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The large-scale structure of the Universe suggests that the physics underlying its early evolution is scale-
free. This was the historic motivation for the Harrison-Zel’dovich-Peebles spectrum and for inflation.
Based on a hydrodynamical approach, we identify scale-free forms for the background equation of state for
both inflationary and cyclic scenarios and use these forms to derive predictions for the spectral tilt and
tensor-to-scalar ratio of primordial density perturbations. For the case of inflation, we find three classes of
scale-free models with distinct predictions. Including all classes, we show that scale-free inflation predicts
tensor-to-scalar ratio r > 10−4. We show that the observationally favored class is theoretically disfavored
because it suffers from an initial conditions problem and the hydrodynamical form of an unlikeliness
problem similar to that identified recently for certain inflaton potentials. We contrast these results with
those for scale-free cyclic models.
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I. INTRODUCTION

The recent Planck satellite measurements [1–3], together
with earlier observations from the Wilkinson Microwave
Anisotropy Probe, Atacama Cosmology Telescope, South
Pole Telescope, and other experiments [4], showedwith high
precision that the spectrum of primordial density fluctuations
is nearly scale invariant, Gaussian, and adiabatic. These
results suggest that the Universe is simple and the physics
governing its early evolution on large scales is “scale-free.”
That is, the physics during that smoothing period inwhich the
large-scale structureof theUniverse isdetermined isgoverned
by dynamical equations that entail no dimensionful macro-
scopic scales and yield power-law solutions.
Scale-freeness was first conjectured as a guiding cos-

mological principle over four decades ago and was the
historic motivation for both the Harrison-Zel’dovich-
Peebles spectrum [5–7] and inflation [8–10]. In the
intervening years, the principle seemed to lose favor as
many baroque versions of inflationary (and other) models
were proposed that explicitly introduce distinctive, scale-
sensitive features on large scales. The problem is that,
without a guiding principle such as scale-freeness, literally
any result for the spectral tilt, tensor-to-scalar ratio or
other cosmological observables is possible. Some have

emphasized this as an “attractive” feature of inflation on the
grounds that the theory cannot be disproven (see for
example [11]); but the other side of the coin is that this
means the theory is entirely unpredictive.
Now that scale-freeness has substantial observational

support, it is timely to examine how this guiding principle
dramatically collapses the range of outcomes and makes
cosmological theories like inflation meaningfully predic-
tive. We use a hydrodynamical approach that is model
independent, i.e., with no reference to scalar fields or
potentials, to consider two well-known cosmological sce-
narios, the inflationary and cyclic (or ekpyrotic) theories of
the Universe. We identify forms for the background
equation of state during the cosmological smoothing phase
in each case consistent with strict scale-freeness. We also
consider variations that “weakly” break scale-freeness. We
then derive generic predictions for the spectral tilt and
tensor-to-scalar ratio of primordial density perturbations
resulting from the scale-free principle.
A hydrodynamical approach has been applied earlier to

inflationary and cyclic theories [12,13], without explicitly
assuming scale-freeness. The hydrodynamical approach is
attractive since it is powerful and simple at the same time; it
enables us to derive generic results (given the assumptions)
and leads us to an intuitive understanding of the underlying
physical phenomena. It is also closer to observation, in the
sense that it is easier to determine the equation of state from
astrophysical data than to determine the microphysics
(scalar fields and potentials) that caused it.
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The goal of this paper is to show how the combination of
the hydrodynamical approach and the principle of scale-
freeness impose restrictions on cosmological scenarios and
their predictions. For inflation, the combination reveals the
existence of three distinct classes of scale-free scenarios.
We show that the class favored by current experiment
suffers from an initial conditions problem and a series of
other problems, including a hydrodynamic equivalent of
the unlikeliness problem identified recently for certain
inflaton potentials [14]. For the cyclic scenarios, where
smoothing occurs during a period of ultraslow (ekpyrotic)
contraction, we find that there is only one class of scenarios
and that none of the problems arise. In this analysis, we
only consider a single contraction period without regard
to whether the evolution repeats cyclically, so the same
conclusions apply to bouncing cosmologies using ekpyr-
otic smoothing that have a single bounce or other
variations.
For the cyclic (or other ekpyrotic) theories, most current

versions use the entropic mechanism to generate curvature
perturbations [15], which imposes the conceptual restric-
tion that there be a two-component fluid to generate the
perturbations. We find that handling two components rather
than one in our approach is not a problem. We show that
scale-freeness constrains the equations of state of both
components, enabling us to derive generic predictions for
the spectral tilt and tensor-to-scalar ratio analogous to the
case of inflation.
We believe the approach adopted here based on scale-

freeness and hydrodynamics provides what is arguably the
predictions of the simplest, best-motivated, and observa-
tionally best-supported models of each given cosmological
theory and sets a standard that can be applied to any
scenario in which a smooth, i.e., scale-free background and
nearly scale-invariant, adiabatic, and Gaussian perturba-
tions are created at the same cosmological stage.
The paper is organized as follows. We begin in Sec. II by

briefly reviewing the inflationary and cyclic (or ekpyrotic)
scenarios and how they can create a scale-free background.
To describe the background dynamics, in Sec. III we
identify forms of the equation of state consistent with
the principle of scale-freeness for the inflationary scenario.
We demonstrate the existence of three distinct classes of
scale-free solutions. Then, we use our background solu-
tions to derive predictions for the spectral tilt and tensor-to-
scalar ratio of primordial density perturbations. We also
consider cases with deviations from scale-freeness on
unobservably small scales. Here and throughout the paper,
our main aim is to make most generic statements from a
minimal set of assumptions. In Sec. IV, we repeat the same
type of analysis for the cyclic (ekpyrotic) model. We
conclude in Sec. V by summarizing the constraints imposed
by scale-freeness for both the inflationary and cyclic
theories and comparing with constraints imposed by recent
data.

II. SCALE-FREENESS

Both inflation and the cyclic (or ekpyrotic) theory were
introduced to explain how inhomogeneous and anisotropic
initial conditions can be made smooth and (spatially) flat,
resulting in a scale-free universe. Inflation [8–10] accom-
plishes the feat with a phase of accelerated expansion
occurring very shortly after the big bang. Alternatively,
flatness and homogeneity can be achieved by an ekpyrotic
smoothing phase [16,17], a period of ultraslow contraction
before the big bang.
In both phases, the dynamics can be easily understood,

using a hydrodynamical approach in which the background
evolution is governed by a “smoothing” fluid component
(S) with equation-of-state parameter

ϵ≡ 3

2
ð1þ wÞ with w≡ ρS

pS
; (1)

where w is the equation of state, ρS the energy density, and
pS the pressure of the smoothing component. Here and
throughout the paper we will restrict ourselves to the case
that the speed of sound is cs ¼ 1. (Although it is straight-
forward to extend the analysis to cs ≠ 1, current observa-
tions require cs > 1=3 [3]; for this range of cs, the
difference from the cs ¼ 1 case is nominal.) To have
accelerated expansion during the inflationary smoothing
phase, the equation-of-state parameter must lie in the range
0 < ε < 1 since the scale factor increases with time as
a ∝ t1=ε. To have ultraslow contraction in the ekpyrotic
smoothing phase, the analogous condition is ε > 3. In both
cases, the condition on the equation of state guarantees that,
in the Friedmann equation,

H2 ¼ 1

3M2
Pl

�
− 3k
a2

þ σ20
a6

þ ρS
a2ε

þ ½matter; radiation; etc:�
�
;

(2)

the energy density in the smoothing component (ρS ∝ a−2ε)
can overtake all other forms of energy density, including
matter (ρ ∝ a−3), radiation (ρ ∝ a−4), and gradient energy
(ρ ∝ a−2), and can also overtake the anisotropy (σ20=a6) and
spatial curvature (k=a2). Generally, ε≡ εðNÞ is a function
ofN, the number of e-folds before the end of the smoothing
phase. [Here M2

Pl ¼ ð8πGÞ−1 is the reduced Planck mass
and G is Newton’s constant.]
In flattening the background with a single fluid of ε < 1,

inflation also generates a nearly scale-invariant, adiabatic,
and Gaussian spectrum for the curvature perturbations on
comoving hypersurfaces characterized by a spectral tilt
nsðNÞ − 1 [18,19], which is also a function of N. The same
is not true for ekpyrosis. If there is only a single fluid in the
contracting phase, the growing-mode, adiabatic perturba-
tions decay and cannot be the seed of structure in the
postbang universe [20]. Currently, the best understood way
of creating primordial density perturbations is the entropic
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mechanism [15,21]. Here, prebang isocurvature fluctua-
tions are generated by adding a second fluid component;
in the simplest case, one that does not affect the back-
ground evolution. These isocurvature modes are then
converted into density perturbations which source struc-
ture in the postbang universe. Another consequence of
inflation is the generation of nearly scale-invariant tensor
(gravitational wave) fluctuations. The ratio of the tensor-
to-scalar amplitude as a function of N is labeled rðNÞ.
For the ekpyrotic case, the tensor amplitudes are expo-
nentially suppressed compared to inflation and can be
considered negligible for the purposes of this discussion.
Hence, the detection or nondetection of primordial
gravitational waves is a key means of distinguishing
the two scenarios.
Assuming only that there was a period of inflation, the

point has been made by numerous authors (e.g., see [11] for
a recent example) that any observational outcome is
possible, rendering the theory unpredictive. The purpose
of this paper is to use a hydrodynamical approach to
determine how the predictions of inflationary and cyclic
cosmologies are affected by the additional assumption that
the underlying physics is scale-free. By a scale-free
function we mean a power-law form up to a coordinate
shift, i.e., f∶R → R is a scale-free function iff there is a
coordinate transformation π∶ R → R, x↦xþ C, C ∈ R,
such that

ðf∘πÞðxÞ ¼ βxα; α; β ∈ R: (3)

Scale-invariant is the special case where α ¼ 0.
For our cosmological application, we describe a

cosmology as strictly scale-free if both the background
equation of state εðNÞ and the perturbations, character-
ized by nSðNÞ − 1 and rðNÞ, are scale-free. We shall
show that this condition is highly constraining, leading to
specific predictions for nS − 1 and r. In particular, it is
immediately apparent from the Friedmann equation,
Eq. (2), which can be written as a sum of a−2εi , that
for a scale-free background the equation-of-state param-
eter of all components relevant during the smoothing
stage must be the same.
Since the case for scale-freeness is based on background

evolution and observations on large scales, we also
consider background-only scale-freeness in which ε is
precisely scale-free but nS − 1 can have deviations from
scale-freeness on unobservably small length scales
[N ¼ Oð1Þ]. In addition, we consider a class of models
that weakly break scale-freeness where we analyze devia-
tions in ε, nS − 1, and r that only affect unobservably small
scales.

III. INFLATIONARY THEORY

In order to construct a model withN� e-folds of inflation,
the following two criteria must be satisfied:

I: sufficient inflation.—N� e-folds inflation occur, i.e.,
εðNÞ < 1 for 1 < N < N�, and

II: graceful exit.—inflation ends in the last e-fold, i.e.,
εðN ¼ 0Þ ¼ 1; plus εðN > 0Þ < 1 and εðN < 0Þ⩾1,

where N is the number of e-folds of inflation remaining
until its end tend, defined as

N ¼
Z

tend

t
Hdt: (4)

N ¼ 0 marks the end of inflation. Here, without loss of
generality we will assume a single continuous stage of
inflation with N� e-folds. If these are the only constraints
imposed, then εðNÞ can take many forms and the pre-
dictions can vary arbitrarily. To transform inflation into a
predictive theory, an additional constraint is needed. We use
scale-freeness as the added condition.

A. Scale-free inflationary theory

Scale-freeness, Eq. (3), combined with the two numbered
criteria, determines the evolution of ε during inflation:

εðNÞ ¼ 1

ðN þ 1Þα ; α > 0; (5)

where α needs to be strictly positive to satisfy criterion I.
That is, the equation of state εðNÞ consistent with the scale-
free principle is described by a simple power-law form with
a single free parameter, α. The second free parameter in
Eq. (3), β, is fixed by criterion II, the condition that
εð0Þ ¼ 1. Considering β as a second free parameter, as
assumed in Ref. [13], violates criterion II. We will discuss
the implications of this restriction below.
To analyze different inflationary solutions, we compute

the evolution of the Hubble parameter in terms of εðNÞ.
Note that we need to assume both criteria I and II for this
type of analysis. Here we are being more precise than some
previous hydrodynamical treatments. For example,
Ref. [12] obtains Eq. (5), but through an inconsistent
argument that first assumes ε ¼ const ≪ 1 and, hence,
violates criterion II. In Ref. [13], β is left as a free
parameter, which is also inconsistent with criterion II.
For a homogeneous, isotropic, and spatially flat universe,

the second Friedmann equation can be written as
ε ¼ −H: =H2. Since dN ¼ −d ln a, we can rewrite the
relation as

ε ¼ d ln H
dN

: (6)

Finally, integration of Eq. (6) together with our expression
for ε in Eq. (5) yields a closed-form expression for H2 (or,
equivalently, the smoothing energy density ρS) as a
function of N:

SCALE-FREE PRIMORDIAL COSMOLOGY PHYSICAL REVIEW D 89, 023525 (2014)

023525-3



H2=H2
end ¼ ρS=ρS;end ¼ exp

�
−2

Z
0

N
εdN

�
; (7)

which reduces in the inflationary case to

H2=H2
end ¼

8<
:

ðN þ 1Þ2; α ¼ 1;

exp

�
2ð1−ðNþ1Þ1−αÞ

α−1
�
; α ≠ 1;

(8)

which is the relevant observable in inflationary dynamics.
Note that the Hubble parameter at the end of inflation,Hend,
is arbitrary.
In Fig. 1 we have plotted H2=H2

end during the infla-
tionary phase as a function of N for different values of α.
The dashed curve corresponds with the strictly scale-free
case, α ¼ 1. The rest of the curves are background-only
scale-free.
The curves divide into three classes: (i) the “plateaulike“

class with α ≳ 1.5 (bold curve) in whichH2 flattens out and
is virtually independent of N over the range N > 60
(changing by less than 20%); (ii) the “power-law-like”
class with α≲ 1 in which H2 is unbounded above; and
(iii) an “intermediate class” with 1 < α < 1.5, that appears
power-law-like during the last 60 e-folds (see Fig. 1) but

which ultimately reaches a plateau at very large N ≫ 60
(with H2 increasing by more than 20% for N > 60).1

The expression for the equation-of-state parameter as
defined in Eq. (5) enables us to derive predictions for the
spectral tilt and the tensor-to-scalar ratio of primordial density
perturbations. Since εðNÞ does not change rapidly, i.e.,
d ln ε

dN
¼ − α

N þ 1
;

d2 ln ε

dN2
¼ α

ðN þ 1Þ2 ≲Oð1Þ; (9)

we can use the approximation [23]

nS − 1 ≈ −2εþ d ln ε

dN
: (10)

Substituting ε from Eq. (5) yields

nS − 1 ≈ − 2

ðN þ 1Þα −
α

N þ 1
: (11)

It is instructive to note that nS − 1 has a maximum value of

ðnS − 1Þðα0Þ ¼ − ln ½2ðN þ 1Þ lnðN þ 1Þ� þ 1

ðN þ 1Þ lnðN þ 1Þ

for α0 ¼
ln ½2ðN þ 1Þ lnðN þ 1Þ�

lnðN þ 1Þ : (12)

For example, with N ¼ 60, we have α0 ≃ 1.5 and
ðnS − 1Þðα0Þ≃−0.03. This red tilt is theminimumdeviation
from Harrison-Zel’dovich-Peebles spectrum (HZP) for a
scale-free inflationary model and is close to the observed
value. (Without scale-freeness or criterion II, nS can be
arbitrarily close to HZP or yield a blue tilt.) This extremum
lies almost precisely at the borderline between the intermedi-
ate and plateaulike classes. (The extremum is described as
being at α ≈ 2 in [13], but, in our analysis, this crude
approximation would give the wrong impression that it
corresponds to the observationally favored models deep
in the plateau range when it actually corresponds to a
disfavored case.)
Finally, with the standard normalization, the tensor-to-

scalar ratio is [12]

r ≈ 16ε ¼ 16

ðN þ 1Þα : (13)

B. Cosmological problems

The plateaulike hydrodynamical class, especially near
α ¼ 2, is the one favored by current observations [2], yet it
suffers from a series of problems, some of which are
analogous to those described in the analysis of scalar field

FIG. 1 (color online). In the hydrodynamical picture, scale-free
inflationary models can be divided into three classes character-
ized by α in Eq. (5): the plateaulike class (with α ≥ 1.5, where
α ¼ 1.5 is the bold thick curve) in which H2 flattens out rapidly
(well before N ¼ 60) as N increases; the power-law-like class
(with α ≤ 1, where α ¼ 1 is the dashed curve) in which H2 is
unbounded above and changes significantly as N increases; and
the intermediate class (with 1 < α < 1.5), which rises like a
power law for N < 60 but which ultimately reaches a plateau at
values ofN ≫ 60 that are irrelevant for cosmological predictions.
The plateaulike class is most favored by current observations but
encounters the problems described in this paper. The power-law-
like models are strongly disfavored by current observations but
do not suffer the same problems.

1Note that “intermediate” here refers to the range of scale-free
models that have a mix of characteristics between plateau and
power-law scale-free behavior. This is distinct from Ref. [22],
where “intermediate” refers to cases where the scale factor
aðtÞ ∝ expðAtfÞ, which is not scale-free and so does not fit into
our classification.
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potentials in [14] and some of which have not been
discussed previously.
(i) Extra parameters.—The plateaulike class has the

property that H2 is nearly flat except for the last
e-fold or so when the expansion rate suddenly de-
creases; see the feature at small N in the plateaulike
curves in Fig. 1. That means whatever microphysics
accounts for εðNÞmust have an extra parameter and/or
field compared to the power-law-like models adjusted
to rapidly cutoff the inflation after a long period of a
nearly constant H2. We will see this effect in Sec. V
when we translate our hydrodynamical results into
models of scalar fields and inflaton potentials.

(ii)Hydrodynamical initial conditions problem.—As
originally imagined, inflation was supposed to smooth
and flatten the universe beginning from arbitrary initial
conditions after the big bang [8]. However, this view
had to be abandoned as it was realized that large
inflaton kinetic energy and gradients prevent inflation
from starting.(Inflation is an attractor for some poten-
tials [24], provided the deviations from inflation are
small, but the basin of attraction is small compared to
typical initial conditions [25] considered below.) Con-
sequently, inflation can only take hold if the entropy,
kinetic energy, and gradients within a Hubble-sized
patch is exceedingly small.
We note that the later that inflation starts, the greater is
the physical size of a Hubble patch and the more
unlikely is the initial condition. A distinctive feature of
the power-law-like hydrodynamic class (α ≤ 1) is that
H2 is unbounded above. Hence, inflation can begin, in
principle, at arbitrarily highH2 or, equivalently, over a
small patch where the initial conditions are less
unlikely compared to cases where inflation starts later.
This includes inflation beginning immediately after the
big bang when the energy density is at the Planck scale.
By contrast, inflation for models in which H2 is
bounded above (i.e., all α > 1) can only begin after
the universe expands enough for the energy density to
drop to the level of the plateau, M4

I . The Planck2013
constraint on r (r0.002 < 0.12 at 95% C.L.) [2] yields

M4
I ≲ 3π2As

2
rM4

Pl ∼ 10−12M4
Pl

r�
0.12

(14)

at 95% C.L., where As is the scalar amplitude and r�
the value of r evaluated at Hubble exit during
inflation of mode with wave number k�. This is well
below the Planck density at a time when the Hubble
volume is, by simple comparison of the scales
MPl=MI ∼ 103 × ð1016GeV=MIÞ, 109 times (or more)
greater [14]. In this case, some combination of gradient
energy density, spatial curvature, and radiation must
necessarily dominate immediately after the big bang
and for a substantial period thereafter before inflation
can ever take hold. A well-known problem, though, is

that gradient energy and spatial curvature tend to block
inflation by causing regions of space to collapse before
inflation can start [14]. That is, inflation can only begin
for the plateaulike models if there is the extraordinary
additional assumption that the universe emerges from
the big bang with a patch:

R3ðtPlÞ≳
�
aðtPlÞ

Z
tI

tPl

dt
a

�
3

∼
�
aðtPlÞHðtPlÞ
aðtIÞHðtIÞ

H−1ðtPlÞ
�
3

> 109
�
1016 GeV

MI

�
3

H−3ðtPlÞ; (15)

that is smooth and flat on scales 109 times greater than
required for the unbounded power-law-like case [26].
Our hydrodynamic analysis divides the inflationary
models along the dashed line (α ¼ 1) in Fig. 1 between
those that require this extraordinary assumption (pla-
teaulike and intermediate with α > 1) and those that
do not (α ≤ 1).

(iii)Hydrodynamical unlikeliness problem.—Even assum-
ing the rare initial conditions are satisfied, the obser-
vationally favored plateaulike models (α ≈ 2) produce
exponentially less smooth and flat volume than the
power-law-like or intermediate class models with
1≲ α < 1.5. This leads to the hydrodynamic version
of the “unlikeliness problem” similar to (but not
identical to; see Sec. V) the one discussed in [14]: First,
let us imagine a complex energy landscape in which
there aremany different kinds of paths corresponding to
different a mix of power-law, intermediate and plateau-
like classes that proceed to the same vacuum. The most
likely path is the one that produces the most number of
e-folds of inflation.
For each α, we can compute the largest value of N for
which thedensity fluctuation δρ=ρðNÞ is less than 1. For
larger N where δρ=ρ exceeds 1, quantum fluctuations
totally spoil the homogeneity and curvature. Hence,
NmaxðαÞ, the maximum number of e-folds as a function
of α, is determined by the condition

δρ=ρðNmaxÞ ¼ 1: (16)

The fluctuation amplitude is

δρ=ρðNÞ≃ HðNÞ
MPl

ffiffiffiffiffiffiffiffiffiffi
εðNÞp (17)

(for the derivation use, for example, δρ=ρ ¼ H=ϕ
:
and

ϕ
: 2 ¼ ρþ p). Substituting the expressions we
previously found for H2 and ε, Eqs. (16) and (17)
together give

NmaxðαÞ ¼ −1þ
�
1

2
αWðzÞ

� 1
1−α
; (18)
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whereW is the LambertW function, and its parameter

z ¼ 2

α

�
105 · 61α=2 · exp

�
611−α
1 − α

��2
αð1−αÞ

; (19)

and δρ=ρ is normalized such that δρ=ρðN ¼ 60Þ ¼
10−5. For α ¼ 1, NmaxðαÞ is 61 × 1010=3 ≈ 105.
As illustrated in Fig. 2, Nmax is maximal overall for
α≃ 1.25; among the power-law-like cases, α ¼ 1 is
most favored; and among the plateaulike models α ¼
1.5 is most favored. The differences in inflated volume
in each case are exponentially large, of order
expð105–8Þ, so “favored” means “very strongly fa-
vored” [2]. Note that α ¼ 2 is strongly disfavored;
yet, this is the inflationary type model that is currently
most favored observationally.
These estimates for NmaxðαÞ are, however, based on
the idea of a complex energy landscape with many
different types of paths to each minimum, assuming
that the initial conditions when the universe emerged
from the big bang could be set with arbitrary accuracy
so that the energy density in the smoothing compo-
nent is the maximum possible, 3H2ðNmaxðαÞÞ in
Planck units. However, a more serious problem that
applies for even simple energy landscapes is that most
patches of space are likely to have large gradient
energy that will spoil inflation altogether. Even if we
eliminate those patches and consider only homo-
geneous patches, in each patch there remain different
mixes of radiation, kinetic energy, potential energy,
and other forms of energy such that, typically, we do
not have patches at precisely the ideal potential
energy to obtain Nmax. Hence we should imagine
some flex of order x in the amount of the initial
potential energy. A reduction of the average energy
density in the patch by a factor x requires a revised
estimate Nmaxðα; xÞ:

Nmaxðα;xÞ¼
�
Nmaxðα;0Þ1−α−α−1

2
lnðxÞ

� 1
1−α−1;

(20)

which equals 61 × 1010=3
ffiffiffi
x

p
for α ¼ 1. Because

plateaulike models with α ≥ 1.5 are so flat for large
N, a reduction in average H2 by some factor x
produces a much greater reduction in Nmaxðα; xÞ
relative to NmaxðαÞ≡ Nmaxðα; 0Þ than is found for
power-law-like models.
Figure 3 shows log Nmax as a function of x for
different values of α. The dashed line corresponds to
the strictly scale-free, unbounded power-law-like case
with α ¼ 1; the thin black curves correspond to
models with α values of 1.25, 1.5, 2, and 3; the
red horizontal line marks 60 e-folds. It is clear that the
plateaulike models fail to reach N ¼ 60 e-folds for
even a small x, while the power-law-like models and
intermediate class models are comparatively insensi-
tive to the initial distribution of energy in the patch.
In sum, there are three classes of scale-free infla-
tionary scenarios. Power-law-like models (α ≤ 1) do
not suffer from the initial conditions problem or
unlikeliness problem. Models of the intermediate

lo
g 1

0  
N

m
ax

(α
)

α
320 1

8

6

4

FIG. 2 (color online). A logarithmic plot of the maximum
number of e-folds NmaxðαÞ for scale-free models as a function of
the hydrodynamic variable α. The plot assumes initial conditions
can be set perfectly smoothly in the initial Hubble patch.

FIG. 3 (color online). The sensitivity of Nmax to the initial
energy density in the smoothing component at the Planck time
when the universe first emerges from the big bang. If the energy
density in a patch could be set with perfect precision, the
maximum number of e-folds of inflation would be NmaxðαÞ≡
Nmaxðα; 0Þ plotted in Fig. 2. Because of contributions of other
forms of energy (kinetic energy, radiation energy, etc.), we
assume a variation of x percent from perfect precision and
compute how this affects the maximum number of e-folds,
Nmaxðα; xÞ, as shown in the logarithmic plot above. Note that
the NmaxðαÞ in Fig. 2 is equal to Nmaxðα; 0Þ. The plot shows that
Nmaxðα; xÞ for α ¼ 1 (strictly scale-free power-law-like models)
is rather insensitive to x. By contrast, plateaulike models
(α ≥ 1.5) are so extremely sensitive to x that, unless the initial
energy density of the smoothing component is set with extraor-
dinary precision, the value ofNmaxðα; xÞ is much less than that for
the power-law-like class and less than the minimal 60 needed for
inflation. The shaded region corresponds to insufficient inflation.
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class have the initial conditions problem, but not the
unlikeliness problem. However, these models are all
observationally disfavored currently [2]. The obser-
vationally favored plateaulike models with α ¼ 2
suffer from all the problems described above. Hence,
the theoretically favored scale-free inflationary mod-
els are observationally disfavored and vice versa. The
fact that the initial conditions and unlikeliness prob-
lems impose different constraints illustrates that they
are logically distinct, a point that some have disputed
in discussions of [14].

C. Deviations from scale-freeness

We have thus far considered ϵðNÞ that have a scale-free
form. The case α ¼ 1 is strictly scale-free in that the
functions that describe the background, ϵðNÞ and HðNÞ, as
well as the functions that describe the perturbations

nSðNÞ − 1 ¼ − 3

N þ 1
(21)

are all simple power laws (or power laws with shifts).
For α ≠ 1, the background functions are still scale-free

but the spectral index is not:

nSðNÞ − 1 ¼ − 2

ðN þ 1Þα −
α

N þ 1
; (22)

so there is only background scale-freeness.
For weakly broken scale-freeness, there can be no

complete treatment since “weakly” is an imprecise term.
Here we consider in this category deviations from scale-
freeness at the background level but only on length scales
that are unobservably small (corresponding to small N):

ϵ ¼ β

ðN þ 1Þα −
β − 1

ðN þ 1Þαþγ ; with β; γ > 0; β ≠ 1;

(23)

where this form is designed to still satisfy inflationary
criteria I and II. For the deviation to be small, in addition, it
is necessary that

j1 − 1=βj ≪ ðN þ 1Þγ and jβ − 1j < 1 (24)

for observable N. Then, with an additional free parameter,
the predictions are modified:

ϵ ≈
β

ðN þ 1Þα ;

nS − 1 ≈

8>><
>>:

− 2β
ðNþ1Þα ; α < 1;

− 2βþ1
ðNþ1Þ ; α ¼ 1;

− α
Nþ1

; α > 1;

r ≈
16β

ðN þ 1Þα : (25)

As we shall discuss below in Sec. V, the case α ¼ 1 is of
particular interest as it corresponds to power-law inflaton
(ϕ) potentials VðϕÞ ∝ ϕn with n ¼ 4β. From Eq. (25), we
note that the weakly scale-free breaking inflationary mod-
els (β ≠ 0) entail two independent parameters while strictly
scale-free inflationary theory involves exactly one free
parameter.

IV. CYCLIC THEORY

In the following section, we carry out the same type of
hydrodynamical analysis for the cyclic theory that we
previously did for inflation. In order to construct a model
with N � e-folds of ultraslow contraction (ekpyrosis) that
flattens and smoothes the universe, the two criteria analo-
gous to those used for inflation are as follows:

I′: sufficient ekpyrosis.—N � e-folds of ekpyrosis
occur, i.e., ϵðN Þ > 3 for 1 < N < N �; and

II′: exit.—ekpyrosis ends in the last e-fold, i.e.,
ϵðN > 0Þ > 3, and ϵð0Þ ¼ 3.

We have introduced the dimensionless time variable N ,
defined by

N ≡ ln

�
aendHend

aH

�
: (26)

N measures the number of e-folds of modes that exit
the horizon before the end of ekpyrosis. It is related to
the time variable N used in the previous section by
dN ¼ ðϵ − 1ÞdN. For inflation N ≈ N, since H ≈ const
during accelerated expansion. For ekpyrosis, on the other
hand, N ≫ N because H grows significantly during ultra-
slow contraction while a shrinks very slowly, so N is the
correct time variable to use. Here, in analogy with the
treatment of inflation, we assume a single continuous stage
of ekpyrosis with N � e-folds.

A. Scale-free cyclic theory

Scale-freeness, combined with these two criteria, deter-
mines the evolution of ϵ during the ekpyrotic phase. From
Eq. (3) together with criteria I0 and II0, we have

ϵðN Þ ¼ 3ðN þ 1Þα1 ; α1 > 0. (27)

That means the shape of the equation-of-state parameter
consistent with the scale-free principle is a simple power-
law form with a single free parameter. The second free
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parameter, β1, in Eq. (3) is fixed by criterion II0, which
requires ϵð0Þ ¼ 3.
To analyze different cyclic solutions, we study the

evolution of the total energy density H2=H2
end during

ekpyrosis. Substituting Eq. (27) into Eq. (7) yields

H2=H2
end ¼ exp

�
−2N þ 2

Z
0

N

dN
3ðN þ 1Þα1 − 1

�
: (28)

Note that this expression reflects a characteristic feature of
an ekpyrotic phase that H2 grows by many orders of
magnitude during smoothing. Figure 4 shows a logarithmic
plot of H2=H2

end for the ekpyrotic phase as a function of N
for different values of α1.
In contrast to inflation, cyclic models do not divide into

different classes. In fact, for α1 ≳ 1 all of the H2 curves lie
virtually on top of one another such that the Hubble
parameter proves effectively independent of α1. Hence,
the unlikeliness problem, based on comparing the proba-
bility of different classes, cannot arise for the cyclic theory.
In addition, it follows from the α1 independence that
choosing a value of α1 to fit observational data does not
involve any special fine-tuning relative to the general class
of models.
The initial conditions requirement is extremely mild. It

suffices to have a volume of space on the scale of meters in
diameter that is absent of black holes or nonlinear structure
at the beginning of the contraction phase [27]. The
ekpyrotic mechanism will smooth and flatten this region
and the bounce will transform this region during the
expansion phase into a size of order the Hubble volume
today. The initial condition can be reached in a number of
ways, including by having an expanding phase precede the
contraction phase. For example, in the cyclic scenario, the
initial condition is easily achieved by having the ekpyrotic
phase preceded by an expanding dark energy dominated
phase just like the current phase of our Universe. Consider
that the present Universe already contains exponentially
many patches that satisfy the initial condition requirements
and any further expansion only increases their number.

Having an expanding dark energy phase turn into a
contracting phase is known to be quite straightforward
to achieve, e.g., by having a scalar field roll or tunnel from a
phase with positive potential density to a phase with a
negative potential energy density [28,29]. In order for
ekpyrosis to occur, no further criteria need to be satisfied;
expansion can turn into contraction at arbitrarily low
energies for an α1 since there is no (classical) limit in
Fig. 4 on how low H can be when contraction begins for
any α1 (so the choice of α1 does not require extra tuning).
By contrast, for inflation, assuming an expanding phase
after the bang is not sufficient since the natural conditions
after the bang would have large gradient and kinetic
energies that would block the initiation of inflation.
In sum, at background level, none of the problems

pointed out above for inflation arise for the cyclic model.
There is no fine-tuning or unlikeliness problem, and
there is no initial conditions problem comparable to the
inflationary case.
At the perturbative level there is a notable conceptual

difference between inflation and the cyclic model, at least
according to most current versions of cyclic theory.
Namely, the generation of primordial density perturbations
is assumed to be a two-stage process. First, entropy or
isocurvature perturbations are created before the bounce.
These perturbations are then converted into primordial
density perturbations at some time during the transition
from big crunch to big bang [15].
Modeling this scenario in a hydrodynamical approach

requires a two-component fluid: one fluid component
governs the background evolution and the other is respon-
sible for the generation of isocurvature fluctuations. The
background fluid component can be described by an
equation-of-state parameter, ϵ1ðN Þ, as defined in Eq. (27):

ϵ1ðN Þ ¼ 3β1ðN þ 1Þα1 ; α1 > 0; (29)

where β1 ¼ 1 according to criterion II. The equation-of-
state parameter for the second fluid, ϵ2ðN Þ, must also
satisfy the requirement of scale-freeness. Hence, from
Eq. (3), it is necessary (but not sufficient, as we point
out below) for ϵ2ðN Þ to take the form

ϵ2ðN Þ ¼ 3β2ðN þ 1Þα2 ; α2 ∈ R: (30)

If this component satisfies the null energy condition, β2
must be greater than or equal to zero.
Before imposing any further conditions, the general

expression for the spectral tilt of density perturbations is

nSðN Þ− 1¼ 3− ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8κ

p

×

�
1þ 3 ·

1− 2κ

1þ 8κ
·
2

ϵ1
þ 8− 5κ

1þ 8κ
·
ϵ1;N
ϵ1

�
; (31)

where

FIG. 4 (color online). Plot of ln H2=H2
end vs N for the cyclic

picture for a range of α1.
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κðN Þ ¼ ϵ2=ϵ1 ¼ ðβ2=β1ÞðN þ 1Þα2−α1 (32)

(see the Appendix for the derivation). In the limit of
constant κðNÞ ≈ 1, the expression reduces to

nS − 1 ¼ 2

ϵ1
− ϵ1;N

ϵ1
þ 4

3
ð1 − κÞ; (33)

in agreement with [21,30].

B. Deviations from scale-freeness

For the strictly scale-free case, both the background and
the perturbations must be simple power laws. For the
background Friedmann equations, we mean that the dom-
inant contribution toH2 in Eq. (2) should be a simple power
law in a. As noted above in Eq. (3), this requires ϵ1ðN Þ ¼
ϵ2ðN Þ with α1 ¼ α2 ¼ 1 and β1 ¼ β2. Then, the prediction
for the spectral tilt is

nS − 1 ¼ 2

ϵ1
− ϵ1;N

ϵ1
¼ − 1

3ðN þ 1Þ : (34)

For the background-only scale-free case, we still require
β2 ¼ β1 ¼ 1 and α1 ¼ α2, but the α’s need not be 1. Then,
the spectral tilt has a small deviation from scale-freeness:

nS − 1 ¼ 2

ϵ1
− ϵ1;N

ϵ1
¼ 2

3ðN þ 1Þα1 −
α1

N þ 1
; (35)

in agreement with [15,21]. Note that, even though there are
two fluid components, the expression for ns has only one
free parameter, as in the case of inflation.
Finally, we consider the weakly broken scale-free case in

which deviations from scale-freeness occur only on unob-
servable scales. As with inflation, there is no absolute
definition of weakly broken scale-free, but we consider two
types of deviations that arise in microphysical models of
scalar fields.
First, a very weakly broken scale-free background occurs

if β2 is close to but not equal to β1 ¼ 1, or, equivalently,
0 < jκ − 1j ≪ 1. In this case, the expression for the tilt
reduces to the simpler form

nS − 1 ¼ 4

3
ð1 − κÞ þ 2

ϵ1
− ϵ1;N

ϵ1

¼ 4

3
ð1 − κÞ þ 2

3ðN þ 1Þα1 −
α1

N þ 1
; (36)

in agreement with [21,30]. A second type of deviation from
background scale-freeness is to choose β1 ≠ 1, which
generates additional contributions to nS analogous to
the inflationary case; see Eqs. (23) and (25). As with the
background case, the weakly broken scale-free case for the
two-fluid-component cyclic scenario has the same number
of free parameters as for inflation, so neither theory is
advantageous by this measure.

V. SCALE-FREE SCALAR FIELDS AND
POTENTIALS

The problems we identified for inflationary theory are
similar but not identical to the issues identified previously
in [14], using a model-dependent analysis based on
assuming that inflation is driven by scalar fields with
specific potential forms. In order to compare the two
approaches, we translate our hydrodynamical scale-free
models into the field picture, first for inflation and
subsequently for cyclic cosmology.

A. Scale-free inflationary potentials

The construction of scale-free inflationary potentials
corresponding to the hydrodynamical models described
in previous sections is based on assuming single-field,
slow-roll inflation with canonical kinetic energy density
and ρS ≃ VðϕÞ, where VðϕÞ is the potential energy density
for the inflaton scalar field ϕ. Following the method
presented in [13], the Friedmann equations together with
the identity ϕ

: 2 ¼ ρS þ pS yield

ϕ − ϕend

MPl
¼ �

Z
0

N

ffiffiffiffiffi
2ϵ

p
dN

¼ �
ffiffiffi
2

p
·

� − lnðN þ 1Þ; α ¼ 2
2

2−α ð1 − ðN þ 1Þ2−α2 Þ; otherwise:

(37)

Then, with Eq. (7) we find the expression for the infla-
tionary potential

VðφÞ ¼

8>><
>>:

λφ4; α ¼ 1;

Vend exp

�
2 − 2 exp

�
− φ−φendffiffi

2
p

MPl

��
; α ¼ 2;

Vendð3 − ðNðφÞ þ 1Þ−αÞ exp
h

2
1−α ððNðφÞ þ 1Þ1−α − 1Þ

i
; otherwise;

(38)

where NðϕÞ is given by Eq. (37).
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In the hydrodynamical analysis, we found that the
scale-free inflationary models divide into three classes:
power-law-like (α ≤ 1), intermediate (1 < α < 1.5) and
plateaulike (1.5 ≤ α). In the scalar-field potential analysis,
the first class, the power-law-like models, divides into two
cases: the strictly scale-free α ¼ 1 case, corresponding to
VðϕÞ ¼ λϕ4 with only a single dimensionless parameter;
and α < 1, for which the potential is exponential with a
power-law prefactor and a dimensionful parameter. Both
cases are free of the hydrodynamical initial conditions and
unlikeliness problems described here and the correspond-
ing problems described for potentials in [14]. However, in
the latter case (α < 1), graceful exit occurs since the power-
law prefactor becomes significant in the last e-fold, adding
a feature to the exponential potential. The added feature
breaks the appealing scale-free character. Hence, the scalar
field potential analysis picks out the α ¼ 1 strictly scale-
free case as being simplest among the power-law-like class.
The intermediate class of hydrodynamical models

(1 < α < 1.5) translates into plateau potentials with
large-field inflation. Unlike the α ¼ 1 case, these models
require tuning one or more dimensionful parameters to
satisfy cosmological constraints on the number of e-folds
and the density fluctuation amplitude, δρ=ρ ∼ 10−5. As in
the hydrodynamical analysis, the predictions for ns − 1 and
r during the last 60 e-folds depend on the shape of
the potential beyond the very flat part of the plateau as
the potential dips sharply towards zero. Consequently, the
predictions are very similar to expectations for monomial
potentials, such as VðϕÞ ∼m2ϕ2. However, because the
potentials are plateaulike at large ϕ, these models exhibit
the initial conditions problem described here and in [14].
Finally, the plateaulike class of hydrodynamic models

are split into two cases when translated into scalar fields
and potentials. For 1.5 ≤ α ≤ 2, they correspond to large-
field models and include Higgs [31] (with action expressed
in the Einstein frame). They exhibit the initial conditions
and unlikeliness problems and require tuning one or more
dimensionful parameters to satisfy cosmological con-
straints. For α > 2, the potentials correspond to small-field
plateau potentials such as new inflation [9,10] which
exhibit the initial conditions and unlikeliness problems
and require two or more dimensionful parameters Vend and
ϕend to yield the correct spectrum of primordial density
fluctuations and sufficient e-folds of inflation.
In sum, the model-dependent analysis based on inflaton

fields and potentials gives a somewhat different view of the
landscape of scale-free inflationary models and their
problems but on the whole confirms and sharpens the
results of the hydrodynamic analysis. From either point of
view, the strictly scale-free α ¼ 1 case is the least prob-
lematic among all the models and all classes. The analysis
based on scalar fields with scale-free potentials splits two of
the hydrodynamic classes into two distinct subgroups
through the conversion from N to ϕ as the independent

variable. It further suggests a hierarchy from least to most
problematic, where the least problematic and requiring the
least dimensionful parameters is the strictly scale-free
α ¼ 1 model followed by the power-law-like models with
α < 1 and intermediate class models. Unfortunately, the
inflationary models favored by present data do not belong
to either of these groups. The results also show that,
in the plateaulike class, large-field models with α < 2
require fewer dimensionful parameters than small-field
models (α > 2).
We note that the hydrodynamic unlikeliness problem

described in this paper is more general than the version
identified in [14]. In [14] it was shown specifically for
small-field plateaulike models that inflation is exponen-
tially less likely in a generic energy landscape than
monomial potentials V ∼ ϕn. The results in the present
paper based on scale-freeness show that the entire plateau-
like class is theoretically disfavored compared to the entire
power-law-like class, whether small-field or large-field
inflation.
Among monomial inflationary potentials V ∼ ϕn, the

only strictly or background-only scale-free example is the
conformally invariant case, n ¼ 4, corresponding to α ¼ 1,
which we have shown is the least problematic.2 Recovering
other power-law potentials requires explicitly breaking
scale-freeness while still respecting the inflationary con-
ditions, criteria I and II. For example, by introducing two
additional nonzero parameters β and γ as defined in
Eq. (23), the equation-of-state parameter can be made to
follow closely the equation of state that can be obtained for
n ¼ 4β. Note that ϕ2 requires non-negligible scale-free
breaking in the sense that β is significantly less than one.
Power-law models with yet smaller powers, such as ϕ2=3,
require even greater deviations from scale-freeness.
However, introducing this extra scale-freeness breaking

degree of freedom could be a dangerous course. There
already exists a spectrum of inflationary cases parameter-
ized by α in the background scale-free limit. Having a
spectrum of cases reduces the predictive power of the
paradigm. Applying the same scale-free breaking degree of
freedom, β, for all α further broadens the range of
possibilities and increases the number of parameters.
This reduces the predictability to the point where there
can be more parameters than observational constraints.
Furthermore, the breaking of scale-freeness only compli-
cates the model without resolving any of the problems
identified for the scale-free cases. Given that the Universe
seems so simple based on observations, it is problematic to
consider cases with more parameters than the inflationary
paradigm requires or the data can constrain.

2Here we correct the crude approximation made in [13] which
led to the incorrect conclusion that ϕ6 is the strictly scale-free
solution.
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Not everyone would agree with this assessment. In order
to address the initial conditions problem described by Ijjas,
Steinhardt, and Loeb [14] and in this paper, the authors
have introduced potentials with double inflation, first a
power-law-like phase and then a plateaulike phase
[11,32,33]; or they have introduced an energy landscape
with false vacuum inflation tunneling to a plateau [34]. In
these cases, the deviation from scale-freeness is intention-
ally designed to occur for modes outside the Hubble
horizon beyond the range of observational tests. From a
theoretical perspective, the logic is odd: if the physics
underlying inflation is not truly scale-free, why should the
deviation from scale-freeness only show up on unobserv-
ably large scales? The only purpose is to evade the initial
conditions problem while remaining consistent with obser-
vations. But the cost is too precious. As evidenced by the
example of Ferrara et al. [11], this approach introduces
enough new parameters and enough tuning that any
outcome for nS − 1 and r becomes possible, such that
inflationary cosmology loses all predictive power.

B. Scale-free cyclic potentials

As explained in the Appendix, a generic form for the
scalar-field potential energy density in the cyclic model can
be cast in the form

Vðσ; sÞ ¼ Vðσ; 0Þ
�
1þ 1

2
κ

V;σσ
Vðσ; 0Þ s

2 þOðs3Þ
�
; (39)

where σ corresponds with the fluid component governing
the background evolution described by ϵ1 and s is the field
representation of the fluid with equation-of-state parameter
ϵ2 that generates the isocurvature fluctuations before the
bounce (that are converted to the nearly scale-invariant
curvature perturbations during the bounce). The back-
ground evolution is along the σ direction with s ¼ 0.
The parameter κ is the ratio ϵ2=ϵ1 defined in Eq. (32),
which relates the curvature of the potential energy density
along the s direction to the curvature along the σ direction.
The strictly scale-free case corresponds to κ ¼ 1 such that
V;ss ðσ; sÞ ¼ V;σσ ðσ; 0Þ [21].
The Friedmann equations together with Eqs. (28) and

(29) can be used to construct the potential given the
background equation of state ϵ1ðN Þ:

Vðσ; 0Þ ¼ −M2
Plðϵ1ðN − 1ÞÞH2ðN Þ

¼ −3M2
PlH

2
endððN þ 1Þα1 − 1Þ

× exp

�
−2N þ 2

Z
0

N

dN
3ðN þ 1Þα − 1

�
; (40)

where N can be replaced by the background scalar field σ
using the relation

σ − σend
MPl

¼ �
Z

0

N

ffiffiffiffiffiffiffi
2ϵ1

p
ðϵ1 − 1Þ−1dN

¼ �
ffiffiffi
6

p Z
0

N

ðN þ 1Þα1=2
3ðN þ 1Þα1 − 1

dN : (41)

For example, for α1 ¼ 1 we have

Vðσ; 0Þ≃−3M2
PlH

2
endðσ2=M2

Pl − 1Þ exp ð−2σ2=M2
PlÞ:
(42)

Here we set without loss of generality σend ¼ 1 and
assumed σ − σend > 0 during the smoothing phase. For
all α > 0, the potential Vðσ; 0Þ takes the same generic form:
a steep negative potential that reaches a minimum before σ
approaches σend, the standard shape potential proposed for
ekpyrotic and cyclic scenarios. [This can be checked by
computing the derivative of Eq. (40), dV=dN for different
α and by observing from Eq. (41) that the transformation
from N to σ, N ðσÞ, is strictly monotonic.]
This means that the potential picture gives the same

simple result as the model-independent hydrodynamic
analysis, namely that the scale-free cyclic theory has only
a single class of models all requiring a single dimensionful
parameter H2

end to yield the correct spectrum of primordial
density fluctuations, δρ=ρ ∼ 10−5. Hence, both pictures
lead to the conclusion that there is no unlikeliness problem
and no extra parameters or fine-tuning problem can arise.

VI. DISCUSSION

In this paper, our aim has been to study different
cosmological scenarios in a model-independent way that
does not refer directly to fields or potentials. Using a
hydrodynamic approach, we derived algebraic forms for
the equation-of-state parameter consistent with the scale-
free principle for both inflationary and cyclic theory. In this
section we discuss both theoretical and observational
implications of this work.
Let us first consider inflationary cosmology alone. We

found that, based on our hydrodynamical analysis, infla-
tionary scale-free models divide into three distinct classes
and identified a range of related problems: an initial
conditions problem for the plateaulike and intermediate
classes, and an unlikeliness problem and a fine-tuning
problem for the plateau-like class. The spectrum becomes
even more divided when we translate the three cases into
scalar-field potentials. Hence, even limiting ourselves to
scale-freeness, there is a diversity of inflationary models
and predictions.
In applying the same hydrodynamic analysis to cyclic

scenarios, we found cyclic theory allows only a single
scale-free class of models and does not suffer from the
initial conditions or unlikeliness-type problems identified
for inflation. At the perturbative level, current versions of
cyclic theory require a two-component fluid for the
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generation of primordial isocurvature fluctuations, which
are then converted into density fluctuations. This added
condition compared to inflation appears to have no dis-
advantage in a hydrodynamical treatment assuming scale-
freeness: there were no more parameters, fine-tuning, or
other kinds of constraints compared to the inflationary one-
fluid mechanism. Remarkably, translating this single cyclic
class into scalar-field potentials, we found the same simple
result.
One might ask if the problems found for inflation that

were not found for cyclic may be related to the fact that a
single fluid was assumed in the first case but not the second.
The answer is no. As we discussed above in Sec. II, in
scale-free scenarios the background is always described by
a single fluid component and the presence of multiple
components becomes relevant only at perturbative level.
However, the inflationary problems arise at background
level such that adding multiple fluid components makes (at
best) no difference whatsoever. In fact, the situation for
inflation is typically made worse. For example, there is a
well-known two-component fluid version of inflationary
theory, known as the curvaton model [35]. As in the cyclic
model, the background evolution is governed by one fluid
component, the inflaton, and the perturbations are con-
trolled by another, the curvaton. Since the inflaton must
satisfy the same conditions on the equation of state as in the
single-fluid case, there is no change whatsoever in the
problems encountered by introducing the curvaton. Since
both fluids are capable of generating density perturbations,
extra fine-tuning is required to regulate the interplay of the
inflaton and curvaton in order that only the curvaton affects
the evolution of perturbations. That is, a curvaton is not
automatically the leading order contributor to the pertur-
bations; the model must be adjusted to make it so. In
particular the curvaton construction requires setting ϵ1ðNÞ
for the inflaton different from ϵ2ðNÞ for the curvaton, which
explicitly breaks background scale-freeness. This is quali-
tatively different from the cyclic case where two fluids are
required to generate the leading order contribution to the

density perturbations and ϵ1ðN Þ can be set equal to ϵ2ðN Þ,
preserving scale-freeness, as was done in Sec. IV B.
Finally, we relate our theoretical findings to current

observations, in particular to recent Planck satellite mea-
surements [2]. We see that strictly scale-free versions of
both cosmological scenarios are observationally disfa-
vored. The strictly scale-free ϕ4-chaotic inflation potential
is observationally disfavored by more than 4σ as a result of
constraints on nS and r. The strictly scale-free cyclic model
is consistent with current bounds on r but predicts
nS − 1≃−0:01, which is disfavored by 3σ. That means
consistency with current observational data requires some
deviation from strict scale-freeness in both scenarios.
In the cyclic theory the observational value of nS − 1 can

be obtained simply by introducing a very weak breaking of
scale-freeness at the perturbative level (β2 slightly different
from 1 or, equivalently, jκ − 1j ≪ 1) while leaving the
dominant fluid and the background strictly scale-free
(β1 ¼ 1). In inflation, by contrast, the current observations
favor scale-freeness only for plateaulike models, which
suffer from the initial conditions and unlikeliness problems
described above. The only power-law-like models that are
not strongly disfavored require significant breaking of
scale-freeness [jβ − 1j ∼Oð1Þ].
What will future observations tell us about scale-free

primordial cosmology? Scale-free inflation is already in
serious jeopardy given what we know: there are the historic
entropy [25,36] and multiverse [37,38] problems that apply
to all inflationary models [39]. Hence, at best, we have
these problems to overcome. However, future observations
could make matters worse for scale-free inflation. We
summarize all possible scenarios in Table I.
An important prediction for scale-free inflation that

stems from this work is that the tensor-to-scalar ratio r
should exceed 0.0001, which is within conceivable exper-
imental sensitivity. (Here, as throughout the paper, we
assume cs > 1=3, as implied by current observations [3])
This bound arises because smaller r requires α > 3,
which, in turn, requires nS < 0.95 in disagreement with

TABLE I. Testing scale-free primordial cosmology with measurements of the tensor-to-scalar ratio r and the tilt ns − 1. See discussion
in text.

r nS − 1
Unlikeliness
problem

Favored model

≳10−4
Scale-free satisfying Eq. (25)

with jβ − 1j ≪ 1
No, if r ≳ 0.1 Scale-free inflation

Yes, if 0.1≳ r ≳ 10−4*

Violating Eq. (25) ?

≲10−4
Scale-free satisfying Eq. (36)

with jκ − 1j ≪ 1
No Scale-free cyclic theory

?
*Note that the results from our model-dependent analysis in Sec. V based on scalar fields and potentials further divide plateaulike

models into two groups: α⩽2, which requires r ≳ 0.004; and 2 < α, which requires 10−4 ≲ r≲ 0.004, where this latter group requires
more dimensionful parameters and has a more severe unlikeliness problem.
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current measurements of the spectral tilt. Note that the
tensor-to-scalar ratio r does not depend on the energy
scale of inflation since it precisely cancels from the ratio.
Models with r far below 10−4 either violate existing
observational constraints (such as the limit on nS − 1) and/
or introduce extra parameters that strongly break scale-
freeness. If none of the scale-free combinations of
(r, nS − 1) is found observationally, scale-free inflation
is ruled out. If one of these combinations is observed with
10−4 < r≲ 0.1, then scale-free inflation is possible, but it
is necessary to resolve the initial conditions and unlike-
liness problems discussed here. If a combination is found
with r > 0.1, scale-free inflation without either of these
problems is possible (though there would remain the
entropy and multiverse problems common to all infla-
tionary models).
The current situation is that observations indicate

r < 0.1. Hence, unless future B-mode measurements bring
a surprise that overrules this result, the only possible scale-
free inflationary models remaining encounter the initial
conditions and unlikeliness problems discussed here.
Alternatively, future observations could find that the

measured values of r and nS − 1 yield no scale-free
combination consistent with Eq. (25), or r < 0.0001.
Either case would eliminate all scale-free inflationary
models and force extra degrees of freedom that allow
virtually any outcome for nS − 1 and r, as exemplified by
the scale-freeness violating model of Ferrara et al. [11]. In
this case, inflationary cosmology loses all predictive power.
As for scale-free cyclic models, the situation is some-

what different. There is no multiverse problem and the
initial conditions and unlikeliness problems found for
inflation are evaded. Observationally, the strictly scale-free
cyclic case (α ¼ 1) is disfavored because of the current
constraints on the spectral tilt. A best fit to the tilt requires a
small deviation from scale-freeness at the perturbative
level, by setting β2 (or, equivalently, κ) slightly greater
than 1 instead of equal to 1 precisely. The forthcoming
measurements of r are crucial to scale-free cyclic models
because all predict no observable tensor modes. Detection
of primordial gravitational waves would eliminate the
entire spectrum of models. On the other hand, if there is
no detection and r is proven to be less than 0.0001—the
conditions that eliminate scale-free inflation—scale-free
cyclic would fit perfectly.
In the cyclic models considered here, we have assumed

an entropic mechanism with two fluids for generating
curvature perturbations. At least in currently known exam-
ples in which this is achieved with two scalar fields, the
models generate non-negligible fNL or gNL or both. Current
observational limits are consistent with predictions without
requiring any additional tuning of parameters [30], but
future measurements could result in detection or tighter
constraints. Although non-Gaussianity is not directly pre-
dicted by hydrodynamical analysis and is more model

dependent in cyclic models, future measurements could be
useful in distinguishing inflation versus cyclic scenarios
and the testing the hypothesis of scale-free primordial
cosmology.
In sum, introducing the scale-free principle makes

cosmological theories—both inflationary and cyclic—
meaningfully predictive and allows for observational test.
Both for scale-free inflationary and cyclic cosmology, we
could identify all combinations of parameters (r, nS − 1)
consistent with the theory. If such a combination is not
measured, the theory is falsified. Most interestingly, forth-
coming measurements are capable of testing and eliminat-
ing scale-free inflationary models, scale-free cyclic models,
or both, as indicated by the “?” in Table I. Eliminating both
means relinquishing scale-freeness and having to settle for
unpredictive theory, like [11], or seeking another type of
cosmological theory that retains scale-freeness and pre-
dictive power.
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APPENDIX: DERIVATION OF EQ. (31)

In order to derive the general hydrodynamic expression
for the spectral tilt of primordial density fluctuations in
cyclic theories, we follow the same procedure as for
inflation [23]. Namely, we first solve for the perturbations,
assuming the fluids can be represented as scalar fields with
potentials, and then we convert the potential parameters in
the expression derived for the tilt into hydrodynamic
variables. To represent the two-component fluid we choose
two fields, σ and s, where σ corresponds to the fluid
component governing the background evolution described
by equation of state ϵ1 and s is the field representing the
fluid that generates the isocurvature fluctuations before the
bounce that are later converted to curvature perturbations
during the bounce. The second fluid has equation-of-state
parameter ϵ2. The perturbation equation is given by
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δs
:: þ 3 Hδs

: þ
�
k2

a2
þ V;ss

�
δs ¼ 0; (A1)

where a dot denotes derivation with respect to physical time
and k is the adiabatic mode.
For the cyclic potential we choose the form

Vðσ; sÞ ¼ Vðσ; 0Þ
�
1þ 1

2
κ

V;σσ
Vðσ; 0Þ s

2 þOðs3Þ
�
; (A2)

in agreement with [21,30]. Here κ is the ratio of the
equation-of-state parameters, κ ≡ ϵ2=ϵ1 as in Eq. (32).
Vðσ; sÞ is constructed such that for κ ¼ 1 it yields
scale-free solutions; this corresponds to the case
Vðσ; sÞ;ss ¼ Vðσ; 0Þ;σσ. Parameterizing the cyclic potential
in this way is useful since the form naturally incorporates
the entropic mechanism by dividing the potential into a first
factor, that describes the background evolution along the σ
direction, and the second factor, which describes the
direction of the isocurvature perturbations. Furthermore,
this form encompasses all known simple cyclic potentials,
such as models that can be written as sums of exponentials
of independent fields.
After rescaling δS≡ aðηÞδs and assuming standard

Bunch-Davies initial conditions, δs → e−ikη=ð2kÞ3=2, the
solution of Eq. (A1) is the Hankel function

δs ¼
ffiffiffiffiffiffiffiffiffi−πηp
2

Hð1Þ
ν ð−kηÞ; (A3)

with

ν2 ¼ 1

4
þ η2

�
a00

a
− a2κV;σσ

�
: (A4)

Here a prime denotes derivative with respect to conformal
time η. On large scales, k ≪ aH, δs ∼ k−ν. This corre-
sponds to a spectral tilt

nS − 1 ¼ 3 − 2ν: (A5)

To express the tilt in hydrodynamical language, we follow
[15] and rewrite H, a, and V;σσ in terms of the background
equation-of-state parameter ϵ1ðN Þ:

ðaHÞ−1 ≃ ϵ1η

�
1 − 1

ϵ1
− ϵ1;N

ϵ1

�
; (A6)

a00

a
≃ 2a2H2

�
1 − 1

2ϵ1

�
; (A7)

V;σσ ≃−H2

�
2ϵ21 − 6ϵ1 − 5

2
ðϵ1 − 1Þϵ1;N

�
: (A8)

After some algebra, we find

ν2 ≃ 1

4
þ 2

�
κ þ 3 ·

1 − 2κ

2ε
þ 8 − 5κ

4
·
ϵ;N
ϵ

�
; (A9)

where we neglected terms of order 1=ϵ2. Finally, substitut-
ing into Eq. (A5) yields the hydrodynamic expression for
the spectral tilt as stated in Eq. (31).
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