i;k=

�T0
0 


~Gc
�V�

�V��

9H2
ffiffiffiffiffiffiffiffijc1j

p �ð�Þ2��1
2ð��iÞ32eð��3

2ÞN	3
i: (105)

Using the slow-roll Friedmann equation we could rewrite
this purely in terms of the potential as

T0
i;k=

�T0
0 


1

24�
ffiffiffiffiffiffiffiffijc1j

p �V�
�V��

�V � �� �V�

�ð�Þ2��1
2ð��iÞ32eð��3

2ÞN	3
i:

(106)

The key feature here is the exponential dependence onN

for � > 3=2 (the condition we found above for Vð�1Þ
k to

grow exponentially in cosmic time). While the derivatives
of the potential in the numerator of Eq. (106) should be a
few orders of magnitude smaller than the potential in the
denominator, as a consequence of slow roll, this is likely to
be dwarfed by the exponential dependence on the number
of e-folds, which even for the bare minimum length of
inflation, N � 50–60, will be very large. Moreover, as we
will see in Sec. VII, � can in principle be larger than 3=2
even by several orders of magnitude, and hence the other
terms with exponential dependence on �, as well as the
gamma function, can be quite large as well.
Therefore, when � > 3=2 the vector modes will generi-

cally drive the off-diagonal term in the stress-energy tensor
far above the background density. This does not necessarily
mean that isotropy is violated. As discussed in Sec. VI, the

same physical process that drives Vð�1Þ
k will similarly

pump energy into the spin-0 piece, Vð0Þ
k , which affects the

perturbations to �T0
0 as well as �T0

i. Consequently, back-

ground homogeneity and isotropy could still hold, but the
slow-roll solution to the background Friedmann equations
which we perturbed would be invalid. Either way our
inflationary background becomes dominated by the
perturbations.
Note that this calculation was done for a single mode,

albeit one of the largest ones available because Vk grows
for smaller k. Integrating over all modes produced during
inflation would of course exacerbate the instability.
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This instability is explored in greater quantitative detail
in Sec. VII, where we examine a specific potential for
which we can elucidate the constraints on �V� and �V��.

D. What values do we expect for �?

Vð�1Þ has an effective mass-squared (85) which depends
on both the theory’s free parameters and derivatives of the
scalar potential, and can be of either sign. When it is

negative, the aether modes are tachyonic and Vð�1Þ con-
tains an exponentially growing mode. This occurs when
the parameter �, defined in Eq. (84), satisfies �> 2. To
lowest order in slow roll, � is written in terms of several
free parameters: c1, m, H, and the potential derivatives
�V�� and �V�,

� � �
�V�

�V��

6mc1H
3
þOð"Þ: (107)

Hence, � can span a fairly large range of orders of magni-
tude. However, there are several existing constraints on
these parameters, most of which constrain several of them
in terms of each other.

There are two things we can do to clarify this expression

for�. We generally expect that for a slow-roll phase, €� 	
3H _� and 1

2
_�2 	 M2

PlH
2, where the Planck mass is given

as usual by

M�2
Pl ¼ 8�G ¼ 8�Gc �Oð1Þ: (108)

We will rewrite the second inequality in terms of a slow-
roll parameter, � , as

1

2
_�2 ¼ M2

PlH
2�; (109)

� 	 1: (110)

Using the slow-roll Friedmann and Klein-Gordon equa-
tions, we can then rewrite � as

� ¼ sgnð _�Þ �
1=2ffiffiffi
2

p
c1

�
m

MPl

��1 �V��

H
þOð"Þ: (111)

Next, we can redefine the coupling �V�� using the flat

spacetime stability constraint (46) that we derived in
Sec. III. If we define a normalized coupling � by

V2
��ð0; 0Þ � 2c123M

2
0�; (112)

whereM2
0 ¼ V��ð0; 0Þ is the effective mass-squared of the

scalar around a Minkowski background, then the stability
constraint is simply

� � 1: (113)

Therefore, we have

� ¼ sgnð _�Þ�1=2�1=2 c
ð0Þ
sffiffiffiffiffi
c1

p
�V��

V��ð0; 0Þ
M0

H

�
m

MPl

��1 þOð"Þ:

(114)

The instability occurs when �> 2. Let us first examine
Eq. (114) to see if it can be positive. Most of the terms are
manifestly positive. Positivity of the Hamiltonian for spin-
1 perturbations in flat spacetime requires c1 � 0 [20].10

Tachyonic stability of the scalar requiresM0 to be real and
positive. The timelike constraint on the aether requires m
be positive as well. Putting this all together, we find

�¼sgnð _�Þ
�V��

V��ð0;0Þ �
1=2|{z}
>0

�1=2|{z}
>0

cð0Þsffiffiffiffiffi
c1

p|{z}
>0

M0

H|{z}
>0

�
m

MPl

��1

|fflfflfflffl{zfflfflfflffl}
>0

þOð"Þ;

(115)

implying that in order for � to be positive, _� and the
coupling �V�� need to have the same sign. This is not

difficult to achieve in practice; in the quadratic potential
of Ref. [16] (see Sec. VII for more discussion), it amounts
to requiring that � and �V�� have opposite signs, which is

true for a large space of initial conditions leading to inflat-
ing trajectories.
Next we need to see under which conditions j�j can be

Oð1Þ or greater. We have assumed that the scalar slow-roll
parameter � is small. In particular, in the absence of the
aether, � is equal to ", which observations constrain to be

�Oð10�2Þ [31]. It therefore seems sensible that �1=2

should be small but not terribly small, perhaps
�Oð10�1Þ or so.
Similarly, the scalar-aether coupling � is constrained by

flat spacetime stability of the spin-0 modes to be strictly
less than 1. However, we do not want to consider couplings
so small as to be uninteresting, so we may choose the
coupling to be as close to � ¼ 1 as is allowed.

Therefore, �1=2 ought to be smaller, but need not be too
much smaller, than 1.
Written in the form of Eq. (114), the value of � is

sensitive to how V�� and V�� differ between a quasi–de

Sitter inflationary background and a Minkowski back-
ground. In the quadratic potential Vð�;�Þ ¼ 1

2M
2�2 þ

��� which we discuss in Sec. VII, both of these are
constant, although one could presumably construct infla-
tionary potentials for which this is not true. The effective

mass of the scalar during inflation, M ¼ �V1=2
��, should be

less than the Hubble rate in order to produce perturbations.
Putting all this together, we are left with

10This was derived in pure æ-theory. However, recall from
Sec. III that the spin-1 modes in flat spacetime are unaffected
by the scalar-aether coupling, as � is a divergence of the vector
perturbations and so only contains spin-0 perturbations. Hence,
c1 needs to still be positive.
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� ¼ sgnð _�Þ �1=2|{z}
<1

�1=2|{z}
�1

cð0Þsffiffiffiffiffi
c1

p|{z}
Oð1Þ

�V��

V��ð0; 0Þ
M0

M|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Oð1Þ?

M

H|{z}
	1

�
m

MPl

��1

|fflfflfflffl{zfflfflfflffl}
�1?

þOð"Þ: (116)

We can see that in order for� to be larger than 2, the aether
VEV, m, needs to be at least a few orders of magnitude
smaller than the Planck scale. m is effectively the Lorentz
symmetry-breaking mass scale. It can therefore be quite a
bit smaller than the Planck mass, although if it were below
the scale of collider experiments, any couplings to matter
could displace the aether from its VEV and Lorentz-
violating effects could be visible.

There are several experimental and observational results
suggesting that m=MPl should be quite small. Here we
briefly discuss three strong constraints, arising from big
bang nucleosynthesis (BBN), Solar System tests, and the
absence of gravitational Čerenkov radiation, as well as a
possible caveat.

As mentioned in Sec. II, the gravitational constant ap-
pearing in the Friedmann equations, Gc, and the gravita-
tional constant appearing in the Newtonian limit, GN , are
both displaced from the ‘‘bare’’ gravitational constant, G,
by a factor that is, schematically, 1þ ciðm=MPlÞ2. The
primordial abundances of light elements such as helium
and deuterium probe the cosmic expansion rate during big
bang nucleosynthesis, which depends on Gc through the
Friedmann equations. Therefore, by comparing this to
GN measured on Earth and in the Solar System, cim

2 can
be constrained. Assuming the ci are Oð1Þ,11 the BBN
constraint implies m=MPl & 10�1 [19].

Slightly better constraints on Gc=GN come from the
cosmic microwave background (CMB) [33,34]. The tight-
est bound, jGN=Gc � 1j< 0:018 at 95% confidence level,
was computed using CMB data (WMAP7 and SPT) and the
galaxy power spectrum (WiggleZ) in a theory closely
related to the one described in this paper, and should
hold generally for æ-theory at the order-of-magnitude level
[7]. These constrain m=MPl to be no greater than a few
percent.

There are yet stronger bounds on m=MPl through con-
straints on the preferred-frame parameters, 
1;2, in the

parametrized post-Newtonian (PPN) formalism. These co-
efficients scale, to leading order, as ciðm=MPlÞ2 [12,35].
The observational bounds 
1 & 10�4 and 
2 & 4� 10�7

therefore imply m=MPl & 6� 10�4. Recent pulsar con-
straints on 
1;2 are even stronger than this [36], although

they are derived in the strong-field regime and thus might
not be directly applicable to the weak-field æ-theory
results. Similarly, recent binary pulsar constraints on

Lorentz violation [37] constrain m=MPl & 10�1, assuming
ci �Oð1Þ.
The strongest constraints come from the absence of

‘‘gravitational Čerenkov radiation.’’ Because the aether
changes the permeability of the vacuum, coupled aether-
graviton modes may travel subluminally, despite being
nominally massless. Consequently, high-energy particles
moving at greater speeds can emit these massless particles,
in analogy to the usual Čerenkov radiation. This emission
causes high-energy particles to lose energy, and at an
increasing rate for higher-energy particles. Among the
highest-energy particles known are cosmic rays, which
travel astronomical distances and hence could degrade
drastically due to such gravitational Čerenkov effects.
Such a degradation has, however, not been observed; this
generically constrains m=MPl < 3� 10�8 [14].
We should note that these constraints can be side-

stepped if certain convenient exact relationships hold
among the ci, although crucially they cannot all be avoided
in this way simultaneously without allowing for super-
luminal propagation of the aether modes [12]. The PPN
parameters 
1;2 are identically zero when c3 ¼ 0 and

2c1 ¼ �3c2. The BBN constraint is automatically satisfied
by requiring 2c1 þ 3c2 þ c3 to vanish, as this sets Gc ¼
GN [19]. Note that the PPN cancellations imply the BBN
cancellation, though the reverse is not necessarily true.12

The Čerenkov constraints vanish if all five propagating
gravitational (metric and aether) degrees of freedom propa-
gate exactly luminally. This happens when c3 ¼ �c1 and
c2 ¼ c1=ð1� 2c1Þ [14]. Note that while 
2 ¼ 0 in this
parameter subspace, 
1 ¼ �8c1ðm=MPlÞ2, which would
place a constraint on m=MPl of order 10�2. It is worth
mentioning that the Čerenkov constraints onm will also be
avoided if the mode speeds for some of the aether-metric
modes are superluminal. This includes a two-dimensional
parameter subspace in which the PPN and BBN constraints
are automatically satisfied [12]. Whether superluminal
propagation is acceptable in æ-theory is somewhat contro-
versial. It is a metric theory of gravity, so superluminality
should imply violations of causality, including propagation
of energy around closed timelike curves [14,20]. However,
this may be seen as an a posteriori demand, and some
authors (e.g., Ref. [12]) do not require it.
It is unclear what fundamental physical principle, if any,

would cause the ci to cancel in any of the aforementioned
ways. Hence it seems to be a fairly general result that m
must be many orders of magnitude below the Planck scale.
If m=MPl is small enough compared to M=H and the other

11As the ci are dimensionless parameters, this is perfectly
reasonable. Note that even if m were order MPl or larger and
the constraints discussed in here are actually constraints on the
smallness of the ci, � still depends on these parameters as c�1=2

1 .

12The conditions for PPN and BBN to cancel can be relaxed by
including a c4 term which describes a quartic aether self-
interaction. We have ignored such a term in order to simplify
the theory, although like the other three terms, it is permitted
when the aether equations of motion are demanded to be second
order in derivatives. When c4 � 0, the vanishing of 
1;2 con-
tinues to imply that the BBN constraints are satisfied.
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small parameters appearing in Eq. (116), � can easily be
above 2 and the aether-inflaton coupling runs a serious
danger of causing an instability. For a given m=MPl, this
places a constraint on the size of the coupling, �V��. We

will discuss this constraint more quantitatively in Sec. VII
for a specific choice of the potential.

VI. SPIN-0 COSMOLOGICAL PERTURBATIONS:
INSTABILITYAND OBSERVABILITY

We now consider the spin-0 perturbations. For readers
who want to skip the calculational details, we first sum-
marize this section. The spin-0 equations are complicated
by the addition of 	� modes which add a new degree of
freedom. In order to tackle these equations, we use the
smallness of m=MPl, discussed in Sec. VD, to solve the
perturbations order by order, along the lines of the
approach in Ref. [6]. At lowest order in m=MPl, the per-
turbations � and 	� have the same solutions as in the
standard slow-roll inflation in general relativity. These can
be substituted into the � equation of motion to solve for �
at lowest order, which we then substitute back into the �
and 	� equations at Oðm=MPlÞ.

The instability found in the spin-1 perturbations
reappears, and occurs in essentially the same region of
parameter space. We then assume that the parameters are
such that this instability is absent, in which case � is
roughly constant. We solve for the metric perturbation �
and find that neither its amplitude nor scale dependence are
significantly changed from the standard slow-roll case. In
particular, we calculate two key inflationary observables:
the scale dependence of the� power spectrum, ns, and the
tensor-to-scalar ratio, r.

Surprisingly, the first corrections due to the aether-
scalar coupling enter at Oðm=MPlÞ2. Up to first order in
m=MPl, the aether-scalar coupling has no effect on cosmic
perturbations on superhorizon scales, assuming that
m=MPl is small compared to unity and that the perturba-
tions are produced during a slow-roll quasi–de Sitter
phase. A corollary of this is that superhorizon isocurva-
ture modes, a generic feature of coupled theories, are not
produced by the aether-scalar coupling up to Oðm=MPlÞ2.
Because of the smallness of m=MPl, any deviations to ns
and r caused by the aether-scalar coupling are unobserv-
able to the present and near-future generation of CMB
experiments.

Since the pure æ-theory terms in the perturbed Einstein
equations carry two powers of u� (which is proportional to
m) and so only begin to contribute at Oðm=MPlÞ2, we will
not recover the cosmological perturbation results of pure
æ-theory by taking any limits, as we only work in this
section toOðm=MPlÞ. The effects of æ-theory on the spin-0
perturbations are mild, amounting essentially to a rescaling
of the power spectrum amplitude that is Oðm=MPlÞ2 and is
degenerate with " [20].

A. The spin-0 equations of motion

In order to eliminate nonphysical degrees of freedom,
we need to specify a choice of coordinate system with no
remaining gauge freedom. We choose to work in

Newtonian gauge, where Bð0Þ ¼ Hð0Þ
T ¼ 0. The equations

of motion are relatively simple in this gauge, and the
perturbation � has a simple interpretation as the relativis-
tic generalization of the Newtonian gravitational potential
[30]. Hereafter we will drop the spin-0 superscripts.
The 0� 0, 0� i, and i� i Einstein equations, respec-

tively, are

4� ~Gcð� ��0	�0 � a2 �V�	�Þ

¼ ð3H 2 �AÞ�� 3H�0 �
~Gc

G
k2�� 8� ~Gcc1m

2k2�

þ 8� ~Gcc1m
2kðV0 þHVÞ � 8� ~Gc ~
H kV

þ 4� ~Gcma �V��ð ��0�� 3H	�Þ; (117)

1

8�G
ðkH�� k�0Þ

¼ k

2
��0	�� ~
AV þ c1m

2a�1ðak�Þ0 � c1m
2 �

00

a

þ 1

2
ma �V��

��0V; (118)

4� ~Gcð ��0	�0 � a2 �V�	�Þ
¼ ð3H 2 � AÞ�þH�0 � 2H�0 ��00

� 8� ~Gcm
2



~c123k

2ð�þ�Þ

þ 4� ~Gc

3m3

a
A �V���ð3�0 � 3H�þ kVÞ

� 4� ~Gcma½ �V��ð3H	�þ 	�0Þ þ �V���
��0	��

þ 4� ~Gcm
2 �V���½3A	�� ��0ð3�0 � 3H�þ kVÞ�:

(119)

The off-diagonal i�j Einstein equation, unmodified by the
coupling between the aether and scalar, gives a constraint,

k2ð�þ�Þ ¼ 
a�2ða2kVÞ0; (120)

where 
 � 16�Gm2c13 was defined in Sec. V. We may
eliminate � and its derivatives by the constraint (120) and
its conformal time derivatives,

�0 ¼ 
ðakÞ�1ð�00 � A�Þ ��0; (121)

�00 ¼ 
ðakÞ�1

�
�000 �H�00 �A�0 þA�

�
H �A0

A

��
��00;

(122)

where, as for the spin-1 perturbations, we have defined
� � aV and A ¼ H 2 �H 0. Note the presence of third
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derivatives of � in the expression for �00, which could
severely complicate the Einstein equations at Oðm=MPlÞ2.

Finally, the � ¼ i aether equation of motion is, using
Eqs. (120)–(122),

�00 þ ~c123m
2

c1m
2 þ ~



k2�þ
�
~
ð1� 
ÞA� 1

2ma �V��
��0

c1m
2 þ ~



�
�

¼ c1m
2 þ ~


c1m
2 þ ~



kða�Þ0 � 1

2

ma2 �V��

c1m
2 þ ~



k	�; (123)

where, as before, tildes indicate the usual æ-theory
constants modified by appropriate factors of 1

2
�V��.

We can perform a consistency check by observing that
these reduce to 	T�

� for a single scalar field in general
relativity [30] when the aether is turned off (in the limit
m ! 0), as well as 	T�

� and the � equation of motion in
æ-theory [20] in the limit Vð�;�Þ ! Vð�Þ.

B. The instability returns

To lowest order in m=MPl, the constraint equation (120)
tells us simply that the anisotropic stress vanishes: � ¼
��. Taking this into account, the 0� i Einstein equation
at lowest order in m=MPl is

ða�Þ0 ¼ 4�Ga ��0	�: (124)

The � ¼ i aether equation of motion (123) is, dropping
terms of Oðm2=M2

PlÞ,

�00 þ cð0Þ2s k2�� a �V��
��0

2mc1
�

¼
�
1þ 


c1m
2

�
kða�Þ0 � a2 �V��k

2mc1
	�; (125)

where

cð0Þ2s ¼ c123m
2

c1m
2 þ 



¼ c123
c1

�
1þO

�
m

MPl

�
2
�

(126)

is the same spin-0 sound speed as in flat space (cf. Sec. III)
to first order inm=MPl. In de Sitter spacetime this becomes,
using Eq. (124) to replace ða�Þ0 with 	�,

�00 þ cð0Þ2s k2��
�V��

_��

2mc1H
2

�

�2

¼ k

H2

��
1þ 


c1m
2

�
4�G _��� 1

2

�V��

mc1

�
	�

�2
; (127)

to lowest order in the slow-roll parameters and m=MPl.
Combined with the perturbed Klein-Gordon equation, �

and 	� obey coupled oscillator equations. However, to
zeroth order in m=MPl, the scalar field is unaffected by the
aether perturbations,13 so on superhorizon scales 	� is
constant up to slow-roll corrections, resulting in the

standard nearly scale-invariant power spectrum. This is
consistent with the flat-space case discussed in Sec. III,
where it was found that the coupling to the aether does not
destabilize the scalar modes. Therefore, on superhorizon

scales, cð0Þs k� 	 1, Eq. (127) is solved by

� ¼ Cþ�nþ þ C��n�

þ k	�

�
_��
�1 �

�
1þ 


c1m
2

�
m

MPl

c1
�V��MPl

�
; (128)

where C� are arbitrary constants, and

n� ¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ

�V��
_��

2mc1H
2

s
: (129)

As with the spin-1 perturbations, the spin-0 piece
of V ¼ �=a can either grow or decay exponentially
(in cosmic time). In this case it will grow if

�V��
_��

2mc1H
2
> 2: (130)

This is exactly the same as the condition �> 2 for the
spin-1 modes to be unstable. The real condition for insta-
bility may be slightly different, as �> 2 could violate our
assumption that m=MPl is small; however, the additional
Oðm=MPlÞ2 terms would only change some small multi-
plicative factors, and not by orders of magnitude.
As in the spin-1 case, we can most easily see the effect

of unstable aether modes on the metric perturbations
through the off-diagonal i� j Einstein equation (120). If
V blows up exponentially then so will �þ�, and the
metric perturbations will overwhelm the Friedmann-
Robertson-Walker background.

C. The small-coupling limit

Henceforth, we will assume that the aether perturbations
are stable, so that

� �
�V��

_��

2mc1H
2
< 2: (131)

This can be further split into two dominant cases, j�j 	 1
and �<�1=4. There are regions in parameter space
which are not covered by these cases, such as �� 1, but
these are likely to be highly fine-tuned as many of the
parameters which enter � have no relationship to each
other a priori. Consequently we should consider various
values of � on an order-of-magnitude basis.
� 	 1 corresponds to the limit where the coupling

j �V��j is small compared to the mass scale c1mH2= _��.

Assuming that the background relations for the slow-roll
parameters hold as in GR (which we will explore more
rigorously in Sec. VII for a particular potential), then we

have " ¼ 4�G _��
2
=H2 up to Oðm=MPlÞ, and this limit can

be written as

13The aether coupling will still enter the perturbed Klein-
Gordon equation at this order through the potential terms.
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j �V��j
H

	 c1ffiffiffi
"

p m

MPl

: (132)

In this limit, the term C��n� is constant up to slow-roll
corrections, as is the term proportional to 	�.

This case should be qualitatively similar to æ-theory as it
makes the aether-scalar coupling very small. However, we
might be worried by the appearance of a �V�1

�� in Eq. (128).

The limit �V�� ! 0 does smoothly go to æ-theory. The

aether perturbation � only appears, to Oðm=MPlÞ, in the
0� i Einstein equation,

�0 þH� ¼ 4�G ��0
�
	�þm �V��

k
�

�
: (133)

The �V�� in the Oðm=MPlÞ term will cancel out the

problematic �V�1
�� in the solution for �. Taking � ! 0 and

substituting in the solution (128), this becomes

�0 þH� 
 4�G ��0	�
�
1� m2

M2
Pl

c1

�
1þ 


c1m
2

��
: (134)

The corrections enter at Oðm=MPlÞ2 and are negligible for
the purposes of this analysis. Therefore the limit j�j 	 1
should only differ from æ-theory at Oðm=MPlÞ2 & 10�15.

It is worth mentioning that for small but finite � there
will be new effects on extremely large scales, k & �V��.

These may or may not be observable, depending on the
scales covered during inflation.

D. The large-coupling limit: the � evolution equation

One interesting case is left: a large coupling with oppo-

site sign to _��, or�< 1=4. Wewill consider this for the rest
of this section. However, we should mention that the sign

of _�� depends on initial conditions, and if this sign condi-
tion were not satisfied, then (as discussed in Sec. VI B) the
aether-scalar coupling would drive a severe tachyonic in-
stability. Hence such a large coupling may not be an ideal
part of a healthy inflationary theory.

In this large-coupling case, both of the �� terms are
decaying and we will take

� ¼ k	�
_��

�
1þO

�
m

MPl

��
(135)



ffiffiffiffiffiffiffiffiffiffi
4�G

p

H"1=2
k	�: (136)

Equation (135) was derived for superhorizon perturbations
in the slow-roll limit. Hence we will only consider super-
horizon scales, and while we will leave the scale factor
unspecified in this subsection, it is worth keeping in mind
that this analysis may not be valid in spacetimes that are
not quasi–de Sitter. Using this solution for �, we can write
the 0� i Einstein equation to Oðm=MPlÞ as

�0 þH� ¼ 4�Gð ��0 þma �V��Þ	�: (137)

It is an interesting result that we can write the 0� i
Einstein equation in geometrical terms as

�0 þH� ¼ A	�= ��0 (138)

to both zeroth and first order in Oðm=MPlÞ. This does not
hold, however, to higher orders, and might not hold away
from quasi–de Sitter spacetime or on subhorizon scales.
Next we solve the metric perturbation � to Oðm=MPlÞ.

Our master equation is the sum of the 0� 0 and i� i
Einstein equations, dropping a k2� term which is negli-
gible on superhorizon scales,

� 8�Ga2 �V�	�

¼ �00 þ 6H�0 þ 2ð3H 2 � AÞ�
þ 4�Gma �V��ð ��0�� 6H	�� 	�0Þ
� 4�Gma �V���

��0	�þ � � � ; (139)

where we have dropped terms at Oðm=MPlÞ2 and higher.
We want to remove the 	� terms from Eq. (139) to write

it purely as an evolution equation for�. To do this, we start
with the background relation [using Eqs. (48) and (49),
assuming � is gravitationally dominant]

A ¼ H 2 �H 0 ¼ 4�Gð ��02 þma �V��
��0Þ: (140)

Taking the conformal time derivative, we find [dropping
Oðm=MPlÞ2 terms, as we do throughout] that

A0

A
¼

�
2�ma �V��

��0

� ��00
��0 þ

ma �V��H
��0 þma �V���: (141)

Using the background Klein-Gordon equation, we obtain

�2a2 �V� ¼
�
A0

A
þ 4H

�
��0 þma �V��

�
1

2

A0

A
�H

�
�ma �V���

��0: (142)

In deriving the previous two expressions we have made use

of the assumption that ma �V��= ��0 � "�1=2ðm=MPlÞ�
ð �V��=HÞ is small compared to unity.

We will use Eqs. (142) and (137) to remove �V� and the

	� terms from Eq. (139). We can also take the conformal
time derivative of Eq. (137) to find [using Eqs. (142) and
(137)] an expression for 	�0,

4�G ��0	�0 ¼ �00 þ
�
H � 1

2

A0

A

�
�0

þ
�
H 2 � 1

2

A0

A
H � A

�
�; (143)

where we have dropped the Oðm=MPlÞ term as 	�0 only
appears in Eq. (139) at that order.
Using these relations, as well as the definition of A, the

sum of the 0� 0 and i� i perturbed Einstein equa-
tions (139) becomes
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�00 þ
�
2H � A0

A

�
�0 þ

�
2H 2 � 2A� A0

A
H

�
�

¼ ma �V��

��0

�
�00 þ

�
2H � A0

A

�
�0

þ
�
2H 2 � 2A� A0

A
H

�
�

�
: (144)

Simplifying, we find the evolution equation for � to
Oðm=MPlÞ,

�00 þ
�
2H � A0

A

�
�0 þ

�
2H 2 � 2A� A0

A
H

�
� ¼ 0:

(145)

This is a surprising result. This is exactly the equation
obeyed by � in single-field slow-roll inflation in the
absence of a coupling to any other fields [30]. Coupling
to new fields generically introduces source terms to this
equation, signalling the introduction of isocurvature
modes. We have shown that (to first order in m=MPl) the
scalar-aether coupling does not produce any isocurvature
modes on superhorizon scales during slow-roll inflation.

What would happen if we included higher-order terms?
The pure æ-theory terms do not change Eq. (145) [20]. This
is understandable because the aether tracks the background
energy density, precluding the production of isocurvature
modes. However, we have introduced new coupling terms
in the Einstein equations at Oðm=MPlÞ2, and higher, which
could potentially produce isocurvature modes. It is cur-
rently unclear whether the unusual cancellations that led to
the result (145) will hold at these orders.

The solution to Eq. (145) is well known [30],

� ¼ C

�
1�H

a2

Z
a2d�

�
; (146)

where C is a constant. The remarkable fact that the 0� i
Einstein equation can be written in the form (138) to either
zeroth or first order in m=MPl means that to first order,
the relationship between � and 	� is the same as in the
case without the aether. Using Eq. (146) to find a�1ða�Þ0
and plugging that into Eq. (138), we can determine the
constant C,

C ¼ aH
��0 	�: (147)

The amplitude of 	� is determined by quantizing it in a
(quasi–)de Sitter background on subhorizon scales, k �
aH, and imposing a Bunch-Davies vacuum state. 	� is
coupled to the spin-0 aether perturbations, as discussed in
Sec. III, and its dispersion relation is modified by � �
V��ð0; 0Þ. However, the flat spacetime stability condition

constrains this to be less than the flat spacetime mass of the

scalar,M0 � V1=2
��ð0; 0Þ, up to an Oð1Þ factor. Therefore, if

the initial conditions are set at scales k � M0 (which

follows from k � aH since M0 	 H), then k � � as
well, and the scalar at these scales behaves as it does in
the case with no aether. We see that the scalar and metric
perturbations, 	� and�, are exactly the same as in general
relativity to Oðm=MPlÞ.

E. The large-coupling limit: CMB observables

Let us finally connect these calculations to observations.
As mentioned at the beginning of this section, the two
key inflationary observables currently accessible to CMB
experiments are the spectral index of the primordial power
spectrum, ns, and the tensor-to-scalar ratio, r.
We have seen that, surprisingly, neither of these will be

affected by the aether-scalar coupling at Oðm=MPlÞ. Any
new effects must therefore enter at earliest at Oðm=MPlÞ2.
To discuss these effects, we split � into zeroth-, first-, and
second-order pieces,

� ¼ �GR þ
�
m

MPl

�
2
�2 þ � � � : (148)

Using this expansion, the power spectrum of � is

P� ¼ h�2i ¼ h�2
GRi þ 2

�
m

MPl

�
2h�GR�2i þ � � � : (149)

The deviation from scale invariance, ns, is defined by

ns � 1 ¼ d ln�2
�

d ln k
; (150)

where the dimensionless power spectrum is

�2
� ¼ k3

2�
P�: (151)

In GR, the deviation from scale invariance is �2"� �.
Using the results

d ln�2
GR

d ln k
¼ �3� 2"� �; (152)

d ln�2
2

d ln k
¼ �3þ ðns � 1Þ2; (153)

where ðns � 1Þ2 is the spectral index of �2, and assuming
that�2 is not too much larger than�GR, the spectral index
to second order in m=MPl is given by

ns�1¼�2"��þ
�
m

MPl

�
2�2

�0

½2"þ�þðns�1Þ2�þ��� :
(154)

Finally, we consider the tensor-to-scalar ratio, r,
defined by

r ¼ �2
t

�2
�

; (155)

where �2
t is the dimensionless power spectrum of the spin-

2 perturbations, Hð�2Þ
Tk . Pure æ-theory effects contribute a
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constant rescaling to the tensor spectrum which only
becomes important at Oðm=MPlÞ2 [20]. Recall that the
coupling between the aether and �, however, has no effect
on the tensor perturbations as none of the coupling terms
contain spin-2 pieces, so the tensor spectrum �2

t is un-
changed apart from the aforementioned (small) rescaling.
Therefore, r is modified by a factor

r

rGR
¼ �2

�0

�2
�

; (156)

where rGR is the tensor-to-scalar ratio in the absence of the
aether-inflaton coupling. Using the expansion (148), we
find that the corrections to r are small,

r

rGR
¼ 1� 2

�
m

MPl

�
2 �2

�0

þ � � � : (157)

What size are the corrections to ns � 1 and r? As dis-
cussed in Sec. VD, m=MPl is no larger than �Oð10�7Þ,
barring any special cancellations among the ci. We con-
structed the expansion of � so that �2 is at least not too
much larger thanOð�0Þ. We assume that there are no effects
such as instabilities at Oðm=MPlÞ which would cause this
construction to fail (the one instability that we have found in
the spin-0 modes, discussed in Sec. VIB, has been assumed
to vanish, by making the coupling either very small or of the

opposite sign to _��). The Planck sensitivity to r is about
10�1, and about 10�2 to ns � 1 [31,32].

We see that the first corrections to � enter at
Oðm=MPlÞ2. This is constrained by other experiments to
be a tiny number, placing any coupling between � and �
which is not already ruled out far outside the current and
near future window of CMB observability.

VII. CASE STUDY: QUADRATIC POTENTIAL

A. Slow-roll inflation: an example

The arguments so far have been made for a general
potential Vð�;�Þ with only minimal assumptions. In order
to be more quantitative, we will now look more closely at a
particular form of the potential for which the inflationary
dynamics are known and relatively simple.

The Donnelly-Jacobson potential [16] contains all terms
relevant to the dynamics at quadratic order in the fields and
is given by

Vð�;�Þ ¼ 1

2
M2�2 þ���: (158)

A term proportional to � contributes a total derivative to
the action and hence is nondynamical (note that the poten-
tial enters the Friedmann equation through V � �V�, not V
itself), while a term proportional to �2 can be absorbed into
c2 and would only renormalize Gc. We take �> 0 as the
theory is invariant under the combined symmetry � !
�� and � ! ��. Any dynamics with �< 0 can be
obtained by flipping the sign of �.

This is simplem2�2 chaotic inflation with an extra force
that pushes � towards negative values [16]. In the case
where the scalar field has no mass term, � possesses exact
shift symmetry, � ! �þ const, and this theory is essen-
tially�CDM, a dark energy theory in which� is related to
the dark energy scale and, importantly, is protected from
radiative corrections by the existence of a discrete symme-
try [6,7]. Interestingly, in the special case where the aether
is hypersurface orthogonal, this theory also admits a can-
didate UV completion in the consistent nonprojectable
extension [3–5] of Hořava-Lifschitz gravity [2]. In that
case, however, the spin-1 modes we have discussed vanish.
This is because the aether can be written as the (normal-
ized) gradient of a scalar field corresponding to a global
time coordinate, so it possesses no spin-1 modes. A similar
coupling was also considered in Ref. [38].
The equations of motion, in conformal time, are

H 2 ¼ 4�Gc

3
a2ðM2�2 þ�02a�2Þ; (159)

H 0 ¼ 4�Gc

3
a2
�
M2�2 � 2�02a�2 � 3

m�

a
�0

�
; (160)

0 ¼ �00 þ 2H�0 þ a2M2�þ 3Hm�a: (161)

Normally, we can obtain a slow-roll inflationary solution to

leading order by neglecting _�2 ¼ a�2 ��02 in the Friedmann

equation (159) and €��14 in the scalar evolution equa-
tion (161). The same applies in this theory; we now briefly
justify this.
A slow-roll inflationary phase requiresH to be changing

slowly, and for inflation to be successful it needs to last at
least 50–60 e-folds. This is guaranteed by making sure the
slow-roll parameters

" ¼ � _H

H2
¼ 1� H 0

H 2
; (162)

� ¼ _"

H"
¼ "0

H"
(163)

are both very small compared to unity. For convenience we
will work in cosmic time (t ¼ R

ad�) here. The slow-roll

parameters are

" ¼ 4�Gc

H2
ð _�2 þm� _�Þ; (164)

� ¼ 2

�
"þ

€�

H _�

�
2 _�þm�

2 _�þ 2m�

��
: (165)

Defining

14We cannot just drop ��00 as it contains a term like H _�. It is
easiest to drop the second-derivative piece from the cosmic-time
scalar evolution equation and then move to conformal time.
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	 � 4�Gc
_�2

3H2
; (166)

� �
€�

3H _�
; (167)


 � M

H

�

�c

; (168)

where

�c � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�Gc

p M

m
; (169)

we can calculate the slow-roll parameters,

" ¼ 3	þ 
	1=2; (170)

� ¼ �3�

�
6	

1
2 þ 


6	
1
2 þ 2


�
: (171)

The usual slow-roll conditions _�2 	 H2 and €� 	
3H _� are equivalent to 	 	 1 and � 	 1, respectively.
We generally expect M<H in order for the inflaton to
produce perturbations. As we will see below, the stability
considerations discussed in Sec. III require �<�c. When
combined, these conditions imply 
 < 1. So, under these
reasonable assumptions on M and �, in order to ensure

" 	 1 and � 	 1, we simply need _�2 	 H2 and €� 	
3H _� as usual. Note, however, that the usual identifications
of " and � in terms of the potential will be changed if the
scalar-aether coupling is large enough for 
 to be compa-

rable to 	1=2.
In the slow-roll limit, the Friedmann and Klein-Gordon

equations are, respectively,

H ’
ffiffiffiffiffiffiffiffiffiffiffiffi
4�Gc

3

s
Maj ��j; (172)

�0 ’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

12�Gc

s
Ma

�
sgnð�Þ þ �

�c

�
: (173)

Notice the appearance of �c defined above. During
slow-roll, it is related to the inflationary dynamics by

�c ¼ M2j�j
�

: (174)

The value of �=�c is physically significant because
it determines the stability of the slow-roll solution.
The number of e-folds that inflation lasts tends to infinity
as � ! �c, which corresponds to exact de Sitter expan-
sion; for �>�c the slow-roll solution is unstable and
grows without bound [16]. Hence, we will always consider
inflationary solutions with �<�c.

There is an additional constraint on�=�c from the spin-
0 stability constraint (46). Substituting the definition of �c

into this gives the constraint

�2

�2
c

� 24�Gcm
2c123 ¼ 24�Gm2c123

1þ 8�G

: (175)

The same constraint was derived along similar lines in
Ref. [16].15 Since c123 � 1 and 
 � 0 (see Sec. III, as
well as Refs. [19,20]), this is more restrictive than simply
�<�c, unless m is comparable to, or greater than, the
Planck scale—a possibility that seems to be ruled out by
experiments, as discussed in Sec. VD. Since experiments
suggest m=MPl & 10�7, �=�c must be so small that infla-
tionary dynamics would be effectively unchanged by the
coupling, unless cancellations among the ci conspire to
weaken the bounds on m.

B. The instability explored

Specializing to the Donnelly-Jacobson potential, and
using the slow-roll equations [Eqs. (172) and (173)] we
can write the spin-1 equation of motion (83) to first order in
the slow-roll parameters as

�00 þ cð�1Þ2
s k2�� �

�2
� ¼ 0; (176)

with � given by

���1

2

��c

c1H
2

�
sgnð�Þ þ �

�c

�
þOð"Þ;

¼�M2

H2

0
@
cð0Þ2s �þ sgnð��Þc

ð0Þ
s

ffiffiffiffi
�

pffiffiffiffiffiffiffiffi
3c1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Pl

m2
þ c13 þ 3c2

s 1
A

þOð"Þ: (177)

Here, as in Sec. VD, we have defined the normalized
coupling � by

�2 ¼ 2c123M
2� ¼ 24�Gcm

2c123��
2
c; (178)

so that flat spacetime stability of the spin-0 modes implies
� � 1.
As with the general case, the solution (94) to Eq. (176) is

written in terms of the first Hankel function of order �,
where

�2 � 1

4
þ�: (179)

Repeating the analysis of Sec. VC, we pick a single
mode which leaves the sound horizon at some conformal
time �i, which we could take to be the start of inflation. We
pick a mode which crosses the horizon early because Vkð�Þ
is largest at small k (with � held fixed), so this is one of the
larger superhorizon modes available. We want to calculate
the contribution of this mode to the spacetime components

15As mentioned in secction III, our action and potential differ
from those in [16], because we give the aether units of mass
while their aether is dimensionless. Taking the different defini-
tions of ci, m, and � into account, our constraint agrees with
theirs.
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of the stress-energy tensor. If it exceeds the background
energy density, then this would indicate a violation of
expansion isotropy and signal an instability in the back-
ground solution, as we found in Sec. VII A.

Using the slow-roll scalar equation, and our expression
(173) for ��0, we find

�V�
�V�� ¼ M�H

ffiffiffiffiffiffiffiffiffiffiffiffi
3

4�Gc

s �
sgnð�Þ þ �

�c

�
¼ M2Hð6mc123�þ sgnð��Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12c123�½M2

Pl þ ðc13 þ 3c2Þm2�
q

Þ: (180)

We can substitute this directly into Eq. (105) to find one of
the terms in the contribution that this mode makes to T0

i,

T0
i;k=

�T0
0 


cð0Þs

12
ffiffiffi
3

p
�

M

H

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Pl þ 

q

�
0
@sgnð��Þ ffiffiffiffi

�
p þ ffiffiffiffiffiffiffiffiffiffiffi

3c123
p

�
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Pl þ 


q 1
A

� �ð�Þ2��1
2ð��iÞ32eð��3

2ÞN	3
i: (181)

We can now get a more quantitative handle on the
argument made in Sec. VC. Assuming � > 3=2, the ex-
ponential in ð�� 3=2ÞN is likely to overwhelm the other
terms within the 50–60 or more e-folds that will occur after
�i, which we take to be near the start of inflation. While
several terms in Eq. (181) are likely to be several orders of
magnitude smaller than unity, including M=H, m=MPl,

16

and possibly M=MPl, it is unlikely that these could be so
small as to overwhelm the exponential terms and the
gamma function. Hence, for � > 3=2, we expect that the
slow-roll background solution we found in Sec. VII A is
unstable, and is rapidly dominated by perturbations in the
aether field generated by its coupling to the inflaton.

In Sec. VD we found that � can surpass 3=2, even by
several orders of magnitude, if the aether VEV, m, is
suitably small compared to the Planck scale. Armed with
a specific form for the potential, we now briefly clarify that
argument.

If � > 3=2 then �> 2, where � is defined in Eq. (177).
It is not difficult to check that this is the same as the � we
discussed for a general potential (84), which we wrote in
various forms in Sec. VD. There, we found that for� to be

positive we needed � _� to be positive. With the Donnelly-

Jacobson potential, we have an expression for _�, Eq. (173).

From that we see that � _� is only positive (assuming �<
�c) when �� is negative. We will take � to be positive
and then ask if � can be negative (the opposite case is
trivial, as the theory has combined � ! ��, � ! ��
symmetry). This is not at all uncommon, and depends only

on initial conditions. The dynamics for this inflationary

model are encapsulated in ð�; _�Þ phase portraits for a
range of �=�c in Ref. [16]. Per Eq. (178), �=�c is of

order ðm=MPlÞ�1=2. Because observations suggest m 	
MPl (see Sec. VD), � should be very small compared to
�c even when � approaches unity. Hence, the phase por-
trait for � ¼ 0 in Ref. [16] will be very close to the
dynamics we are interested in. In the exact � ¼ 0 case,
there are as many inflating paths with �< 0 as �> 0,

because when � ¼ 0, the equations for � and _� have

combined � ! �� and _� ! � _� symmetry. The next
phase portraits show a tendency, increasing with �, for
inflating paths to live in the �> 0 half of the phase plane.
Since � 	 �c, nearly half of all initial conditions leading
to viable inflation have ��< 0.
Considering each piece in � on an order-of-magnitude

basis, and taking sgnð��Þ ¼ �1, we have

�¼� M2

H2|{z}
	1

0
BBB@cð0Þ2s �|ffl{zffl}

&1

� cð0Þs
ffiffiffiffi
�

pffiffiffiffiffiffiffiffi
3c1

p|fflffl{zfflffl}
Oð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Pl

m2
þ c13 þ 3c2

s 1
CCCAþOð"Þ:

(182)

Evidently, � will be greater than 2 if the smallness of m
compared to the Planck scale exceeds the (square of the)
smallness of the scalar mass, M, compared to the Hubble
scale,

MPl

m
*

2
ffiffiffiffiffiffiffiffi
3c1

p

cð0Þs
ffiffiffiffi
�

p
�
M

H

��2
; (183)

where we have assumed that m=MPl 	 1. While M=H
should be small, there are no limits on how small m=MPl

should be before the collider scale, and moreover, as dis-
cussed in Sec. VD, there are already likely to be stringent
experimental constraints on m=MPl (although these tend to
depend on the ci not cancelling out in particular ways).
The tachyonic instability discussed here and in Sec. V

is absent when � and � have the same sign. In this case,
the coupling only serves to dampen aether perturbations.
For the Donnelly-Jacobson potential, what remains is ef-
fectively just m2�2 inflation. If the signs of � and � are
different, or if we were to demand that inflation be viable
for all initial conditions, then the absence of this instability
puts a very strong constraint on the magnitude of �,

j�j
H

& 2
ffiffiffi
6

p
c1

m

MPl

�
M

H

��2
: (184)

From the background dynamics, we expect ðM=HÞ2 

3"þOðm=MPlÞ �Oð10�2Þ, while the absence of gravita-
tional Čerenkov radiation constrains m=MPl & Oð10�7Þ,
in the absence of certain cancellations among the ci. Thus
the constraint on � is of the order16A requirement for � to be greater than 3=2 in the first place.
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j�j
H

& Oð10�5Þ: (185)

This should be compared to the previous strongest
constraint on �, the flat spacetime stability constraint
discussed in Ref. [16] and Sec. III,

j�j
H

<
ffiffiffiffiffiffiffiffiffiffiffi
2c123

p �Oð1Þ: (186)

VIII. DISCUSSION

We have examined cosmological perturbations in a theory
of single-field, slow-roll inflation coupled to a vector field
that spontaneously breaks Lorentz invariance, looking both
to explore the effects of such a coupling on inflationary
cosmology and to place constraints on it. The particular
model is Einstein-aether theory, a theory of a fixed-norm
timelike vector called the ‘‘aether,’’ coupled to a canonical
scalar field by allowing its potential to depend on the
divergence of the aether, � ¼ r�u

�. In a homogeneous

and isotropic cosmology, � is related to the Hubble rate,
H ¼ �=3m. This construction allows H to play a role in
cosmological dynamics that it cannot in general relativity,
where it is not a spacetime scalar. Moreover, it is a fairly
general model of coupling between a fixed-norm vector and
a scalar field. In particular, while many couplings can be
written down which are not captured by a potential Vð�;�Þ,
all such terms have mass dimension five or higher and
therefore would not be power-counting renormalizable.

Around a slow-roll inflationary background, this theory
possesses a tachyonic instability. The instability is present
if the norm of the aether, effectively the Lorentz symmetry-
breaking scale, is sufficiently small compared to the Planck
mass, and the aether-scalar coupling is suitably large.
In this region of parameter space, assuming a technical
requirement on the initial conditions, scalar and vector
perturbations both grow exponentially, destroying the in-
flationary background. Demanding the absence of this
instability for general initial conditions places a constraint
on the coupling which is significantly stronger than the
existing constraints, which are based on stability of the
perturbations around flat spacetime and viability of a slow-
roll solution. Hence this constraint is by far the strongest on
an aether-scalar coupling to date, with the assumption that
the scalar drives a slow-roll inflationary period.

The root of the instability is the smallness of the aether
VEV, m, compared to the Planck mass. The noncoupled
terms in the aether Lagrangian each have two factors of u�,
so these aether terms will come with a factor of ðm=MPlÞ2
in the Einstein equations. Terms involving two or more �
derivatives of the scalar field potential will also enter the
Einstein equations with these factors or higher. However,
terms associated with the coupling V��, which only has

one aether derivative, will only have one power of m=MPl

and so will generically be larger (depending on the size of
V��) than the other aether-related terms. In the aether

equation of motion, this coupling term will be a power of
MPl=m larger than the other terms for the same reason.
When the coupling is sufficiently large, it is exactly this
term that drives the instability.
If the instability is absent, then observables in the CMB

are unaffected by the coupling at the level of observability
of current and near-future experiments; the corrections are
smaller than Oð10�15Þ. This is due partly to the smallness
of the aether norm relative to the Planck scale, but is
exacerbated by the presence of unusual cancellations.
Solving for the spin-0 perturbations order by order in the
aether VEV, m=MPl, no isocurvature modes are produced
at first order. This is unexpected, as isocurvature modes are
a generic feature of multifield theories. Stronger yet, the
perturbations are completely unchanged at first order in
m=MPl from the case without any aether at all. This is
largely a result of unexpected cancellations which hint at a
deeper physical mechanism. An explanation of such a
mechanism is left to future work.
Also left to future work is whether these unexpected

conclusions hold to higher orders in m=MPl. At
Oðm=MPlÞ2, several new coupling terms enter the
perturbed Einstein equations, Eqs. (117)–(119), with a
qualitatively different structure to the terms which appear
at Oðm=MPlÞ. The possibility therefore remains that the
isocurvature modes that one would expect from the mul-
tiple interacting scalar degrees of freedommight re-emerge
at this level. If they do, they would be severely suppressed
relative to the adiabatic modes.
Beyond perhaps an extreme fine-tuning, there does not

seem to be a subset of the parameter space in which
observable vector perturbations are produced without de-
stroying inflation. Even if such modes could be produced,
they do not freeze out on superhorizon scales and are
sensitive to the uncertain physics, such as reheating, be-
tween the end of inflation and the beginning of radiation
domination. Therefore any observational predictions for
vector modes would be strongly model dependent.
Nonetheless, it should be stressed that the line between
copious vector production (that quickly overcomes the
background) and exponentially decaying vector production
is so thin, as it depends on unrelated free parameters, that
there is no reason to expect this theory would realize it.
While we made these arguments for a general potential,

we also looked at a specific, simple worked example, the
potential of Donnelly and Jacobson [16]. This potential
includes all dynamical terms at quadratic order, and
amounts to m2�2 chaotic inflation with a coupling to the
aether that provides a driving force. It contains many of the
terms allowed for the aether and scalar up to dimension
four.17 The constraint this places on the coupling� � V��,

17One could also add a tadpole term proportional to � and a
term proportional to �2�. The latter would effectively promote
the coupling � to �þ const��, so during slow-roll inflation
the effective � would still be roughly constant.
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is stronger by several orders of magnitude than the next
best constraint [16],

j�j
H

<
ffiffiffiffiffiffiffiffiffiffiffi
2c123

p �Oð1Þ: (188)

It is worth emphasizing again the two conditions for our
constraint to hold. First, the scalar must drive a period of
slow-roll inflation. Second, the instability can be avoided if
� and � have the same sign. Consequently, the new
constraint applies only if we demand that inflation be stable
for all initial conditions. Assuming such a coupling exists,
this constraint could be seen as a lower bound on m, to be
contrasted to the many upper bounds onm in the literature.
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APPENDIX: REAL-SPACE COSMOLOGICAL
PERTURBATION EQUATIONS

In this appendix, we present the real-space equations of
motion for the cosmological perturbations.
We have for the � ¼ 0 component of the aether field

equation (8)

�6ðc13þ2c2ÞH 2�þ6c2
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and the � ¼ i component is
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The combined aether-scalar stress energy tensor (12) has perturbations
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We can do a consistency check by choosing Vð�;�Þ ¼ 1
2��

2 þ Vð�Þ. This corresponds to pure æ-theory, with c2
rescaled to c2 þ �, and a scalar field coupled only to gravity. The cosmological perturbations in that model are presented in
Ref. [20]. Our equations agree with the literature in this limit, as we would expect.
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